Files
neovim/src/nvim/regexp.c
dundargoc 8e932480f6 refactor: the long goodbye
long is 32 bits on windows, while it is 64 bits on other architectures.
This makes the type suboptimal for a codebase meant to be
cross-platform. Replace it with more appropriate integer types.
2023-10-09 11:45:46 +02:00

2581 lines
75 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub()
// By default: do not create debugging logs or files related to regular
// expressions, even when compiling with -DDEBUG.
// Uncomment the second line to get the regexp debugging.
// #undef REGEXP_DEBUG
// #define REGEXP_DEBUG
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
#include "nvim/ascii.h"
#include "nvim/buffer_defs.h"
#include "nvim/charset.h"
#include "nvim/eval.h"
#include "nvim/eval/typval.h"
#include "nvim/eval/userfunc.h"
#include "nvim/garray.h"
#include "nvim/gettext.h"
#include "nvim/globals.h"
#include "nvim/keycodes.h"
#include "nvim/macros.h"
#include "nvim/mark.h"
#include "nvim/mbyte.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/option_vars.h"
#include "nvim/os/input.h"
#include "nvim/plines.h"
#include "nvim/pos.h"
#include "nvim/regexp.h"
#include "nvim/regexp_defs.h"
#include "nvim/strings.h"
#include "nvim/types.h"
#include "nvim/vim.h"
#ifdef REGEXP_DEBUG
// show/save debugging data when BT engine is used
# define BT_REGEXP_DUMP
// save the debugging data to a file instead of displaying it
# define BT_REGEXP_LOG
# define BT_REGEXP_DEBUG_LOG
# define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log"
#endif
// Magic characters have a special meaning, they don't match literally.
// Magic characters are negative. This separates them from literal characters
// (possibly multi-byte). Only ASCII characters can be Magic.
#define Magic(x) ((int)(x) - 256)
#define un_Magic(x) ((x) + 256)
#define is_Magic(x) ((x) < 0)
typedef void (*fptr_T)(int *, int);
static int no_Magic(int x)
{
if (is_Magic(x)) {
return un_Magic(x);
}
return x;
}
static int toggle_Magic(int x)
{
if (is_Magic(x)) {
return un_Magic(x);
}
return Magic(x);
}
// The first byte of the BT regexp internal "program" is actually this magic
// number; the start node begins in the second byte. It's used to catch the
// most severe mutilation of the program by the caller.
#define REGMAGIC 0234
// Utility definitions.
#define UCHARAT(p) ((int)(*(uint8_t *)(p)))
// Used for an error (down from) vim_regcomp(): give the error message, set
// rc_did_emsg and return NULL
#define EMSG_RET_NULL(m) return (emsg(m), rc_did_emsg = true, (void *)NULL)
#define IEMSG_RET_NULL(m) return (iemsg(m), rc_did_emsg = true, (void *)NULL)
#define EMSG_RET_FAIL(m) return (emsg(m), rc_did_emsg = true, FAIL)
#define EMSG2_RET_NULL(m, c) \
return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, (void *)NULL)
#define EMSG3_RET_NULL(m, c, a) \
return (semsg((m), (c) ? "" : "\\", (a)), rc_did_emsg = true, (void *)NULL)
#define EMSG2_RET_FAIL(m, c) \
return (semsg((m), (c) ? "" : "\\"), rc_did_emsg = true, FAIL)
#define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_(e_invalid_item_in_str_brackets), reg_magic == MAGIC_ALL)
#define MAX_LIMIT (32767L << 16L)
static const char e_invalid_character_after_str_at[]
= N_("E59: Invalid character after %s@");
static const char e_invalid_use_of_underscore[]
= N_("E63: Invalid use of \\_");
static const char e_pattern_uses_more_memory_than_maxmempattern[]
= N_("E363: Pattern uses more memory than 'maxmempattern'");
static const char e_invalid_item_in_str_brackets[]
= N_("E369: Invalid item in %s%%[]");
static const char e_missing_delimiter_after_search_pattern_str[]
= N_("E654: Missing delimiter after search pattern: %s");
static const char e_missingbracket[] = N_("E769: Missing ] after %s[");
static const char e_reverse_range[] = N_("E944: Reverse range in character class");
static const char e_large_class[] = N_("E945: Range too large in character class");
static const char e_unmatchedpp[] = N_("E53: Unmatched %s%%(");
static const char e_unmatchedp[] = N_("E54: Unmatched %s(");
static const char e_unmatchedpar[] = N_("E55: Unmatched %s)");
static const char e_z_not_allowed[] = N_("E66: \\z( not allowed here");
static const char e_z1_not_allowed[] = N_("E67: \\z1 - \\z9 not allowed here");
static const char e_missing_sb[] = N_("E69: Missing ] after %s%%[");
static const char e_empty_sb[] = N_("E70: Empty %s%%[]");
static const char e_recursive[] = N_("E956: Cannot use pattern recursively");
static const char e_regexp_number_after_dot_pos_search_chr[]
= N_("E1204: No Number allowed after .: '\\%%%c'");
static const char e_nfa_regexp_missing_value_in_chr[]
= N_("E1273: (NFA regexp) missing value in '\\%%%c'");
static const char e_atom_engine_must_be_at_start_of_pattern[]
= N_("E1281: Atom '\\%%#=%c' must be at the start of the pattern");
static const char e_substitute_nesting_too_deep[] = N_("E1290: substitute nesting too deep");
#define NOT_MULTI 0
#define MULTI_ONE 1
#define MULTI_MULT 2
// return values for regmatch()
#define RA_FAIL 1 // something failed, abort
#define RA_CONT 2 // continue in inner loop
#define RA_BREAK 3 // break inner loop
#define RA_MATCH 4 // successful match
#define RA_NOMATCH 5 // didn't match
/// Return NOT_MULTI if c is not a "multi" operator.
/// Return MULTI_ONE if c is a single "multi" operator.
/// Return MULTI_MULT if c is a multi "multi" operator.
static int re_multi_type(int c)
{
if (c == Magic('@') || c == Magic('=') || c == Magic('?')) {
return MULTI_ONE;
}
if (c == Magic('*') || c == Magic('+') || c == Magic('{')) {
return MULTI_MULT;
}
return NOT_MULTI;
}
static char *reg_prev_sub = NULL;
// REGEXP_INRANGE contains all characters which are always special in a []
// range after '\'.
// REGEXP_ABBR contains all characters which act as abbreviations after '\'.
// These are:
// \n - New line (NL).
// \r - Carriage Return (CR).
// \t - Tab (TAB).
// \e - Escape (ESC).
// \b - Backspace (Ctrl_H).
// \d - Character code in decimal, eg \d123
// \o - Character code in octal, eg \o80
// \x - Character code in hex, eg \x4a
// \u - Multibyte character code, eg \u20ac
// \U - Long multibyte character code, eg \U12345678
static char REGEXP_INRANGE[] = "]^-n\\";
static char REGEXP_ABBR[] = "nrtebdoxuU";
// Translate '\x' to its control character, except "\n", which is Magic.
static int backslash_trans(int c)
{
switch (c) {
case 'r':
return CAR;
case 't':
return TAB;
case 'e':
return ESC;
case 'b':
return BS;
}
return c;
}
/// Check for a character class name "[:name:]". "pp" points to the '['.
/// Returns one of the CLASS_ items. CLASS_NONE means that no item was
/// recognized. Otherwise "pp" is advanced to after the item.
static int get_char_class(char **pp)
{
static const char *(class_names[]) = {
"alnum:]",
#define CLASS_ALNUM 0
"alpha:]",
#define CLASS_ALPHA 1
"blank:]",
#define CLASS_BLANK 2
"cntrl:]",
#define CLASS_CNTRL 3
"digit:]",
#define CLASS_DIGIT 4
"graph:]",
#define CLASS_GRAPH 5
"lower:]",
#define CLASS_LOWER 6
"print:]",
#define CLASS_PRINT 7
"punct:]",
#define CLASS_PUNCT 8
"space:]",
#define CLASS_SPACE 9
"upper:]",
#define CLASS_UPPER 10
"xdigit:]",
#define CLASS_XDIGIT 11
"tab:]",
#define CLASS_TAB 12
"return:]",
#define CLASS_RETURN 13
"backspace:]",
#define CLASS_BACKSPACE 14
"escape:]",
#define CLASS_ESCAPE 15
"ident:]",
#define CLASS_IDENT 16
"keyword:]",
#define CLASS_KEYWORD 17
"fname:]",
#define CLASS_FNAME 18
};
#define CLASS_NONE 99
int i;
if ((*pp)[1] == ':') {
for (i = 0; i < (int)ARRAY_SIZE(class_names); i++) {
if (strncmp(*pp + 2, class_names[i], strlen(class_names[i])) == 0) {
*pp += strlen(class_names[i]) + 2;
return i;
}
}
}
return CLASS_NONE;
}
// Specific version of character class functions.
// Using a table to keep this fast.
static int16_t class_tab[256];
#define RI_DIGIT 0x01
#define RI_HEX 0x02
#define RI_OCTAL 0x04
#define RI_WORD 0x08
#define RI_HEAD 0x10
#define RI_ALPHA 0x20
#define RI_LOWER 0x40
#define RI_UPPER 0x80
#define RI_WHITE 0x100
static void init_class_tab(void)
{
int i;
static int done = false;
if (done) {
return;
}
for (i = 0; i < 256; i++) {
if (i >= '0' && i <= '7') {
class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD;
} else if (i >= '8' && i <= '9') {
class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD;
} else if (i >= 'a' && i <= 'f') {
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
} else if (i >= 'g' && i <= 'z') {
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
} else if (i >= 'A' && i <= 'F') {
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
} else if (i >= 'G' && i <= 'Z') {
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
} else if (i == '_') {
class_tab[i] = RI_WORD + RI_HEAD;
} else {
class_tab[i] = 0;
}
}
class_tab[' '] |= RI_WHITE;
class_tab['\t'] |= RI_WHITE;
done = true;
}
#define ri_digit(c) ((c) < 0x100 && (class_tab[c] & RI_DIGIT))
#define ri_hex(c) ((c) < 0x100 && (class_tab[c] & RI_HEX))
#define ri_octal(c) ((c) < 0x100 && (class_tab[c] & RI_OCTAL))
#define ri_word(c) ((c) < 0x100 && (class_tab[c] & RI_WORD))
#define ri_head(c) ((c) < 0x100 && (class_tab[c] & RI_HEAD))
#define ri_alpha(c) ((c) < 0x100 && (class_tab[c] & RI_ALPHA))
#define ri_lower(c) ((c) < 0x100 && (class_tab[c] & RI_LOWER))
#define ri_upper(c) ((c) < 0x100 && (class_tab[c] & RI_UPPER))
#define ri_white(c) ((c) < 0x100 && (class_tab[c] & RI_WHITE))
// flags for regflags
#define RF_ICASE 1 // ignore case
#define RF_NOICASE 2 // don't ignore case
#define RF_HASNL 4 // can match a NL
#define RF_ICOMBINE 8 // ignore combining characters
#define RF_LOOKBH 16 // uses "\@<=" or "\@<!"
// Global work variables for vim_regcomp().
static char *regparse; ///< Input-scan pointer.
static int regnpar; ///< () count.
static bool wants_nfa; ///< regex should use NFA engine
static int regnzpar; ///< \z() count.
static int re_has_z; ///< \z item detected
static unsigned regflags; ///< RF_ flags for prog
static int had_eol; ///< true when EOL found by vim_regcomp()
static magic_T reg_magic; ///< magicness of the pattern
static int reg_string; // matching with a string instead of a buffer
// line
static int reg_strict; // "[abc" is illegal
// META contains all characters that may be magic, except '^' and '$'.
// uncrustify:off
// META[] is used often enough to justify turning it into a table.
static uint8_t META_flags[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// % & ( ) * + .
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,
// 1 2 3 4 5 6 7 8 9 < = > ?
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
// @ A C D F H I K L M O
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1,
// P S U V W X Z [ _
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
// a c d f h i k l m n o
0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
// p s u v w x z { | ~
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
};
// uncrustify:on
static int curchr; // currently parsed character
// Previous character. Note: prevchr is sometimes -1 when we are not at the
// start, eg in /[ ^I]^ the pattern was never found even if it existed,
// because ^ was taken to be magic -- webb
static int prevchr;
static int prevprevchr; // previous-previous character
static int nextchr; // used for ungetchr()
// arguments for reg()
#define REG_NOPAREN 0 // toplevel reg()
#define REG_PAREN 1 // \(\)
#define REG_ZPAREN 2 // \z(\)
#define REG_NPAREN 3 // \%(\)
typedef struct {
char *regparse;
int prevchr_len;
int curchr;
int prevchr;
int prevprevchr;
int nextchr;
int at_start;
int prev_at_start;
int regnpar;
} parse_state_T;
static regengine_T bt_regengine;
static regengine_T nfa_regengine;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "regexp.c.generated.h"
#endif
// Return true if compiled regular expression "prog" can match a line break.
int re_multiline(const regprog_T *prog)
FUNC_ATTR_NONNULL_ALL
{
return prog->regflags & RF_HASNL;
}
// Check for an equivalence class name "[=a=]". "pp" points to the '['.
// Returns a character representing the class. Zero means that no item was
// recognized. Otherwise "pp" is advanced to after the item.
static int get_equi_class(char **pp)
{
int c;
int l = 1;
char *p = *pp;
if (p[1] == '=' && p[2] != NUL) {
l = utfc_ptr2len(p + 2);
if (p[l + 2] == '=' && p[l + 3] == ']') {
c = utf_ptr2char(p + 2);
*pp += l + 4;
return c;
}
}
return 0;
}
// Check for a collating element "[.a.]". "pp" points to the '['.
// Returns a character. Zero means that no item was recognized. Otherwise
// "pp" is advanced to after the item.
// Currently only single characters are recognized!
static int get_coll_element(char **pp)
{
int c;
int l = 1;
char *p = *pp;
if (p[0] != NUL && p[1] == '.' && p[2] != NUL) {
l = utfc_ptr2len(p + 2);
if (p[l + 2] == '.' && p[l + 3] == ']') {
c = utf_ptr2char(p + 2);
*pp += l + 4;
return c;
}
}
return 0;
}
static int reg_cpo_lit; // 'cpoptions' contains 'l' flag
static void get_cpo_flags(void)
{
reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
}
/// Skip over a "[]" range.
/// "p" must point to the character after the '['.
/// The returned pointer is on the matching ']', or the terminating NUL.
static char *skip_anyof(char *p)
{
int l;
if (*p == '^') { // Complement of range.
p++;
}
if (*p == ']' || *p == '-') {
p++;
}
while (*p != NUL && *p != ']') {
if ((l = utfc_ptr2len(p)) > 1) {
p += l;
} else if (*p == '-') {
p++;
if (*p != ']' && *p != NUL) {
MB_PTR_ADV(p);
}
} else if (*p == '\\'
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)p[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR, (uint8_t)p[1]) != NULL))) {
p += 2;
} else if (*p == '[') {
if (get_char_class(&p) == CLASS_NONE
&& get_equi_class(&p) == 0
&& get_coll_element(&p) == 0
&& *p != NUL) {
p++; // It is not a class name and not NUL
}
} else {
p++;
}
}
return p;
}
/// Skip past regular expression.
/// Stop at end of "startp" or where "delim" is found ('/', '?', etc).
/// Take care of characters with a backslash in front of it.
/// Skip strings inside [ and ].
char *skip_regexp(char *startp, int delim, int magic)
{
return skip_regexp_ex(startp, delim, magic, NULL, NULL, NULL);
}
/// Call skip_regexp() and when the delimiter does not match give an error and
/// return NULL.
char *skip_regexp_err(char *startp, int delim, int magic)
{
char *p = skip_regexp(startp, delim, magic);
if (*p != delim) {
semsg(_(e_missing_delimiter_after_search_pattern_str), startp);
return NULL;
}
return p;
}
/// skip_regexp() with extra arguments:
/// When "newp" is not NULL and "dirc" is '?', make an allocated copy of the
/// expression and change "\?" to "?". If "*newp" is not NULL the expression
/// is changed in-place.
/// If a "\?" is changed to "?" then "dropped" is incremented, unless NULL.
/// If "magic_val" is not NULL, returns the effective magicness of the pattern
char *skip_regexp_ex(char *startp, int dirc, int magic, char **newp, int *dropped,
magic_T *magic_val)
{
magic_T mymagic;
char *p = startp;
if (magic) {
mymagic = MAGIC_ON;
} else {
mymagic = MAGIC_OFF;
}
get_cpo_flags();
for (; p[0] != NUL; MB_PTR_ADV(p)) {
if (p[0] == dirc) { // found end of regexp
break;
}
if ((p[0] == '[' && mymagic >= MAGIC_ON)
|| (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) {
p = skip_anyof(p + 1);
if (p[0] == NUL) {
break;
}
} else if (p[0] == '\\' && p[1] != NUL) {
if (dirc == '?' && newp != NULL && p[1] == '?') {
// change "\?" to "?", make a copy first.
if (*newp == NULL) {
*newp = xstrdup(startp);
p = *newp + (p - startp);
}
if (dropped != NULL) {
(*dropped)++;
}
STRMOVE(p, p + 1);
} else {
p++; // skip next character
}
if (*p == 'v') {
mymagic = MAGIC_ALL;
} else if (*p == 'V') {
mymagic = MAGIC_NONE;
}
}
}
if (magic_val != NULL) {
*magic_val = mymagic;
}
return p;
}
// variables used for parsing
static int prevchr_len; // byte length of previous char
static int at_start; // True when on the first character
static int prev_at_start; // True when on the second character
// Start parsing at "str".
static void initchr(char *str)
{
regparse = str;
prevchr_len = 0;
curchr = prevprevchr = prevchr = nextchr = -1;
at_start = true;
prev_at_start = false;
}
// Save the current parse state, so that it can be restored and parsing
// starts in the same state again.
static void save_parse_state(parse_state_T *ps)
{
ps->regparse = regparse;
ps->prevchr_len = prevchr_len;
ps->curchr = curchr;
ps->prevchr = prevchr;
ps->prevprevchr = prevprevchr;
ps->nextchr = nextchr;
ps->at_start = at_start;
ps->prev_at_start = prev_at_start;
ps->regnpar = regnpar;
}
// Restore a previously saved parse state.
static void restore_parse_state(parse_state_T *ps)
{
regparse = ps->regparse;
prevchr_len = ps->prevchr_len;
curchr = ps->curchr;
prevchr = ps->prevchr;
prevprevchr = ps->prevprevchr;
nextchr = ps->nextchr;
at_start = ps->at_start;
prev_at_start = ps->prev_at_start;
regnpar = ps->regnpar;
}
// Get the next character without advancing.
static int peekchr(void)
{
static int after_slash = false;
if (curchr != -1) {
return curchr;
}
switch (curchr = (uint8_t)regparse[0]) {
case '.':
case '[':
case '~':
// magic when 'magic' is on
if (reg_magic >= MAGIC_ON) {
curchr = Magic(curchr);
}
break;
case '(':
case ')':
case '{':
case '%':
case '+':
case '=':
case '?':
case '@':
case '!':
case '&':
case '|':
case '<':
case '>':
case '#': // future ext.
case '"': // future ext.
case '\'': // future ext.
case ',': // future ext.
case '-': // future ext.
case ':': // future ext.
case ';': // future ext.
case '`': // future ext.
case '/': // Can't be used in / command
// magic only after "\v"
if (reg_magic == MAGIC_ALL) {
curchr = Magic(curchr);
}
break;
case '*':
// * is not magic as the very first character, eg "?*ptr", when
// after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But
// "\(\*" is not magic, thus must be magic if "after_slash"
if (reg_magic >= MAGIC_ON
&& !at_start
&& !(prev_at_start && prevchr == Magic('^'))
&& (after_slash
|| (prevchr != Magic('(')
&& prevchr != Magic('&')
&& prevchr != Magic('|')))) {
curchr = Magic('*');
}
break;
case '^':
// '^' is only magic as the very first character and if it's after
// "\(", "\|", "\&' or "\n"
if (reg_magic >= MAGIC_OFF
&& (at_start
|| reg_magic == MAGIC_ALL
|| prevchr == Magic('(')
|| prevchr == Magic('|')
|| prevchr == Magic('&')
|| prevchr == Magic('n')
|| (no_Magic(prevchr) == '('
&& prevprevchr == Magic('%')))) {
curchr = Magic('^');
at_start = true;
prev_at_start = false;
}
break;
case '$':
// '$' is only magic as the very last char and if it's in front of
// either "\|", "\)", "\&", or "\n"
if (reg_magic >= MAGIC_OFF) {
uint8_t *p = (uint8_t *)regparse + 1;
bool is_magic_all = (reg_magic == MAGIC_ALL);
// ignore \c \C \m \M \v \V and \Z after '$'
while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C'
|| p[1] == 'm' || p[1] == 'M'
|| p[1] == 'v' || p[1] == 'V'
|| p[1] == 'Z')) {
if (p[1] == 'v') {
is_magic_all = true;
} else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') {
is_magic_all = false;
}
p += 2;
}
if (p[0] == NUL
|| (p[0] == '\\'
&& (p[1] == '|' || p[1] == '&' || p[1] == ')'
|| p[1] == 'n'))
|| (is_magic_all
&& (p[0] == '|' || p[0] == '&' || p[0] == ')'))
|| reg_magic == MAGIC_ALL) {
curchr = Magic('$');
}
}
break;
case '\\': {
int c = (uint8_t)regparse[1];
if (c == NUL) {
curchr = '\\'; // trailing '\'
} else if (c <= '~' && META_flags[c]) {
// META contains everything that may be magic sometimes,
// except ^ and $ ("\^" and "\$" are only magic after
// "\V"). We now fetch the next character and toggle its
// magicness. Therefore, \ is so meta-magic that it is
// not in META.
curchr = -1;
prev_at_start = at_start;
at_start = false; // be able to say "/\*ptr"
regparse++;
after_slash++;
(void)peekchr();
regparse--;
after_slash--;
curchr = toggle_Magic(curchr);
} else if (vim_strchr(REGEXP_ABBR, c)) {
// Handle abbreviations, like "\t" for TAB -- webb
curchr = backslash_trans(c);
} else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^')) {
curchr = toggle_Magic(c);
} else {
// Next character can never be (made) magic?
// Then backslashing it won't do anything.
curchr = utf_ptr2char(regparse + 1);
}
break;
}
default:
curchr = utf_ptr2char(regparse);
}
return curchr;
}
// Eat one lexed character. Do this in a way that we can undo it.
static void skipchr(void)
{
// peekchr() eats a backslash, do the same here
if (*regparse == '\\') {
prevchr_len = 1;
} else {
prevchr_len = 0;
}
if (regparse[prevchr_len] != NUL) {
// Exclude composing chars that utfc_ptr2len does include.
prevchr_len += utf_ptr2len(regparse + prevchr_len);
}
regparse += prevchr_len;
prev_at_start = at_start;
at_start = false;
prevprevchr = prevchr;
prevchr = curchr;
curchr = nextchr; // use previously unget char, or -1
nextchr = -1;
}
// Skip a character while keeping the value of prev_at_start for at_start.
// prevchr and prevprevchr are also kept.
static void skipchr_keepstart(void)
{
int as = prev_at_start;
int pr = prevchr;
int prpr = prevprevchr;
skipchr();
at_start = as;
prevchr = pr;
prevprevchr = prpr;
}
// Get the next character from the pattern. We know about magic and such, so
// therefore we need a lexical analyzer.
static int getchr(void)
{
int chr = peekchr();
skipchr();
return chr;
}
// put character back. Works only once!
static void ungetchr(void)
{
nextchr = curchr;
curchr = prevchr;
prevchr = prevprevchr;
at_start = prev_at_start;
prev_at_start = false;
// Backup regparse, so that it's at the same position as before the
// getchr().
regparse -= prevchr_len;
}
// Get and return the value of the hex string at the current position.
// Return -1 if there is no valid hex number.
// The position is updated:
// blahblah\%x20asdf
// before-^ ^-after
// The parameter controls the maximum number of input characters. This will be
// 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence.
static int64_t gethexchrs(int maxinputlen)
{
int64_t nr = 0;
int c;
int i;
for (i = 0; i < maxinputlen; i++) {
c = (uint8_t)regparse[0];
if (!ascii_isxdigit(c)) {
break;
}
nr <<= 4;
nr |= hex2nr(c);
regparse++;
}
if (i == 0) {
return -1;
}
return nr;
}
// Get and return the value of the decimal string immediately after the
// current position. Return -1 for invalid. Consumes all digits.
static int64_t getdecchrs(void)
{
int64_t nr = 0;
int c;
int i;
for (i = 0;; i++) {
c = (uint8_t)regparse[0];
if (c < '0' || c > '9') {
break;
}
nr *= 10;
nr += c - '0';
regparse++;
curchr = -1; // no longer valid
}
if (i == 0) {
return -1;
}
return nr;
}
// get and return the value of the octal string immediately after the current
// position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle
// numbers > 377 correctly (for example, 400 is treated as 40) and doesn't
// treat 8 or 9 as recognised characters. Position is updated:
// blahblah\%o210asdf
// before-^ ^-after
static int64_t getoctchrs(void)
{
int64_t nr = 0;
int c;
int i;
for (i = 0; i < 3 && nr < 040; i++) { // -V536
c = (uint8_t)regparse[0];
if (c < '0' || c > '7') {
break;
}
nr <<= 3;
nr |= hex2nr(c);
regparse++;
}
if (i == 0) {
return -1;
}
return nr;
}
// read_limits - Read two integers to be taken as a minimum and maximum.
// If the first character is '-', then the range is reversed.
// Should end with 'end'. If minval is missing, zero is default, if maxval is
// missing, a very big number is the default.
static int read_limits(int *minval, int *maxval)
{
int reverse = false;
char *first_char;
int tmp;
if (*regparse == '-') {
// Starts with '-', so reverse the range later.
regparse++;
reverse = true;
}
first_char = regparse;
*minval = getdigits_int(&regparse, false, 0);
if (*regparse == ',') { // There is a comma.
if (ascii_isdigit(*++regparse)) {
*maxval = getdigits_int(&regparse, false, MAX_LIMIT);
} else {
*maxval = MAX_LIMIT;
}
} else if (ascii_isdigit(*first_char)) {
*maxval = *minval; // It was \{n} or \{-n}
} else {
*maxval = MAX_LIMIT; // It was \{} or \{-}
}
if (*regparse == '\\') {
regparse++; // Allow either \{...} or \{...\}
}
if (*regparse != '}') {
EMSG2_RET_FAIL(_("E554: Syntax error in %s{...}"), reg_magic == MAGIC_ALL);
}
// Reverse the range if there was a '-', or make sure it is in the right
// order otherwise.
if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) {
tmp = *minval;
*minval = *maxval;
*maxval = tmp;
}
skipchr(); // let's be friends with the lexer again
return OK;
}
// vim_regexec and friends
// Global work variables for vim_regexec().
// Sometimes need to save a copy of a line. Since alloc()/free() is very
// slow, we keep one allocated piece of memory and only re-allocate it when
// it's too small. It's freed in bt_regexec_both() when finished.
static uint8_t *reg_tofree = NULL;
static unsigned reg_tofreelen;
// Structure used to store the execution state of the regex engine.
// Which ones are set depends on whether a single-line or multi-line match is
// done:
// single-line multi-line
// reg_match &regmatch_T NULL
// reg_mmatch NULL &regmmatch_T
// reg_startp reg_match->startp <invalid>
// reg_endp reg_match->endp <invalid>
// reg_startpos <invalid> reg_mmatch->startpos
// reg_endpos <invalid> reg_mmatch->endpos
// reg_win NULL window in which to search
// reg_buf curbuf buffer in which to search
// reg_firstlnum <invalid> first line in which to search
// reg_maxline 0 last line nr
// reg_line_lbr false or true false
typedef struct {
regmatch_T *reg_match;
regmmatch_T *reg_mmatch;
uint8_t **reg_startp;
uint8_t **reg_endp;
lpos_T *reg_startpos;
lpos_T *reg_endpos;
win_T *reg_win;
buf_T *reg_buf;
linenr_T reg_firstlnum;
linenr_T reg_maxline;
bool reg_line_lbr; // "\n" in string is line break
// The current match-position is remembered with these variables:
linenr_T lnum; ///< line number, relative to first line
uint8_t *line; ///< start of current line
uint8_t *input; ///< current input, points into "line"
int need_clear_subexpr; ///< subexpressions still need to be cleared
int need_clear_zsubexpr; ///< extmatch subexpressions still need to be
///< cleared
// Internal copy of 'ignorecase'. It is set at each call to vim_regexec().
// Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern
// contains '\c' or '\C' the value is overruled.
bool reg_ic;
// Similar to "reg_ic", but only for 'combining' characters. Set with \Z
// flag in the regexp. Defaults to false, always.
bool reg_icombine;
bool reg_nobreak;
// Copy of "rmm_maxcol": maximum column to search for a match. Zero when
// there is no maximum.
colnr_T reg_maxcol;
// State for the NFA engine regexec.
int nfa_has_zend; ///< NFA regexp \ze operator encountered.
int nfa_has_backref; ///< NFA regexp \1 .. \9 encountered.
int nfa_nsubexpr; ///< Number of sub expressions actually being used
///< during execution. 1 if only the whole match
///< (subexpr 0) is used.
// listid is global, so that it increases on recursive calls to
// nfa_regmatch(), which means we don't have to clear the lastlist field of
// all the states.
int nfa_listid;
int nfa_alt_listid;
int nfa_has_zsubexpr; ///< NFA regexp has \z( ), set zsubexpr.
} regexec_T;
static regexec_T rex;
static bool rex_in_use = false;
static void reg_breakcheck(void)
{
if (!rex.reg_nobreak) {
fast_breakcheck();
}
}
// Return true if character 'c' is included in 'iskeyword' option for
// "reg_buf" buffer.
static bool reg_iswordc(int c)
{
return vim_iswordc_buf(c, rex.reg_buf);
}
// Get pointer to the line "lnum", which is relative to "reg_firstlnum".
static char *reg_getline(linenr_T lnum)
{
// when looking behind for a match/no-match lnum is negative. But we
// can't go before line 1
if (rex.reg_firstlnum + lnum < 1) {
return NULL;
}
if (lnum > rex.reg_maxline) {
// Must have matched the "\n" in the last line.
return "";
}
return ml_get_buf(rex.reg_buf, rex.reg_firstlnum + lnum);
}
static uint8_t *reg_startzp[NSUBEXP]; // Workspace to mark beginning
static uint8_t *reg_endzp[NSUBEXP]; // and end of \z(...\) matches
static lpos_T reg_startzpos[NSUBEXP]; // idem, beginning pos
static lpos_T reg_endzpos[NSUBEXP]; // idem, end pos
// true if using multi-line regexp.
#define REG_MULTI (rex.reg_match == NULL)
// Create a new extmatch and mark it as referenced once.
static reg_extmatch_T *make_extmatch(void)
FUNC_ATTR_NONNULL_RET
{
reg_extmatch_T *em = xcalloc(1, sizeof(reg_extmatch_T));
em->refcnt = 1;
return em;
}
// Add a reference to an extmatch.
reg_extmatch_T *ref_extmatch(reg_extmatch_T *em)
{
if (em != NULL) {
em->refcnt++;
}
return em;
}
// Remove a reference to an extmatch. If there are no references left, free
// the info.
void unref_extmatch(reg_extmatch_T *em)
{
int i;
if (em != NULL && --em->refcnt <= 0) {
for (i = 0; i < NSUBEXP; i++) {
xfree(em->matches[i]);
}
xfree(em);
}
}
// Get class of previous character.
static int reg_prev_class(void)
{
if (rex.input > rex.line) {
return mb_get_class_tab((char *)rex.input - 1 -
utf_head_off((char *)rex.line, (char *)rex.input - 1),
rex.reg_buf->b_chartab);
}
return -1;
}
// Return true if the current rex.input position matches the Visual area.
static bool reg_match_visual(void)
{
pos_T top, bot;
linenr_T lnum;
colnr_T col;
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
int mode;
colnr_T start, end;
colnr_T start2, end2;
colnr_T curswant;
// Check if the buffer is the current buffer and not using a string.
if (rex.reg_buf != curbuf || VIsual.lnum == 0 || !REG_MULTI) {
return false;
}
if (VIsual_active) {
if (lt(VIsual, wp->w_cursor)) {
top = VIsual;
bot = wp->w_cursor;
} else {
top = wp->w_cursor;
bot = VIsual;
}
mode = VIsual_mode;
curswant = wp->w_curswant;
} else {
if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) {
top = curbuf->b_visual.vi_start;
bot = curbuf->b_visual.vi_end;
} else {
top = curbuf->b_visual.vi_end;
bot = curbuf->b_visual.vi_start;
}
mode = curbuf->b_visual.vi_mode;
curswant = curbuf->b_visual.vi_curswant;
}
lnum = rex.lnum + rex.reg_firstlnum;
if (lnum < top.lnum || lnum > bot.lnum) {
return false;
}
col = (colnr_T)(rex.input - rex.line);
if (mode == 'v') {
if ((lnum == top.lnum && col < top.col)
|| (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) {
return false;
}
} else if (mode == Ctrl_V) {
getvvcol(wp, &top, &start, NULL, &end);
getvvcol(wp, &bot, &start2, NULL, &end2);
if (start2 < start) {
start = start2;
}
if (end2 > end) {
end = end2;
}
if (top.col == MAXCOL || bot.col == MAXCOL || curswant == MAXCOL) {
end = MAXCOL;
}
// getvvcol() flushes rex.line, need to get it again
rex.line = (uint8_t *)reg_getline(rex.lnum);
rex.input = rex.line + col;
unsigned cols_u = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col);
assert(cols_u <= MAXCOL);
colnr_T cols = (colnr_T)cols_u;
if (cols < start || cols > end - (*p_sel == 'e')) {
return false;
}
}
return true;
}
// Check the regexp program for its magic number.
// Return true if it's wrong.
static int prog_magic_wrong(void)
{
regprog_T *prog;
prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog;
if (prog->engine == &nfa_regengine) {
// For NFA matcher we don't check the magic
return false;
}
if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) {
emsg(_(e_re_corr));
return true;
}
return false;
}
// Cleanup the subexpressions, if this wasn't done yet.
// This construction is used to clear the subexpressions only when they are
// used (to increase speed).
static void cleanup_subexpr(void)
{
if (!rex.need_clear_subexpr) {
return;
}
if (REG_MULTI) {
// Use 0xff to set lnum to -1
memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP);
memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP);
} else {
memset(rex.reg_startp, 0, sizeof(char *) * NSUBEXP);
memset(rex.reg_endp, 0, sizeof(char *) * NSUBEXP);
}
rex.need_clear_subexpr = false;
}
static void cleanup_zsubexpr(void)
{
if (!rex.need_clear_zsubexpr) {
return;
}
if (REG_MULTI) {
// Use 0xff to set lnum to -1
memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
} else {
memset(reg_startzp, 0, sizeof(char *) * NSUBEXP);
memset(reg_endzp, 0, sizeof(char *) * NSUBEXP);
}
rex.need_clear_zsubexpr = false;
}
// Advance rex.lnum, rex.line and rex.input to the next line.
static void reg_nextline(void)
{
rex.line = (uint8_t *)reg_getline(++rex.lnum);
rex.input = rex.line;
reg_breakcheck();
}
// Check whether a backreference matches.
// Returns RA_FAIL, RA_NOMATCH or RA_MATCH.
// If "bytelen" is not NULL, it is set to the byte length of the match in the
// last line.
static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum,
colnr_T end_col, int *bytelen)
{
linenr_T clnum = start_lnum;
colnr_T ccol = start_col;
int len;
char *p;
if (bytelen != NULL) {
*bytelen = 0;
}
while (true) {
// Since getting one line may invalidate the other, need to make copy.
// Slow!
if (rex.line != reg_tofree) {
len = (int)strlen((char *)rex.line);
if (reg_tofree == NULL || len >= (int)reg_tofreelen) {
len += 50; // get some extra
xfree(reg_tofree);
reg_tofree = xmalloc((size_t)len);
reg_tofreelen = (unsigned)len;
}
STRCPY(reg_tofree, rex.line);
rex.input = reg_tofree + (rex.input - rex.line);
rex.line = reg_tofree;
}
// Get the line to compare with.
p = reg_getline(clnum);
assert(p);
if (clnum == end_lnum) {
len = end_col - ccol;
} else {
len = (int)strlen(p + ccol);
}
if (cstrncmp(p + ccol, (char *)rex.input, &len) != 0) {
return RA_NOMATCH; // doesn't match
}
if (bytelen != NULL) {
*bytelen += len;
}
if (clnum == end_lnum) {
break; // match and at end!
}
if (rex.lnum >= rex.reg_maxline) {
return RA_NOMATCH; // text too short
}
// Advance to next line.
reg_nextline();
if (bytelen != NULL) {
*bytelen = 0;
}
clnum++;
ccol = 0;
if (got_int) {
return RA_FAIL;
}
}
// found a match! Note that rex.line may now point to a copy of the line,
// that should not matter.
return RA_MATCH;
}
/// Used in a place where no * or \+ can follow.
static bool re_mult_next(char *what)
{
if (re_multi_type(peekchr()) == MULTI_MULT) {
semsg(_("E888: (NFA regexp) cannot repeat %s"), what);
rc_did_emsg = true;
return false;
}
return true;
}
typedef struct {
int a, b, c;
} decomp_T;
// 0xfb20 - 0xfb4f
static decomp_T decomp_table[0xfb4f - 0xfb20 + 1] = {
{ 0x5e2, 0, 0 }, // 0xfb20 alt ayin
{ 0x5d0, 0, 0 }, // 0xfb21 alt alef
{ 0x5d3, 0, 0 }, // 0xfb22 alt dalet
{ 0x5d4, 0, 0 }, // 0xfb23 alt he
{ 0x5db, 0, 0 }, // 0xfb24 alt kaf
{ 0x5dc, 0, 0 }, // 0xfb25 alt lamed
{ 0x5dd, 0, 0 }, // 0xfb26 alt mem-sofit
{ 0x5e8, 0, 0 }, // 0xfb27 alt resh
{ 0x5ea, 0, 0 }, // 0xfb28 alt tav
{ '+', 0, 0 }, // 0xfb29 alt plus
{ 0x5e9, 0x5c1, 0 }, // 0xfb2a shin+shin-dot
{ 0x5e9, 0x5c2, 0 }, // 0xfb2b shin+sin-dot
{ 0x5e9, 0x5c1, 0x5bc }, // 0xfb2c shin+shin-dot+dagesh
{ 0x5e9, 0x5c2, 0x5bc }, // 0xfb2d shin+sin-dot+dagesh
{ 0x5d0, 0x5b7, 0 }, // 0xfb2e alef+patah
{ 0x5d0, 0x5b8, 0 }, // 0xfb2f alef+qamats
{ 0x5d0, 0x5b4, 0 }, // 0xfb30 alef+hiriq
{ 0x5d1, 0x5bc, 0 }, // 0xfb31 bet+dagesh
{ 0x5d2, 0x5bc, 0 }, // 0xfb32 gimel+dagesh
{ 0x5d3, 0x5bc, 0 }, // 0xfb33 dalet+dagesh
{ 0x5d4, 0x5bc, 0 }, // 0xfb34 he+dagesh
{ 0x5d5, 0x5bc, 0 }, // 0xfb35 vav+dagesh
{ 0x5d6, 0x5bc, 0 }, // 0xfb36 zayin+dagesh
{ 0xfb37, 0, 0 }, // 0xfb37 -- UNUSED
{ 0x5d8, 0x5bc, 0 }, // 0xfb38 tet+dagesh
{ 0x5d9, 0x5bc, 0 }, // 0xfb39 yud+dagesh
{ 0x5da, 0x5bc, 0 }, // 0xfb3a kaf sofit+dagesh
{ 0x5db, 0x5bc, 0 }, // 0xfb3b kaf+dagesh
{ 0x5dc, 0x5bc, 0 }, // 0xfb3c lamed+dagesh
{ 0xfb3d, 0, 0 }, // 0xfb3d -- UNUSED
{ 0x5de, 0x5bc, 0 }, // 0xfb3e mem+dagesh
{ 0xfb3f, 0, 0 }, // 0xfb3f -- UNUSED
{ 0x5e0, 0x5bc, 0 }, // 0xfb40 nun+dagesh
{ 0x5e1, 0x5bc, 0 }, // 0xfb41 samech+dagesh
{ 0xfb42, 0, 0 }, // 0xfb42 -- UNUSED
{ 0x5e3, 0x5bc, 0 }, // 0xfb43 pe sofit+dagesh
{ 0x5e4, 0x5bc, 0 }, // 0xfb44 pe+dagesh
{ 0xfb45, 0, 0 }, // 0xfb45 -- UNUSED
{ 0x5e6, 0x5bc, 0 }, // 0xfb46 tsadi+dagesh
{ 0x5e7, 0x5bc, 0 }, // 0xfb47 qof+dagesh
{ 0x5e8, 0x5bc, 0 }, // 0xfb48 resh+dagesh
{ 0x5e9, 0x5bc, 0 }, // 0xfb49 shin+dagesh
{ 0x5ea, 0x5bc, 0 }, // 0xfb4a tav+dagesh
{ 0x5d5, 0x5b9, 0 }, // 0xfb4b vav+holam
{ 0x5d1, 0x5bf, 0 }, // 0xfb4c bet+rafe
{ 0x5db, 0x5bf, 0 }, // 0xfb4d kaf+rafe
{ 0x5e4, 0x5bf, 0 }, // 0xfb4e pe+rafe
{ 0x5d0, 0x5dc, 0 } // 0xfb4f alef-lamed
};
static void mb_decompose(int c, int *c1, int *c2, int *c3)
{
decomp_T d;
if (c >= 0xfb20 && c <= 0xfb4f) {
d = decomp_table[c - 0xfb20];
*c1 = d.a;
*c2 = d.b;
*c3 = d.c;
} else {
*c1 = c;
*c2 = *c3 = 0;
}
}
/// Compare two strings, ignore case if rex.reg_ic set.
/// Return 0 if strings match, non-zero otherwise.
/// Correct the length "*n" when composing characters are ignored.
static int cstrncmp(char *s1, char *s2, int *n)
{
int result;
if (!rex.reg_ic) {
result = strncmp(s1, s2, (size_t)(*n));
} else {
assert(*n >= 0);
result = mb_strnicmp(s1, s2, (size_t)(*n));
}
// if it failed and it's utf8 and we want to combineignore:
if (result != 0 && rex.reg_icombine) {
const char *str1, *str2;
int c1, c2, c11, c12;
int junk;
// we have to handle the strcmp ourselves, since it is necessary to
// deal with the composing characters by ignoring them:
str1 = s1;
str2 = s2;
c1 = c2 = 0;
while ((int)(str1 - s1) < *n) {
c1 = mb_ptr2char_adv(&str1);
c2 = mb_ptr2char_adv(&str2);
// decompose the character if necessary, into 'base' characters
// because I don't care about Arabic, I will hard-code the Hebrew
// which I *do* care about! So sue me...
if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) {
// decomposition necessary?
mb_decompose(c1, &c11, &junk, &junk);
mb_decompose(c2, &c12, &junk, &junk);
c1 = c11;
c2 = c12;
if (c11 != c12 && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) {
break;
}
}
}
result = c2 - c1;
if (result == 0) {
*n = (int)(str2 - s2);
}
}
return result;
}
/// Wrapper around strchr which accounts for case-insensitive searches and
/// non-ASCII characters.
///
/// This function is used a lot for simple searches, keep it fast!
///
/// @param s string to search
/// @param c character to find in @a s
///
/// @return NULL if no match, otherwise pointer to the position in @a s
static inline char *cstrchr(const char *const s, const int c)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
FUNC_ATTR_ALWAYS_INLINE
{
if (!rex.reg_ic) {
return vim_strchr(s, c);
}
// Use folded case for UTF-8, slow! For ASCII use libc strpbrk which is
// expected to be highly optimized.
if (c > 0x80) {
const int folded_c = utf_fold(c);
for (const char *p = s; *p != NUL; p += utfc_ptr2len(p)) {
if (utf_fold(utf_ptr2char(p)) == folded_c) {
return (char *)p;
}
}
return NULL;
}
int cc;
if (ASCII_ISUPPER(c)) {
cc = TOLOWER_ASC(c);
} else if (ASCII_ISLOWER(c)) {
cc = TOUPPER_ASC(c);
} else {
return vim_strchr(s, c);
}
char tofind[] = { (char)c, (char)cc, NUL };
return strpbrk(s, tofind);
}
////////////////////////////////////////////////////////////////
// regsub stuff //
////////////////////////////////////////////////////////////////
static void do_upper(int *d, int c)
{
*d = mb_toupper(c);
}
static void do_lower(int *d, int c)
{
*d = mb_tolower(c);
}
/// regtilde(): Replace tildes in the pattern by the old pattern.
///
/// Short explanation of the tilde: It stands for the previous replacement
/// pattern. If that previous pattern also contains a ~ we should go back a
/// step further... But we insert the previous pattern into the current one
/// and remember that.
/// This still does not handle the case where "magic" changes. So require the
/// user to keep his hands off of "magic".
///
/// The tildes are parsed once before the first call to vim_regsub().
char *regtilde(char *source, int magic, bool preview)
{
char *newsub = source;
char *tmpsub;
char *p;
int len;
int prevlen;
for (p = newsub; *p; p++) {
if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic)) {
if (reg_prev_sub != NULL) {
// length = len(newsub) - 1 + len(prev_sub) + 1
prevlen = (int)strlen(reg_prev_sub);
tmpsub = xmalloc(strlen(newsub) + (size_t)prevlen);
// copy prefix
len = (int)(p - newsub); // not including ~
memmove(tmpsub, newsub, (size_t)len);
// interpret tilde
memmove(tmpsub + len, reg_prev_sub, (size_t)prevlen);
// copy postfix
if (!magic) {
p++; // back off backslash
}
STRCPY(tmpsub + len + prevlen, p + 1);
if (newsub != source) { // already allocated newsub
xfree(newsub);
}
newsub = tmpsub;
p = newsub + len + prevlen;
} else if (magic) {
STRMOVE(p, p + 1); // remove '~'
} else {
STRMOVE(p, p + 2); // remove '\~'
}
p--;
} else {
if (*p == '\\' && p[1]) { // skip escaped characters
p++;
}
p += utfc_ptr2len(p) - 1;
}
}
// Only change reg_prev_sub when not previewing.
if (!preview) {
// Store a copy of newsub in reg_prev_sub. It is always allocated,
// because recursive calls may make the returned string invalid.
xfree(reg_prev_sub);
reg_prev_sub = xstrdup(newsub);
}
return newsub;
}
static bool can_f_submatch = false; // true when submatch() can be used
// These pointers are used for reg_submatch(). Needed for when the
// substitution string is an expression that contains a call to substitute()
// and submatch().
typedef struct {
regmatch_T *sm_match;
regmmatch_T *sm_mmatch;
linenr_T sm_firstlnum;
linenr_T sm_maxline;
int sm_line_lbr;
} regsubmatch_T;
static regsubmatch_T rsm; // can only be used when can_f_submatch is true
/// Put the submatches in "argv[argskip]" which is a list passed into
/// call_func() by vim_regsub_both().
static int fill_submatch_list(int argc FUNC_ATTR_UNUSED, typval_T *argv, int argskip, ufunc_T *fp)
FUNC_ATTR_NONNULL_ALL
{
typval_T *listarg = argv + argskip;
if (!fp->uf_varargs && fp->uf_args.ga_len <= argskip) {
// called function doesn't take a submatches argument
return argskip;
}
// Relies on sl_list to be the first item in staticList10_T.
tv_list_init_static10((staticList10_T *)listarg->vval.v_list);
// There are always 10 list items in staticList10_T.
listitem_T *li = tv_list_first(listarg->vval.v_list);
for (int i = 0; i < 10; i++) {
char *s = rsm.sm_match->startp[i];
if (s == NULL || rsm.sm_match->endp[i] == NULL) {
s = NULL;
} else {
s = xstrnsave(s, (size_t)(rsm.sm_match->endp[i] - s));
}
TV_LIST_ITEM_TV(li)->v_type = VAR_STRING;
TV_LIST_ITEM_TV(li)->vval.v_string = s;
li = TV_LIST_ITEM_NEXT(argv->vval.v_list, li);
}
return argskip + 1;
}
static void clear_submatch_list(staticList10_T *sl)
{
TV_LIST_ITER(&sl->sl_list, li, {
xfree(TV_LIST_ITEM_TV(li)->vval.v_string);
});
}
/// vim_regsub() - perform substitutions after a vim_regexec() or
/// vim_regexec_multi() match.
///
/// If "flags" has REGSUB_COPY really copy into "dest[destlen]".
/// Otherwise nothing is copied, only compute the length of the result.
///
/// If "flags" has REGSUB_MAGIC then behave like 'magic' is set.
///
/// If "flags" has REGSUB_BACKSLASH a backslash will be removed later, need to
/// double them to keep them, and insert a backslash before a CR to avoid it
/// being replaced with a line break later.
///
/// Note: The matched text must not change between the call of
/// vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back
/// references invalid!
///
/// Returns the size of the replacement, including terminating NUL.
int vim_regsub(regmatch_T *rmp, char *source, typval_T *expr, char *dest, int destlen, int flags)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_buf = curbuf;
rex.reg_line_lbr = true;
int result = vim_regsub_both(source, expr, dest, destlen, flags);
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result;
}
int vim_regsub_multi(regmmatch_T *rmp, linenr_T lnum, char *source, char *dest, int destlen,
int flags)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
rex.reg_match = NULL;
rex.reg_mmatch = rmp;
rex.reg_buf = curbuf; // always works on the current buffer!
rex.reg_firstlnum = lnum;
rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum;
rex.reg_line_lbr = false;
int result = vim_regsub_both(source, NULL, dest, destlen, flags);
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result;
}
// When nesting more than a couple levels it's probably a mistake.
#define MAX_REGSUB_NESTING 4
static char *eval_result[MAX_REGSUB_NESTING] = { NULL, NULL, NULL, NULL };
#if defined(EXITFREE)
void free_resub_eval_result(void)
{
for (int i = 0; i < MAX_REGSUB_NESTING; i++) {
XFREE_CLEAR(eval_result[i]);
}
}
#endif
static int vim_regsub_both(char *source, typval_T *expr, char *dest, int destlen, int flags)
{
char *src;
char *dst;
char *s;
int c;
int cc;
int no = -1;
fptr_T func_all = (fptr_T)NULL;
fptr_T func_one = (fptr_T)NULL;
linenr_T clnum = 0; // init for GCC
int len = 0; // init for GCC
static int nesting = 0;
bool copy = flags & REGSUB_COPY;
// Be paranoid...
if ((source == NULL && expr == NULL) || dest == NULL) {
emsg(_(e_null));
return 0;
}
if (prog_magic_wrong()) {
return 0;
}
if (nesting == MAX_REGSUB_NESTING) {
emsg(_(e_substitute_nesting_too_deep));
return 0;
}
int nested = nesting;
src = source;
dst = dest;
// When the substitute part starts with "\=" evaluate it as an expression.
if (expr != NULL || (source[0] == '\\' && source[1] == '=')) {
// To make sure that the length doesn't change between checking the
// length and copying the string, and to speed up things, the
// resulting string is saved from the call with
// "flags & REGSUB_COPY" == 0 to the call with
// "flags & REGSUB_COPY" != 0.
if (copy) {
size_t reslen = eval_result[nested] != NULL ? strlen(eval_result[nested]) : 0;
if (eval_result[nested] != NULL && reslen < (size_t)destlen) {
STRCPY(dest, eval_result[nested]);
dst += reslen;
XFREE_CLEAR(eval_result[nested]);
}
} else {
const bool prev_can_f_submatch = can_f_submatch;
regsubmatch_T rsm_save;
XFREE_CLEAR(eval_result[nested]);
// The expression may contain substitute(), which calls us
// recursively. Make sure submatch() gets the text from the first
// level.
if (can_f_submatch) {
rsm_save = rsm;
}
can_f_submatch = true;
rsm.sm_match = rex.reg_match;
rsm.sm_mmatch = rex.reg_mmatch;
rsm.sm_firstlnum = rex.reg_firstlnum;
rsm.sm_maxline = rex.reg_maxline;
rsm.sm_line_lbr = rex.reg_line_lbr;
// Although unlikely, it is possible that the expression invokes a
// substitute command (it might fail, but still). Therefore keep
// an array of eval results.
nesting++;
if (expr != NULL) {
typval_T argv[2];
typval_T rettv;
staticList10_T matchList = TV_LIST_STATIC10_INIT;
rettv.v_type = VAR_STRING;
rettv.vval.v_string = NULL;
argv[0].v_type = VAR_LIST;
argv[0].vval.v_list = &matchList.sl_list;
funcexe_T funcexe = FUNCEXE_INIT;
funcexe.fe_argv_func = fill_submatch_list;
funcexe.fe_evaluate = true;
if (expr->v_type == VAR_FUNC) {
s = expr->vval.v_string;
call_func(s, -1, &rettv, 1, argv, &funcexe);
} else if (expr->v_type == VAR_PARTIAL) {
partial_T *partial = expr->vval.v_partial;
s = partial_name(partial);
funcexe.fe_partial = partial;
call_func(s, -1, &rettv, 1, argv, &funcexe);
}
if (tv_list_len(&matchList.sl_list) > 0) {
// fill_submatch_list() was called.
clear_submatch_list(&matchList);
}
if (rettv.v_type == VAR_UNKNOWN) {
// something failed, no need to report another error
eval_result[nested] = NULL;
} else {
char buf[NUMBUFLEN];
eval_result[nested] = (char *)tv_get_string_buf_chk(&rettv, buf);
if (eval_result[nested] != NULL) {
eval_result[nested] = xstrdup(eval_result[nested]);
}
}
tv_clear(&rettv);
} else {
eval_result[nested] = eval_to_string(source + 2, true);
}
nesting--;
if (eval_result[nested] != NULL) {
int had_backslash = false;
for (s = eval_result[nested]; *s != NUL; MB_PTR_ADV(s)) {
// Change NL to CR, so that it becomes a line break,
// unless called from vim_regexec_nl().
// Skip over a backslashed character.
if (*s == NL && !rsm.sm_line_lbr) {
*s = CAR;
} else if (*s == '\\' && s[1] != NUL) {
s++;
// Change NL to CR here too, so that this works:
// :s/abc\\\ndef/\="aaa\\\nbbb"/ on text:
// abc{backslash}
// def
// Not when called from vim_regexec_nl().
if (*s == NL && !rsm.sm_line_lbr) {
*s = CAR;
}
had_backslash = true;
}
}
if (had_backslash && (flags & REGSUB_BACKSLASH)) {
// Backslashes will be consumed, need to double them.
s = vim_strsave_escaped(eval_result[nested], "\\");
xfree(eval_result[nested]);
eval_result[nested] = s;
}
dst += strlen(eval_result[nested]);
}
can_f_submatch = prev_can_f_submatch;
if (can_f_submatch) {
rsm = rsm_save;
}
}
} else {
while ((c = (uint8_t)(*src++)) != NUL) {
if (c == '&' && (flags & REGSUB_MAGIC)) {
no = 0;
} else if (c == '\\' && *src != NUL) {
if (*src == '&' && !(flags & REGSUB_MAGIC)) {
src++;
no = 0;
} else if ('0' <= *src && *src <= '9') {
no = *src++ - '0';
} else if (vim_strchr("uUlLeE", (uint8_t)(*src))) {
switch (*src++) {
case 'u':
func_one = do_upper;
continue;
case 'U':
func_all = do_upper;
continue;
case 'l':
func_one = do_lower;
continue;
case 'L':
func_all = do_lower;
continue;
case 'e':
case 'E':
func_one = func_all = (fptr_T)NULL;
continue;
}
}
}
if (no < 0) { // Ordinary character.
if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) {
// Copy a special key as-is.
if (copy) {
if (dst + 3 > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
*dst++ = (char)c;
*dst++ = *src++;
*dst++ = *src++;
} else {
dst += 3;
src += 2;
}
continue;
}
if (c == '\\' && *src != NUL) {
// Check for abbreviations -- webb
switch (*src) {
case 'r':
c = CAR; ++src; break;
case 'n':
c = NL; ++src; break;
case 't':
c = TAB; ++src; break;
// Oh no! \e already has meaning in subst pat :-(
// case 'e': c = ESC; ++src; break;
case 'b':
c = Ctrl_H; ++src; break;
// If "backslash" is true the backslash will be removed
// later. Used to insert a literal CR.
default:
if (flags & REGSUB_BACKSLASH) {
if (copy) {
if (dst + 1 > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
*dst = '\\';
}
dst++;
}
c = (uint8_t)(*src++);
}
} else {
c = utf_ptr2char(src - 1);
}
// Write to buffer, if copy is set.
if (func_one != NULL) {
func_one(&cc, c);
func_one = NULL;
} else if (func_all != NULL) {
func_all(&cc, c);
} else {
// just copy
cc = c;
}
int totlen = utfc_ptr2len(src - 1);
int charlen = utf_char2len(cc);
if (copy) {
if (dst + charlen > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
utf_char2bytes(cc, dst);
}
dst += charlen - 1;
int clen = utf_ptr2len(src - 1);
// If the character length is shorter than "totlen", there
// are composing characters; copy them as-is.
if (clen < totlen) {
if (copy) {
if (dst + totlen - clen > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
memmove(dst + 1, src - 1 + clen, (size_t)(totlen - clen));
}
dst += totlen - clen;
}
src += totlen - 1;
dst++;
} else {
if (REG_MULTI) {
clnum = rex.reg_mmatch->startpos[no].lnum;
if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) {
s = NULL;
} else {
s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col;
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
len = rex.reg_mmatch->endpos[no].col
- rex.reg_mmatch->startpos[no].col;
} else {
len = (int)strlen(s);
}
}
} else {
s = rex.reg_match->startp[no];
if (rex.reg_match->endp[no] == NULL) {
s = NULL;
} else {
len = (int)(rex.reg_match->endp[no] - s);
}
}
if (s != NULL) {
while (true) {
if (len == 0) {
if (REG_MULTI) {
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
break;
}
if (copy) {
if (dst + 1 > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
*dst = CAR;
}
dst++;
s = reg_getline(++clnum);
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
len = rex.reg_mmatch->endpos[no].col;
} else {
len = (int)strlen(s);
}
} else {
break;
}
} else if (*s == NUL) { // we hit NUL.
if (copy) {
iemsg(_(e_re_damg));
}
goto exit;
} else {
if ((flags & REGSUB_BACKSLASH) && (*s == CAR || *s == '\\')) {
// Insert a backslash in front of a CR, otherwise
// it will be replaced by a line break.
// Number of backslashes will be halved later,
// double them here.
if (copy) {
if (dst + 2 > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
dst[0] = '\\';
dst[1] = *s;
}
dst += 2;
} else {
c = utf_ptr2char(s);
if (func_one != (fptr_T)NULL) {
func_one(&cc, c);
func_one = NULL;
} else if (func_all != (fptr_T)NULL) {
func_all(&cc, c);
} else { // just copy
cc = c;
}
{
int l;
int charlen;
// Copy composing characters separately, one
// at a time.
l = utf_ptr2len(s) - 1;
s += l;
len -= l;
charlen = utf_char2len(cc);
if (copy) {
if (dst + charlen > dest + destlen) {
iemsg("vim_regsub_both(): not enough space");
return 0;
}
utf_char2bytes(cc, dst);
}
dst += charlen - 1;
}
dst++;
}
s++;
len--;
}
}
}
no = -1;
}
}
}
if (copy) {
*dst = NUL;
}
exit:
return (int)((dst - dest) + 1);
}
/// Call reg_getline() with the line numbers from the submatch. If a
/// substitute() was used the reg_maxline and other values have been
/// overwritten.
static char *reg_getline_submatch(linenr_T lnum)
{
char *s;
linenr_T save_first = rex.reg_firstlnum;
linenr_T save_max = rex.reg_maxline;
rex.reg_firstlnum = rsm.sm_firstlnum;
rex.reg_maxline = rsm.sm_maxline;
s = reg_getline(lnum);
rex.reg_firstlnum = save_first;
rex.reg_maxline = save_max;
return s;
}
/// Used for the submatch() function: get the string from the n'th submatch in
/// allocated memory.
///
/// @return NULL when not in a ":s" command and for a non-existing submatch.
char *reg_submatch(int no)
{
char *retval = NULL;
char *s;
int round;
linenr_T lnum;
if (!can_f_submatch || no < 0) {
return NULL;
}
if (rsm.sm_match == NULL) {
ssize_t len;
// First round: compute the length and allocate memory.
// Second round: copy the text.
for (round = 1; round <= 2; round++) {
lnum = rsm.sm_mmatch->startpos[no].lnum;
if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) {
return NULL;
}
s = reg_getline_submatch(lnum);
if (s == NULL) { // anti-crash check, cannot happen?
break;
}
s += rsm.sm_mmatch->startpos[no].col;
if (rsm.sm_mmatch->endpos[no].lnum == lnum) {
// Within one line: take form start to end col.
len = rsm.sm_mmatch->endpos[no].col - rsm.sm_mmatch->startpos[no].col;
if (round == 2) {
xstrlcpy(retval, s, (size_t)len + 1);
}
len++;
} else {
// Multiple lines: take start line from start col, middle
// lines completely and end line up to end col.
len = (ssize_t)strlen(s);
if (round == 2) {
STRCPY(retval, s);
retval[len] = '\n';
}
len++;
lnum++;
while (lnum < rsm.sm_mmatch->endpos[no].lnum) {
s = reg_getline_submatch(lnum++);
if (round == 2) {
STRCPY(retval + len, s);
}
len += (ssize_t)strlen(s);
if (round == 2) {
retval[len] = '\n';
}
len++;
}
if (round == 2) {
strncpy(retval + len, // NOLINT(runtime/printf)
reg_getline_submatch(lnum),
(size_t)rsm.sm_mmatch->endpos[no].col);
}
len += rsm.sm_mmatch->endpos[no].col;
if (round == 2) {
retval[len] = NUL; // -V595
}
len++;
}
if (retval == NULL) {
retval = xmalloc((size_t)len);
}
}
} else {
s = rsm.sm_match->startp[no];
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
retval = NULL;
} else {
retval = xstrnsave(s, (size_t)(rsm.sm_match->endp[no] - s));
}
}
return retval;
}
// Used for the submatch() function with the optional non-zero argument: get
// the list of strings from the n'th submatch in allocated memory with NULs
// represented in NLs.
// Returns a list of allocated strings. Returns NULL when not in a ":s"
// command, for a non-existing submatch and for any error.
list_T *reg_submatch_list(int no)
{
if (!can_f_submatch || no < 0) {
return NULL;
}
linenr_T slnum;
linenr_T elnum;
list_T *list;
const char *s;
if (rsm.sm_match == NULL) {
slnum = rsm.sm_mmatch->startpos[no].lnum;
elnum = rsm.sm_mmatch->endpos[no].lnum;
if (slnum < 0 || elnum < 0) {
return NULL;
}
colnr_T scol = rsm.sm_mmatch->startpos[no].col;
colnr_T ecol = rsm.sm_mmatch->endpos[no].col;
list = tv_list_alloc(elnum - slnum + 1);
s = reg_getline_submatch(slnum) + scol;
if (slnum == elnum) {
tv_list_append_string(list, s, ecol - scol);
} else {
tv_list_append_string(list, s, -1);
for (int i = 1; i < elnum - slnum; i++) {
s = reg_getline_submatch(slnum + i);
tv_list_append_string(list, s, -1);
}
s = reg_getline_submatch(elnum);
tv_list_append_string(list, s, ecol);
}
} else {
s = rsm.sm_match->startp[no];
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
return NULL;
}
list = tv_list_alloc(1);
tv_list_append_string(list, s, rsm.sm_match->endp[no] - s);
}
tv_list_ref(list);
return list;
}
/// Initialize the values used for matching against multiple lines
///
/// @param win window in which to search or NULL
/// @param buf buffer in which to search
/// @param lnum nr of line to start looking for match
static void init_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum)
{
rex.reg_match = NULL;
rex.reg_mmatch = rmp;
rex.reg_buf = buf;
rex.reg_win = win;
rex.reg_firstlnum = lnum;
rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum;
rex.reg_line_lbr = false;
rex.reg_ic = rmp->rmm_ic;
rex.reg_icombine = false;
rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK;
rex.reg_maxcol = rmp->rmm_maxcol;
}
// XXX Do not allow headers generator to catch definitions from regexp_nfa.c
#ifndef DO_NOT_DEFINE_EMPTY_ATTRIBUTES
# include "nvim/regexp_bt.c"
# include "nvim/regexp_nfa.c"
#endif
static regengine_T bt_regengine = {
bt_regcomp,
bt_regfree,
bt_regexec_nl,
bt_regexec_multi,
};
static regengine_T nfa_regengine = {
nfa_regcomp,
nfa_regfree,
nfa_regexec_nl,
nfa_regexec_multi,
};
// Which regexp engine to use? Needed for vim_regcomp().
// Must match with 'regexpengine'.
static int regexp_engine = 0;
#ifdef REGEXP_DEBUG
static uint8_t regname[][30] = {
"AUTOMATIC Regexp Engine",
"BACKTRACKING Regexp Engine",
"NFA Regexp Engine"
};
#endif
// Compile a regular expression into internal code.
// Returns the program in allocated memory.
// Use vim_regfree() to free the memory.
// Returns NULL for an error.
regprog_T *vim_regcomp(const char *expr_arg, int re_flags)
{
regprog_T *prog = NULL;
const char *expr = expr_arg;
regexp_engine = (int)p_re;
// Check for prefix "\%#=", that sets the regexp engine
if (strncmp(expr, "\\%#=", 4) == 0) {
int newengine = expr[4] - '0';
if (newengine == AUTOMATIC_ENGINE
|| newengine == BACKTRACKING_ENGINE
|| newengine == NFA_ENGINE) {
regexp_engine = expr[4] - '0';
expr += 5;
#ifdef REGEXP_DEBUG
smsg(0, "New regexp mode selected (%d): %s",
regexp_engine,
regname[newengine]);
#endif
} else {
emsg(_("E864: \\%#= can only be followed by 0, 1, or 2. The automatic engine will be used "));
regexp_engine = AUTOMATIC_ENGINE;
}
}
#ifdef REGEXP_DEBUG
bt_regengine.expr = expr;
nfa_regengine.expr = expr;
#endif
// reg_iswordc() uses rex.reg_buf
rex.reg_buf = curbuf;
//
// First try the NFA engine, unless backtracking was requested.
//
const int called_emsg_before = called_emsg;
if (regexp_engine != BACKTRACKING_ENGINE) {
prog = nfa_regengine.regcomp((uint8_t *)expr,
re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0));
} else {
prog = bt_regengine.regcomp((uint8_t *)expr, re_flags);
}
// Check for error compiling regexp with initial engine.
if (prog == NULL) {
#ifdef BT_REGEXP_DEBUG_LOG
// Debugging log for BT engine.
if (regexp_engine != BACKTRACKING_ENGINE) {
FILE *f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a");
if (f) {
fprintf(f, "Syntax error in \"%s\"\n", expr);
fclose(f);
} else {
semsg("(NFA) Could not open \"%s\" to write !!!",
BT_REGEXP_DEBUG_LOG_NAME);
}
}
#endif
// If the NFA engine failed, try the backtracking engine. The NFA engine
// also fails for patterns that it can't handle well but are still valid
// patterns, thus a retry should work.
// But don't try if an error message was given.
if (regexp_engine == AUTOMATIC_ENGINE && called_emsg == called_emsg_before) {
regexp_engine = BACKTRACKING_ENGINE;
report_re_switch(expr);
prog = bt_regengine.regcomp((uint8_t *)expr, re_flags);
}
}
if (prog != NULL) {
// Store the info needed to call regcomp() again when the engine turns out
// to be very slow when executing it.
prog->re_engine = (unsigned)regexp_engine;
prog->re_flags = (unsigned)re_flags;
}
return prog;
}
// Free a compiled regexp program, returned by vim_regcomp().
void vim_regfree(regprog_T *prog)
{
if (prog != NULL) {
prog->engine->regfree(prog);
}
}
#if defined(EXITFREE)
void free_regexp_stuff(void)
{
ga_clear(&regstack);
ga_clear(&backpos);
xfree(reg_tofree);
xfree(reg_prev_sub);
}
#endif
static void report_re_switch(const char *pat)
{
if (p_verbose > 0) {
verbose_enter();
msg_puts(_("Switching to backtracking RE engine for pattern: "));
msg_puts(pat);
verbose_leave();
}
}
/// Match a regexp against a string.
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
/// Note: "rmp->regprog" may be freed and changed.
/// Uses curbuf for line count and 'iskeyword'.
/// When "nl" is true consider a "\n" in "line" to be a line break.
///
/// @param rmp
/// @param line the string to match against
/// @param col the column to start looking for match
/// @param nl
///
/// @return true if there is a match, false if not.
static bool vim_regexec_string(regmatch_T *rmp, const char *line, colnr_T col, bool nl)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
// Cannot use the same prog recursively, it contains state.
if (rmp->regprog->re_in_use) {
emsg(_(e_recursive));
return false;
}
rmp->regprog->re_in_use = true;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
rex.reg_startp = NULL;
rex.reg_endp = NULL;
rex.reg_startpos = NULL;
rex.reg_endpos = NULL;
int result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl);
rmp->regprog->re_in_use = false;
// NFA engine aborted because it's very slow, use backtracking engine instead.
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
&& result == NFA_TOO_EXPENSIVE) {
int save_p_re = (int)p_re;
int re_flags = (int)rmp->regprog->re_flags;
char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern);
p_re = BACKTRACKING_ENGINE;
vim_regfree(rmp->regprog);
report_re_switch(pat);
rmp->regprog = vim_regcomp(pat, re_flags);
if (rmp->regprog != NULL) {
rmp->regprog->re_in_use = true;
result = rmp->regprog->engine->regexec_nl(rmp, (uint8_t *)line, col, nl);
rmp->regprog->re_in_use = false;
}
xfree(pat);
p_re = save_p_re;
}
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result > 0;
}
// Note: "*prog" may be freed and changed.
// Return true if there is a match, false if not.
bool vim_regexec_prog(regprog_T **prog, bool ignore_case, const char *line, colnr_T col)
{
regmatch_T regmatch = { .regprog = *prog, .rm_ic = ignore_case };
bool r = vim_regexec_string(&regmatch, line, col, false);
*prog = regmatch.regprog;
return r;
}
// Note: "rmp->regprog" may be freed and changed.
// Return true if there is a match, false if not.
bool vim_regexec(regmatch_T *rmp, const char *line, colnr_T col)
{
return vim_regexec_string(rmp, line, col, false);
}
// Like vim_regexec(), but consider a "\n" in "line" to be a line break.
// Note: "rmp->regprog" may be freed and changed.
// Return true if there is a match, false if not.
bool vim_regexec_nl(regmatch_T *rmp, const char *line, colnr_T col)
{
return vim_regexec_string(rmp, line, col, true);
}
/// Match a regexp against multiple lines.
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
/// Note: "rmp->regprog" may be freed and changed, even set to NULL.
/// Uses curbuf for line count and 'iskeyword'.
///
/// @param win window in which to search or NULL
/// @param buf buffer in which to search
/// @param lnum nr of line to start looking for match
/// @param col column to start looking for match
/// @param tm timeout limit or NULL
/// @param timed_out flag is set when timeout limit reached
///
/// @return zero if there is no match. Return number of lines contained in the
/// match otherwise.
int vim_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
proftime_T *tm, int *timed_out)
FUNC_ATTR_NONNULL_ARG(1)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
// Cannot use the same prog recursively, it contains state.
if (rmp->regprog->re_in_use) {
emsg(_(e_recursive));
return false;
}
rmp->regprog->re_in_use = true;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
int result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out);
rmp->regprog->re_in_use = false;
// NFA engine aborted because it's very slow, use backtracking engine instead.
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
&& result == NFA_TOO_EXPENSIVE) {
int save_p_re = (int)p_re;
int re_flags = (int)rmp->regprog->re_flags;
char *pat = xstrdup(((nfa_regprog_T *)rmp->regprog)->pattern);
p_re = BACKTRACKING_ENGINE;
regprog_T *prev_prog = rmp->regprog;
report_re_switch(pat);
// checking for \z misuse was already done when compiling for NFA,
// allow all here
reg_do_extmatch = REX_ALL;
rmp->regprog = vim_regcomp(pat, re_flags);
reg_do_extmatch = 0;
if (rmp->regprog == NULL) {
// Somehow compiling the pattern failed now, put back the
// previous one to avoid "regprog" becoming NULL.
rmp->regprog = prev_prog;
} else {
vim_regfree(prev_prog);
rmp->regprog->re_in_use = true;
result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col, tm, timed_out);
rmp->regprog->re_in_use = false;
}
xfree(pat);
p_re = save_p_re;
}
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result <= 0 ? 0 : result;
}