Files
neovim/src/nvim/eval/typval.c
zeertzjq 96b358e9f1 vim-patch:partial:9.0.0327: items() does not work on a list
Problem:    items() does not work on a list. (Sergey Vlasov)
Solution:   Make items() work on a list. (closes vim/vim#11013)

976f859763

Skip CHECK_LIST_MATERIALIZE.

Co-authored-by: Bram Moolenaar <Bram@vim.org>
2024-07-30 12:18:38 +08:00

4614 lines
128 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <assert.h>
#include <lauxlib.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <uv.h>
#include "nvim/ascii_defs.h"
#include "nvim/assert_defs.h"
#include "nvim/charset.h"
#include "nvim/errors.h"
#include "nvim/eval.h"
#include "nvim/eval/encode.h"
#include "nvim/eval/executor.h"
#include "nvim/eval/gc.h"
#include "nvim/eval/typval.h"
#include "nvim/eval/typval_defs.h"
#include "nvim/eval/typval_encode.h"
#include "nvim/eval/userfunc.h"
#include "nvim/eval/vars.h"
#include "nvim/garray.h"
#include "nvim/garray_defs.h"
#include "nvim/gettext_defs.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/hashtab_defs.h"
#include "nvim/lib/queue_defs.h"
#include "nvim/lua/executor.h"
#include "nvim/macros_defs.h"
#include "nvim/mbyte.h"
#include "nvim/mbyte_defs.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/os/input.h"
#include "nvim/pos_defs.h"
#include "nvim/strings.h"
#include "nvim/types_defs.h"
#include "nvim/vim_defs.h"
/// struct storing information about current sort
typedef struct {
int item_compare_ic;
bool item_compare_lc;
bool item_compare_numeric;
bool item_compare_numbers;
bool item_compare_float;
const char *item_compare_func;
partial_T *item_compare_partial;
dict_T *item_compare_selfdict;
bool item_compare_func_err;
} sortinfo_T;
/// Structure representing one list item, used for sort array.
typedef struct {
listitem_T *item; ///< Sorted list item.
int idx; ///< Sorted list item index.
} ListSortItem;
typedef int (*ListSorter)(const void *, const void *);
/// Type for tv_dict2list() function
typedef enum {
kDict2ListKeys, ///< List dictionary keys.
kDict2ListValues, ///< List dictionary values.
kDict2ListItems, ///< List dictionary contents: [keys, values].
} DictListType;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "eval/typval.c.generated.h"
#endif
static const char e_variable_nested_too_deep_for_unlock[]
= N_("E743: Variable nested too deep for (un)lock");
static const char e_using_invalid_value_as_string[]
= N_("E908: Using an invalid value as a String");
static const char e_string_required_for_argument_nr[]
= N_("E1174: String required for argument %d");
static const char e_non_empty_string_required_for_argument_nr[]
= N_("E1175: Non-empty string required for argument %d");
static const char e_dict_required_for_argument_nr[]
= N_("E1206: Dictionary required for argument %d");
static const char e_number_required_for_argument_nr[]
= N_("E1210: Number required for argument %d");
static const char e_list_required_for_argument_nr[]
= N_("E1211: List required for argument %d");
static const char e_bool_required_for_argument_nr[]
= N_("E1212: Bool required for argument %d");
static const char e_float_or_number_required_for_argument_nr[]
= N_("E1219: Float or Number required for argument %d");
static const char e_string_or_number_required_for_argument_nr[]
= N_("E1220: String or Number required for argument %d");
static const char e_string_or_list_required_for_argument_nr[]
= N_("E1222: String or List required for argument %d");
static const char e_list_or_blob_required_for_argument_nr[]
= N_("E1226: List or Blob required for argument %d");
static const char e_list_or_dict_required_for_argument_nr[]
= N_("E1227: List or Dictionary required for argument %d");
static const char e_blob_required_for_argument_nr[]
= N_("E1238: Blob required for argument %d");
static const char e_invalid_value_for_blob_nr[]
= N_("E1239: Invalid value for blob: %d");
static const char e_string_list_or_blob_required_for_argument_nr[]
= N_("E1252: String, List or Blob required for argument %d");
static const char e_string_or_function_required_for_argument_nr[]
= N_("E1256: String or function required for argument %d");
static const char e_non_null_dict_required_for_argument_nr[]
= N_("E1297: Non-NULL Dictionary required for argument %d");
bool tv_in_free_unref_items = false;
// TODO(ZyX-I): Remove DICT_MAXNEST, make users be non-recursive instead
#define DICT_MAXNEST 100
const char *const tv_empty_string = "";
//{{{1 Lists
//{{{2 List item
/// Allocate a list item
///
/// @warning Allocated item is not initialized, do not forget to initialize it
/// and specifically set lv_lock.
///
/// @return [allocated] new list item.
static listitem_T *tv_list_item_alloc(void)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_MALLOC
{
return xmalloc(sizeof(listitem_T));
}
/// Remove a list item from a List and free it
///
/// Also clears the value.
///
/// @param[out] l List to remove item from.
/// @param[in,out] item Item to remove.
///
/// @return Pointer to the list item just after removed one, NULL if removed
/// item was the last one.
listitem_T *tv_list_item_remove(list_T *const l, listitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
listitem_T *const next_item = TV_LIST_ITEM_NEXT(l, item);
tv_list_drop_items(l, item, item);
tv_clear(TV_LIST_ITEM_TV(item));
xfree(item);
return next_item;
}
//{{{2 List watchers
/// Add a watcher to a list
///
/// @param[out] l List to add watcher to.
/// @param[in] lw Watcher to add.
void tv_list_watch_add(list_T *const l, listwatch_T *const lw)
FUNC_ATTR_NONNULL_ALL
{
lw->lw_next = l->lv_watch;
l->lv_watch = lw;
}
/// Remove a watcher from a list
///
/// Does not give a warning if watcher was not found.
///
/// @param[out] l List to remove watcher from.
/// @param[in] lwrem Watcher to remove.
void tv_list_watch_remove(list_T *const l, listwatch_T *const lwrem)
FUNC_ATTR_NONNULL_ALL
{
listwatch_T **lwp = &l->lv_watch;
for (listwatch_T *lw = l->lv_watch; lw != NULL; lw = lw->lw_next) {
if (lw == lwrem) {
*lwp = lw->lw_next;
break;
}
lwp = &lw->lw_next;
}
}
/// Advance watchers to the next item
///
/// Used just before removing an item from a list.
///
/// @param[out] l List from which item is removed.
/// @param[in] item List item being removed.
void tv_list_watch_fix(list_T *const l, const listitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
for (listwatch_T *lw = l->lv_watch; lw != NULL; lw = lw->lw_next) {
if (lw->lw_item == item) {
lw->lw_item = item->li_next;
}
}
}
//{{{2 Alloc/free
/// Allocate an empty list
///
/// Caller should take care of the reference count.
///
/// @param[in] len Expected number of items to be populated before list
/// becomes accessible from Vimscript. It is still valid to
/// underpopulate a list, value only controls how many elements
/// will be allocated in advance. Currently does nothing.
/// @see ListLenSpecials.
///
/// @return [allocated] new list.
list_T *tv_list_alloc(const ptrdiff_t len)
FUNC_ATTR_NONNULL_RET
{
list_T *const list = xcalloc(1, sizeof(list_T));
// Prepend the list to the list of lists for garbage collection.
if (gc_first_list != NULL) {
gc_first_list->lv_used_prev = list;
}
list->lv_used_prev = NULL;
list->lv_used_next = gc_first_list;
gc_first_list = list;
list->lua_table_ref = LUA_NOREF;
return list;
}
/// Initialize a static list with 10 items
///
/// @param[out] sl Static list to initialize.
void tv_list_init_static10(staticList10_T *const sl)
FUNC_ATTR_NONNULL_ALL
{
#define SL_SIZE ARRAY_SIZE(sl->sl_items)
list_T *const l = &sl->sl_list;
CLEAR_POINTER(sl);
l->lv_first = &sl->sl_items[0];
l->lv_last = &sl->sl_items[SL_SIZE - 1];
l->lv_refcount = DO_NOT_FREE_CNT;
tv_list_set_lock(l, VAR_FIXED);
sl->sl_list.lv_len = 10;
sl->sl_items[0].li_prev = NULL;
sl->sl_items[0].li_next = &sl->sl_items[1];
sl->sl_items[SL_SIZE - 1].li_prev = &sl->sl_items[SL_SIZE - 2];
sl->sl_items[SL_SIZE - 1].li_next = NULL;
for (size_t i = 1; i < SL_SIZE - 1; i++) {
listitem_T *const li = &sl->sl_items[i];
li->li_prev = li - 1;
li->li_next = li + 1;
}
#undef SL_SIZE
}
/// Initialize static list with undefined number of elements
///
/// @param[out] l List to initialize.
void tv_list_init_static(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
CLEAR_POINTER(l);
l->lv_refcount = DO_NOT_FREE_CNT;
}
/// Free items contained in a list
///
/// @param[in,out] l List to clear.
void tv_list_free_contents(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
for (listitem_T *item = l->lv_first; item != NULL; item = l->lv_first) {
// Remove the item before deleting it.
l->lv_first = item->li_next;
tv_clear(&item->li_tv);
xfree(item);
}
l->lv_len = 0;
l->lv_idx_item = NULL;
l->lv_last = NULL;
assert(l->lv_watch == NULL);
}
/// Free a list itself, ignoring items it contains
///
/// Ignores the reference count.
///
/// @param[in,out] l List to free.
void tv_list_free_list(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
// Remove the list from the list of lists for garbage collection.
if (l->lv_used_prev == NULL) {
gc_first_list = l->lv_used_next;
} else {
l->lv_used_prev->lv_used_next = l->lv_used_next;
}
if (l->lv_used_next != NULL) {
l->lv_used_next->lv_used_prev = l->lv_used_prev;
}
NLUA_CLEAR_REF(l->lua_table_ref);
xfree(l);
}
/// Free a list, including all items it points to
///
/// Ignores the reference count. Does not do anything if
/// tv_in_free_unref_items is true.
///
/// @param[in,out] l List to free.
void tv_list_free(list_T *const l)
FUNC_ATTR_NONNULL_ALL
{
if (tv_in_free_unref_items) {
return;
}
tv_list_free_contents(l);
tv_list_free_list(l);
}
/// Unreference a list
///
/// Decrements the reference count and frees when it becomes zero or less.
///
/// @param[in,out] l List to unreference.
void tv_list_unref(list_T *const l)
{
if (l != NULL && --l->lv_refcount <= 0) {
tv_list_free(l);
}
}
//{{{2 Add/remove
/// Remove items "item" to "item2" from list "l"
///
/// @warning Does not free the listitem or the value!
///
/// @param[out] l List to remove from.
/// @param[in] item First item to remove.
/// @param[in] item2 Last item to remove.
void tv_list_drop_items(list_T *const l, listitem_T *const item, listitem_T *const item2)
FUNC_ATTR_NONNULL_ALL
{
// Notify watchers.
for (listitem_T *ip = item; ip != item2->li_next; ip = ip->li_next) {
l->lv_len--;
tv_list_watch_fix(l, ip);
}
if (item2->li_next == NULL) {
l->lv_last = item->li_prev;
} else {
item2->li_next->li_prev = item->li_prev;
}
if (item->li_prev == NULL) {
l->lv_first = item2->li_next;
} else {
item->li_prev->li_next = item2->li_next;
}
l->lv_idx_item = NULL;
}
/// Like tv_list_drop_items, but also frees all removed items
void tv_list_remove_items(list_T *const l, listitem_T *const item, listitem_T *const item2)
FUNC_ATTR_NONNULL_ALL
{
tv_list_drop_items(l, item, item2);
for (listitem_T *li = item;;) {
tv_clear(TV_LIST_ITEM_TV(li));
listitem_T *const nli = li->li_next;
xfree(li);
if (li == item2) {
break;
}
li = nli;
}
}
/// Move items "item" to "item2" from list "l" to the end of the list "tgt_l"
///
/// @param[out] l List to move from.
/// @param[in] item First item to move.
/// @param[in] item2 Last item to move.
/// @param[out] tgt_l List to move to.
/// @param[in] cnt Number of items moved.
void tv_list_move_items(list_T *const l, listitem_T *const item, listitem_T *const item2,
list_T *const tgt_l, const int cnt)
FUNC_ATTR_NONNULL_ALL
{
tv_list_drop_items(l, item, item2);
item->li_prev = tgt_l->lv_last;
item2->li_next = NULL;
if (tgt_l->lv_last == NULL) {
tgt_l->lv_first = item;
} else {
tgt_l->lv_last->li_next = item;
}
tgt_l->lv_last = item2;
tgt_l->lv_len += cnt;
}
/// Insert list item
///
/// @param[out] l List to insert to.
/// @param[in,out] ni Item to insert.
/// @param[in] item Item to insert before. If NULL, inserts at the end of the
/// list.
void tv_list_insert(list_T *const l, listitem_T *const ni, listitem_T *const item)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
if (item == NULL) {
// Append new item at end of list.
tv_list_append(l, ni);
} else {
// Insert new item before existing item.
ni->li_prev = item->li_prev;
ni->li_next = item;
if (item->li_prev == NULL) {
l->lv_first = ni;
l->lv_idx++;
} else {
item->li_prev->li_next = ni;
l->lv_idx_item = NULL;
}
item->li_prev = ni;
l->lv_len++;
}
}
/// Insert Vimscript value into a list
///
/// @param[out] l List to insert to.
/// @param[in,out] tv Value to insert. Is copied (@see tv_copy()) to an
/// allocated listitem_T and inserted.
/// @param[in] item Item to insert before. If NULL, inserts at the end of the
/// list.
void tv_list_insert_tv(list_T *const l, typval_T *const tv, listitem_T *const item)
{
listitem_T *const ni = tv_list_item_alloc();
tv_copy(tv, &ni->li_tv);
tv_list_insert(l, ni, item);
}
/// Append item to the end of list
///
/// @param[out] l List to append to.
/// @param[in,out] item Item to append.
void tv_list_append(list_T *const l, listitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
if (l->lv_last == NULL) {
// empty list
l->lv_first = item;
l->lv_last = item;
item->li_prev = NULL;
} else {
l->lv_last->li_next = item;
item->li_prev = l->lv_last;
l->lv_last = item;
}
l->lv_len++;
item->li_next = NULL;
}
/// Append Vimscript value to the end of list
///
/// @param[out] l List to append to.
/// @param[in,out] tv Value to append. Is copied (@see tv_copy()) to an
/// allocated listitem_T.
void tv_list_append_tv(list_T *const l, typval_T *const tv)
FUNC_ATTR_NONNULL_ALL
{
listitem_T *const li = tv_list_item_alloc();
tv_copy(tv, TV_LIST_ITEM_TV(li));
tv_list_append(l, li);
}
/// Like tv_list_append_tv(), but tv is moved to a list
///
/// This means that it is no longer valid to use contents of the typval_T after
/// function exits.
void tv_list_append_owned_tv(list_T *const l, typval_T tv)
FUNC_ATTR_NONNULL_ALL
{
listitem_T *const li = tv_list_item_alloc();
*TV_LIST_ITEM_TV(li) = tv;
tv_list_append(l, li);
}
/// Append a list to a list as one item
///
/// @param[out] l List to append to.
/// @param[in,out] itemlist List to append. Reference count is increased.
void tv_list_append_list(list_T *const l, list_T *const itemlist)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_LIST,
.v_lock = VAR_UNLOCKED,
.vval.v_list = itemlist,
});
tv_list_ref(itemlist);
}
/// Append a dictionary to a list
///
/// @param[out] l List to append to.
/// @param[in,out] dict Dictionary to append. Reference count is increased.
void tv_list_append_dict(list_T *const l, dict_T *const dict)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_DICT,
.v_lock = VAR_UNLOCKED,
.vval.v_dict = dict,
});
if (dict != NULL) {
dict->dv_refcount++;
}
}
/// Make a copy of "str" and append it as an item to list "l"
///
/// @param[out] l List to append to.
/// @param[in] str String to append.
/// @param[in] len Length of the appended string. May be -1, in this
/// case string is considered to be usual zero-terminated
/// string or NULL “empty” string.
void tv_list_append_string(list_T *const l, const char *const str, const ssize_t len)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_STRING,
.v_lock = VAR_UNLOCKED,
.vval.v_string = (str == NULL
? NULL
: (len >= 0
? xmemdupz(str, (size_t)len)
: xstrdup(str))),
});
}
/// Append given string to the list
///
/// Unlike list_append_string this function does not copy the string.
///
/// @param[out] l List to append to.
/// @param[in] str String to append.
void tv_list_append_allocated_string(list_T *const l, char *const str)
FUNC_ATTR_NONNULL_ARG(1)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_STRING,
.v_lock = VAR_UNLOCKED,
.vval.v_string = str,
});
}
/// Append number to the list
///
/// @param[out] l List to append to.
/// @param[in] n Number to append. Will be recorded in the allocated
/// listitem_T.
void tv_list_append_number(list_T *const l, const varnumber_T n)
{
tv_list_append_owned_tv(l, (typval_T) {
.v_type = VAR_NUMBER,
.v_lock = VAR_UNLOCKED,
.vval.v_number = n,
});
}
//{{{2 Operations on the whole list
/// Make a copy of list
///
/// @param[in] conv If non-NULL, then all internal strings will be converted.
/// Only used when `deep` is true.
/// @param[in] orig Original list to copy.
/// @param[in] deep If false, then shallow copy will be done.
/// @param[in] copyID See var_item_copy().
///
/// @return Copied list. May be NULL in case original list is NULL or some
/// failure happens. The refcount of the new list is set to 1.
list_T *tv_list_copy(const vimconv_T *const conv, list_T *const orig, const bool deep,
const int copyID)
FUNC_ATTR_WARN_UNUSED_RESULT
{
if (orig == NULL) {
return NULL;
}
list_T *copy = tv_list_alloc(tv_list_len(orig));
tv_list_ref(copy);
if (copyID != 0) {
// Do this before adding the items, because one of the items may
// refer back to this list.
orig->lv_copyID = copyID;
orig->lv_copylist = copy;
}
TV_LIST_ITER(orig, item, {
if (got_int) {
break;
}
listitem_T *const ni = tv_list_item_alloc();
if (deep) {
if (var_item_copy(conv, TV_LIST_ITEM_TV(item), TV_LIST_ITEM_TV(ni),
deep, copyID) == FAIL) {
xfree(ni);
goto tv_list_copy_error;
}
} else {
tv_copy(TV_LIST_ITEM_TV(item), TV_LIST_ITEM_TV(ni));
}
tv_list_append(copy, ni);
});
return copy;
tv_list_copy_error:
tv_list_unref(copy);
return NULL;
}
/// Get the list item in "l" with index "n1". "n1" is adjusted if needed.
/// Return NULL if there is no such item.
listitem_T *tv_list_check_range_index_one(list_T *const l, int *const n1, const bool quiet)
{
listitem_T *li = tv_list_find_index(l, n1);
if (li != NULL) {
return li;
}
if (!quiet) {
semsg(_(e_list_index_out_of_range_nr), (int64_t)(*n1));
}
return NULL;
}
/// Check that "n2" can be used as the second index in a range of list "l".
/// If "n1" or "n2" is negative it is changed to the positive index.
/// "li1" is the item for item "n1".
/// Return OK or FAIL.
int tv_list_check_range_index_two(list_T *const l, int *const n1, const listitem_T *const li1,
int *const n2, const bool quiet)
{
if (*n2 < 0) {
listitem_T *ni = tv_list_find(l, *n2);
if (ni == NULL) {
if (!quiet) {
semsg(_(e_list_index_out_of_range_nr), (int64_t)(*n2));
}
return FAIL;
}
*n2 = tv_list_idx_of_item(l, ni);
}
// Check that n2 isn't before n1.
if (*n1 < 0) {
*n1 = tv_list_idx_of_item(l, li1);
}
if (*n2 < *n1) {
if (!quiet) {
semsg(_(e_list_index_out_of_range_nr), (int64_t)(*n2));
}
return FAIL;
}
return OK;
}
/// Assign values from list "src" into a range of "dest".
/// "idx1_arg" is the index of the first item in "dest" to be replaced.
/// "idx2" is the index of last item to be replaced, but when "empty_idx2" is
/// true then replace all items after "idx1".
/// "op" is the operator, normally "=" but can be "+=" and the like.
/// "varname" is used for error messages.
/// Returns OK or FAIL.
int tv_list_assign_range(list_T *const dest, list_T *const src, const int idx1_arg, const int idx2,
const bool empty_idx2, const char *const op, const char *const varname)
{
int idx1 = idx1_arg;
listitem_T *const first_li = tv_list_find_index(dest, &idx1);
listitem_T *src_li;
// Check whether any of the list items is locked before making any changes.
int idx = idx1;
listitem_T *dest_li = first_li;
for (src_li = tv_list_first(src); src_li != NULL && dest_li != NULL;) {
if (value_check_lock(TV_LIST_ITEM_TV(dest_li)->v_lock, varname, TV_CSTRING)) {
return FAIL;
}
src_li = TV_LIST_ITEM_NEXT(src, src_li);
if (src_li == NULL || (!empty_idx2 && idx2 == idx)) {
break;
}
dest_li = TV_LIST_ITEM_NEXT(dest, dest_li);
idx++;
}
// Assign the List values to the list items.
idx = idx1;
dest_li = first_li;
for (src_li = tv_list_first(src); src_li != NULL;) {
assert(dest_li != NULL);
if (op != NULL && *op != '=') {
eexe_mod_op(TV_LIST_ITEM_TV(dest_li), TV_LIST_ITEM_TV(src_li), op);
} else {
tv_clear(TV_LIST_ITEM_TV(dest_li));
tv_copy(TV_LIST_ITEM_TV(src_li), TV_LIST_ITEM_TV(dest_li));
}
src_li = TV_LIST_ITEM_NEXT(src, src_li);
if (src_li == NULL || (!empty_idx2 && idx2 == idx)) {
break;
}
if (TV_LIST_ITEM_NEXT(dest, dest_li) == NULL) {
// Need to add an empty item.
tv_list_append_number(dest, 0);
// "dest_li" may have become invalid after append, dont use it.
dest_li = tv_list_last(dest); // Valid again.
} else {
dest_li = TV_LIST_ITEM_NEXT(dest, dest_li);
}
idx++;
}
if (src_li != NULL) {
emsg(_("E710: List value has more items than target"));
return FAIL;
}
if (empty_idx2
? (dest_li != NULL && TV_LIST_ITEM_NEXT(dest, dest_li) != NULL)
: idx != idx2) {
emsg(_("E711: List value has not enough items"));
return FAIL;
}
return OK;
}
/// Flatten up to "maxitems" in "list", starting at "first" to depth "maxdepth".
/// When "first" is NULL use the first item.
/// Does nothing if "maxdepth" is 0.
///
/// @param[in,out] list List to flatten
/// @param[in] maxdepth Maximum depth that will be flattened
///
/// @return OK or FAIL
void tv_list_flatten(list_T *list, listitem_T *first, int64_t maxitems, int64_t maxdepth)
FUNC_ATTR_NONNULL_ARG(1)
{
listitem_T *item;
int done = 0;
if (maxdepth == 0) {
return;
}
if (first == NULL) {
item = list->lv_first;
} else {
item = first;
}
while (item != NULL && done < maxitems) {
listitem_T *next = item->li_next;
fast_breakcheck();
if (got_int) {
return;
}
if (item->li_tv.v_type == VAR_LIST) {
list_T *itemlist = item->li_tv.vval.v_list;
tv_list_drop_items(list, item, item);
tv_list_extend(list, itemlist, next);
if (maxdepth > 0) {
tv_list_flatten(list,
item->li_prev == NULL ? list->lv_first : item->li_prev->li_next,
itemlist->lv_len, maxdepth - 1);
}
tv_clear(&item->li_tv);
xfree(item);
}
done++;
item = next;
}
}
/// "items(list)" function
/// Caller must have already checked that argvars[0] is a List.
static void tv_list2items(typval_T *argvars, typval_T *rettv)
{
list_T *l = argvars[0].vval.v_list;
tv_list_alloc_ret(rettv, tv_list_len(l));
if (l == NULL) {
return; // null list behaves like an empty list
}
varnumber_T idx = 0;
TV_LIST_ITER(l, li, {
list_T *l2 = tv_list_alloc(2);
tv_list_append_list(rettv->vval.v_list, l2);
tv_list_append_number(l2, idx);
tv_list_append_tv(l2, TV_LIST_ITEM_TV(li));
idx++;
});
}
/// Extend first list with the second
///
/// @param[out] l1 List to extend.
/// @param[in] l2 List to extend with.
/// @param[in] bef If not NULL, extends before this item.
void tv_list_extend(list_T *const l1, list_T *const l2, listitem_T *const bef)
FUNC_ATTR_NONNULL_ARG(1)
{
int todo = tv_list_len(l2);
listitem_T *const befbef = (bef == NULL ? NULL : bef->li_prev);
listitem_T *const saved_next = (befbef == NULL ? NULL : befbef->li_next);
// We also quit the loop when we have inserted the original item count of
// the list, avoid a hang when we extend a list with itself.
for (listitem_T *item = tv_list_first(l2)
; item != NULL && todo--
; item = (item == befbef ? saved_next : item->li_next)) {
tv_list_insert_tv(l1, TV_LIST_ITEM_TV(item), bef);
}
}
/// Concatenate lists into a new list
///
/// @param[in] l1 First list.
/// @param[in] l2 Second list.
/// @param[out] ret_tv Location where new list is saved.
///
/// @return OK or FAIL.
int tv_list_concat(list_T *const l1, list_T *const l2, typval_T *const tv)
FUNC_ATTR_WARN_UNUSED_RESULT
{
list_T *l;
tv->v_type = VAR_LIST;
tv->v_lock = VAR_UNLOCKED;
if (l1 == NULL && l2 == NULL) {
l = NULL;
} else if (l1 == NULL) {
l = tv_list_copy(NULL, l2, false, 0);
} else {
l = tv_list_copy(NULL, l1, false, 0);
if (l != NULL && l2 != NULL) {
tv_list_extend(l, l2, NULL);
}
}
if (l == NULL && !(l1 == NULL && l2 == NULL)) {
return FAIL;
}
tv->vval.v_list = l;
return OK;
}
static list_T *tv_list_slice(list_T *ol, varnumber_T n1, varnumber_T n2)
{
list_T *l = tv_list_alloc(n2 - n1 + 1);
listitem_T *item = tv_list_find(ol, (int)n1);
for (; n1 <= n2; n1++) {
tv_list_append_tv(l, TV_LIST_ITEM_TV(item));
item = TV_LIST_ITEM_NEXT(rettv->vval.v_list, item);
}
return l;
}
int tv_list_slice_or_index(list_T *list, bool range, varnumber_T n1_arg, varnumber_T n2_arg,
bool exclusive, typval_T *rettv, bool verbose)
{
int len = tv_list_len(rettv->vval.v_list);
varnumber_T n1 = n1_arg;
varnumber_T n2 = n2_arg;
if (n1 < 0) {
n1 = len + n1;
}
if (n1 < 0 || n1 >= len) {
// For a range we allow invalid values and return an empty list.
// A list index out of range is an error.
if (!range) {
if (verbose) {
semsg(_(e_list_index_out_of_range_nr), (int64_t)n1_arg);
}
return FAIL;
}
n1 = len;
}
if (range) {
if (n2 < 0) {
n2 = len + n2;
} else if (n2 >= len) {
n2 = len - (exclusive ? 0 : 1);
}
if (exclusive) {
n2--;
}
if (n2 < 0 || n2 + 1 < n1) {
n2 = -1;
}
list_T *l = tv_list_slice(rettv->vval.v_list, n1, n2);
tv_clear(rettv);
tv_list_set_ret(rettv, l);
} else {
// copy the item to "var1" to avoid that freeing the list makes it
// invalid.
typval_T var1;
tv_copy(TV_LIST_ITEM_TV(tv_list_find(rettv->vval.v_list, (int)n1)), &var1);
tv_clear(rettv);
*rettv = var1;
}
return OK;
}
typedef struct {
char *s;
char *tofree;
} Join;
/// Join list into a string, helper function
///
/// @param[out] gap Garray where result will be saved.
/// @param[in] l List to join.
/// @param[in] sep Used separator.
/// @param[in] join_gap Garray to keep each list item string.
///
/// @return OK in case of success, FAIL otherwise.
static int list_join_inner(garray_T *const gap, list_T *const l, const char *const sep,
garray_T *const join_gap)
FUNC_ATTR_NONNULL_ALL
{
size_t sumlen = 0;
bool first = true;
// Stringify each item in the list.
TV_LIST_ITER(l, item, {
if (got_int) {
break;
}
char *s;
size_t len;
s = encode_tv2echo(TV_LIST_ITEM_TV(item), &len);
if (s == NULL) {
return FAIL;
}
sumlen += len;
Join *const p = GA_APPEND_VIA_PTR(Join, join_gap);
p->tofree = p->s = s;
line_breakcheck();
});
// Allocate result buffer with its total size, avoid re-allocation and
// multiple copy operations. Add 2 for a tailing ']' and NUL.
if (join_gap->ga_len >= 2) {
sumlen += strlen(sep) * (size_t)(join_gap->ga_len - 1);
}
ga_grow(gap, (int)sumlen + 2);
for (int i = 0; i < join_gap->ga_len && !got_int; i++) {
if (first) {
first = false;
} else {
ga_concat(gap, sep);
}
const Join *const p = ((const Join *)join_gap->ga_data) + i;
if (p->s != NULL) {
ga_concat(gap, p->s);
}
line_breakcheck();
}
return OK;
}
/// Join list into a string using given separator
///
/// @param[out] gap Garray where result will be saved.
/// @param[in] l Joined list.
/// @param[in] sep Separator.
///
/// @return OK in case of success, FAIL otherwise.
int tv_list_join(garray_T *const gap, list_T *const l, const char *const sep)
FUNC_ATTR_NONNULL_ARG(1)
{
if (!tv_list_len(l)) {
return OK;
}
garray_T join_ga;
int retval;
ga_init(&join_ga, (int)sizeof(Join), tv_list_len(l));
retval = list_join_inner(gap, l, sep, &join_ga);
#define FREE_JOIN_TOFREE(join) xfree((join)->tofree)
GA_DEEP_CLEAR(&join_ga, Join, FREE_JOIN_TOFREE);
#undef FREE_JOIN_TOFREE
return retval;
}
/// "join()" function
void f_join(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
if (argvars[0].v_type != VAR_LIST) {
emsg(_(e_listreq));
return;
}
const char *const sep = (argvars[1].v_type == VAR_UNKNOWN
? " "
: tv_get_string_chk(&argvars[1]));
rettv->v_type = VAR_STRING;
if (sep != NULL) {
garray_T ga;
ga_init(&ga, (int)sizeof(char), 80);
tv_list_join(&ga, argvars[0].vval.v_list, sep);
ga_append(&ga, NUL);
rettv->vval.v_string = ga.ga_data;
} else {
rettv->vval.v_string = NULL;
}
}
/// "list2str()" function
void f_list2str(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
garray_T ga;
rettv->v_type = VAR_STRING;
rettv->vval.v_string = NULL;
if (argvars[0].v_type != VAR_LIST) {
emsg(_(e_invarg));
return;
}
list_T *const l = argvars[0].vval.v_list;
if (l == NULL) {
return; // empty list results in empty string
}
ga_init(&ga, 1, 80);
char buf[MB_MAXBYTES + 1];
TV_LIST_ITER_CONST(l, li, {
buf[utf_char2bytes((int)tv_get_number(TV_LIST_ITEM_TV(li)), buf)] = NUL;
ga_concat(&ga, buf);
});
ga_append(&ga, NUL);
rettv->vval.v_string = ga.ga_data;
}
/// "remove({list})" function
void tv_list_remove(typval_T *argvars, typval_T *rettv, const char *arg_errmsg)
{
list_T *l;
bool error = false;
if (value_check_lock(tv_list_locked((l = argvars[0].vval.v_list)),
arg_errmsg, TV_TRANSLATE)) {
return;
}
int64_t idx = tv_get_number_chk(&argvars[1], &error);
listitem_T *item;
if (error) {
// Type error: do nothing, errmsg already given.
} else if ((item = tv_list_find(l, (int)idx)) == NULL) {
semsg(_(e_list_index_out_of_range_nr), idx);
} else {
if (argvars[2].v_type == VAR_UNKNOWN) {
// Remove one item, return its value.
tv_list_drop_items(l, item, item);
*rettv = *TV_LIST_ITEM_TV(item);
xfree(item);
} else {
listitem_T *item2;
// Remove range of items, return list with values.
int64_t end = tv_get_number_chk(&argvars[2], &error);
if (error) {
// Type error: do nothing.
} else if ((item2 = tv_list_find(l, (int)end)) == NULL) {
semsg(_(e_list_index_out_of_range_nr), end);
} else {
int cnt = 0;
listitem_T *li;
for (li = item; li != NULL; li = TV_LIST_ITEM_NEXT(l, li)) {
cnt++;
if (li == item2) {
break;
}
}
if (li == NULL) { // Didn't find "item2" after "item".
emsg(_(e_invrange));
} else {
tv_list_move_items(l, item, item2, tv_list_alloc_ret(rettv, cnt),
cnt);
}
}
}
}
}
static sortinfo_T *sortinfo = NULL;
#define ITEM_COMPARE_FAIL 999
/// Compare functions for f_sort() and f_uniq() below.
static int item_compare(const void *s1, const void *s2, bool keep_zero)
{
ListSortItem *const si1 = (ListSortItem *)s1;
ListSortItem *const si2 = (ListSortItem *)s2;
typval_T *const tv1 = TV_LIST_ITEM_TV(si1->item);
typval_T *const tv2 = TV_LIST_ITEM_TV(si2->item);
int res;
if (sortinfo->item_compare_numbers) {
const varnumber_T v1 = tv_get_number(tv1);
const varnumber_T v2 = tv_get_number(tv2);
res = v1 == v2 ? 0 : v1 > v2 ? 1 : -1;
goto item_compare_end;
}
if (sortinfo->item_compare_float) {
const float_T v1 = tv_get_float(tv1);
const float_T v2 = tv_get_float(tv2);
res = v1 == v2 ? 0 : v1 > v2 ? 1 : -1;
goto item_compare_end;
}
char *tofree1 = NULL;
char *tofree2 = NULL;
char *p1;
char *p2;
// encode_tv2string() puts quotes around a string and allocates memory. Don't
// do that for string variables. Use a single quote when comparing with
// a non-string to do what the docs promise.
if (tv1->v_type == VAR_STRING) {
if (tv2->v_type != VAR_STRING || sortinfo->item_compare_numeric) {
p1 = "'";
} else {
p1 = tv1->vval.v_string;
}
} else {
tofree1 = p1 = encode_tv2string(tv1, NULL);
}
if (tv2->v_type == VAR_STRING) {
if (tv1->v_type != VAR_STRING || sortinfo->item_compare_numeric) {
p2 = "'";
} else {
p2 = tv2->vval.v_string;
}
} else {
tofree2 = p2 = encode_tv2string(tv2, NULL);
}
if (p1 == NULL) {
p1 = "";
}
if (p2 == NULL) {
p2 = "";
}
if (!sortinfo->item_compare_numeric) {
if (sortinfo->item_compare_lc) {
res = strcoll(p1, p2);
} else {
res = sortinfo->item_compare_ic ? STRICMP(p1, p2) : strcmp(p1, p2);
}
} else {
double n1 = strtod(p1, &p1);
double n2 = strtod(p2, &p2);
res = n1 == n2 ? 0 : n1 > n2 ? 1 : -1;
}
xfree(tofree1);
xfree(tofree2);
item_compare_end:
// When the result would be zero, compare the item indexes. Makes the
// sort stable.
if (res == 0 && !keep_zero) {
// WARNING: When using uniq si1 and si2 are actually listitem_T **, no
// indexes are there.
res = si1->idx > si2->idx ? 1 : -1;
}
return res;
}
static int item_compare_keeping_zero(const void *s1, const void *s2)
{
return item_compare(s1, s2, true);
}
static int item_compare_not_keeping_zero(const void *s1, const void *s2)
{
return item_compare(s1, s2, false);
}
static int item_compare2(const void *s1, const void *s2, bool keep_zero)
{
typval_T rettv;
typval_T argv[3];
const char *func_name;
partial_T *partial = sortinfo->item_compare_partial;
// shortcut after failure in previous call; compare all items equal
if (sortinfo->item_compare_func_err) {
return 0;
}
ListSortItem *si1 = (ListSortItem *)s1;
ListSortItem *si2 = (ListSortItem *)s2;
if (partial == NULL) {
func_name = sortinfo->item_compare_func;
} else {
func_name = partial_name(partial);
}
// Copy the values. This is needed to be able to set v_lock to VAR_FIXED
// in the copy without changing the original list items.
tv_copy(TV_LIST_ITEM_TV(si1->item), &argv[0]);
tv_copy(TV_LIST_ITEM_TV(si2->item), &argv[1]);
rettv.v_type = VAR_UNKNOWN; // tv_clear() uses this
funcexe_T funcexe = FUNCEXE_INIT;
funcexe.fe_evaluate = true;
funcexe.fe_partial = partial;
funcexe.fe_selfdict = sortinfo->item_compare_selfdict;
int res = call_func(func_name, -1, &rettv, 2, argv, &funcexe);
tv_clear(&argv[0]);
tv_clear(&argv[1]);
if (res == FAIL) {
// XXX: ITEM_COMPARE_FAIL is unused
res = ITEM_COMPARE_FAIL;
sortinfo->item_compare_func_err = true;
} else {
res = (int)tv_get_number_chk(&rettv, &sortinfo->item_compare_func_err);
if (res > 0) {
res = 1;
} else if (res < 0) {
res = -1;
}
}
if (sortinfo->item_compare_func_err) {
res = ITEM_COMPARE_FAIL; // return value has wrong type
}
tv_clear(&rettv);
// When the result would be zero, compare the pointers themselves. Makes
// the sort stable.
if (res == 0 && !keep_zero) {
// WARNING: When using uniq si1 and si2 are actually listitem_T **, no
// indexes are there.
res = si1->idx > si2->idx ? 1 : -1;
}
return res;
}
static int item_compare2_keeping_zero(const void *s1, const void *s2)
{
return item_compare2(s1, s2, true);
}
static int item_compare2_not_keeping_zero(const void *s1, const void *s2)
{
return item_compare2(s1, s2, false);
}
/// sort() List "l"
static void do_sort(list_T *l, sortinfo_T *info)
{
const int len = tv_list_len(l);
// Make an array with each entry pointing to an item in the List.
ListSortItem *ptrs = xmalloc((size_t)((unsigned)len * sizeof(ListSortItem)));
// f_sort(): ptrs will be the list to sort
int i = 0;
TV_LIST_ITER(l, li, {
ptrs[i].item = li;
ptrs[i].idx = i;
i++;
});
info->item_compare_func_err = false;
ListSorter item_compare_func = ((info->item_compare_func == NULL
&& info->item_compare_partial == NULL)
? item_compare_not_keeping_zero
: item_compare2_not_keeping_zero);
// Sort the array with item pointers.
qsort(ptrs, (size_t)len, sizeof(ListSortItem), item_compare_func);
if (!info->item_compare_func_err) {
// Clear the list and append the items in the sorted order.
l->lv_first = NULL;
l->lv_last = NULL;
l->lv_idx_item = NULL;
l->lv_len = 0;
for (i = 0; i < len; i++) {
tv_list_append(l, ptrs[i].item);
}
}
if (info->item_compare_func_err) {
emsg(_("E702: Sort compare function failed"));
}
xfree(ptrs);
}
/// uniq() List "l"
static void do_uniq(list_T *l, sortinfo_T *info)
{
const int len = tv_list_len(l);
// Make an array with each entry pointing to an item in the List.
ListSortItem *ptrs = xmalloc((size_t)((unsigned)len * sizeof(ListSortItem)));
// f_uniq(): ptrs will be a stack of items to remove.
info->item_compare_func_err = false;
ListSorter item_compare_func = ((info->item_compare_func == NULL
&& info->item_compare_partial == NULL)
? item_compare_keeping_zero
: item_compare2_keeping_zero);
for (listitem_T *li = TV_LIST_ITEM_NEXT(l, tv_list_first(l)); li != NULL;) {
listitem_T *const prev_li = TV_LIST_ITEM_PREV(l, li);
if (item_compare_func(&prev_li, &li) == 0) {
li = tv_list_item_remove(l, li);
} else {
li = TV_LIST_ITEM_NEXT(l, li);
}
if (info->item_compare_func_err) {
emsg(_("E882: Uniq compare function failed"));
break;
}
}
xfree(ptrs);
}
/// Parse the optional arguments to sort() and uniq() and return the values in "info".
static int parse_sort_uniq_args(typval_T *argvars, sortinfo_T *info)
{
info->item_compare_ic = false;
info->item_compare_lc = false;
info->item_compare_numeric = false;
info->item_compare_numbers = false;
info->item_compare_float = false;
info->item_compare_func = NULL;
info->item_compare_partial = NULL;
info->item_compare_selfdict = NULL;
if (argvars[1].v_type == VAR_UNKNOWN) {
return OK;
}
// optional second argument: {func}
if (argvars[1].v_type == VAR_FUNC) {
info->item_compare_func = argvars[1].vval.v_string;
} else if (argvars[1].v_type == VAR_PARTIAL) {
info->item_compare_partial = argvars[1].vval.v_partial;
} else {
bool error = false;
int nr = (int)tv_get_number_chk(&argvars[1], &error);
if (error) {
return FAIL; // type error; errmsg already given
}
if (nr == 1) {
info->item_compare_ic = true;
} else if (argvars[1].v_type != VAR_NUMBER) {
info->item_compare_func = tv_get_string(&argvars[1]);
} else if (nr != 0) {
emsg(_(e_invarg));
return FAIL;
}
if (info->item_compare_func != NULL) {
if (*info->item_compare_func == NUL) {
// empty string means default sort
info->item_compare_func = NULL;
} else if (strcmp(info->item_compare_func, "n") == 0) {
info->item_compare_func = NULL;
info->item_compare_numeric = true;
} else if (strcmp(info->item_compare_func, "N") == 0) {
info->item_compare_func = NULL;
info->item_compare_numbers = true;
} else if (strcmp(info->item_compare_func, "f") == 0) {
info->item_compare_func = NULL;
info->item_compare_float = true;
} else if (strcmp(info->item_compare_func, "i") == 0) {
info->item_compare_func = NULL;
info->item_compare_ic = true;
} else if (strcmp(info->item_compare_func, "l") == 0) {
info->item_compare_func = NULL;
info->item_compare_lc = true;
}
}
}
if (argvars[2].v_type != VAR_UNKNOWN) {
// optional third argument: {dict}
if (tv_check_for_dict_arg(argvars, 2) == FAIL) {
return FAIL;
}
info->item_compare_selfdict = argvars[2].vval.v_dict;
}
return OK;
}
/// "sort()" or "uniq()" function
static void do_sort_uniq(typval_T *argvars, typval_T *rettv, bool sort)
{
if (argvars[0].v_type != VAR_LIST) {
semsg(_(e_listarg), sort ? "sort()" : "uniq()");
return;
}
// Pointer to current info struct used in compare function. Save and restore
// the current one for nested calls.
sortinfo_T info;
sortinfo_T *old_sortinfo = sortinfo;
sortinfo = &info;
const char *const arg_errmsg = (sort ? N_("sort() argument") : N_("uniq() argument"));
list_T *const l = argvars[0].vval.v_list;
if (value_check_lock(tv_list_locked(l), arg_errmsg, TV_TRANSLATE)) {
goto theend;
}
tv_list_set_ret(rettv, l);
const int len = tv_list_len(l);
if (len <= 1) {
goto theend; // short list sorts pretty quickly
}
if (parse_sort_uniq_args(argvars, &info) == FAIL) {
goto theend;
}
if (sort) {
do_sort(l, &info);
} else {
do_uniq(l, &info);
}
theend:
sortinfo = old_sortinfo;
}
/// "sort({list})" function
void f_sort(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
do_sort_uniq(argvars, rettv, true);
}
/// "uniq({list})" function
void f_uniq(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
do_sort_uniq(argvars, rettv, false);
}
/// Check whether two lists are equal
///
/// @param[in] l1 First list to compare.
/// @param[in] l2 Second list to compare.
/// @param[in] ic True if case is to be ignored.
///
/// @return True if lists are equal, false otherwise.
bool tv_list_equal(list_T *const l1, list_T *const l2, const bool ic)
FUNC_ATTR_WARN_UNUSED_RESULT
{
if (l1 == l2) {
return true;
}
if (tv_list_len(l1) != tv_list_len(l2)) {
return false;
}
if (tv_list_len(l1) == 0) {
// empty and NULL list are considered equal
return true;
}
if (l1 == NULL || l2 == NULL) {
return false;
}
listitem_T *item1 = tv_list_first(l1);
listitem_T *item2 = tv_list_first(l2);
for (; item1 != NULL && item2 != NULL
; (item1 = TV_LIST_ITEM_NEXT(l1, item1),
item2 = TV_LIST_ITEM_NEXT(l2, item2))) {
if (!tv_equal(TV_LIST_ITEM_TV(item1), TV_LIST_ITEM_TV(item2), ic)) {
return false;
}
}
assert(item1 == NULL && item2 == NULL);
return true;
}
/// Reverse list in-place
///
/// @param[in,out] l List to reverse.
void tv_list_reverse(list_T *const l)
{
if (tv_list_len(l) <= 1) {
return;
}
#define SWAP(a, b) \
do { \
tmp = (a); \
(a) = (b); \
(b) = tmp; \
} while (0)
listitem_T *tmp;
SWAP(l->lv_first, l->lv_last);
for (listitem_T *li = l->lv_first; li != NULL; li = li->li_next) {
SWAP(li->li_next, li->li_prev);
}
#undef SWAP
l->lv_idx = l->lv_len - l->lv_idx - 1;
}
//{{{2 Indexing/searching
/// Locate item with a given index in a list and return it
///
/// @param[in] l List to index.
/// @param[in] n Index. Negative index is counted from the end, -1 is the last
/// item.
///
/// @return Item at the given index or NULL if `n` is out of range.
listitem_T *tv_list_find(list_T *const l, int n)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
STATIC_ASSERT(sizeof(n) == sizeof(l->lv_idx),
"n and lv_idx sizes do not match");
if (l == NULL) {
return NULL;
}
n = tv_list_uidx(l, n);
if (n == -1) {
return NULL;
}
int idx;
listitem_T *item;
// When there is a cached index may start search from there.
if (l->lv_idx_item != NULL) {
if (n < l->lv_idx / 2) {
// Closest to the start of the list.
item = l->lv_first;
idx = 0;
} else if (n > (l->lv_idx + l->lv_len) / 2) {
// Closest to the end of the list.
item = l->lv_last;
idx = l->lv_len - 1;
} else {
// Closest to the cached index.
item = l->lv_idx_item;
idx = l->lv_idx;
}
} else {
if (n < l->lv_len / 2) {
// Closest to the start of the list.
item = l->lv_first;
idx = 0;
} else {
// Closest to the end of the list.
item = l->lv_last;
idx = l->lv_len - 1;
}
}
while (n > idx) {
// Search forward.
item = item->li_next;
idx++;
}
while (n < idx) {
// Search backward.
item = item->li_prev;
idx--;
}
assert(idx == n);
// Cache the used index.
l->lv_idx = idx;
l->lv_idx_item = item;
return item;
}
/// Get list item l[n] as a number
///
/// @param[in] l List to index.
/// @param[in] n Index in a list.
/// @param[out] ret_error Location where 1 will be saved if index was not
/// found. May be NULL. If everything is OK,
/// `*ret_error` is not touched.
///
/// @return Integer value at the given index or -1.
varnumber_T tv_list_find_nr(list_T *const l, const int n, bool *const ret_error)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const listitem_T *const li = tv_list_find(l, n);
if (li == NULL) {
if (ret_error != NULL) {
*ret_error = true;
}
return -1;
}
return tv_get_number_chk(TV_LIST_ITEM_TV(li), ret_error);
}
/// Get list item l[n] as a string
///
/// @param[in] l List to index.
/// @param[in] n Index in a list.
///
/// @return List item string value or NULL in case of error.
const char *tv_list_find_str(list_T *const l, const int n)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const listitem_T *const li = tv_list_find(l, n);
if (li == NULL) {
semsg(_(e_list_index_out_of_range_nr), (int64_t)n);
return NULL;
}
return tv_get_string(TV_LIST_ITEM_TV(li));
}
/// Like tv_list_find() but when a negative index is used that is not found use
/// zero and set "idx" to zero. Used for first index of a range.
static listitem_T *tv_list_find_index(list_T *const l, int *const idx)
FUNC_ATTR_WARN_UNUSED_RESULT
{
listitem_T *li = tv_list_find(l, *idx);
if (li != NULL) {
return li;
}
if (*idx < 0) {
*idx = 0;
li = tv_list_find(l, *idx);
}
return li;
}
/// Locate item in a list and return its index
///
/// @param[in] l List to search.
/// @param[in] item Item to search for.
///
/// @return Index of an item or -1 if item is not in the list.
int tv_list_idx_of_item(const list_T *const l, const listitem_T *const item)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (l == NULL) {
return -1;
}
int idx = 0;
TV_LIST_ITER_CONST(l, li, {
if (li == item) {
return idx;
}
idx++;
});
return -1;
}
//{{{1 Dictionaries
//{{{2 Dictionary watchers
/// Perform all necessary cleanup for a `DictWatcher` instance
///
/// @param watcher Watcher to free.
static void tv_dict_watcher_free(DictWatcher *watcher)
FUNC_ATTR_NONNULL_ALL
{
callback_free(&watcher->callback);
xfree(watcher->key_pattern);
xfree(watcher);
}
/// Add watcher to a dictionary
///
/// @param[in] dict Dictionary to add watcher to.
/// @param[in] key_pattern Pattern to watch for.
/// @param[in] key_pattern_len Key pattern length.
/// @param callback Function to be called on events.
void tv_dict_watcher_add(dict_T *const dict, const char *const key_pattern,
const size_t key_pattern_len, Callback callback)
FUNC_ATTR_NONNULL_ARG(2)
{
if (dict == NULL) {
return;
}
DictWatcher *const watcher = xmalloc(sizeof(DictWatcher));
watcher->key_pattern = xmemdupz(key_pattern, key_pattern_len);
watcher->key_pattern_len = key_pattern_len;
watcher->callback = callback;
watcher->busy = false;
watcher->needs_free = false;
QUEUE_INSERT_TAIL(&dict->watchers, &watcher->node);
}
/// Check whether two callbacks are equal
///
/// @param[in] cb1 First callback to check.
/// @param[in] cb2 Second callback to check.
///
/// @return True if they are equal, false otherwise.
bool tv_callback_equal(const Callback *cb1, const Callback *cb2)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
if (cb1->type != cb2->type) {
return false;
}
switch (cb1->type) {
case kCallbackFuncref:
return strcmp(cb1->data.funcref, cb2->data.funcref) == 0;
case kCallbackPartial:
// FIXME: this is inconsistent with tv_equal but is needed for precision
// maybe change dictwatcheradd to return a watcher id instead?
return cb1->data.partial == cb2->data.partial;
case kCallbackLua:
return cb1->data.luaref == cb2->data.luaref;
case kCallbackNone:
return true;
}
abort();
return false;
}
/// Unref/free callback
void callback_free(Callback *callback)
FUNC_ATTR_NONNULL_ALL
{
switch (callback->type) {
case kCallbackFuncref:
func_unref(callback->data.funcref);
xfree(callback->data.funcref);
break;
case kCallbackPartial:
partial_unref(callback->data.partial);
break;
case kCallbackLua:
NLUA_CLEAR_REF(callback->data.luaref);
break;
case kCallbackNone:
break;
}
callback->type = kCallbackNone;
callback->data.funcref = NULL;
}
/// Copy a callback into a typval_T.
void callback_put(Callback *cb, typval_T *tv)
FUNC_ATTR_NONNULL_ALL
{
switch (cb->type) {
case kCallbackPartial:
tv->v_type = VAR_PARTIAL;
tv->vval.v_partial = cb->data.partial;
cb->data.partial->pt_refcount++;
break;
case kCallbackFuncref:
tv->v_type = VAR_FUNC;
tv->vval.v_string = xstrdup(cb->data.funcref);
func_ref(cb->data.funcref);
break;
case kCallbackLua:
// TODO(tjdevries): Unified Callback.
// At this point this isn't possible, but it'd be nice to put
// these handled more neatly in one place.
// So instead, we just do the default and put nil
default:
tv->v_type = VAR_SPECIAL;
tv->vval.v_special = kSpecialVarNull;
break;
}
}
// Copy callback from "src" to "dest", incrementing the refcounts.
void callback_copy(Callback *dest, Callback *src)
FUNC_ATTR_NONNULL_ALL
{
dest->type = src->type;
switch (src->type) {
case kCallbackPartial:
dest->data.partial = src->data.partial;
dest->data.partial->pt_refcount++;
break;
case kCallbackFuncref:
dest->data.funcref = xstrdup(src->data.funcref);
func_ref(src->data.funcref);
break;
case kCallbackLua:
dest->data.luaref = api_new_luaref(src->data.luaref);
break;
default:
dest->data.funcref = NULL;
break;
}
}
/// Generate a string description of a callback
char *callback_to_string(Callback *cb, Arena *arena)
{
if (cb->type == kCallbackLua) {
return nlua_funcref_str(cb->data.luaref, arena);
}
const size_t msglen = 100;
char *msg = xmallocz(msglen);
switch (cb->type) {
case kCallbackFuncref:
// TODO(tjdevries): Is this enough space for this?
snprintf(msg, msglen, "<vim function: %s>", cb->data.funcref);
break;
case kCallbackPartial:
snprintf(msg, msglen, "<vim partial: %s>", cb->data.partial->pt_name);
break;
default:
*msg = NUL;
break;
}
return msg;
}
/// Remove watcher from a dictionary
///
/// @param dict Dictionary to remove watcher from.
/// @param[in] key_pattern Pattern to remove watcher for.
/// @param[in] key_pattern_len Pattern length.
/// @param callback Callback to remove watcher for.
///
/// @return True on success, false if relevant watcher was not found.
bool tv_dict_watcher_remove(dict_T *const dict, const char *const key_pattern,
const size_t key_pattern_len, Callback callback)
FUNC_ATTR_NONNULL_ARG(2)
{
if (dict == NULL) {
return false;
}
QUEUE *w = NULL;
DictWatcher *watcher = NULL;
bool matched = false;
bool queue_is_busy = false;
QUEUE_FOREACH(w, &dict->watchers, {
watcher = tv_dict_watcher_node_data(w);
if (watcher->busy) {
queue_is_busy = true;
}
if (tv_callback_equal(&watcher->callback, &callback)
&& watcher->key_pattern_len == key_pattern_len
&& memcmp(watcher->key_pattern, key_pattern, key_pattern_len) == 0) {
matched = true;
break;
}
})
if (!matched) {
return false;
}
if (queue_is_busy) {
watcher->needs_free = true;
} else {
QUEUE_REMOVE(w);
tv_dict_watcher_free(watcher);
}
return true;
}
/// Test if `key` matches with with `watcher->key_pattern`
///
/// @param[in] watcher Watcher to check key pattern from.
/// @param[in] key Key to check.
///
/// @return true if key matches, false otherwise.
static bool tv_dict_watcher_matches(DictWatcher *watcher, const char *const key)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
// For now only allow very simple globbing in key patterns: a '*' at the end
// of the string means it should match everything up to the '*' instead of the
// whole string.
const size_t len = watcher->key_pattern_len;
if (len && watcher->key_pattern[len - 1] == '*') {
return strncmp(key, watcher->key_pattern, len - 1) == 0;
}
return strcmp(key, watcher->key_pattern) == 0;
}
/// Send a change notification to all dictionary watchers that match given key
///
/// @param[in] dict Dictionary which was modified.
/// @param[in] key Key which was modified.
/// @param[in] newtv New key value.
/// @param[in] oldtv Old key value.
void tv_dict_watcher_notify(dict_T *const dict, const char *const key, typval_T *const newtv,
typval_T *const oldtv)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
typval_T argv[3];
argv[0].v_type = VAR_DICT;
argv[0].v_lock = VAR_UNLOCKED;
argv[0].vval.v_dict = dict;
argv[1].v_type = VAR_STRING;
argv[1].v_lock = VAR_UNLOCKED;
argv[1].vval.v_string = xstrdup(key);
argv[2].v_type = VAR_DICT;
argv[2].v_lock = VAR_UNLOCKED;
argv[2].vval.v_dict = tv_dict_alloc();
argv[2].vval.v_dict->dv_refcount++;
if (newtv) {
dictitem_T *const v = tv_dict_item_alloc_len(S_LEN("new"));
tv_copy(newtv, &v->di_tv);
tv_dict_add(argv[2].vval.v_dict, v);
}
if (oldtv && oldtv->v_type != VAR_UNKNOWN) {
dictitem_T *const v = tv_dict_item_alloc_len(S_LEN("old"));
tv_copy(oldtv, &v->di_tv);
tv_dict_add(argv[2].vval.v_dict, v);
}
typval_T rettv;
bool any_needs_free = false;
dict->dv_refcount++;
QUEUE *w;
QUEUE_FOREACH(w, &dict->watchers, {
DictWatcher *watcher = tv_dict_watcher_node_data(w);
if (!watcher->busy && tv_dict_watcher_matches(watcher, key)) {
rettv = TV_INITIAL_VALUE;
watcher->busy = true;
callback_call(&watcher->callback, 3, argv, &rettv);
watcher->busy = false;
tv_clear(&rettv);
if (watcher->needs_free) {
any_needs_free = true;
}
}
})
if (any_needs_free) {
QUEUE_FOREACH(w, &dict->watchers, {
DictWatcher *watcher = tv_dict_watcher_node_data(w);
if (watcher->needs_free) {
QUEUE_REMOVE(w);
tv_dict_watcher_free(watcher);
}
})
}
tv_dict_unref(dict);
for (size_t i = 1; i < ARRAY_SIZE(argv); i++) {
tv_clear(argv + i);
}
}
//{{{2 Dictionary item
/// Allocate a dictionary item
///
/// @note that the type and value of the item (->di_tv) still needs to
/// be initialized.
///
/// @param[in] key Key, is copied to the new item.
/// @param[in] key_len Key length.
///
/// @return [allocated] new dictionary item.
dictitem_T *tv_dict_item_alloc_len(const char *const key, const size_t key_len)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
FUNC_ATTR_MALLOC
{
dictitem_T *const di = xmalloc(offsetof(dictitem_T, di_key) + key_len + 1);
memcpy(di->di_key, key, key_len);
di->di_key[key_len] = NUL;
di->di_flags = DI_FLAGS_ALLOC;
di->di_tv.v_lock = VAR_UNLOCKED;
di->di_tv.v_type = VAR_UNKNOWN;
return di;
}
/// Allocate a dictionary item
///
/// @note that the type and value of the item (->di_tv) still needs to
/// be initialized.
///
/// @param[in] key Key, is copied to the new item.
///
/// @return [allocated] new dictionary item.
dictitem_T *tv_dict_item_alloc(const char *const key)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
FUNC_ATTR_MALLOC
{
return tv_dict_item_alloc_len(key, strlen(key));
}
/// Free a dictionary item, also clearing the value
///
/// @param item Item to free.
void tv_dict_item_free(dictitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
tv_clear(&item->di_tv);
if (item->di_flags & DI_FLAGS_ALLOC) {
xfree(item);
}
}
/// Make a copy of a dictionary item
///
/// @param[in] di Item to copy.
///
/// @return [allocated] new dictionary item.
dictitem_T *tv_dict_item_copy(dictitem_T *const di)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
dictitem_T *const new_di = tv_dict_item_alloc(di->di_key);
tv_copy(&di->di_tv, &new_di->di_tv);
return new_di;
}
/// Remove item from dictionary and free it
///
/// @param dict Dictionary to remove item from.
/// @param item Item to remove.
void tv_dict_item_remove(dict_T *const dict, dictitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
hashitem_T *const hi = hash_find(&dict->dv_hashtab, item->di_key);
if (HASHITEM_EMPTY(hi)) {
semsg(_(e_intern2), "tv_dict_item_remove()");
} else {
hash_remove(&dict->dv_hashtab, hi);
}
tv_dict_item_free(item);
}
//{{{2 Alloc/free
/// Allocate an empty dictionary.
/// Caller should take care of the reference count.
///
/// @return [allocated] new dictionary.
dict_T *tv_dict_alloc(void)
FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
{
dict_T *const d = xcalloc(1, sizeof(dict_T));
// Add the dict to the list of dicts for garbage collection.
if (gc_first_dict != NULL) {
gc_first_dict->dv_used_prev = d;
}
d->dv_used_next = gc_first_dict;
d->dv_used_prev = NULL;
gc_first_dict = d;
hash_init(&d->dv_hashtab);
d->dv_lock = VAR_UNLOCKED;
d->dv_scope = VAR_NO_SCOPE;
d->dv_refcount = 0;
d->dv_copyID = 0;
QUEUE_INIT(&d->watchers);
d->lua_table_ref = LUA_NOREF;
return d;
}
/// Free items contained in a dictionary
///
/// @param[in,out] d Dictionary to clear.
void tv_dict_free_contents(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
// Lock the hashtab, we don't want it to resize while freeing items.
hash_lock(&d->dv_hashtab);
assert(d->dv_hashtab.ht_locked > 0);
HASHTAB_ITER(&d->dv_hashtab, hi, {
// Remove the item before deleting it, just in case there is
// something recursive causing trouble.
dictitem_T *const di = TV_DICT_HI2DI(hi);
hash_remove(&d->dv_hashtab, hi);
tv_dict_item_free(di);
});
while (!QUEUE_EMPTY(&d->watchers)) {
QUEUE *w = QUEUE_HEAD(&d->watchers);
QUEUE_REMOVE(w);
DictWatcher *watcher = tv_dict_watcher_node_data(w);
tv_dict_watcher_free(watcher);
}
hash_clear(&d->dv_hashtab);
d->dv_hashtab.ht_locked--;
hash_init(&d->dv_hashtab);
}
/// Free a dictionary itself, ignoring items it contains
///
/// Ignores the reference count.
///
/// @param[in,out] d Dictionary to free.
void tv_dict_free_dict(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
// Remove the dict from the list of dicts for garbage collection.
if (d->dv_used_prev == NULL) {
gc_first_dict = d->dv_used_next;
} else {
d->dv_used_prev->dv_used_next = d->dv_used_next;
}
if (d->dv_used_next != NULL) {
d->dv_used_next->dv_used_prev = d->dv_used_prev;
}
NLUA_CLEAR_REF(d->lua_table_ref);
xfree(d);
}
/// Free a dictionary, including all items it contains
///
/// Ignores the reference count.
///
/// @param d Dictionary to free.
void tv_dict_free(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
if (tv_in_free_unref_items) {
return;
}
tv_dict_free_contents(d);
tv_dict_free_dict(d);
}
/// Unreference a dictionary
///
/// Decrements the reference count and frees dictionary when it becomes zero.
///
/// @param[in] d Dictionary to operate on.
void tv_dict_unref(dict_T *const d)
{
if (d != NULL && --d->dv_refcount <= 0) {
tv_dict_free(d);
}
}
//{{{2 Indexing/searching
/// Find item in dictionary
///
/// @param[in] d Dictionary to check.
/// @param[in] key Dictionary key.
/// @param[in] len Key length. If negative, then strlen(key) is used.
///
/// @return found item or NULL if nothing was found.
dictitem_T *tv_dict_find(const dict_T *const d, const char *const key, const ptrdiff_t len)
FUNC_ATTR_NONNULL_ARG(2) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
if (d == NULL) {
return NULL;
}
hashitem_T *const hi = (len < 0
? hash_find(&d->dv_hashtab, key)
: hash_find_len(&d->dv_hashtab, key, (size_t)len));
if (HASHITEM_EMPTY(hi)) {
return NULL;
}
return TV_DICT_HI2DI(hi);
}
/// Get a typval item from a dictionary and copy it into "rettv".
///
/// @param[in] d Dictionary to check.
/// @param[in] key Dictionary key.
/// @param[in] rettv Return value.
/// @return OK in case of success or FAIL if nothing was found.
int tv_dict_get_tv(dict_T *d, const char *const key, typval_T *rettv)
{
dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return FAIL;
}
tv_copy(&di->di_tv, rettv);
return OK;
}
/// Get a number item from a dictionary
///
/// Returns 0 if the entry does not exist.
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Key to find in dictionary.
///
/// @return Dictionary item.
varnumber_T tv_dict_get_number(const dict_T *const d, const char *const key)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
return tv_dict_get_number_def(d, key, 0);
}
/// Get a number item from a dictionary.
///
/// Returns "def" if the entry doesn't exist.
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Key to find in dictionary.
/// @param[in] def Default value.
///
/// @return Dictionary item.
varnumber_T tv_dict_get_number_def(const dict_T *const d, const char *const key, const int def)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return def;
}
return tv_get_number(&di->di_tv);
}
varnumber_T tv_dict_get_bool(const dict_T *const d, const char *const key, const int def)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
{
dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return def;
}
return tv_get_bool(&di->di_tv);
}
/// Converts a dict to an environment
char **tv_dict_to_env(dict_T *denv)
{
size_t env_size = (size_t)tv_dict_len(denv);
size_t i = 0;
char **env = NULL;
// + 1 for NULL
env = xmalloc((env_size + 1) * sizeof(*env));
TV_DICT_ITER(denv, var, {
const char *str = tv_get_string(&var->di_tv);
assert(str);
size_t len = strlen(var->di_key) + strlen(str) + strlen("=") + 1;
env[i] = xmalloc(len);
snprintf(env[i], len, "%s=%s", var->di_key, str);
i++;
});
// must be null terminated
env[env_size] = NULL;
return env;
}
/// Get a string item from a dictionary
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Dictionary key.
/// @param[in] save If true, returned string will be placed in the allocated
/// memory.
///
/// @return NULL if key does not exist, empty string in case of type error,
/// string item value otherwise. If returned value is not NULL, it may
/// be allocated depending on `save` argument.
char *tv_dict_get_string(const dict_T *const d, const char *const key, const bool save)
FUNC_ATTR_WARN_UNUSED_RESULT
{
static char numbuf[NUMBUFLEN];
const char *const s = tv_dict_get_string_buf(d, key, numbuf);
if (save && s != NULL) {
return xstrdup(s);
}
return (char *)s;
}
/// Get a string item from a dictionary
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Dictionary key.
/// @param[in] numbuf Buffer for non-string items converted to strings, at
/// least of #NUMBUFLEN length.
///
/// @return NULL if key does not exist, empty string in case of type error,
/// string item value otherwise.
const char *tv_dict_get_string_buf(const dict_T *const d, const char *const key, char *const numbuf)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const dictitem_T *const di = tv_dict_find(d, key, -1);
if (di == NULL) {
return NULL;
}
return tv_get_string_buf(&di->di_tv, numbuf);
}
/// Get a string item from a dictionary
///
/// @param[in] d Dictionary to get item from.
/// @param[in] key Dictionary key.
/// @param[in] key_len Key length.
/// @param[in] numbuf Buffer for non-string items converted to strings, at
/// least of #NUMBUFLEN length.
/// @param[in] def Default return when key does not exist.
///
/// @return `def` when key does not exist,
/// NULL in case of type error,
/// string item value in case of success.
const char *tv_dict_get_string_buf_chk(const dict_T *const d, const char *const key,
const ptrdiff_t key_len, char *const numbuf,
const char *const def)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const dictitem_T *const di = tv_dict_find(d, key, key_len);
if (di == NULL) {
return def;
}
return tv_get_string_buf_chk(&di->di_tv, numbuf);
}
/// Get a function from a dictionary
///
/// @param[in] d Dictionary to get callback from.
/// @param[in] key Dictionary key.
/// @param[in] key_len Key length, may be -1 to use strlen().
/// @param[out] result The address where a pointer to the wanted callback
/// will be left.
///
/// @return true/false on success/failure.
bool tv_dict_get_callback(dict_T *const d, const char *const key, const ptrdiff_t key_len,
Callback *const result)
FUNC_ATTR_NONNULL_ARG(2, 4) FUNC_ATTR_WARN_UNUSED_RESULT
{
result->type = kCallbackNone;
dictitem_T *const di = tv_dict_find(d, key, key_len);
if (di == NULL) {
return true;
}
if (!tv_is_func(di->di_tv) && di->di_tv.v_type != VAR_STRING) {
emsg(_("E6000: Argument is not a function or function name"));
return false;
}
typval_T tv;
tv_copy(&di->di_tv, &tv);
set_selfdict(&tv, d);
const bool res = callback_from_typval(result, &tv);
tv_clear(&tv);
return res;
}
/// Check for adding a function to g: or l:.
/// If the name is wrong give an error message and return true.
int tv_dict_wrong_func_name(dict_T *d, typval_T *tv, const char *name)
{
return (d == &globvardict || &d->dv_hashtab == get_funccal_local_ht())
&& tv_is_func(*tv)
&& var_wrong_func_name(name, true);
}
//{{{2 dict_add*
/// Add item to dictionary
///
/// @param[out] d Dictionary to add to.
/// @param[in] item Item to add.
///
/// @return FAIL if key already exists.
int tv_dict_add(dict_T *const d, dictitem_T *const item)
FUNC_ATTR_NONNULL_ALL
{
if (tv_dict_wrong_func_name(d, &item->di_tv, item->di_key)) {
return FAIL;
}
return hash_add(&d->dv_hashtab, item->di_key);
}
/// Add a list entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param list List to add. Will have reference count incremented.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_list(dict_T *const d, const char *const key, const size_t key_len,
list_T *const list)
FUNC_ATTR_NONNULL_ALL
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_LIST;
item->di_tv.vval.v_list = list;
tv_list_ref(list);
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a typval entry to dictionary.
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
///
/// @return FAIL if out of memory or key already exists.
int tv_dict_add_tv(dict_T *d, const char *key, const size_t key_len, typval_T *tv)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
tv_copy(tv, &item->di_tv);
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a dictionary entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param dict Dictionary to add. Will have reference count incremented.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_dict(dict_T *const d, const char *const key, const size_t key_len,
dict_T *const dict)
FUNC_ATTR_NONNULL_ALL
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_DICT;
item->di_tv.vval.v_dict = dict;
dict->dv_refcount++;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a number entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] nr Number to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_nr(dict_T *const d, const char *const key, const size_t key_len,
const varnumber_T nr)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_NUMBER;
item->di_tv.vval.v_number = nr;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a floating point number entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] nr Floating point number to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_float(dict_T *const d, const char *const key, const size_t key_len,
const float_T nr)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_FLOAT;
item->di_tv.vval.v_float = nr;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a boolean entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] val BoolVarValue to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_bool(dict_T *const d, const char *const key, const size_t key_len, BoolVarValue val)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_BOOL;
item->di_tv.vval.v_bool = val;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
/// Add a string entry to dictionary
///
/// @see tv_dict_add_allocated_str
int tv_dict_add_str(dict_T *const d, const char *const key, const size_t key_len,
const char *const val)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
return tv_dict_add_str_len(d, key, key_len, val, -1);
}
/// Add a string entry to dictionary
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] val String to add. NULL adds empty string.
/// @param[in] len Use this many bytes from `val`, or -1 for whole string.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_str_len(dict_T *const d, const char *const key, const size_t key_len,
const char *const val, int len)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
char *s = NULL;
if (val != NULL) {
s = (len < 0) ? xstrdup(val) : xstrndup(val, (size_t)len);
}
return tv_dict_add_allocated_str(d, key, key_len, s);
}
/// Add a string entry to dictionary
///
/// Unlike tv_dict_add_str() saves val to the new dictionary item in place of
/// creating a new copy.
///
/// @warning String will be freed even in case addition fails.
///
/// @param[out] d Dictionary to add entry to.
/// @param[in] key Key to add.
/// @param[in] key_len Key length.
/// @param[in] val String to add.
///
/// @return OK in case of success, FAIL when key already exists.
int tv_dict_add_allocated_str(dict_T *const d, const char *const key, const size_t key_len,
char *const val)
FUNC_ATTR_NONNULL_ARG(1, 2)
{
dictitem_T *const item = tv_dict_item_alloc_len(key, key_len);
item->di_tv.v_type = VAR_STRING;
item->di_tv.vval.v_string = val;
if (tv_dict_add(d, item) == FAIL) {
tv_dict_item_free(item);
return FAIL;
}
return OK;
}
//{{{2 Operations on the whole dict
/// Clear all the keys of a Dictionary. "d" remains a valid empty Dictionary.
///
/// @param d The Dictionary to clear
void tv_dict_clear(dict_T *const d)
FUNC_ATTR_NONNULL_ALL
{
hash_lock(&d->dv_hashtab);
assert(d->dv_hashtab.ht_locked > 0);
HASHTAB_ITER(&d->dv_hashtab, hi, {
tv_dict_item_free(TV_DICT_HI2DI(hi));
hash_remove(&d->dv_hashtab, hi);
});
hash_unlock(&d->dv_hashtab);
}
/// Extend dictionary with items from another dictionary
///
/// @param d1 Dictionary to extend.
/// @param[in] d2 Dictionary to extend with.
/// @param[in] action "error", "force", "move", "keep":
/// e*, including "error": duplicate key gives an error.
/// f*, including "force": duplicate d2 keys override d1.
/// m*, including "move": move items instead of copying.
/// other, including "keep": duplicate d2 keys ignored.
void tv_dict_extend(dict_T *const d1, dict_T *const d2, const char *const action)
FUNC_ATTR_NONNULL_ALL
{
const bool watched = tv_dict_is_watched(d1);
const char *const arg_errmsg = _("extend() argument");
const size_t arg_errmsg_len = strlen(arg_errmsg);
if (*action == 'm') {
hash_lock(&d2->dv_hashtab); // don't rehash on hash_remove()
}
HASHTAB_ITER(&d2->dv_hashtab, hi2, {
dictitem_T *const di2 = TV_DICT_HI2DI(hi2);
dictitem_T *const di1 = tv_dict_find(d1, di2->di_key, -1);
// Check the key to be valid when adding to any scope.
if (d1->dv_scope != VAR_NO_SCOPE && !valid_varname(di2->di_key)) {
break;
}
if (di1 == NULL) {
if (*action == 'm') {
// Cheap way to move a dict item from "d2" to "d1".
// If dict_add() fails then "d2" won't be empty.
dictitem_T *const new_di = di2;
if (tv_dict_add(d1, new_di) == OK) {
hash_remove(&d2->dv_hashtab, hi2);
tv_dict_watcher_notify(d1, new_di->di_key, &new_di->di_tv, NULL);
}
} else {
dictitem_T *const new_di = tv_dict_item_copy(di2);
if (tv_dict_add(d1, new_di) == FAIL) {
tv_dict_item_free(new_di);
} else if (watched) {
tv_dict_watcher_notify(d1, new_di->di_key, &new_di->di_tv, NULL);
}
}
} else if (*action == 'e') {
semsg(_("E737: Key already exists: %s"), di2->di_key);
break;
} else if (*action == 'f' && di2 != di1) {
typval_T oldtv;
if (value_check_lock(di1->di_tv.v_lock, arg_errmsg, arg_errmsg_len)
|| var_check_ro(di1->di_flags, arg_errmsg, arg_errmsg_len)) {
break;
}
// Disallow replacing a builtin function.
if (tv_dict_wrong_func_name(d1, &di2->di_tv, di2->di_key)) {
break;
}
if (watched) {
tv_copy(&di1->di_tv, &oldtv);
}
tv_clear(&di1->di_tv);
tv_copy(&di2->di_tv, &di1->di_tv);
if (watched) {
tv_dict_watcher_notify(d1, di1->di_key, &di1->di_tv, &oldtv);
tv_clear(&oldtv);
}
}
});
if (*action == 'm') {
hash_unlock(&d2->dv_hashtab);
}
}
/// Compare two dictionaries
///
/// @param[in] d1 First dictionary.
/// @param[in] d2 Second dictionary.
/// @param[in] ic True if case is to be ignored.
///
/// @return True if dictionaries are equal, false otherwise.
bool tv_dict_equal(dict_T *const d1, dict_T *const d2, const bool ic)
FUNC_ATTR_WARN_UNUSED_RESULT
{
if (d1 == d2) {
return true;
}
if (tv_dict_len(d1) != tv_dict_len(d2)) {
return false;
}
if (tv_dict_len(d1) == 0) {
// empty and NULL dicts are considered equal
return true;
}
if (d1 == NULL || d2 == NULL) {
return false;
}
TV_DICT_ITER(d1, di1, {
dictitem_T *const di2 = tv_dict_find(d2, di1->di_key, -1);
if (di2 == NULL) {
return false;
}
if (!tv_equal(&di1->di_tv, &di2->di_tv, ic)) {
return false;
}
});
return true;
}
/// Make a copy of dictionary
///
/// @param[in] conv If non-NULL, then all internal strings will be converted.
/// @param[in] orig Original dictionary to copy.
/// @param[in] deep If false, then shallow copy will be done.
/// @param[in] copyID See var_item_copy().
///
/// @return Copied dictionary. May be NULL in case original dictionary is NULL
/// or some failure happens. The refcount of the new dictionary is set
/// to 1.
dict_T *tv_dict_copy(const vimconv_T *const conv, dict_T *const orig, const bool deep,
const int copyID)
{
if (orig == NULL) {
return NULL;
}
dict_T *copy = tv_dict_alloc();
if (copyID != 0) {
orig->dv_copyID = copyID;
orig->dv_copydict = copy;
}
TV_DICT_ITER(orig, di, {
if (got_int) {
break;
}
dictitem_T *new_di;
if (conv == NULL || conv->vc_type == CONV_NONE) {
new_di = tv_dict_item_alloc(di->di_key);
} else {
size_t len = strlen(di->di_key);
char *const key = string_convert(conv, di->di_key, &len);
if (key == NULL) {
new_di = tv_dict_item_alloc_len(di->di_key, len);
} else {
new_di = tv_dict_item_alloc_len(key, len);
xfree(key);
}
}
if (deep) {
if (var_item_copy(conv, &di->di_tv, &new_di->di_tv, deep,
copyID) == FAIL) {
xfree(new_di);
break;
}
} else {
tv_copy(&di->di_tv, &new_di->di_tv);
}
if (tv_dict_add(copy, new_di) == FAIL) {
tv_dict_item_free(new_di);
break;
}
});
copy->dv_refcount++;
if (got_int) {
tv_dict_unref(copy);
copy = NULL;
}
return copy;
}
/// Set all existing keys in "dict" as read-only.
///
/// This does not protect against adding new keys to the Dictionary.
///
/// @param dict The dict whose keys should be frozen.
void tv_dict_set_keys_readonly(dict_T *const dict)
FUNC_ATTR_NONNULL_ALL
{
TV_DICT_ITER(dict, di, {
di->di_flags |= DI_FLAGS_RO | DI_FLAGS_FIX;
});
}
//{{{1 Blobs
//{{{2 Alloc/free
/// Allocate an empty blob.
///
/// Caller should take care of the reference count.
///
/// @return [allocated] new blob.
blob_T *tv_blob_alloc(void)
FUNC_ATTR_NONNULL_RET
{
blob_T *const blob = xcalloc(1, sizeof(blob_T));
ga_init(&blob->bv_ga, 1, 100);
return blob;
}
/// Free a blob. Ignores the reference count.
///
/// @param[in,out] b Blob to free.
void tv_blob_free(blob_T *const b)
FUNC_ATTR_NONNULL_ALL
{
ga_clear(&b->bv_ga);
xfree(b);
}
/// Unreference a blob.
///
/// Decrements the reference count and frees blob when it becomes zero.
///
/// @param[in,out] b Blob to operate on.
void tv_blob_unref(blob_T *const b)
{
if (b != NULL && --b->bv_refcount <= 0) {
tv_blob_free(b);
}
}
//{{{2 Operations on the whole blob
/// Check whether two blobs are equal.
///
/// @param[in] b1 First blob.
/// @param[in] b2 Second blob.
///
/// @return true if blobs are equal, false otherwise.
bool tv_blob_equal(const blob_T *const b1, const blob_T *const b2)
FUNC_ATTR_WARN_UNUSED_RESULT
{
const int len1 = tv_blob_len(b1);
const int len2 = tv_blob_len(b2);
// empty and NULL are considered the same
if (len1 == 0 && len2 == 0) {
return true;
}
if (b1 == b2) {
return true;
}
if (len1 != len2) {
return false;
}
for (int i = 0; i < b1->bv_ga.ga_len; i++) {
if (tv_blob_get(b1, i) != tv_blob_get(b2, i)) {
return false;
}
}
return true;
}
/// Returns a slice of "blob" from index "n1" to "n2" in "rettv". The length of
/// the blob is "len". Returns an empty blob if the indexes are out of range.
static int tv_blob_slice(const blob_T *blob, int len, varnumber_T n1, varnumber_T n2,
bool exclusive, typval_T *rettv)
{
// The resulting variable is a sub-blob. If the indexes
// are out of range the result is empty.
if (n1 < 0) {
n1 = len + n1;
if (n1 < 0) {
n1 = 0;
}
}
if (n2 < 0) {
n2 = len + n2;
} else if (n2 >= len) {
n2 = len - (exclusive ? 0 : 1);
}
if (exclusive) {
n2--;
}
if (n1 >= len || n2 < 0 || n1 > n2) {
tv_clear(rettv);
rettv->v_type = VAR_BLOB;
rettv->vval.v_blob = NULL;
} else {
blob_T *const new_blob = tv_blob_alloc();
ga_grow(&new_blob->bv_ga, (int)(n2 - n1 + 1));
new_blob->bv_ga.ga_len = (int)(n2 - n1 + 1);
for (int i = (int)n1; i <= (int)n2; i++) {
tv_blob_set(new_blob, i - (int)n1, tv_blob_get(rettv->vval.v_blob, i));
}
tv_clear(rettv);
tv_blob_set_ret(rettv, new_blob);
}
return OK;
}
/// Return the byte value in "blob" at index "idx" in "rettv". If the index is
/// too big or negative that is an error. The length of the blob is "len".
static int tv_blob_index(const blob_T *blob, int len, varnumber_T idx, typval_T *rettv)
{
// The resulting variable is a byte value.
// If the index is too big or negative that is an error.
if (idx < 0) {
idx = len + idx;
}
if (idx < len && idx >= 0) {
const int v = (int)tv_blob_get(rettv->vval.v_blob, (int)idx);
tv_clear(rettv);
rettv->v_type = VAR_NUMBER;
rettv->vval.v_number = v;
} else {
semsg(_(e_blobidx), idx);
return FAIL;
}
return OK;
}
int tv_blob_slice_or_index(const blob_T *blob, bool is_range, varnumber_T n1, varnumber_T n2,
bool exclusive, typval_T *rettv)
{
int len = tv_blob_len(rettv->vval.v_blob);
if (is_range) {
return tv_blob_slice(blob, len, n1, n2, exclusive, rettv);
} else {
return tv_blob_index(blob, len, n1, rettv);
}
}
/// Check if "n1" is a valid index for a blob with length "bloblen".
int tv_blob_check_index(int bloblen, varnumber_T n1, bool quiet)
{
if (n1 < 0 || n1 > bloblen) {
if (!quiet) {
semsg(_(e_blobidx), n1);
}
return FAIL;
}
return OK;
}
/// Check if "n1"-"n2" is a valid range for a blob with length "bloblen".
int tv_blob_check_range(int bloblen, varnumber_T n1, varnumber_T n2, bool quiet)
{
if (n2 < 0 || n2 >= bloblen || n2 < n1) {
if (!quiet) {
semsg(_(e_blobidx), n2);
}
return FAIL;
}
return OK;
}
/// Set bytes "n1" to "n2" (inclusive) in "dest" to the value of "src".
/// Caller must make sure "src" is a blob.
/// Returns FAIL if the number of bytes does not match.
int tv_blob_set_range(blob_T *dest, varnumber_T n1, varnumber_T n2, typval_T *src)
{
if (n2 - n1 + 1 != tv_blob_len(src->vval.v_blob)) {
emsg(_("E972: Blob value does not have the right number of bytes"));
return FAIL;
}
for (int il = (int)n1, ir = 0; il <= (int)n2; il++) {
tv_blob_set(dest, il, tv_blob_get(src->vval.v_blob, ir++));
}
return OK;
}
/// Store one byte "byte" in blob "blob" at "idx".
/// Append one byte if needed.
void tv_blob_set_append(blob_T *blob, int idx, uint8_t byte)
{
garray_T *gap = &blob->bv_ga;
// Allow for appending a byte. Setting a byte beyond
// the end is an error otherwise.
if (idx <= gap->ga_len) {
if (idx == gap->ga_len) {
ga_grow(gap, 1);
gap->ga_len++;
}
tv_blob_set(blob, idx, byte);
}
}
/// "remove({blob})" function
void tv_blob_remove(typval_T *argvars, typval_T *rettv, const char *arg_errmsg)
{
blob_T *const b = argvars[0].vval.v_blob;
if (b != NULL && value_check_lock(b->bv_lock, arg_errmsg, TV_TRANSLATE)) {
return;
}
bool error = false;
int64_t idx = tv_get_number_chk(&argvars[1], &error);
if (!error) {
const int len = tv_blob_len(b);
if (idx < 0) {
// count from the end
idx = len + idx;
}
if (idx < 0 || idx >= len) {
semsg(_(e_blobidx), idx);
return;
}
if (argvars[2].v_type == VAR_UNKNOWN) {
// Remove one item, return its value.
uint8_t *const p = (uint8_t *)b->bv_ga.ga_data;
rettv->vval.v_number = (varnumber_T)(*(p + idx));
memmove(p + idx, p + idx + 1, (size_t)(len - idx - 1));
b->bv_ga.ga_len--;
} else {
// Remove range of items, return blob with values.
int64_t end = tv_get_number_chk(&argvars[2], &error);
if (error) {
return;
}
if (end < 0) {
// count from the end
end = len + end;
}
if (end >= len || idx > end) {
semsg(_(e_blobidx), end);
return;
}
blob_T *const blob = tv_blob_alloc();
blob->bv_ga.ga_len = (int)(end - idx + 1);
ga_grow(&blob->bv_ga, (int)(end - idx + 1));
uint8_t *const p = (uint8_t *)b->bv_ga.ga_data;
memmove(blob->bv_ga.ga_data, p + idx, (size_t)(end - idx + 1));
tv_blob_set_ret(rettv, blob);
if (len - end - 1 > 0) {
memmove(p + idx, p + end + 1, (size_t)(len - end - 1));
}
b->bv_ga.ga_len -= (int)(end - idx + 1);
}
}
}
/// blob2list() function
void f_blob2list(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
tv_list_alloc_ret(rettv, kListLenMayKnow);
if (tv_check_for_blob_arg(argvars, 0) == FAIL) {
return;
}
blob_T *const blob = argvars->vval.v_blob;
list_T *const l = rettv->vval.v_list;
for (int i = 0; i < tv_blob_len(blob); i++) {
tv_list_append_number(l, tv_blob_get(blob, i));
}
}
/// list2blob() function
void f_list2blob(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
blob_T *blob = tv_blob_alloc_ret(rettv);
if (tv_check_for_list_arg(argvars, 0) == FAIL) {
return;
}
list_T *const l = argvars->vval.v_list;
if (l == NULL) {
return;
}
TV_LIST_ITER_CONST(l, li, {
bool error = false;
varnumber_T n = tv_get_number_chk(TV_LIST_ITEM_TV(li), &error);
if (error || n < 0 || n > 255) {
if (!error) {
semsg(_(e_invalid_value_for_blob_nr), (int)n);
}
ga_clear(&blob->bv_ga);
return;
}
ga_append(&blob->bv_ga, (uint8_t)n);
});
}
//{{{1 Generic typval operations
//{{{2 Init/alloc/clear
//{{{3 Alloc
/// Allocate an empty list for a return value
///
/// Also sets reference count.
///
/// @param[out] ret_tv Structure where list is saved.
/// @param[in] len Expected number of items to be populated before list
/// becomes accessible from Vimscript. It is still valid to
/// underpopulate a list, value only controls how many elements
/// will be allocated in advance. @see ListLenSpecials.
///
/// @return [allocated] pointer to the created list.
list_T *tv_list_alloc_ret(typval_T *const ret_tv, const ptrdiff_t len)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET
{
list_T *const l = tv_list_alloc(len);
tv_list_set_ret(ret_tv, l);
ret_tv->v_lock = VAR_UNLOCKED;
return l;
}
dict_T *tv_dict_alloc_lock(VarLockStatus lock)
FUNC_ATTR_NONNULL_RET
{
dict_T *const d = tv_dict_alloc();
d->dv_lock = lock;
return d;
}
/// Allocate an empty dictionary for a return value
///
/// Also sets reference count.
///
/// @param[out] ret_tv Structure where dictionary is saved.
void tv_dict_alloc_ret(typval_T *const ret_tv)
FUNC_ATTR_NONNULL_ALL
{
dict_T *const d = tv_dict_alloc_lock(VAR_UNLOCKED);
tv_dict_set_ret(ret_tv, d);
}
/// Turn a dictionary into a list
///
/// @param[in] argvars Arguments to items(). The first argument is check for being
/// a dictionary, will give an error if not.
/// @param[out] rettv Location where result will be saved.
/// @param[in] what What to save in rettv.
static void tv_dict2list(typval_T *const argvars, typval_T *const rettv, const DictListType what)
{
if ((what == kDict2ListItems
? tv_check_for_list_or_dict_arg(argvars, 0)
: tv_check_for_dict_arg(argvars, 0)) == FAIL) {
tv_list_alloc_ret(rettv, 0);
return;
}
dict_T *d = argvars[0].vval.v_dict;
tv_list_alloc_ret(rettv, tv_dict_len(d));
if (d == NULL) {
// NULL dict behaves like an empty dict
return;
}
TV_DICT_ITER(d, di, {
typval_T tv_item = { .v_lock = VAR_UNLOCKED };
switch (what) {
case kDict2ListKeys:
tv_item.v_type = VAR_STRING;
tv_item.vval.v_string = xstrdup(di->di_key);
break;
case kDict2ListValues:
tv_copy(&di->di_tv, &tv_item);
break;
case kDict2ListItems: {
// items()
list_T *const sub_l = tv_list_alloc(2);
tv_item.v_type = VAR_LIST;
tv_item.vval.v_list = sub_l;
tv_list_ref(sub_l);
tv_list_append_owned_tv(sub_l, (typval_T) {
.v_type = VAR_STRING,
.v_lock = VAR_UNLOCKED,
.vval.v_string = xstrdup(di->di_key),
});
tv_list_append_tv(sub_l, &di->di_tv);
break;
}
}
tv_list_append_owned_tv(rettv->vval.v_list, tv_item);
});
}
/// "items(dict)" function
void f_items(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
if (argvars[0].v_type == VAR_LIST) {
tv_list2items(argvars, rettv);
} else {
tv_dict2list(argvars, rettv, kDict2ListItems);
}
}
/// "keys()" function
void f_keys(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
tv_dict2list(argvars, rettv, kDict2ListKeys);
}
/// "values(dict)" function
void f_values(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
tv_dict2list(argvars, rettv, kDict2ListValues);
}
/// "has_key()" function
void f_has_key(typval_T *argvars, typval_T *rettv, EvalFuncData fptr)
{
if (tv_check_for_dict_arg(argvars, 0) == FAIL) {
return;
}
if (argvars[0].vval.v_dict == NULL) {
return;
}
rettv->vval.v_number = tv_dict_find(argvars[0].vval.v_dict,
tv_get_string(&argvars[1]),
-1) != NULL;
}
/// "remove({dict})" function
void tv_dict_remove(typval_T *argvars, typval_T *rettv, const char *arg_errmsg)
{
dict_T *d;
if (argvars[2].v_type != VAR_UNKNOWN) {
semsg(_(e_toomanyarg), "remove()");
} else if ((d = argvars[0].vval.v_dict) != NULL
&& !value_check_lock(d->dv_lock, arg_errmsg, TV_TRANSLATE)) {
const char *key = tv_get_string_chk(&argvars[1]);
if (key != NULL) {
dictitem_T *di = tv_dict_find(d, key, -1);
if (di == NULL) {
semsg(_(e_dictkey), key);
} else if (!var_check_fixed(di->di_flags, arg_errmsg, TV_TRANSLATE)
&& !var_check_ro(di->di_flags, arg_errmsg, TV_TRANSLATE)) {
*rettv = di->di_tv;
di->di_tv = TV_INITIAL_VALUE;
tv_dict_item_remove(d, di);
if (tv_dict_is_watched(d)) {
tv_dict_watcher_notify(d, key, NULL, rettv);
}
}
}
}
}
/// Allocate an empty blob for a return value.
///
/// Also sets reference count.
///
/// @param[out] ret_tv Structure where blob is saved.
blob_T *tv_blob_alloc_ret(typval_T *const ret_tv)
FUNC_ATTR_NONNULL_ALL
{
blob_T *const b = tv_blob_alloc();
tv_blob_set_ret(ret_tv, b);
return b;
}
/// Copy a blob typval to a different typval.
///
/// @param[in] from Blob object to copy from.
/// @param[out] to Blob object to copy to.
void tv_blob_copy(blob_T *const from, typval_T *const to)
FUNC_ATTR_NONNULL_ARG(2)
{
to->v_type = VAR_BLOB;
to->v_lock = VAR_UNLOCKED;
if (from == NULL) {
to->vval.v_blob = NULL;
} else {
tv_blob_alloc_ret(to);
int len = from->bv_ga.ga_len;
if (len > 0) {
to->vval.v_blob->bv_ga.ga_data = xmemdup(from->bv_ga.ga_data, (size_t)len);
}
to->vval.v_blob->bv_ga.ga_len = len;
to->vval.v_blob->bv_ga.ga_maxlen = len;
}
}
//{{{3 Clear
#define TYPVAL_ENCODE_ALLOW_SPECIALS false
#define TYPVAL_ENCODE_CHECK_BEFORE
#define TYPVAL_ENCODE_CONV_NIL(tv) \
do { \
(tv)->vval.v_special = kSpecialVarNull; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_BOOL(tv, num) \
do { \
(tv)->vval.v_bool = kBoolVarFalse; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_NUMBER(tv, num) \
do { \
(void)(num); \
(tv)->vval.v_number = 0; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_UNSIGNED_NUMBER(tv, num)
#define TYPVAL_ENCODE_CONV_FLOAT(tv, flt) \
do { \
(tv)->vval.v_float = 0; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_STRING(tv, buf, len) \
do { \
xfree(buf); \
(tv)->vval.v_string = NULL; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
#define TYPVAL_ENCODE_CONV_STR_STRING(tv, buf, len)
#define TYPVAL_ENCODE_CONV_EXT_STRING(tv, buf, len, type)
#define TYPVAL_ENCODE_CONV_BLOB(tv, blob, len) \
do { \
tv_blob_unref((tv)->vval.v_blob); \
(tv)->vval.v_blob = NULL; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
static inline int _nothing_conv_func_start(typval_T *const tv, char *const fun)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ARG(1)
{
tv->v_lock = VAR_UNLOCKED;
if (tv->v_type == VAR_PARTIAL) {
partial_T *const pt_ = tv->vval.v_partial;
if (pt_ != NULL && pt_->pt_refcount > 1) {
pt_->pt_refcount--;
tv->vval.v_partial = NULL;
return OK;
}
} else {
func_unref(fun);
if (fun != tv_empty_string) {
xfree(fun);
}
tv->vval.v_string = NULL;
}
return NOTDONE;
}
#define TYPVAL_ENCODE_CONV_FUNC_START(tv, fun) \
do { \
if (_nothing_conv_func_start(tv, fun) != NOTDONE) { \
return OK; \
} \
} while (0)
#define TYPVAL_ENCODE_CONV_FUNC_BEFORE_ARGS(tv, len)
#define TYPVAL_ENCODE_CONV_FUNC_BEFORE_SELF(tv, len)
static inline void _nothing_conv_func_end(typval_T *const tv, const int copyID)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ALL
{
if (tv->v_type == VAR_PARTIAL) {
partial_T *const pt = tv->vval.v_partial;
if (pt == NULL) {
return;
}
// Dictionary should already be freed by the time.
// If it was not freed then it is a part of the reference cycle.
assert(pt->pt_dict == NULL || pt->pt_dict->dv_copyID == copyID);
pt->pt_dict = NULL;
// As well as all arguments.
pt->pt_argc = 0;
assert(pt->pt_refcount <= 1);
partial_unref(pt);
tv->vval.v_partial = NULL;
assert(tv->v_lock == VAR_UNLOCKED);
}
}
#define TYPVAL_ENCODE_CONV_FUNC_END(tv) _nothing_conv_func_end(tv, copyID)
#define TYPVAL_ENCODE_CONV_EMPTY_LIST(tv) \
do { \
tv_list_unref((tv)->vval.v_list); \
(tv)->vval.v_list = NULL; \
(tv)->v_lock = VAR_UNLOCKED; \
} while (0)
static inline void _nothing_conv_empty_dict(typval_T *const tv, dict_T **const dictp)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_NONNULL_ARG(2)
{
tv_dict_unref(*dictp);
*dictp = NULL;
if (tv != NULL) {
tv->v_lock = VAR_UNLOCKED;
}
}
#define TYPVAL_ENCODE_CONV_EMPTY_DICT(tv, dict) \
do { \
assert((void *)&(dict) != (void *)&TYPVAL_ENCODE_NODICT_VAR); \
_nothing_conv_empty_dict(tv, ((dict_T **)&(dict))); \
} while (0)
static inline int _nothing_conv_real_list_after_start(typval_T *const tv,
MPConvStackVal *const mpsv)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
{
assert(tv != NULL);
tv->v_lock = VAR_UNLOCKED;
if (tv->vval.v_list->lv_refcount > 1) {
tv->vval.v_list->lv_refcount--;
tv->vval.v_list = NULL;
mpsv->data.l.li = NULL;
return OK;
}
return NOTDONE;
}
#define TYPVAL_ENCODE_CONV_LIST_START(tv, len)
#define TYPVAL_ENCODE_CONV_REAL_LIST_AFTER_START(tv, mpsv) \
do { \
if (_nothing_conv_real_list_after_start(tv, &(mpsv)) != NOTDONE) { \
goto typval_encode_stop_converting_one_item; \
} \
} while (0)
#define TYPVAL_ENCODE_CONV_LIST_BETWEEN_ITEMS(tv)
static inline void _nothing_conv_list_end(typval_T *const tv)
FUNC_ATTR_ALWAYS_INLINE
{
if (tv == NULL) {
return;
}
assert(tv->v_type == VAR_LIST);
list_T *const list = tv->vval.v_list;
tv_list_unref(list);
tv->vval.v_list = NULL;
}
#define TYPVAL_ENCODE_CONV_LIST_END(tv) _nothing_conv_list_end(tv)
static inline int _nothing_conv_real_dict_after_start(typval_T *const tv, dict_T **const dictp,
const void *const nodictvar,
MPConvStackVal *const mpsv)
FUNC_ATTR_ALWAYS_INLINE FUNC_ATTR_WARN_UNUSED_RESULT
{
if (tv != NULL) {
tv->v_lock = VAR_UNLOCKED;
}
if ((const void *)dictp != nodictvar && (*dictp)->dv_refcount > 1) {
(*dictp)->dv_refcount--;
*dictp = NULL;
mpsv->data.d.todo = 0;
return OK;
}
return NOTDONE;
}
#define TYPVAL_ENCODE_CONV_DICT_START(tv, dict, len)
#define TYPVAL_ENCODE_CONV_REAL_DICT_AFTER_START(tv, dict, mpsv) \
do { \
if (_nothing_conv_real_dict_after_start(tv, (dict_T **)&(dict), \
(void *)&TYPVAL_ENCODE_NODICT_VAR, &(mpsv)) \
!= NOTDONE) { \
goto typval_encode_stop_converting_one_item; \
} \
} while (0)
#define TYPVAL_ENCODE_SPECIAL_DICT_KEY_CHECK(tv, dict)
#define TYPVAL_ENCODE_CONV_DICT_AFTER_KEY(tv, dict)
#define TYPVAL_ENCODE_CONV_DICT_BETWEEN_ITEMS(tv, dict)
static inline void _nothing_conv_dict_end(typval_T *const tv, dict_T **const dictp,
const void *const nodictvar)
FUNC_ATTR_ALWAYS_INLINE
{
if ((const void *)dictp != nodictvar) {
tv_dict_unref(*dictp);
*dictp = NULL;
}
}
#define TYPVAL_ENCODE_CONV_DICT_END(tv, dict) \
_nothing_conv_dict_end(tv, (dict_T **)&(dict), \
(void *)&TYPVAL_ENCODE_NODICT_VAR)
#define TYPVAL_ENCODE_CONV_RECURSE(val, conv_type)
#define TYPVAL_ENCODE_SCOPE static
#define TYPVAL_ENCODE_NAME nothing
#define TYPVAL_ENCODE_FIRST_ARG_TYPE const void *const
#define TYPVAL_ENCODE_FIRST_ARG_NAME ignored
#include "nvim/eval/typval_encode.c.h"
#undef TYPVAL_ENCODE_SCOPE
#undef TYPVAL_ENCODE_NAME
#undef TYPVAL_ENCODE_FIRST_ARG_TYPE
#undef TYPVAL_ENCODE_FIRST_ARG_NAME
#undef TYPVAL_ENCODE_ALLOW_SPECIALS
#undef TYPVAL_ENCODE_CHECK_BEFORE
#undef TYPVAL_ENCODE_CONV_NIL
#undef TYPVAL_ENCODE_CONV_BOOL
#undef TYPVAL_ENCODE_CONV_NUMBER
#undef TYPVAL_ENCODE_CONV_UNSIGNED_NUMBER
#undef TYPVAL_ENCODE_CONV_FLOAT
#undef TYPVAL_ENCODE_CONV_STRING
#undef TYPVAL_ENCODE_CONV_STR_STRING
#undef TYPVAL_ENCODE_CONV_EXT_STRING
#undef TYPVAL_ENCODE_CONV_BLOB
#undef TYPVAL_ENCODE_CONV_FUNC_START
#undef TYPVAL_ENCODE_CONV_FUNC_BEFORE_ARGS
#undef TYPVAL_ENCODE_CONV_FUNC_BEFORE_SELF
#undef TYPVAL_ENCODE_CONV_FUNC_END
#undef TYPVAL_ENCODE_CONV_EMPTY_LIST
#undef TYPVAL_ENCODE_CONV_EMPTY_DICT
#undef TYPVAL_ENCODE_CONV_LIST_START
#undef TYPVAL_ENCODE_CONV_REAL_LIST_AFTER_START
#undef TYPVAL_ENCODE_CONV_LIST_BETWEEN_ITEMS
#undef TYPVAL_ENCODE_CONV_LIST_END
#undef TYPVAL_ENCODE_CONV_DICT_START
#undef TYPVAL_ENCODE_CONV_REAL_DICT_AFTER_START
#undef TYPVAL_ENCODE_SPECIAL_DICT_KEY_CHECK
#undef TYPVAL_ENCODE_CONV_DICT_AFTER_KEY
#undef TYPVAL_ENCODE_CONV_DICT_BETWEEN_ITEMS
#undef TYPVAL_ENCODE_CONV_DICT_END
#undef TYPVAL_ENCODE_CONV_RECURSE
/// Free memory for a variable value and set the value to NULL or 0
///
/// @param[in,out] tv Value to free.
void tv_clear(typval_T *const tv)
{
if (tv == NULL || tv->v_type == VAR_UNKNOWN) {
return;
}
// WARNING: do not translate the string here, gettext is slow and function
// is used *very* often. At the current state encode_vim_to_nothing() does
// not error out and does not use the argument anywhere.
//
// If situation changes and this argument will be used, translate it in the
// place where it is used.
const int evn_ret = encode_vim_to_nothing(NULL, tv, "tv_clear() argument");
(void)evn_ret;
assert(evn_ret == OK);
}
//{{{3 Free
/// Free allocated Vimscript object and value stored inside
///
/// @param tv Object to free.
void tv_free(typval_T *tv)
{
if (tv == NULL) {
return;
}
switch (tv->v_type) {
case VAR_PARTIAL:
partial_unref(tv->vval.v_partial);
break;
case VAR_FUNC:
func_unref(tv->vval.v_string);
FALLTHROUGH;
case VAR_STRING:
xfree(tv->vval.v_string);
break;
case VAR_BLOB:
tv_blob_unref(tv->vval.v_blob);
break;
case VAR_LIST:
tv_list_unref(tv->vval.v_list);
break;
case VAR_DICT:
tv_dict_unref(tv->vval.v_dict);
break;
case VAR_BOOL:
case VAR_SPECIAL:
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_UNKNOWN:
break;
}
xfree(tv);
}
//{{{3 Copy
/// Copy typval from one location to another
///
/// When needed allocates string or increases reference count. Does not make
/// a copy of a container, but copies its reference!
///
/// It is OK for `from` and `to` to point to the same location; this is used to
/// make a copy later.
///
/// @param[in] from Location to copy from.
/// @param[out] to Location to copy to.
void tv_copy(const typval_T *const from, typval_T *const to)
{
to->v_type = from->v_type;
to->v_lock = VAR_UNLOCKED;
memmove(&to->vval, &from->vval, sizeof(to->vval));
switch (from->v_type) {
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_BOOL:
case VAR_SPECIAL:
break;
case VAR_STRING:
case VAR_FUNC:
if (from->vval.v_string != NULL) {
to->vval.v_string = xstrdup(from->vval.v_string);
if (from->v_type == VAR_FUNC) {
func_ref(to->vval.v_string);
}
}
break;
case VAR_PARTIAL:
if (to->vval.v_partial != NULL) {
to->vval.v_partial->pt_refcount++;
}
break;
case VAR_BLOB:
if (from->vval.v_blob != NULL) {
to->vval.v_blob->bv_refcount++;
}
break;
case VAR_LIST:
tv_list_ref(to->vval.v_list);
break;
case VAR_DICT:
if (from->vval.v_dict != NULL) {
to->vval.v_dict->dv_refcount++;
}
break;
case VAR_UNKNOWN:
semsg(_(e_intern2), "tv_copy(UNKNOWN)");
break;
}
}
//{{{2 Locks
/// Lock or unlock an item
///
/// @param[out] tv Item to (un)lock.
/// @param[in] deep Levels to (un)lock, -1 to (un)lock everything.
/// @param[in] lock True if it is needed to lock an item, false to unlock.
/// @param[in] check_refcount If true, do not lock a list or dict with a
/// reference count larger than 1.
void tv_item_lock(typval_T *const tv, const int deep, const bool lock, const bool check_refcount)
FUNC_ATTR_NONNULL_ALL
{
// TODO(ZyX-I): Make this not recursive
static int recurse = 0;
if (recurse >= DICT_MAXNEST) {
emsg(_(e_variable_nested_too_deep_for_unlock));
return;
}
if (deep == 0) {
return;
}
recurse++;
// lock/unlock the item itself
#define CHANGE_LOCK(lock, var) \
do { \
(var) = ((VarLockStatus[]) { \
[VAR_UNLOCKED] = ((lock) ? VAR_LOCKED : VAR_UNLOCKED), \
[VAR_LOCKED] = ((lock) ? VAR_LOCKED : VAR_UNLOCKED), \
[VAR_FIXED] = VAR_FIXED, \
})[var]; \
} while (0)
CHANGE_LOCK(lock, tv->v_lock);
switch (tv->v_type) {
case VAR_BLOB: {
blob_T *const b = tv->vval.v_blob;
if (b != NULL && !(check_refcount && b->bv_refcount > 1)) {
CHANGE_LOCK(lock, b->bv_lock);
}
break;
}
case VAR_LIST: {
list_T *const l = tv->vval.v_list;
if (l != NULL && !(check_refcount && l->lv_refcount > 1)) {
CHANGE_LOCK(lock, l->lv_lock);
if (deep < 0 || deep > 1) {
// Recursive: lock/unlock the items the List contains.
TV_LIST_ITER(l, li, {
tv_item_lock(TV_LIST_ITEM_TV(li), deep - 1, lock, check_refcount);
});
}
}
break;
}
case VAR_DICT: {
dict_T *const d = tv->vval.v_dict;
if (d != NULL && !(check_refcount && d->dv_refcount > 1)) {
CHANGE_LOCK(lock, d->dv_lock);
if (deep < 0 || deep > 1) {
// recursive: lock/unlock the items the List contains
TV_DICT_ITER(d, di, {
tv_item_lock(&di->di_tv, deep - 1, lock, check_refcount);
});
}
}
break;
}
case VAR_NUMBER:
case VAR_FLOAT:
case VAR_STRING:
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_BOOL:
case VAR_SPECIAL:
break;
case VAR_UNKNOWN:
abort();
}
#undef CHANGE_LOCK
recurse--;
}
/// Check whether Vimscript value is locked itself or refers to a locked container
///
/// @warning Fixed container is not the same as locked.
///
/// @param[in] tv Value to check.
///
/// @return True if value is locked, false otherwise.
bool tv_islocked(const typval_T *const tv)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
return ((tv->v_lock == VAR_LOCKED)
|| (tv->v_type == VAR_LIST
&& (tv_list_locked(tv->vval.v_list) == VAR_LOCKED))
|| (tv->v_type == VAR_DICT
&& tv->vval.v_dict != NULL
&& (tv->vval.v_dict->dv_lock == VAR_LOCKED)));
}
/// Return true if typval is locked
///
/// Also gives an error message when typval is locked.
///
/// @param[in] tv Typval.
/// @param[in] name Variable name, used in the error message.
/// @param[in] name_len Variable name length. Use #TV_TRANSLATE to translate
/// variable name and compute the length. Use #TV_CSTRING
/// to compute the length with strlen() without
/// translating.
///
/// Both #TV_… values are used for optimization purposes:
/// variable name with its length is needed only in case
/// of error, when no error occurs computing them is
/// a waste of CPU resources. This especially applies to
/// gettext.
///
/// @return true if variable is locked, false otherwise.
bool tv_check_lock(const typval_T *tv, const char *name, size_t name_len)
FUNC_ATTR_WARN_UNUSED_RESULT
{
VarLockStatus lock = VAR_UNLOCKED;
switch (tv->v_type) {
case VAR_BLOB:
if (tv->vval.v_blob != NULL) {
lock = tv->vval.v_blob->bv_lock;
}
break;
case VAR_LIST:
if (tv->vval.v_list != NULL) {
lock = tv->vval.v_list->lv_lock;
}
break;
case VAR_DICT:
if (tv->vval.v_dict != NULL) {
lock = tv->vval.v_dict->dv_lock;
}
break;
default:
break;
}
return value_check_lock(tv->v_lock, name, name_len)
|| (lock != VAR_UNLOCKED && value_check_lock(lock, name, name_len));
}
/// @return true if variable "name" has a locked (immutable) value
bool value_check_lock(VarLockStatus lock, const char *name, size_t name_len)
{
const char *error_message = NULL;
switch (lock) {
case VAR_UNLOCKED:
return false;
case VAR_LOCKED:
error_message = N_("E741: Value is locked: %.*s");
break;
case VAR_FIXED:
error_message = N_("E742: Cannot change value of %.*s");
break;
}
assert(error_message != NULL);
if (name == NULL) {
name = _("Unknown");
name_len = strlen(name);
} else if (name_len == TV_TRANSLATE) {
name = _(name);
name_len = strlen(name);
} else if (name_len == TV_CSTRING) {
name_len = strlen(name);
}
semsg(_(error_message), (int)name_len, name);
return true;
}
//{{{2 Comparison
static int tv_equal_recurse_limit;
/// Compare two Vimscript values
///
/// Like "==", but strings and numbers are different, as well as floats and
/// numbers.
///
/// @warning Too nested structures may be considered equal even if they are not.
///
/// @param[in] tv1 First value to compare.
/// @param[in] tv2 Second value to compare.
/// @param[in] ic True if case is to be ignored.
///
/// @return true if values are equal.
bool tv_equal(typval_T *const tv1, typval_T *const tv2, const bool ic)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
// TODO(ZyX-I): Make this not recursive
static int recursive_cnt = 0; // Catch recursive loops.
if (!(tv_is_func(*tv1) && tv_is_func(*tv2)) && tv1->v_type != tv2->v_type) {
return false;
}
// Catch lists and dicts that have an endless loop by limiting
// recursiveness to a limit. We guess they are equal then.
// A fixed limit has the problem of still taking an awful long time.
// Reduce the limit every time running into it. That should work fine for
// deeply linked structures that are not recursively linked and catch
// recursiveness quickly.
if (recursive_cnt == 0) {
tv_equal_recurse_limit = 1000;
}
if (recursive_cnt >= tv_equal_recurse_limit) {
tv_equal_recurse_limit--;
return true;
}
switch (tv1->v_type) {
case VAR_LIST: {
recursive_cnt++;
const bool r = tv_list_equal(tv1->vval.v_list, tv2->vval.v_list, ic);
recursive_cnt--;
return r;
}
case VAR_DICT: {
recursive_cnt++;
const bool r = tv_dict_equal(tv1->vval.v_dict, tv2->vval.v_dict, ic);
recursive_cnt--;
return r;
}
case VAR_PARTIAL:
case VAR_FUNC: {
if ((tv1->v_type == VAR_PARTIAL && tv1->vval.v_partial == NULL)
|| (tv2->v_type == VAR_PARTIAL && tv2->vval.v_partial == NULL)) {
return false;
}
recursive_cnt++;
const bool r = func_equal(tv1, tv2, ic);
recursive_cnt--;
return r;
}
case VAR_BLOB:
return tv_blob_equal(tv1->vval.v_blob, tv2->vval.v_blob);
case VAR_NUMBER:
return tv1->vval.v_number == tv2->vval.v_number;
case VAR_FLOAT:
return tv1->vval.v_float == tv2->vval.v_float;
case VAR_STRING: {
char buf1[NUMBUFLEN];
char buf2[NUMBUFLEN];
const char *s1 = tv_get_string_buf(tv1, buf1);
const char *s2 = tv_get_string_buf(tv2, buf2);
return mb_strcmp_ic(ic, s1, s2) == 0;
}
case VAR_BOOL:
return tv1->vval.v_bool == tv2->vval.v_bool;
case VAR_SPECIAL:
return tv1->vval.v_special == tv2->vval.v_special;
case VAR_UNKNOWN:
// VAR_UNKNOWN can be the result of an invalid expression, lets say it
// does not equal anything, not even self.
return false;
}
abort();
return false;
}
//{{{2 Type checks
/// Check that given value is a number or string
///
/// Error messages are compatible with tv_get_number() previously used for the
/// same purpose in buf*() functions. Special values are not accepted (previous
/// behaviour: silently fail to find buffer).
///
/// @param[in] tv Value to check.
///
/// @return true if everything is OK, false otherwise.
bool tv_check_str_or_nr(const typval_T *const tv)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
{
switch (tv->v_type) {
case VAR_NUMBER:
case VAR_STRING:
return true;
case VAR_FLOAT:
emsg(_("E805: Expected a Number or a String, Float found"));
return false;
case VAR_PARTIAL:
case VAR_FUNC:
emsg(_("E703: Expected a Number or a String, Funcref found"));
return false;
case VAR_LIST:
emsg(_("E745: Expected a Number or a String, List found"));
return false;
case VAR_DICT:
emsg(_("E728: Expected a Number or a String, Dictionary found"));
return false;
case VAR_BLOB:
emsg(_("E974: Expected a Number or a String, Blob found"));
return false;
case VAR_BOOL:
emsg(_("E5299: Expected a Number or a String, Boolean found"));
return false;
case VAR_SPECIAL:
emsg(_("E5300: Expected a Number or a String"));
return false;
case VAR_UNKNOWN:
semsg(_(e_intern2), "tv_check_str_or_nr(UNKNOWN)");
return false;
}
abort();
return false;
}
#define FUNC_ERROR "E703: Using a Funcref as a Number"
static const char *const num_errors[] = {
[VAR_PARTIAL] = N_(FUNC_ERROR),
[VAR_FUNC] = N_(FUNC_ERROR),
[VAR_LIST] = N_("E745: Using a List as a Number"),
[VAR_DICT] = N_("E728: Using a Dictionary as a Number"),
[VAR_FLOAT] = N_("E805: Using a Float as a Number"),
[VAR_BLOB] = N_("E974: Using a Blob as a Number"),
[VAR_UNKNOWN] = N_("E685: using an invalid value as a Number"),
};
#undef FUNC_ERROR
/// Check that given value is a number or can be converted to it
///
/// Error messages are compatible with tv_get_number_chk() previously used for
/// the same purpose.
///
/// @param[in] tv Value to check.
///
/// @return true if everything is OK, false otherwise.
bool tv_check_num(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER:
case VAR_BOOL:
case VAR_SPECIAL:
case VAR_STRING:
return true;
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_LIST:
case VAR_DICT:
case VAR_FLOAT:
case VAR_BLOB:
case VAR_UNKNOWN:
emsg(_(num_errors[tv->v_type]));
return false;
}
abort();
return false;
}
#define FUNC_ERROR "E729: Using a Funcref as a String"
static const char *const str_errors[] = {
[VAR_PARTIAL] = N_(FUNC_ERROR),
[VAR_FUNC] = N_(FUNC_ERROR),
[VAR_LIST] = N_("E730: Using a List as a String"),
[VAR_DICT] = N_("E731: Using a Dictionary as a String"),
[VAR_BLOB] = N_("E976: Using a Blob as a String"),
[VAR_UNKNOWN] = e_using_invalid_value_as_string,
};
#undef FUNC_ERROR
/// Check that given value is a Vimscript String or can be "cast" to it.
///
/// Error messages are compatible with tv_get_string_chk() previously used for
/// the same purpose.
///
/// @param[in] tv Value to check.
///
/// @return true if everything is OK, false otherwise.
bool tv_check_str(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER:
case VAR_BOOL:
case VAR_SPECIAL:
case VAR_STRING:
case VAR_FLOAT:
return true;
case VAR_PARTIAL:
case VAR_FUNC:
case VAR_LIST:
case VAR_DICT:
case VAR_BLOB:
case VAR_UNKNOWN:
emsg(_(str_errors[tv->v_type]));
return false;
}
abort();
return false;
}
//{{{2 Get
/// Get the number value of a Vimscript object
///
/// @note Use tv_get_number_chk() if you need to determine whether there was an
/// error.
///
/// @param[in] tv Object to get value from.
///
/// @return Number value: vim_str2nr() output for VAR_STRING objects, value
/// for VAR_NUMBER objects, -1 for other types.
varnumber_T tv_get_number(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
bool error = false;
return tv_get_number_chk(tv, &error);
}
/// Get the number value of a Vimscript object
///
/// @param[in] tv Object to get value from.
/// @param[out] ret_error If type error occurred then `true` will be written
/// to this location. Otherwise it is not touched.
///
/// @note Needs to be initialized to `false` to be
/// useful.
///
/// @return Number value: vim_str2nr() output for VAR_STRING objects, value
/// for VAR_NUMBER objects, -1 (ret_error == NULL) or 0 (otherwise) for
/// other types.
varnumber_T tv_get_number_chk(const typval_T *const tv, bool *const ret_error)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ARG(1)
{
switch (tv->v_type) {
case VAR_FUNC:
case VAR_PARTIAL:
case VAR_LIST:
case VAR_DICT:
case VAR_BLOB:
case VAR_FLOAT:
emsg(_(num_errors[tv->v_type]));
break;
case VAR_NUMBER:
return tv->vval.v_number;
case VAR_STRING: {
varnumber_T n = 0;
if (tv->vval.v_string != NULL) {
vim_str2nr(tv->vval.v_string, NULL, NULL, STR2NR_ALL, &n, NULL, 0, false, NULL);
}
return n;
}
case VAR_BOOL:
return tv->vval.v_bool == kBoolVarTrue ? 1 : 0;
case VAR_SPECIAL:
return 0;
case VAR_UNKNOWN:
semsg(_(e_intern2), "tv_get_number(UNKNOWN)");
break;
}
if (ret_error != NULL) {
*ret_error = true;
}
return (ret_error == NULL ? -1 : 0);
}
varnumber_T tv_get_bool(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
return tv_get_number_chk(tv, NULL);
}
varnumber_T tv_get_bool_chk(const typval_T *const tv, bool *const ret_error)
FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ARG(1)
{
return tv_get_number_chk(tv, ret_error);
}
/// Get the line number from Vimscript object
///
/// @param[in] tv Object to get value from. Is expected to be a number or
/// a special string like ".", "$", … (works with current buffer
/// only).
///
/// @return Line number or -1 or 0.
linenr_T tv_get_lnum(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
const int did_emsg_before = did_emsg;
linenr_T lnum = (linenr_T)tv_get_number_chk(tv, NULL);
if (lnum <= 0 && did_emsg_before == did_emsg && tv->v_type != VAR_NUMBER) {
int fnum;
// No valid number, try using same function as line() does.
pos_T *const fp = var2fpos(tv, true, &fnum, false);
if (fp != NULL) {
lnum = fp->lnum;
}
}
return lnum;
}
/// Get the floating-point value of a Vimscript object
///
/// Raises an error if object is not number or floating-point.
///
/// @param[in] tv Object to get value of.
///
/// @return Floating-point value of the variable or zero.
float_T tv_get_float(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER:
return (float_T)(tv->vval.v_number);
case VAR_FLOAT:
return tv->vval.v_float;
case VAR_PARTIAL:
case VAR_FUNC:
emsg(_("E891: Using a Funcref as a Float"));
break;
case VAR_STRING:
emsg(_("E892: Using a String as a Float"));
break;
case VAR_LIST:
emsg(_("E893: Using a List as a Float"));
break;
case VAR_DICT:
emsg(_("E894: Using a Dictionary as a Float"));
break;
case VAR_BOOL:
emsg(_("E362: Using a boolean value as a Float"));
break;
case VAR_SPECIAL:
emsg(_("E907: Using a special value as a Float"));
break;
case VAR_BLOB:
emsg(_("E975: Using a Blob as a Float"));
break;
case VAR_UNKNOWN:
semsg(_(e_intern2), "tv_get_float(UNKNOWN)");
break;
}
return 0;
}
/// Give an error and return FAIL unless "args[idx]" is a string.
int tv_check_for_string_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_STRING) {
semsg(_(e_string_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a non-empty string.
int tv_check_for_nonempty_string_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (tv_check_for_string_arg(args, idx) == FAIL) {
return FAIL;
}
if (args[idx].vval.v_string == NULL || *args[idx].vval.v_string == NUL) {
semsg(_(e_non_empty_string_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Check for an optional string argument at "idx"
int tv_check_for_opt_string_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
return (args[idx].v_type == VAR_UNKNOWN
|| tv_check_for_string_arg(args, idx) != FAIL) ? OK : FAIL;
}
/// Give an error and return FAIL unless "args[idx]" is a number.
int tv_check_for_number_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_NUMBER) {
semsg(_(e_number_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Check for an optional number argument at "idx"
int tv_check_for_opt_number_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
return (args[idx].v_type == VAR_UNKNOWN
|| tv_check_for_number_arg(args, idx) != FAIL) ? OK : FAIL;
}
/// Give an error and return FAIL unless "args[idx]" is a float or a number.
int tv_check_for_float_or_nr_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_FLOAT && args[idx].v_type != VAR_NUMBER) {
semsg(_(e_float_or_number_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a bool.
int tv_check_for_bool_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_BOOL
&& !(args[idx].v_type == VAR_NUMBER
&& (args[idx].vval.v_number == 0
|| args[idx].vval.v_number == 1))) {
semsg(_(e_bool_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Check for an optional bool argument at "idx".
/// Return FAIL if the type is wrong.
int tv_check_for_opt_bool_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type == VAR_UNKNOWN) {
return OK;
}
return tv_check_for_bool_arg(args, idx);
}
/// Give an error and return FAIL unless "args[idx]" is a blob.
int tv_check_for_blob_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_BLOB) {
semsg(_(e_blob_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a list.
int tv_check_for_list_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_LIST) {
semsg(_(e_list_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a dict.
int tv_check_for_dict_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_DICT) {
semsg(_(e_dict_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a non-NULL dict.
int tv_check_for_nonnull_dict_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (tv_check_for_dict_arg(args, idx) == FAIL) {
return FAIL;
}
if (args[idx].vval.v_dict == NULL) {
semsg(_(e_non_null_dict_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Check for an optional dict argument at "idx"
int tv_check_for_opt_dict_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
return (args[idx].v_type == VAR_UNKNOWN
|| tv_check_for_dict_arg(args, idx) != FAIL) ? OK : FAIL;
}
/// Give an error and return FAIL unless "args[idx]" is a string or
/// a number.
int tv_check_for_string_or_number_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_STRING && args[idx].v_type != VAR_NUMBER) {
semsg(_(e_string_or_number_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a buffer number.
/// Buffer number can be a number or a string.
int tv_check_for_buffer_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
return tv_check_for_string_or_number_arg(args, idx);
}
/// Give an error and return FAIL unless "args[idx]" is a line number.
/// Line number can be a number or a string.
int tv_check_for_lnum_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
return tv_check_for_string_or_number_arg(args, idx);
}
/// Give an error and return FAIL unless "args[idx]" is a string or a list.
int tv_check_for_string_or_list_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_STRING && args[idx].v_type != VAR_LIST) {
semsg(_(e_string_or_list_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a string, a list or a blob.
int tv_check_for_string_or_list_or_blob_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_STRING
&& args[idx].v_type != VAR_LIST
&& args[idx].v_type != VAR_BLOB) {
semsg(_(e_string_list_or_blob_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Check for an optional string or list argument at "idx"
int tv_check_for_opt_string_or_list_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
return (args[idx].v_type == VAR_UNKNOWN
|| tv_check_for_string_or_list_arg(args, idx) != FAIL) ? OK : FAIL;
}
/// Give an error and return FAIL unless "args[idx]" is a list or dict
int tv_check_for_list_or_dict_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_LIST && args[idx].v_type != VAR_DICT) {
semsg(_(e_list_or_dict_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a string
/// or a function reference.
int tv_check_for_string_or_func_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_PARTIAL
&& args[idx].v_type != VAR_FUNC
&& args[idx].v_type != VAR_STRING) {
semsg(_(e_string_or_function_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Give an error and return FAIL unless "args[idx]" is a list or a blob.
int tv_check_for_list_or_blob_arg(const typval_T *const args, const int idx)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_PURE
{
if (args[idx].v_type != VAR_LIST && args[idx].v_type != VAR_BLOB) {
semsg(_(e_list_or_blob_required_for_argument_nr), idx + 1);
return FAIL;
}
return OK;
}
/// Get the string value of a "stringish" Vimscript object.
///
/// @param[in] tv Object to get value of.
/// @param buf Buffer used to hold numbers and special variables converted to
/// string. When function encounters one of these stringified value
/// will be written to buf and buf will be returned.
///
/// Buffer must have NUMBUFLEN size.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or NULL.
const char *tv_get_string_buf_chk(const typval_T *const tv, char *const buf)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
switch (tv->v_type) {
case VAR_NUMBER:
snprintf(buf, NUMBUFLEN, "%" PRIdVARNUMBER, tv->vval.v_number);
return buf;
case VAR_FLOAT:
vim_snprintf(buf, NUMBUFLEN, "%g", tv->vval.v_float);
return buf;
case VAR_STRING:
if (tv->vval.v_string != NULL) {
return tv->vval.v_string;
}
return "";
case VAR_BOOL:
STRCPY(buf, encode_bool_var_names[tv->vval.v_bool]);
return buf;
case VAR_SPECIAL:
STRCPY(buf, encode_special_var_names[tv->vval.v_special]);
return buf;
case VAR_PARTIAL:
case VAR_FUNC:
case VAR_LIST:
case VAR_DICT:
case VAR_BLOB:
case VAR_UNKNOWN:
emsg(_(str_errors[tv->v_type]));
return NULL;
}
abort();
return NULL;
}
/// Get the string value of a "stringish" Vimscript object.
///
/// @warning For number and special values it uses a single, static buffer. It
/// may be used only once, next call to tv_get_string may reuse it. Use
/// tv_get_string_buf() if you need to use tv_get_string() output after
/// calling it again.
///
/// @param[in] tv Object to get value of.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or NULL.
const char *tv_get_string_chk(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_WARN_UNUSED_RESULT
{
static char mybuf[NUMBUFLEN];
return tv_get_string_buf_chk(tv, mybuf);
}
/// Get the string value of a "stringish" Vimscript object.
///
/// @warning For number and special values it uses a single, static buffer. It
/// may be used only once, next call to tv_get_string may reuse it. Use
/// tv_get_string_buf() if you need to use tv_get_string() output after
/// calling it again.
///
/// @note tv_get_string_chk() and tv_get_string_buf_chk() are similar, but
/// return NULL on error.
///
/// @param[in] tv Object to get value of.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or empty
/// string.
const char *tv_get_string(const typval_T *const tv)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
{
static char mybuf[NUMBUFLEN];
return tv_get_string_buf((typval_T *)tv, mybuf);
}
/// Get the string value of a "stringish" Vimscript object.
///
/// @note tv_get_string_chk() and tv_get_string_buf_chk() are similar, but
/// return NULL on error.
///
/// @param[in] tv Object to get value of.
/// @param buf Buffer used to hold numbers and special variables converted to
/// string. When function encounters one of these stringified value
/// will be written to buf and buf will be returned.
///
/// Buffer must have NUMBUFLEN size.
///
/// @return Object value if it is VAR_STRING object, number converted to
/// a string for VAR_NUMBER, v: variable name for VAR_SPECIAL or empty
/// string.
const char *tv_get_string_buf(const typval_T *const tv, char *const buf)
FUNC_ATTR_NONNULL_ALL FUNC_ATTR_NONNULL_RET FUNC_ATTR_WARN_UNUSED_RESULT
{
const char *const res = tv_get_string_buf_chk(tv, buf);
return res != NULL ? res : "";
}
/// Return true when "tv" is not falsy: non-zero, non-empty string, non-empty
/// list, etc. Mostly like what JavaScript does, except that empty list and
/// empty dictionary are false.
bool tv2bool(const typval_T *const tv)
{
switch (tv->v_type) {
case VAR_NUMBER:
return tv->vval.v_number != 0;
case VAR_FLOAT:
return tv->vval.v_float != 0.0;
case VAR_PARTIAL:
return tv->vval.v_partial != NULL;
case VAR_FUNC:
case VAR_STRING:
return tv->vval.v_string != NULL && *tv->vval.v_string != NUL;
case VAR_LIST:
return tv->vval.v_list != NULL && tv->vval.v_list->lv_len > 0;
case VAR_DICT:
return tv->vval.v_dict != NULL && tv->vval.v_dict->dv_hashtab.ht_used > 0;
case VAR_BOOL:
return tv->vval.v_bool == kBoolVarTrue;
case VAR_SPECIAL:
return tv->vval.v_special != kSpecialVarNull;
case VAR_BLOB:
return tv->vval.v_blob != NULL && tv->vval.v_blob->bv_ga.ga_len > 0;
case VAR_UNKNOWN:
break;
}
return false;
}