Files
neovim/src/nvim/regexp_bt.c
bfredl aee6f08ce1 fix(runtime): do not allow breakcheck inside runtime path calculation
problem: breakcheck might run arbitrary lua code, which might require
modules and thus invoke runtime path calculation recursively.
solution: Block the use of breakcheck when expanding glob patterns
inside 'runtimepath'

fixes #23012
2023-04-19 16:34:15 +02:00

5663 lines
157 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// Backtracking regular expression implementation.
//
// This file is included in "regexp.c".
//
// NOTICE:
//
// This is NOT the original regular expression code as written by Henry
// Spencer. This code has been modified specifically for use with the VIM
// editor, and should not be used separately from Vim. If you want a good
// regular expression library, get the original code. The copyright notice
// that follows is from the original.
//
// END NOTICE
//
// Copyright (c) 1986 by University of Toronto.
// Written by Henry Spencer. Not derived from licensed software.
//
// Permission is granted to anyone to use this software for any
// purpose on any computer system, and to redistribute it freely,
// subject to the following restrictions:
//
// 1. The author is not responsible for the consequences of use of
// this software, no matter how awful, even if they arise
// from defects in it.
//
// 2. The origin of this software must not be misrepresented, either
// by explicit claim or by omission.
//
// 3. Altered versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// Beware that some of this code is subtly aware of the way operator
// precedence is structured in regular expressions. Serious changes in
// regular-expression syntax might require a total rethink.
//
// Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert
// Webb, Ciaran McCreesh and Bram Moolenaar.
// Named character class support added by Walter Briscoe (1998 Jul 01)
// The "internal use only" fields in regexp_defs.h are present to pass info from
// compile to execute that permits the execute phase to run lots faster on
// simple cases. They are:
//
// regstart char that must begin a match; NUL if none obvious; Can be a
// multi-byte character.
// reganch is the match anchored (at beginning-of-line only)?
// regmust string (pointer into program) that match must include, or NULL
// regmlen length of regmust string
// regflags RF_ values or'ed together
//
// Regstart and reganch permit very fast decisions on suitable starting points
// for a match, cutting down the work a lot. Regmust permits fast rejection
// of lines that cannot possibly match. The regmust tests are costly enough
// that vim_regcomp() supplies a regmust only if the r.e. contains something
// potentially expensive (at present, the only such thing detected is * or +
// at the start of the r.e., which can involve a lot of backup). Regmlen is
// supplied because the test in vim_regexec() needs it and vim_regcomp() is
// computing it anyway.
// Structure for regexp "program". This is essentially a linear encoding
// of a nondeterministic finite-state machine (aka syntax charts or
// "railroad normal form" in parsing technology). Each node is an opcode
// plus a "next" pointer, possibly plus an operand. "Next" pointers of
// all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next"
// pointer with a BRANCH on both ends of it is connecting two alternatives.
// (Here we have one of the subtle syntax dependencies: an individual BRANCH
// (as opposed to a collection of them) is never concatenated with anything
// because of operator precedence). The "next" pointer of a BRACES_COMPLEX
// node points to the node after the stuff to be repeated.
// The operand of some types of node is a literal string; for others, it is a
// node leading into a sub-FSM. In particular, the operand of a BRANCH node
// is the first node of the branch.
// (NB this is *not* a tree structure: the tail of the branch connects to the
// thing following the set of BRANCHes.)
//
// pattern is coded like:
//
// +-----------------+
// | V
// <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END
// | ^ | ^
// +------+ +----------+
//
//
// +------------------+
// V |
// <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END
// | | ^ ^
// | +---------------+ |
// +---------------------------------------------+
//
//
// +----------------------+
// V |
// <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END
// | | ^ ^
// | +-----------+ |
// +--------------------------------------------------+
//
//
// +-------------------------+
// V |
// <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END
// | | ^
// | +----------------+
// +-----------------------------------------------+
//
//
// <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END
// | | ^ ^
// | +----------------+ |
// +--------------------------------+
//
// +---------+
// | V
// \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END
// | | | | ^ ^
// | | | +-----+ |
// | | +----------------+ |
// | +---------------------------+ |
// +------------------------------------------------------+
//
// They all start with a BRANCH for "\|" alternatives, even when there is only
// one alternative.
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include "nvim/garray.h"
#include "nvim/profile.h"
#include "nvim/regexp.h"
// The opcodes are:
// definition number opnd? meaning
#define END 0 // End of program or NOMATCH operand.
#define BOL 1 // Match "" at beginning of line.
#define EOL 2 // Match "" at end of line.
#define BRANCH 3 // node Match this alternative, or the
// next...
#define BACK 4 // Match "", "next" ptr points backward.
#define EXACTLY 5 // str Match this string.
#define NOTHING 6 // Match empty string.
#define STAR 7 // node Match this (simple) thing 0 or more
// times.
#define PLUS 8 // node Match this (simple) thing 1 or more
// times.
#define MATCH 9 // node match the operand zero-width
#define NOMATCH 10 // node check for no match with operand
#define BEHIND 11 // node look behind for a match with operand
#define NOBEHIND 12 // node look behind for no match with operand
#define SUBPAT 13 // node match the operand here
#define BRACE_SIMPLE 14 // node Match this (simple) thing between m and
// n times (\{m,n\}).
#define BOW 15 // Match "" after [^a-zA-Z0-9_]
#define EOW 16 // Match "" at [^a-zA-Z0-9_]
#define BRACE_LIMITS 17 // nr nr define the min & max for BRACE_SIMPLE
// and BRACE_COMPLEX.
#define NEWL 18 // Match line-break
#define BHPOS 19 // End position for BEHIND or NOBEHIND
// character classes: 20-48 normal, 50-78 include a line-break
#define ADD_NL 30
#define FIRST_NL ANY + ADD_NL
#define ANY 20 // Match any one character.
#define ANYOF 21 // str Match any character in this string.
#define ANYBUT 22 // str Match any character not in this
// string.
#define IDENT 23 // Match identifier char
#define SIDENT 24 // Match identifier char but no digit
#define KWORD 25 // Match keyword char
#define SKWORD 26 // Match word char but no digit
#define FNAME 27 // Match file name char
#define SFNAME 28 // Match file name char but no digit
#define PRINT 29 // Match printable char
#define SPRINT 30 // Match printable char but no digit
#define WHITE 31 // Match whitespace char
#define NWHITE 32 // Match non-whitespace char
#define DIGIT 33 // Match digit char
#define NDIGIT 34 // Match non-digit char
#define HEX 35 // Match hex char
#define NHEX 36 // Match non-hex char
#define OCTAL 37 // Match octal char
#define NOCTAL 38 // Match non-octal char
#define WORD 39 // Match word char
#define NWORD 40 // Match non-word char
#define HEAD 41 // Match head char
#define NHEAD 42 // Match non-head char
#define ALPHA 43 // Match alpha char
#define NALPHA 44 // Match non-alpha char
#define LOWER 45 // Match lowercase char
#define NLOWER 46 // Match non-lowercase char
#define UPPER 47 // Match uppercase char
#define NUPPER 48 // Match non-uppercase char
#define LAST_NL NUPPER + ADD_NL
// -V:WITH_NL:560
#define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL)
#define MOPEN 80 // -89 Mark this point in input as start of
// \( … \) subexpr. MOPEN + 0 marks start of
// match.
#define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks
// end of match.
#define BACKREF 100 // -109 node Match same string again \1-\9.
#define ZOPEN 110 // -119 Mark this point in input as start of
// \z( … \) subexpr.
#define ZCLOSE 120 // -129 Analogous to ZOPEN.
#define ZREF 130 // -139 node Match external submatch \z1-\z9
#define BRACE_COMPLEX 140 // -149 node Match nodes between m & n times
#define NOPEN 150 // Mark this point in input as start of
// \%( subexpr.
#define NCLOSE 151 // Analogous to NOPEN.
#define MULTIBYTECODE 200 // mbc Match one multi-byte character
#define RE_BOF 201 // Match "" at beginning of file.
#define RE_EOF 202 // Match "" at end of file.
#define CURSOR 203 // Match location of cursor.
#define RE_LNUM 204 // nr cmp Match line number
#define RE_COL 205 // nr cmp Match column number
#define RE_VCOL 206 // nr cmp Match virtual column number
#define RE_MARK 207 // mark cmp Match mark position
#define RE_VISUAL 208 // Match Visual area
#define RE_COMPOSING 209 // any composing characters
// Flags to be passed up and down.
#define HASWIDTH 0x1 // Known never to match null string.
#define SIMPLE 0x2 // Simple enough to be STAR/PLUS operand.
#define SPSTART 0x4 // Starts with * or +.
#define HASNL 0x8 // Contains some \n.
#define HASLOOKBH 0x10 // Contains "\@<=" or "\@<!".
#define WORST 0 // Worst case.
static int prevchr_len; ///< byte length of previous char
static int num_complex_braces; ///< Complex \{...} count
static uint8_t *regcode; ///< Code-emit pointer, or JUST_CALC_SIZE
static long regsize; ///< Code size.
static int reg_toolong; ///< true when offset out of range
static uint8_t had_endbrace[NSUBEXP]; ///< flags, true if end of () found
static long brace_min[10]; ///< Minimums for complex brace repeats
static long brace_max[10]; ///< Maximums for complex brace repeats
static int brace_count[10]; ///< Current counts for complex brace repeats
static int one_exactly = false; ///< only do one char for EXACTLY
// When making changes to classchars also change nfa_classcodes.
static uint8_t *classchars = (uint8_t *)".iIkKfFpPsSdDxXoOwWhHaAlLuU";
static int classcodes[] = {
ANY, IDENT, SIDENT, KWORD, SKWORD,
FNAME, SFNAME, PRINT, SPRINT,
WHITE, NWHITE, DIGIT, NDIGIT,
HEX, NHEX, OCTAL, NOCTAL,
WORD, NWORD, HEAD, NHEAD,
ALPHA, NALPHA, LOWER, NLOWER,
UPPER, NUPPER
};
// When regcode is set to this value, code is not emitted and size is computed
// instead.
#define JUST_CALC_SIZE ((uint8_t *)-1)
// Values for rs_state in regitem_T.
typedef enum regstate_E {
RS_NOPEN = 0, // NOPEN and NCLOSE
RS_MOPEN, // MOPEN + [0-9]
RS_MCLOSE, // MCLOSE + [0-9]
RS_ZOPEN, // ZOPEN + [0-9]
RS_ZCLOSE, // ZCLOSE + [0-9]
RS_BRANCH, // BRANCH
RS_BRCPLX_MORE, // BRACE_COMPLEX and trying one more match
RS_BRCPLX_LONG, // BRACE_COMPLEX and trying longest match
RS_BRCPLX_SHORT, // BRACE_COMPLEX and trying shortest match
RS_NOMATCH, // NOMATCH
RS_BEHIND1, // BEHIND / NOBEHIND matching rest
RS_BEHIND2, // BEHIND / NOBEHIND matching behind part
RS_STAR_LONG, // STAR/PLUS/BRACE_SIMPLE longest match
RS_STAR_SHORT, // STAR/PLUS/BRACE_SIMPLE shortest match
} regstate_T;
// Structure used to save the current input state, when it needs to be
// restored after trying a match. Used by reg_save() and reg_restore().
// Also stores the length of "backpos".
typedef struct {
union {
uint8_t *ptr; // rex.input pointer, for single-line regexp
lpos_T pos; // rex.input pos, for multi-line regexp
} rs_u;
int rs_len;
} regsave_T;
// struct to save start/end pointer/position in for \(\)
typedef struct {
union {
uint8_t *ptr;
lpos_T pos;
} se_u;
} save_se_T;
// used for BEHIND and NOBEHIND matching
typedef struct regbehind_S {
regsave_T save_after;
regsave_T save_behind;
int save_need_clear_subexpr;
save_se_T save_start[NSUBEXP];
save_se_T save_end[NSUBEXP];
} regbehind_T;
// When there are alternatives a regstate_T is put on the regstack to remember
// what we are doing.
// Before it may be another type of item, depending on rs_state, to remember
// more things.
typedef struct regitem_S {
regstate_T rs_state; // what we are doing, one of RS_ above
int16_t rs_no; // submatch nr or BEHIND/NOBEHIND
uint8_t *rs_scan; // current node in program
union {
save_se_T sesave;
regsave_T regsave;
} rs_un; // room for saving rex.input
} regitem_T;
// used for STAR, PLUS and BRACE_SIMPLE matching
typedef struct regstar_S {
int nextb; // next byte
int nextb_ic; // next byte reverse case
long count;
long minval;
long maxval;
} regstar_T;
// used to store input position when a BACK was encountered, so that we now if
// we made any progress since the last time.
typedef struct backpos_S {
uint8_t *bp_scan; // "scan" where BACK was encountered
regsave_T bp_pos; // last input position
} backpos_T;
// "regstack" and "backpos" are used by regmatch(). They are kept over calls
// to avoid invoking malloc() and free() often.
// "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T
// or regbehind_T.
// "backpos_T" is a table with backpos_T for BACK
static garray_T regstack = GA_EMPTY_INIT_VALUE;
static garray_T backpos = GA_EMPTY_INIT_VALUE;
static regsave_T behind_pos;
// Both for regstack and backpos tables we use the following strategy of
// allocation (to reduce malloc/free calls):
// - Initial size is fairly small.
// - When needed, the tables are grown bigger (8 times at first, double after
// that).
// - After executing the match we free the memory only if the array has grown.
// Thus the memory is kept allocated when it's at the initial size.
// This makes it fast while not keeping a lot of memory allocated.
// A three times speed increase was observed when using many simple patterns.
#define REGSTACK_INITIAL 2048
#define BACKPOS_INITIAL 64
// Opcode notes:
//
// BRANCH The set of branches constituting a single choice are hooked
// together with their "next" pointers, since precedence prevents
// anything being concatenated to any individual branch. The
// "next" pointer of the last BRANCH in a choice points to the
// thing following the whole choice. This is also where the
// final "next" pointer of each individual branch points; each
// branch starts with the operand node of a BRANCH node.
//
// BACK Normal "next" pointers all implicitly point forward; BACK
// exists to make loop structures possible.
//
// STAR,PLUS '=', and complex '*' and '+', are implemented as circular
// BRANCH structures using BACK. Simple cases (one character
// per match) are implemented with STAR and PLUS for speed
// and to minimize recursive plunges.
//
// BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX
// node, and defines the min and max limits to be used for that
// node.
//
// MOPEN,MCLOSE ...are numbered at compile time.
// ZOPEN,ZCLOSE ...ditto
///
//
//
// A node is one char of opcode followed by two chars of "next" pointer.
// "Next" pointers are stored as two 8-bit bytes, high order first. The
// value is a positive offset from the opcode of the node containing it.
// An operand, if any, simply follows the node. (Note that much of the
// code generation knows about this implicit relationship.)
//
// Using two bytes for the "next" pointer is vast overkill for most things,
// but allows patterns to get big without disasters.
#define OP(p) ((int)(*(p)))
#define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377))
#define OPERAND(p) ((p) + 3)
// Obtain an operand that was stored as four bytes, MSB first.
#define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \
+ ((long)(p)[5] << 8) + (long)(p)[6])
// Obtain a second operand stored as four bytes.
#define OPERAND_MAX(p) OPERAND_MIN((p) + 4)
// Obtain a second single-byte operand stored after a four bytes operand.
#define OPERAND_CMP(p) (p)[7]
static uint8_t *reg(int paren, int *flagp);
#ifdef BT_REGEXP_DUMP
static void regdump(uint8_t *, bt_regprog_T *);
#endif
#ifdef REGEXP_DEBUG
static uint8_t *regprop(uint8_t *);
static int regnarrate = 0;
#endif
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "regexp_bt.c.generated.h"
#endif
// Setup to parse the regexp. Used once to get the length and once to do it.
static void regcomp_start(uint8_t *expr, int re_flags) // see vim_regcomp()
{
initchr((char *)expr);
if (re_flags & RE_MAGIC) {
reg_magic = MAGIC_ON;
} else {
reg_magic = MAGIC_OFF;
}
reg_string = (re_flags & RE_STRING);
reg_strict = (re_flags & RE_STRICT);
get_cpo_flags();
num_complex_braces = 0;
regnpar = 1;
CLEAR_FIELD(had_endbrace);
regnzpar = 1;
re_has_z = 0;
regsize = 0L;
reg_toolong = false;
regflags = 0;
had_eol = false;
}
// Return true if MULTIBYTECODE should be used instead of EXACTLY for
// character "c".
static bool use_multibytecode(int c)
{
return utf_char2len(c) > 1
&& (re_multi_type(peekchr()) != NOT_MULTI
|| utf_iscomposing(c));
}
// Emit (if appropriate) a byte of code
static void regc(int b)
{
if (regcode == JUST_CALC_SIZE) {
regsize++;
} else {
*regcode++ = (uint8_t)b;
}
}
// Emit (if appropriate) a multi-byte character of code
static void regmbc(int c)
{
if (regcode == JUST_CALC_SIZE) {
regsize += utf_char2len(c);
} else {
regcode += utf_char2bytes(c, (char *)regcode);
}
}
// Produce the bytes for equivalence class "c".
// Currently only handles latin1, latin9 and utf-8.
// NOTE: When changing this function, also change nfa_emit_equi_class()
static void reg_equi_class(int c)
{
{
switch (c) {
// Do not use '\300' style, it results in a negative number.
case 'A':
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0x100:
case 0x102:
case 0x104:
case 0x1cd:
case 0x1de:
case 0x1e0:
case 0x1fa:
case 0x202:
case 0x226:
case 0x23a:
case 0x1e00:
case 0x1ea0:
case 0x1ea2:
case 0x1ea4:
case 0x1ea6:
case 0x1ea8:
case 0x1eaa:
case 0x1eac:
case 0x1eae:
case 0x1eb0:
case 0x1eb2:
case 0x1eb4:
case 0x1eb6:
regmbc('A'); regmbc(0xc0); regmbc(0xc1); regmbc(0xc2);
regmbc(0xc3); regmbc(0xc4); regmbc(0xc5);
regmbc(0x100); regmbc(0x102); regmbc(0x104);
regmbc(0x1cd); regmbc(0x1de); regmbc(0x1e0);
regmbc(0x1fa); regmbc(0x202); regmbc(0x226);
regmbc(0x23a); regmbc(0x1e00); regmbc(0x1ea0);
regmbc(0x1ea2); regmbc(0x1ea4); regmbc(0x1ea6);
regmbc(0x1ea8); regmbc(0x1eaa); regmbc(0x1eac);
regmbc(0x1eae); regmbc(0x1eb0); regmbc(0x1eb2);
regmbc(0x1eb4); regmbc(0x1eb6);
return;
case 'B':
case 0x181:
case 0x243:
case 0x1e02:
case 0x1e04:
case 0x1e06:
regmbc('B');
regmbc(0x181); regmbc(0x243); regmbc(0x1e02);
regmbc(0x1e04); regmbc(0x1e06);
return;
case 'C':
case 0xc7:
case 0x106:
case 0x108:
case 0x10a:
case 0x10c:
case 0x187:
case 0x23b:
case 0x1e08:
case 0xa792:
regmbc('C'); regmbc(0xc7);
regmbc(0x106); regmbc(0x108); regmbc(0x10a);
regmbc(0x10c); regmbc(0x187); regmbc(0x23b);
regmbc(0x1e08); regmbc(0xa792);
return;
case 'D':
case 0x10e:
case 0x110:
case 0x18a:
case 0x1e0a:
case 0x1e0c:
case 0x1e0e:
case 0x1e10:
case 0x1e12:
regmbc('D'); regmbc(0x10e); regmbc(0x110);
regmbc(0x18a); regmbc(0x1e0a); regmbc(0x1e0c);
regmbc(0x1e0e); regmbc(0x1e10); regmbc(0x1e12);
return;
case 'E':
case 0xc8:
case 0xc9:
case 0xca:
case 0xcb:
case 0x112:
case 0x114:
case 0x116:
case 0x118:
case 0x11a:
case 0x204:
case 0x206:
case 0x228:
case 0x246:
case 0x1e14:
case 0x1e16:
case 0x1e18:
case 0x1e1a:
case 0x1e1c:
case 0x1eb8:
case 0x1eba:
case 0x1ebc:
case 0x1ebe:
case 0x1ec0:
case 0x1ec2:
case 0x1ec4:
case 0x1ec6:
regmbc('E'); regmbc(0xc8); regmbc(0xc9);
regmbc(0xca); regmbc(0xcb); regmbc(0x112);
regmbc(0x114); regmbc(0x116); regmbc(0x118);
regmbc(0x11a); regmbc(0x204); regmbc(0x206);
regmbc(0x228); regmbc(0x246); regmbc(0x1e14);
regmbc(0x1e16); regmbc(0x1e18); regmbc(0x1e1a);
regmbc(0x1e1c); regmbc(0x1eb8); regmbc(0x1eba);
regmbc(0x1ebc); regmbc(0x1ebe); regmbc(0x1ec0);
regmbc(0x1ec2); regmbc(0x1ec4); regmbc(0x1ec6);
return;
case 'F':
case 0x191:
case 0x1e1e:
case 0xa798:
regmbc('F'); regmbc(0x191); regmbc(0x1e1e);
regmbc(0xa798);
return;
case 'G':
case 0x11c:
case 0x11e:
case 0x120:
case 0x122:
case 0x193:
case 0x1e4:
case 0x1e6:
case 0x1f4:
case 0x1e20:
case 0xa7a0:
regmbc('G'); regmbc(0x11c); regmbc(0x11e);
regmbc(0x120); regmbc(0x122); regmbc(0x193);
regmbc(0x1e4); regmbc(0x1e6); regmbc(0x1f4);
regmbc(0x1e20); regmbc(0xa7a0);
return;
case 'H':
case 0x124:
case 0x126:
case 0x21e:
case 0x1e22:
case 0x1e24:
case 0x1e26:
case 0x1e28:
case 0x1e2a:
case 0x2c67:
regmbc('H'); regmbc(0x124); regmbc(0x126);
regmbc(0x21e); regmbc(0x1e22); regmbc(0x1e24);
regmbc(0x1e26); regmbc(0x1e28); regmbc(0x1e2a);
regmbc(0x2c67);
return;
case 'I':
case 0xcc:
case 0xcd:
case 0xce:
case 0xcf:
case 0x128:
case 0x12a:
case 0x12c:
case 0x12e:
case 0x130:
case 0x197:
case 0x1cf:
case 0x208:
case 0x20a:
case 0x1e2c:
case 0x1e2e:
case 0x1ec8:
case 0x1eca:
regmbc('I'); regmbc(0xcc); regmbc(0xcd);
regmbc(0xce); regmbc(0xcf); regmbc(0x128);
regmbc(0x12a); regmbc(0x12c); regmbc(0x12e);
regmbc(0x130); regmbc(0x197); regmbc(0x1cf);
regmbc(0x208); regmbc(0x20a); regmbc(0x1e2c);
regmbc(0x1e2e); regmbc(0x1ec8); regmbc(0x1eca);
return;
case 'J':
case 0x134:
case 0x248:
regmbc('J'); regmbc(0x134); regmbc(0x248);
return;
case 'K':
case 0x136:
case 0x198:
case 0x1e8:
case 0x1e30:
case 0x1e32:
case 0x1e34:
case 0x2c69:
case 0xa740:
regmbc('K'); regmbc(0x136); regmbc(0x198);
regmbc(0x1e8); regmbc(0x1e30); regmbc(0x1e32);
regmbc(0x1e34); regmbc(0x2c69); regmbc(0xa740);
return;
case 'L':
case 0x139:
case 0x13b:
case 0x13d:
case 0x13f:
case 0x141:
case 0x23d:
case 0x1e36:
case 0x1e38:
case 0x1e3a:
case 0x1e3c:
case 0x2c60:
regmbc('L'); regmbc(0x139); regmbc(0x13b);
regmbc(0x13d); regmbc(0x13f); regmbc(0x141);
regmbc(0x23d); regmbc(0x1e36); regmbc(0x1e38);
regmbc(0x1e3a); regmbc(0x1e3c); regmbc(0x2c60);
return;
case 'M':
case 0x1e3e:
case 0x1e40:
case 0x1e42:
regmbc('M'); regmbc(0x1e3e); regmbc(0x1e40);
regmbc(0x1e42);
return;
case 'N':
case 0xd1:
case 0x143:
case 0x145:
case 0x147:
case 0x1f8:
case 0x1e44:
case 0x1e46:
case 0x1e48:
case 0x1e4a:
case 0xa7a4:
regmbc('N'); regmbc(0xd1);
regmbc(0x143); regmbc(0x145); regmbc(0x147);
regmbc(0x1f8); regmbc(0x1e44); regmbc(0x1e46);
regmbc(0x1e48); regmbc(0x1e4a); regmbc(0xa7a4);
return;
case 'O':
case 0xd2:
case 0xd3:
case 0xd4:
case 0xd5:
case 0xd6:
case 0xd8:
case 0x14c:
case 0x14e:
case 0x150:
case 0x19f:
case 0x1a0:
case 0x1d1:
case 0x1ea:
case 0x1ec:
case 0x1fe:
case 0x20c:
case 0x20e:
case 0x22a:
case 0x22c:
case 0x22e:
case 0x230:
case 0x1e4c:
case 0x1e4e:
case 0x1e50:
case 0x1e52:
case 0x1ecc:
case 0x1ece:
case 0x1ed0:
case 0x1ed2:
case 0x1ed4:
case 0x1ed6:
case 0x1ed8:
case 0x1eda:
case 0x1edc:
case 0x1ede:
case 0x1ee0:
case 0x1ee2:
regmbc('O'); regmbc(0xd2); regmbc(0xd3); regmbc(0xd4);
regmbc(0xd5); regmbc(0xd6); regmbc(0xd8);
regmbc(0x14c); regmbc(0x14e); regmbc(0x150);
regmbc(0x19f); regmbc(0x1a0); regmbc(0x1d1);
regmbc(0x1ea); regmbc(0x1ec); regmbc(0x1fe);
regmbc(0x20c); regmbc(0x20e); regmbc(0x22a);
regmbc(0x22c); regmbc(0x22e); regmbc(0x230);
regmbc(0x1e4c); regmbc(0x1e4e); regmbc(0x1e50);
regmbc(0x1e52); regmbc(0x1ecc); regmbc(0x1ece);
regmbc(0x1ed0); regmbc(0x1ed2); regmbc(0x1ed4);
regmbc(0x1ed6); regmbc(0x1ed8); regmbc(0x1eda);
regmbc(0x1edc); regmbc(0x1ede); regmbc(0x1ee0);
regmbc(0x1ee2);
return;
case 'P':
case 0x1a4:
case 0x1e54:
case 0x1e56:
case 0x2c63:
regmbc('P'); regmbc(0x1a4); regmbc(0x1e54);
regmbc(0x1e56); regmbc(0x2c63);
return;
case 'Q':
case 0x24a:
regmbc('Q'); regmbc(0x24a);
return;
case 'R':
case 0x154:
case 0x156:
case 0x158:
case 0x210:
case 0x212:
case 0x24c:
case 0x1e58:
case 0x1e5a:
case 0x1e5c:
case 0x1e5e:
case 0x2c64:
case 0xa7a6:
regmbc('R'); regmbc(0x154); regmbc(0x156);
regmbc(0x210); regmbc(0x212); regmbc(0x158);
regmbc(0x24c); regmbc(0x1e58); regmbc(0x1e5a);
regmbc(0x1e5c); regmbc(0x1e5e); regmbc(0x2c64);
regmbc(0xa7a6);
return;
case 'S':
case 0x15a:
case 0x15c:
case 0x15e:
case 0x160:
case 0x218:
case 0x1e60:
case 0x1e62:
case 0x1e64:
case 0x1e66:
case 0x1e68:
case 0x2c7e:
case 0xa7a8:
regmbc('S'); regmbc(0x15a); regmbc(0x15c);
regmbc(0x15e); regmbc(0x160); regmbc(0x218);
regmbc(0x1e60); regmbc(0x1e62); regmbc(0x1e64);
regmbc(0x1e66); regmbc(0x1e68); regmbc(0x2c7e);
regmbc(0xa7a8);
return;
case 'T':
case 0x162:
case 0x164:
case 0x166:
case 0x1ac:
case 0x1ae:
case 0x21a:
case 0x23e:
case 0x1e6a:
case 0x1e6c:
case 0x1e6e:
case 0x1e70:
regmbc('T'); regmbc(0x162); regmbc(0x164);
regmbc(0x166); regmbc(0x1ac); regmbc(0x23e);
regmbc(0x1ae); regmbc(0x21a); regmbc(0x1e6a);
regmbc(0x1e6c); regmbc(0x1e6e); regmbc(0x1e70);
return;
case 'U':
case 0xd9:
case 0xda:
case 0xdb:
case 0xdc:
case 0x168:
case 0x16a:
case 0x16c:
case 0x16e:
case 0x170:
case 0x172:
case 0x1af:
case 0x1d3:
case 0x1d5:
case 0x1d7:
case 0x1d9:
case 0x1db:
case 0x214:
case 0x216:
case 0x244:
case 0x1e72:
case 0x1e74:
case 0x1e76:
case 0x1e78:
case 0x1e7a:
case 0x1ee4:
case 0x1ee6:
case 0x1ee8:
case 0x1eea:
case 0x1eec:
case 0x1eee:
case 0x1ef0:
regmbc('U'); regmbc(0xd9); regmbc(0xda);
regmbc(0xdb); regmbc(0xdc); regmbc(0x168);
regmbc(0x16a); regmbc(0x16c); regmbc(0x16e);
regmbc(0x170); regmbc(0x172); regmbc(0x1af);
regmbc(0x1d3); regmbc(0x1d5); regmbc(0x1d7);
regmbc(0x1d9); regmbc(0x1db); regmbc(0x214);
regmbc(0x216); regmbc(0x244); regmbc(0x1e72);
regmbc(0x1e74); regmbc(0x1e76); regmbc(0x1e78);
regmbc(0x1e7a); regmbc(0x1ee4); regmbc(0x1ee6);
regmbc(0x1ee8); regmbc(0x1eea); regmbc(0x1eec);
regmbc(0x1eee); regmbc(0x1ef0);
return;
case 'V':
case 0x1b2:
case 0x1e7c:
case 0x1e7e:
regmbc('V'); regmbc(0x1b2); regmbc(0x1e7c);
regmbc(0x1e7e);
return;
case 'W':
case 0x174:
case 0x1e80:
case 0x1e82:
case 0x1e84:
case 0x1e86:
case 0x1e88:
regmbc('W'); regmbc(0x174); regmbc(0x1e80);
regmbc(0x1e82); regmbc(0x1e84); regmbc(0x1e86);
regmbc(0x1e88);
return;
case 'X':
case 0x1e8a:
case 0x1e8c:
regmbc('X'); regmbc(0x1e8a); regmbc(0x1e8c);
return;
case 'Y':
case 0xdd:
case 0x176:
case 0x178:
case 0x1b3:
case 0x232:
case 0x24e:
case 0x1e8e:
case 0x1ef2:
case 0x1ef6:
case 0x1ef4:
case 0x1ef8:
regmbc('Y'); regmbc(0xdd); regmbc(0x176);
regmbc(0x178); regmbc(0x1b3); regmbc(0x232);
regmbc(0x24e); regmbc(0x1e8e); regmbc(0x1ef2);
regmbc(0x1ef4); regmbc(0x1ef6); regmbc(0x1ef8);
return;
case 'Z':
case 0x179:
case 0x17b:
case 0x17d:
case 0x1b5:
case 0x1e90:
case 0x1e92:
case 0x1e94:
case 0x2c6b:
regmbc('Z'); regmbc(0x179); regmbc(0x17b);
regmbc(0x17d); regmbc(0x1b5); regmbc(0x1e90);
regmbc(0x1e92); regmbc(0x1e94); regmbc(0x2c6b);
return;
case 'a':
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0x101:
case 0x103:
case 0x105:
case 0x1ce:
case 0x1df:
case 0x1e1:
case 0x1fb:
case 0x201:
case 0x203:
case 0x227:
case 0x1d8f:
case 0x1e01:
case 0x1e9a:
case 0x1ea1:
case 0x1ea3:
case 0x1ea5:
case 0x1ea7:
case 0x1ea9:
case 0x1eab:
case 0x1ead:
case 0x1eaf:
case 0x1eb1:
case 0x1eb3:
case 0x1eb5:
case 0x1eb7:
case 0x2c65:
regmbc('a'); regmbc(0xe0); regmbc(0xe1);
regmbc(0xe2); regmbc(0xe3); regmbc(0xe4);
regmbc(0xe5); regmbc(0x101); regmbc(0x103);
regmbc(0x105); regmbc(0x1ce); regmbc(0x1df);
regmbc(0x1e1); regmbc(0x1fb); regmbc(0x201);
regmbc(0x203); regmbc(0x227); regmbc(0x1d8f);
regmbc(0x1e01); regmbc(0x1e9a); regmbc(0x1ea1);
regmbc(0x1ea3); regmbc(0x1ea5); regmbc(0x1ea7);
regmbc(0x1ea9); regmbc(0x1eab); regmbc(0x1ead);
regmbc(0x1eaf); regmbc(0x1eb1); regmbc(0x1eb3);
regmbc(0x1eb5); regmbc(0x1eb7); regmbc(0x2c65);
return;
case 'b':
case 0x180:
case 0x253:
case 0x1d6c:
case 0x1d80:
case 0x1e03:
case 0x1e05:
case 0x1e07:
regmbc('b');
regmbc(0x180); regmbc(0x253); regmbc(0x1d6c);
regmbc(0x1d80); regmbc(0x1e03); regmbc(0x1e05);
regmbc(0x1e07);
return;
case 'c':
case 0xe7:
case 0x107:
case 0x109:
case 0x10b:
case 0x10d:
case 0x188:
case 0x23c:
case 0x1e09:
case 0xa793:
case 0xa794:
regmbc('c'); regmbc(0xe7); regmbc(0x107);
regmbc(0x109); regmbc(0x10b); regmbc(0x10d);
regmbc(0x188); regmbc(0x23c); regmbc(0x1e09);
regmbc(0xa793); regmbc(0xa794);
return;
case 'd':
case 0x10f:
case 0x111:
case 0x257:
case 0x1d6d:
case 0x1d81:
case 0x1d91:
case 0x1e0b:
case 0x1e0d:
case 0x1e0f:
case 0x1e11:
case 0x1e13:
regmbc('d'); regmbc(0x10f); regmbc(0x111);
regmbc(0x257); regmbc(0x1d6d); regmbc(0x1d81);
regmbc(0x1d91); regmbc(0x1e0b); regmbc(0x1e0d);
regmbc(0x1e0f); regmbc(0x1e11); regmbc(0x1e13);
return;
case 'e':
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0x113:
case 0x115:
case 0x117:
case 0x119:
case 0x11b:
case 0x205:
case 0x207:
case 0x229:
case 0x247:
case 0x1d92:
case 0x1e15:
case 0x1e17:
case 0x1e19:
case 0x1e1b:
case 0x1eb9:
case 0x1ebb:
case 0x1e1d:
case 0x1ebd:
case 0x1ebf:
case 0x1ec1:
case 0x1ec3:
case 0x1ec5:
case 0x1ec7:
regmbc('e'); regmbc(0xe8); regmbc(0xe9);
regmbc(0xea); regmbc(0xeb); regmbc(0x113);
regmbc(0x115); regmbc(0x117); regmbc(0x119);
regmbc(0x11b); regmbc(0x205); regmbc(0x207);
regmbc(0x229); regmbc(0x247); regmbc(0x1d92);
regmbc(0x1e15); regmbc(0x1e17); regmbc(0x1e19);
regmbc(0x1e1b); regmbc(0x1e1d); regmbc(0x1eb9);
regmbc(0x1ebb); regmbc(0x1ebd); regmbc(0x1ebf);
regmbc(0x1ec1); regmbc(0x1ec3); regmbc(0x1ec5);
regmbc(0x1ec7);
return;
case 'f':
case 0x192:
case 0x1d6e:
case 0x1d82:
case 0x1e1f:
case 0xa799:
regmbc('f'); regmbc(0x192); regmbc(0x1d6e);
regmbc(0x1d82); regmbc(0x1e1f); regmbc(0xa799);
return;
case 'g':
case 0x11d:
case 0x11f:
case 0x121:
case 0x123:
case 0x1e5:
case 0x1e7:
case 0x260:
case 0x1f5:
case 0x1d83:
case 0x1e21:
case 0xa7a1:
regmbc('g'); regmbc(0x11d); regmbc(0x11f);
regmbc(0x121); regmbc(0x123); regmbc(0x1e5);
regmbc(0x1e7); regmbc(0x1f5); regmbc(0x260);
regmbc(0x1d83); regmbc(0x1e21); regmbc(0xa7a1);
return;
case 'h':
case 0x125:
case 0x127:
case 0x21f:
case 0x1e23:
case 0x1e25:
case 0x1e27:
case 0x1e29:
case 0x1e2b:
case 0x1e96:
case 0x2c68:
case 0xa795:
regmbc('h'); regmbc(0x125); regmbc(0x127);
regmbc(0x21f); regmbc(0x1e23); regmbc(0x1e25);
regmbc(0x1e27); regmbc(0x1e29); regmbc(0x1e2b);
regmbc(0x1e96); regmbc(0x2c68); regmbc(0xa795);
return;
case 'i':
case 0xec:
case 0xed:
case 0xee:
case 0xef:
case 0x129:
case 0x12b:
case 0x12d:
case 0x12f:
case 0x1d0:
case 0x209:
case 0x20b:
case 0x268:
case 0x1d96:
case 0x1e2d:
case 0x1e2f:
case 0x1ec9:
case 0x1ecb:
regmbc('i'); regmbc(0xec); regmbc(0xed);
regmbc(0xee); regmbc(0xef); regmbc(0x129);
regmbc(0x12b); regmbc(0x12d); regmbc(0x12f);
regmbc(0x1d0); regmbc(0x209); regmbc(0x20b);
regmbc(0x268); regmbc(0x1d96); regmbc(0x1e2d);
regmbc(0x1e2f); regmbc(0x1ec9); regmbc(0x1ecb);
return;
case 'j':
case 0x135:
case 0x1f0:
case 0x249:
regmbc('j'); regmbc(0x135); regmbc(0x1f0);
regmbc(0x249);
return;
case 'k':
case 0x137:
case 0x199:
case 0x1e9:
case 0x1d84:
case 0x1e31:
case 0x1e33:
case 0x1e35:
case 0x2c6a:
case 0xa741:
regmbc('k'); regmbc(0x137); regmbc(0x199);
regmbc(0x1e9); regmbc(0x1d84); regmbc(0x1e31);
regmbc(0x1e33); regmbc(0x1e35); regmbc(0x2c6a);
regmbc(0xa741);
return;
case 'l':
case 0x13a:
case 0x13c:
case 0x13e:
case 0x140:
case 0x142:
case 0x19a:
case 0x1e37:
case 0x1e39:
case 0x1e3b:
case 0x1e3d:
case 0x2c61:
regmbc('l'); regmbc(0x13a); regmbc(0x13c);
regmbc(0x13e); regmbc(0x140); regmbc(0x142);
regmbc(0x19a); regmbc(0x1e37); regmbc(0x1e39);
regmbc(0x1e3b); regmbc(0x1e3d); regmbc(0x2c61);
return;
case 'm':
case 0x1d6f:
case 0x1e3f:
case 0x1e41:
case 0x1e43:
regmbc('m'); regmbc(0x1d6f); regmbc(0x1e3f);
regmbc(0x1e41); regmbc(0x1e43);
return;
case 'n':
case 0xf1:
case 0x144:
case 0x146:
case 0x148:
case 0x149:
case 0x1f9:
case 0x1d70:
case 0x1d87:
case 0x1e45:
case 0x1e47:
case 0x1e49:
case 0x1e4b:
case 0xa7a5:
regmbc('n'); regmbc(0xf1); regmbc(0x144);
regmbc(0x146); regmbc(0x148); regmbc(0x149);
regmbc(0x1f9); regmbc(0x1d70); regmbc(0x1d87);
regmbc(0x1e45); regmbc(0x1e47); regmbc(0x1e49);
regmbc(0x1e4b); regmbc(0xa7a5);
return;
case 'o':
case 0xf2:
case 0xf3:
case 0xf4:
case 0xf5:
case 0xf6:
case 0xf8:
case 0x14d:
case 0x14f:
case 0x151:
case 0x1a1:
case 0x1d2:
case 0x1eb:
case 0x1ed:
case 0x1ff:
case 0x20d:
case 0x20f:
case 0x22b:
case 0x22d:
case 0x22f:
case 0x231:
case 0x275:
case 0x1e4d:
case 0x1e4f:
case 0x1e51:
case 0x1e53:
case 0x1ecd:
case 0x1ecf:
case 0x1ed1:
case 0x1ed3:
case 0x1ed5:
case 0x1ed7:
case 0x1ed9:
case 0x1edb:
case 0x1edd:
case 0x1edf:
case 0x1ee1:
case 0x1ee3:
regmbc('o'); regmbc(0xf2); regmbc(0xf3);
regmbc(0xf4); regmbc(0xf5); regmbc(0xf6);
regmbc(0xf8); regmbc(0x14d); regmbc(0x14f);
regmbc(0x151); regmbc(0x1a1); regmbc(0x1d2);
regmbc(0x1eb); regmbc(0x1ed); regmbc(0x1ff);
regmbc(0x20d); regmbc(0x20f); regmbc(0x22b);
regmbc(0x22d); regmbc(0x22f); regmbc(0x231);
regmbc(0x275); regmbc(0x1e4d); regmbc(0x1e4f);
regmbc(0x1e51); regmbc(0x1e53); regmbc(0x1ecd);
regmbc(0x1ecf); regmbc(0x1ed1); regmbc(0x1ed3);
regmbc(0x1ed5); regmbc(0x1ed7); regmbc(0x1ed9);
regmbc(0x1edb); regmbc(0x1edd); regmbc(0x1edf);
regmbc(0x1ee1); regmbc(0x1ee3);
return;
case 'p':
case 0x1a5:
case 0x1d71:
case 0x1d88:
case 0x1d7d:
case 0x1e55:
case 0x1e57:
regmbc('p'); regmbc(0x1a5); regmbc(0x1d71);
regmbc(0x1d7d); regmbc(0x1d88); regmbc(0x1e55);
regmbc(0x1e57);
return;
case 'q':
case 0x24b:
case 0x2a0:
regmbc('q'); regmbc(0x24b); regmbc(0x2a0);
return;
case 'r':
case 0x155:
case 0x157:
case 0x159:
case 0x211:
case 0x213:
case 0x24d:
case 0x27d:
case 0x1d72:
case 0x1d73:
case 0x1d89:
case 0x1e59:
case 0x1e5b:
case 0x1e5d:
case 0x1e5f:
case 0xa7a7:
regmbc('r'); regmbc(0x155); regmbc(0x157);
regmbc(0x159); regmbc(0x211); regmbc(0x213);
regmbc(0x24d); regmbc(0x1d72); regmbc(0x1d73);
regmbc(0x1d89); regmbc(0x1e59); regmbc(0x27d);
regmbc(0x1e5b); regmbc(0x1e5d); regmbc(0x1e5f);
regmbc(0xa7a7);
return;
case 's':
case 0x15b:
case 0x15d:
case 0x15f:
case 0x161:
case 0x1e61:
case 0x219:
case 0x23f:
case 0x1d74:
case 0x1d8a:
case 0x1e63:
case 0x1e65:
case 0x1e67:
case 0x1e69:
case 0xa7a9:
regmbc('s'); regmbc(0x15b); regmbc(0x15d);
regmbc(0x15f); regmbc(0x161); regmbc(0x23f);
regmbc(0x219); regmbc(0x1d74); regmbc(0x1d8a);
regmbc(0x1e61); regmbc(0x1e63); regmbc(0x1e65);
regmbc(0x1e67); regmbc(0x1e69); regmbc(0xa7a9);
return;
case 't':
case 0x163:
case 0x165:
case 0x167:
case 0x1ab:
case 0x1ad:
case 0x21b:
case 0x288:
case 0x1d75:
case 0x1e6b:
case 0x1e6d:
case 0x1e6f:
case 0x1e71:
case 0x1e97:
case 0x2c66:
regmbc('t'); regmbc(0x163); regmbc(0x165);
regmbc(0x167); regmbc(0x1ab); regmbc(0x21b);
regmbc(0x1ad); regmbc(0x288); regmbc(0x1d75);
regmbc(0x1e6b); regmbc(0x1e6d); regmbc(0x1e6f);
regmbc(0x1e71); regmbc(0x1e97); regmbc(0x2c66);
return;
case 'u':
case 0xf9:
case 0xfa:
case 0xfb:
case 0xfc:
case 0x169:
case 0x16b:
case 0x16d:
case 0x16f:
case 0x171:
case 0x173:
case 0x1b0:
case 0x1d4:
case 0x1d6:
case 0x1d8:
case 0x1da:
case 0x1dc:
case 0x215:
case 0x217:
case 0x289:
case 0x1e73:
case 0x1d7e:
case 0x1d99:
case 0x1e75:
case 0x1e77:
case 0x1e79:
case 0x1e7b:
case 0x1ee5:
case 0x1ee7:
case 0x1ee9:
case 0x1eeb:
case 0x1eed:
case 0x1eef:
case 0x1ef1:
regmbc('u'); regmbc(0xf9); regmbc(0xfa);
regmbc(0xfb); regmbc(0xfc); regmbc(0x169);
regmbc(0x16b); regmbc(0x16d); regmbc(0x16f);
regmbc(0x171); regmbc(0x173); regmbc(0x1d6);
regmbc(0x1d8); regmbc(0x1da); regmbc(0x1dc);
regmbc(0x215); regmbc(0x217); regmbc(0x1b0);
regmbc(0x1d4); regmbc(0x289); regmbc(0x1d7e);
regmbc(0x1d99); regmbc(0x1e73); regmbc(0x1e75);
regmbc(0x1e77); regmbc(0x1e79); regmbc(0x1e7b);
regmbc(0x1ee5); regmbc(0x1ee7); regmbc(0x1ee9);
regmbc(0x1eeb); regmbc(0x1eed); regmbc(0x1eef);
regmbc(0x1ef1);
return;
case 'v':
case 0x28b:
case 0x1d8c:
case 0x1e7d:
case 0x1e7f:
regmbc('v'); regmbc(0x28b); regmbc(0x1d8c);
regmbc(0x1e7d); regmbc(0x1e7f);
return;
case 'w':
case 0x175:
case 0x1e81:
case 0x1e83:
case 0x1e85:
case 0x1e87:
case 0x1e89:
case 0x1e98:
regmbc('w'); regmbc(0x175); regmbc(0x1e81);
regmbc(0x1e83); regmbc(0x1e85); regmbc(0x1e87);
regmbc(0x1e89); regmbc(0x1e98);
return;
case 'x':
case 0x1e8b:
case 0x1e8d:
regmbc('x'); regmbc(0x1e8b); regmbc(0x1e8d);
return;
case 'y':
case 0xfd:
case 0xff:
case 0x177:
case 0x1b4:
case 0x233:
case 0x24f:
case 0x1e8f:
case 0x1e99:
case 0x1ef3:
case 0x1ef5:
case 0x1ef7:
case 0x1ef9:
regmbc('y'); regmbc(0xfd); regmbc(0xff);
regmbc(0x177); regmbc(0x1b4); regmbc(0x233);
regmbc(0x24f); regmbc(0x1e8f); regmbc(0x1e99);
regmbc(0x1ef3); regmbc(0x1ef5); regmbc(0x1ef7);
regmbc(0x1ef9);
return;
case 'z':
case 0x17a:
case 0x17c:
case 0x17e:
case 0x1b6:
case 0x1d76:
case 0x1d8e:
case 0x1e91:
case 0x1e93:
case 0x1e95:
case 0x2c6c:
regmbc('z'); regmbc(0x17a); regmbc(0x17c);
regmbc(0x17e); regmbc(0x1b6); regmbc(0x1d76);
regmbc(0x1d8e); regmbc(0x1e91); regmbc(0x1e93);
regmbc(0x1e95); regmbc(0x2c6c);
return;
}
}
regmbc(c);
}
// Emit a node.
// Return pointer to generated code.
static uint8_t *regnode(int op)
{
uint8_t *ret;
ret = regcode;
if (ret == JUST_CALC_SIZE) {
regsize += 3;
} else {
*regcode++ = (uint8_t)op;
*regcode++ = NUL; // Null "next" pointer.
*regcode++ = NUL;
}
return ret;
}
// Write a four bytes number at "p" and return pointer to the next char.
static uint8_t *re_put_uint32(uint8_t *p, uint32_t val)
{
*p++ = (uint8_t)((val >> 24) & 0377);
*p++ = (uint8_t)((val >> 16) & 0377);
*p++ = (uint8_t)((val >> 8) & 0377);
*p++ = (uint8_t)(val & 0377);
return p;
}
// regnext - dig the "next" pointer out of a node
// Returns NULL when calculating size, when there is no next item and when
// there is an error.
static uint8_t *regnext(uint8_t *p)
FUNC_ATTR_NONNULL_ALL
{
int offset;
if (p == JUST_CALC_SIZE || reg_toolong) {
return NULL;
}
offset = NEXT(p);
if (offset == 0) {
return NULL;
}
if (OP(p) == BACK) {
return p - offset;
} else {
return p + offset;
}
}
// Set the next-pointer at the end of a node chain.
static void regtail(uint8_t *p, uint8_t *val)
{
int offset;
if (p == JUST_CALC_SIZE) {
return;
}
// Find last node.
uint8_t *scan = p;
for (;;) {
uint8_t *temp = regnext(scan);
if (temp == NULL) {
break;
}
scan = temp;
}
if (OP(scan) == BACK) {
offset = (int)(scan - val);
} else {
offset = (int)(val - scan);
}
// When the offset uses more than 16 bits it can no longer fit in the two
// bytes available. Use a global flag to avoid having to check return
// values in too many places.
if (offset > 0xffff) {
reg_toolong = true;
} else {
*(scan + 1) = (uint8_t)(((unsigned)offset >> 8) & 0377);
*(scan + 2) = (uint8_t)(offset & 0377);
}
}
// Like regtail, on item after a BRANCH; nop if none.
static void regoptail(uint8_t *p, uint8_t *val)
{
// When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless"
if (p == NULL || p == JUST_CALC_SIZE
|| (OP(p) != BRANCH
&& (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9))) {
return;
}
regtail(OPERAND(p), val);
}
// Insert an operator in front of already-emitted operand
//
// Means relocating the operand.
static void reginsert(int op, uint8_t *opnd)
{
uint8_t *src;
uint8_t *dst;
uint8_t *place;
if (regcode == JUST_CALC_SIZE) {
regsize += 3;
return;
}
src = regcode;
regcode += 3;
dst = regcode;
while (src > opnd) {
*--dst = *--src;
}
place = opnd; // Op node, where operand used to be.
*place++ = (uint8_t)op;
*place++ = NUL;
*place = NUL;
}
// Insert an operator in front of already-emitted operand.
// Add a number to the operator.
static void reginsert_nr(int op, long val, uint8_t *opnd)
{
uint8_t *src;
uint8_t *dst;
uint8_t *place;
if (regcode == JUST_CALC_SIZE) {
regsize += 7;
return;
}
src = regcode;
regcode += 7;
dst = regcode;
while (src > opnd) {
*--dst = *--src;
}
place = opnd; // Op node, where operand used to be.
*place++ = (uint8_t)op;
*place++ = NUL;
*place++ = NUL;
assert(val >= 0 && (uintmax_t)val <= UINT32_MAX);
re_put_uint32(place, (uint32_t)val);
}
// Insert an operator in front of already-emitted operand.
// The operator has the given limit values as operands. Also set next pointer.
//
// Means relocating the operand.
static void reginsert_limits(int op, long minval, long maxval, uint8_t *opnd)
{
uint8_t *src;
uint8_t *dst;
uint8_t *place;
if (regcode == JUST_CALC_SIZE) {
regsize += 11;
return;
}
src = regcode;
regcode += 11;
dst = regcode;
while (src > opnd) {
*--dst = *--src;
}
place = opnd; // Op node, where operand used to be.
*place++ = (uint8_t)op;
*place++ = NUL;
*place++ = NUL;
assert(minval >= 0 && (uintmax_t)minval <= UINT32_MAX);
place = re_put_uint32(place, (uint32_t)minval);
assert(maxval >= 0 && (uintmax_t)maxval <= UINT32_MAX);
place = re_put_uint32(place, (uint32_t)maxval);
regtail(opnd, place);
}
/// Return true if the back reference is legal. We must have seen the close
/// brace.
/// TODO(vim): Should also check that we don't refer to something repeated
/// (+*=): what instance of the repetition should we match?
static int seen_endbrace(int refnum)
{
if (!had_endbrace[refnum]) {
uint8_t *p;
// Trick: check if "@<=" or "@<!" follows, in which case
// the \1 can appear before the referenced match.
for (p = (uint8_t *)regparse; *p != NUL; p++) {
if (p[0] == '@' && p[1] == '<' && (p[2] == '!' || p[2] == '=')) {
break;
}
}
if (*p == NUL) {
emsg(_("E65: Illegal back reference"));
rc_did_emsg = true;
return false;
}
}
return true;
}
// Parse the lowest level.
//
// Optimization: gobbles an entire sequence of ordinary characters so that
// it can turn them into a single node, which is smaller to store and
// faster to run. Don't do this when one_exactly is set.
static uint8_t *regatom(int *flagp)
{
uint8_t *ret;
int flags;
int c;
uint8_t *p;
int extra = 0;
int save_prev_at_start = prev_at_start;
*flagp = WORST; // Tentatively.
c = getchr();
switch (c) {
case Magic('^'):
ret = regnode(BOL);
break;
case Magic('$'):
ret = regnode(EOL);
had_eol = true;
break;
case Magic('<'):
ret = regnode(BOW);
break;
case Magic('>'):
ret = regnode(EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == '^') { // "\_^" is start-of-line
ret = regnode(BOL);
break;
}
if (c == '$') { // "\_$" is end-of-line
ret = regnode(EOL);
had_eol = true;
break;
}
extra = ADD_NL;
*flagp |= HASNL;
// "\_[" is character range plus newline
if (c == '[') {
goto collection;
}
// "\_x" is character class plus newline
FALLTHROUGH;
// Character classes.
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c));
if (p == NULL) {
EMSG_RET_NULL(_("E63: invalid use of \\_"));
}
// When '.' is followed by a composing char ignore the dot, so that
// the composing char is matched here.
if (c == Magic('.') && utf_iscomposing(peekchr())) {
c = getchr();
goto do_multibyte;
}
ret = regnode(classcodes[p - classchars] + extra);
*flagp |= HASWIDTH | SIMPLE;
break;
case Magic('n'):
if (reg_string) {
// In a string "\n" matches a newline character.
ret = regnode(EXACTLY);
regc(NL);
regc(NUL);
*flagp |= HASWIDTH | SIMPLE;
} else {
// In buffer text "\n" matches the end of a line.
ret = regnode(NEWL);
*flagp |= HASWIDTH | HASNL;
}
break;
case Magic('('):
if (one_exactly) {
EMSG_ONE_RET_NULL;
}
ret = reg(REG_PAREN, &flags);
if (ret == NULL) {
return NULL;
}
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
if (one_exactly) {
EMSG_ONE_RET_NULL;
}
IEMSG_RET_NULL(_(e_internal)); // Supposed to be caught earlier.
// NOTREACHED
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('{'):
case Magic('*'):
c = no_Magic(c);
EMSG3_RET_NULL(_("E64: %s%c follows nothing"),
(c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL), c);
// NOTREACHED
case Magic('~'): // previous substitute pattern
if (reg_prev_sub != NULL) {
uint8_t *lp;
ret = regnode(EXACTLY);
lp = (uint8_t *)reg_prev_sub;
while (*lp != NUL) {
regc(*lp++);
}
regc(NUL);
if (*reg_prev_sub != NUL) {
*flagp |= HASWIDTH;
if ((lp - (uint8_t *)reg_prev_sub) == 1) {
*flagp |= SIMPLE;
}
}
} else {
EMSG_RET_NULL(_(e_nopresub));
}
break;
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'): {
int refnum;
refnum = c - Magic('0');
if (!seen_endbrace(refnum)) {
return NULL;
}
ret = regnode(BACKREF + refnum);
}
break;
case Magic('z'):
c = no_Magic(getchr());
switch (c) {
case '(':
if ((reg_do_extmatch & REX_SET) == 0) {
EMSG_RET_NULL(_(e_z_not_allowed));
}
if (one_exactly) {
EMSG_ONE_RET_NULL;
}
ret = reg(REG_ZPAREN, &flags);
if (ret == NULL) {
return NULL;
}
*flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH);
re_has_z = REX_SET;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if ((reg_do_extmatch & REX_USE) == 0) {
EMSG_RET_NULL(_(e_z1_not_allowed));
}
ret = regnode(ZREF + c - '0');
re_has_z = REX_USE;
break;
case 's':
ret = regnode(MOPEN + 0);
if (!re_mult_next("\\zs")) {
return NULL;
}
break;
case 'e':
ret = regnode(MCLOSE + 0);
if (!re_mult_next("\\ze")) {
return NULL;
}
break;
default:
EMSG_RET_NULL(_("E68: Invalid character after \\z"));
}
break;
case Magic('%'):
c = no_Magic(getchr());
switch (c) {
// () without a back reference
case '(':
if (one_exactly) {
EMSG_ONE_RET_NULL;
}
ret = reg(REG_NPAREN, &flags);
if (ret == NULL) {
return NULL;
}
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
// Catch \%^ and \%$ regardless of where they appear in the
// pattern -- regardless of whether or not it makes sense.
case '^':
ret = regnode(RE_BOF);
break;
case '$':
ret = regnode(RE_EOF);
break;
case '#':
if (regparse[0] == '=' && regparse[1] >= 48 && regparse[1] <= 50) {
// misplaced \%#=1
semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]);
return FAIL;
}
ret = regnode(CURSOR);
break;
case 'V':
ret = regnode(RE_VISUAL);
break;
case 'C':
ret = regnode(RE_COMPOSING);
break;
// \%[abc]: Emit as a list of branches, all ending at the last
// branch which matches nothing.
case '[':
if (one_exactly) { // doesn't nest
EMSG_ONE_RET_NULL;
}
{
uint8_t *lastbranch;
uint8_t *lastnode = NULL;
uint8_t *br;
ret = NULL;
while ((c = getchr()) != ']') {
if (c == NUL) {
EMSG2_RET_NULL(_(e_missing_sb),
reg_magic == MAGIC_ALL);
}
br = regnode(BRANCH);
if (ret == NULL) {
ret = br;
} else {
regtail(lastnode, br);
if (reg_toolong) {
return NULL;
}
}
ungetchr();
one_exactly = true;
lastnode = regatom(flagp);
one_exactly = false;
if (lastnode == NULL) {
return NULL;
}
}
if (ret == NULL) {
EMSG2_RET_NULL(_(e_empty_sb),
reg_magic == MAGIC_ALL);
}
lastbranch = regnode(BRANCH);
br = regnode(NOTHING);
if (ret != JUST_CALC_SIZE) {
regtail(lastnode, br);
regtail(lastbranch, br);
// connect all branches to the NOTHING
// branch at the end
for (br = ret; br != lastnode;) {
if (OP(br) == BRANCH) {
regtail(br, lastbranch);
if (reg_toolong) {
return NULL;
}
br = OPERAND(br);
} else {
br = regnext(br);
}
}
}
*flagp &= ~(HASWIDTH | SIMPLE);
break;
}
case 'd': // %d123 decimal
case 'o': // %o123 octal
case 'x': // %xab hex 2
case 'u': // %uabcd hex 4
case 'U': // %U1234abcd hex 8
{
int64_t i;
switch (c) {
case 'd':
i = getdecchrs(); break;
case 'o':
i = getoctchrs(); break;
case 'x':
i = gethexchrs(2); break;
case 'u':
i = gethexchrs(4); break;
case 'U':
i = gethexchrs(8); break;
default:
i = -1; break;
}
if (i < 0 || i > INT_MAX) {
EMSG2_RET_NULL(_("E678: Invalid character after %s%%[dxouU]"),
reg_magic == MAGIC_ALL);
}
if (use_multibytecode((int)i)) {
ret = regnode(MULTIBYTECODE);
} else {
ret = regnode(EXACTLY);
}
if (i == 0) {
regc(0x0a);
} else {
regmbc((int)i);
}
regc(NUL);
*flagp |= HASWIDTH;
break;
}
default:
if (ascii_isdigit(c) || c == '<' || c == '>' || c == '\'' || c == '.') {
uint32_t n = 0;
int cmp;
bool cur = false;
bool got_digit = false;
cmp = c;
if (cmp == '<' || cmp == '>') {
c = getchr();
}
if (no_Magic(c) == '.') {
cur = true;
c = getchr();
}
while (ascii_isdigit(c)) {
got_digit = true;
n = n * 10 + (uint32_t)(c - '0');
c = getchr();
}
if (c == '\'' && n == 0) {
// "\%'m", "\%<'m" and "\%>'m": Mark
c = getchr();
ret = regnode(RE_MARK);
if (ret == JUST_CALC_SIZE) {
regsize += 2;
} else {
*regcode++ = (uint8_t)c;
*regcode++ = (uint8_t)cmp;
}
break;
} else if ((c == 'l' || c == 'c' || c == 'v') && (cur || got_digit)) {
if (cur && n) {
semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c));
rc_did_emsg = true;
return NULL;
}
if (c == 'l') {
if (cur) {
n = (uint32_t)curwin->w_cursor.lnum;
}
ret = regnode(RE_LNUM);
if (save_prev_at_start) {
at_start = true;
}
} else if (c == 'c') {
if (cur) {
n = (uint32_t)curwin->w_cursor.col;
n++;
}
ret = regnode(RE_COL);
} else {
if (cur) {
colnr_T vcol = 0;
getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol);
n = (uint32_t)(++vcol);
}
ret = regnode(RE_VCOL);
}
if (ret == JUST_CALC_SIZE) {
regsize += 5;
} else {
// put the number and the optional
// comparator after the opcode
regcode = re_put_uint32(regcode, n);
*regcode++ = (uint8_t)cmp;
}
break;
}
}
EMSG2_RET_NULL(_("E71: Invalid character after %s%%"),
reg_magic == MAGIC_ALL);
}
break;
case Magic('['):
collection:
{
uint8_t *lp;
// If there is no matching ']', we assume the '[' is a normal
// character. This makes 'incsearch' and ":help [" work.
lp = (uint8_t *)skip_anyof(regparse);
if (*lp == ']') { // there is a matching ']'
int startc = -1; // > 0 when next '-' is a range
int endc;
// In a character class, different parsing rules apply.
// Not even \ is special anymore, nothing is.
if (*regparse == '^') { // Complement of range.
ret = regnode(ANYBUT + extra);
regparse++;
} else {
ret = regnode(ANYOF + extra);
}
// At the start ']' and '-' mean the literal character.
if (*regparse == ']' || *regparse == '-') {
startc = *regparse;
regc(*regparse++);
}
while (*regparse != NUL && *regparse != ']') {
if (*regparse == '-') {
regparse++;
// The '-' is not used for a range at the end and
// after or before a '\n'.
if (*regparse == ']' || *regparse == NUL
|| startc == -1
|| (regparse[0] == '\\' && regparse[1] == 'n')) {
regc('-');
startc = '-'; // [--x] is a range
} else {
// Also accept "a-[.z.]"
endc = 0;
if (*regparse == '[') {
endc = get_coll_element(&regparse);
}
if (endc == 0) {
endc = mb_ptr2char_adv((const char **)&regparse);
}
// Handle \o40, \x20 and \u20AC style sequences
if (endc == '\\' && !reg_cpo_lit) {
endc = coll_get_char();
}
if (startc > endc) {
EMSG_RET_NULL(_(e_reverse_range));
}
if (utf_char2len(startc) > 1
|| utf_char2len(endc) > 1) {
// Limit to a range of 256 chars
if (endc > startc + 256) {
EMSG_RET_NULL(_(e_large_class));
}
while (++startc <= endc) {
regmbc(startc);
}
} else {
while (++startc <= endc) {
regc(startc);
}
}
startc = -1;
}
}
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
// accepts "\t", "\e", etc., but only when the 'l' flag in
// 'cpoptions' is not included.
else if (*regparse == '\\'
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR,
(uint8_t)regparse[1]) != NULL))) {
regparse++;
if (*regparse == 'n') {
// '\n' in range: also match NL
if (ret != JUST_CALC_SIZE) {
// Using \n inside [^] does not change what
// matches. "[^\n]" is the same as ".".
if (*ret == ANYOF) {
*ret = ANYOF + ADD_NL;
*flagp |= HASNL;
}
// else: must have had a \n already
}
regparse++;
startc = -1;
} else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U') {
startc = coll_get_char();
if (startc == 0) {
regc(0x0a);
} else {
regmbc(startc);
}
} else {
startc = backslash_trans(*regparse++);
regc(startc);
}
} else if (*regparse == '[') {
int c_class;
int cu;
c_class = get_char_class(&regparse);
startc = -1;
// Characters assumed to be 8 bits!
switch (c_class) {
case CLASS_NONE:
c_class = get_equi_class(&regparse);
if (c_class != 0) {
// produce equivalence class
reg_equi_class(c_class);
} else if ((c_class = get_coll_element(&regparse)) != 0) {
// produce a collating element
regmbc(c_class);
} else {
// literal '[', allow [[-x] as a range
startc = *regparse++;
regc(startc);
}
break;
case CLASS_ALNUM:
for (cu = 1; cu < 128; cu++) {
if (isalnum(cu)) {
regmbc(cu);
}
}
break;
case CLASS_ALPHA:
for (cu = 1; cu < 128; cu++) {
if (isalpha(cu)) {
regmbc(cu);
}
}
break;
case CLASS_BLANK:
regc(' ');
regc('\t');
break;
case CLASS_CNTRL:
for (cu = 1; cu <= 127; cu++) {
if (iscntrl(cu)) {
regmbc(cu);
}
}
break;
case CLASS_DIGIT:
for (cu = 1; cu <= 127; cu++) {
if (ascii_isdigit(cu)) {
regmbc(cu);
}
}
break;
case CLASS_GRAPH:
for (cu = 1; cu <= 127; cu++) {
if (isgraph(cu)) {
regmbc(cu);
}
}
break;
case CLASS_LOWER:
for (cu = 1; cu <= 255; cu++) {
if (mb_islower(cu) && cu != 170 && cu != 186) {
regmbc(cu);
}
}
break;
case CLASS_PRINT:
for (cu = 1; cu <= 255; cu++) {
if (vim_isprintc(cu)) {
regmbc(cu);
}
}
break;
case CLASS_PUNCT:
for (cu = 1; cu < 128; cu++) {
if (ispunct(cu)) {
regmbc(cu);
}
}
break;
case CLASS_SPACE:
for (cu = 9; cu <= 13; cu++) {
regc(cu);
}
regc(' ');
break;
case CLASS_UPPER:
for (cu = 1; cu <= 255; cu++) {
if (mb_isupper(cu)) {
regmbc(cu);
}
}
break;
case CLASS_XDIGIT:
for (cu = 1; cu <= 255; cu++) {
if (ascii_isxdigit(cu)) {
regmbc(cu);
}
}
break;
case CLASS_TAB:
regc('\t');
break;
case CLASS_RETURN:
regc('\r');
break;
case CLASS_BACKSPACE:
regc('\b');
break;
case CLASS_ESCAPE:
regc(ESC);
break;
case CLASS_IDENT:
for (cu = 1; cu <= 255; cu++) {
if (vim_isIDc(cu)) {
regmbc(cu);
}
}
break;
case CLASS_KEYWORD:
for (cu = 1; cu <= 255; cu++) {
if (reg_iswordc(cu)) {
regmbc(cu);
}
}
break;
case CLASS_FNAME:
for (cu = 1; cu <= 255; cu++) {
if (vim_isfilec(cu)) {
regmbc(cu);
}
}
break;
}
} else {
// produce a multibyte character, including any
// following composing characters.
startc = utf_ptr2char((char *)regparse);
int len = utfc_ptr2len((char *)regparse);
if (utf_char2len(startc) != len) {
// composing chars
startc = -1;
}
while (--len >= 0) {
regc(*regparse++);
}
}
}
regc(NUL);
prevchr_len = 1; // last char was the ']'
if (*regparse != ']') {
EMSG_RET_NULL(_(e_toomsbra)); // Cannot happen?
}
skipchr(); // let's be friends with the lexer again
*flagp |= HASWIDTH | SIMPLE;
break;
} else if (reg_strict) {
EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF);
}
}
FALLTHROUGH;
default: {
int len;
// A multi-byte character is handled as a separate atom if it's
// before a multi and when it's a composing char.
if (use_multibytecode(c)) {
do_multibyte:
ret = regnode(MULTIBYTECODE);
regmbc(c);
*flagp |= HASWIDTH | SIMPLE;
break;
}
ret = regnode(EXACTLY);
// Append characters as long as:
// - there is no following multi, we then need the character in
// front of it as a single character operand
// - not running into a Magic character
// - "one_exactly" is not set
// But always emit at least one character. Might be a Multi,
// e.g., a "[" without matching "]".
for (len = 0; c != NUL && (len == 0
|| (re_multi_type(peekchr()) == NOT_MULTI
&& !one_exactly
&& !is_Magic(c))); len++) {
c = no_Magic(c);
{
regmbc(c);
{
int l;
// Need to get composing character too.
for (;;) {
l = utf_ptr2len((char *)regparse);
if (!utf_composinglike(regparse, regparse + l)) {
break;
}
regmbc(utf_ptr2char((char *)regparse));
skipchr();
}
}
}
c = getchr();
}
ungetchr();
regc(NUL);
*flagp |= HASWIDTH;
if (len == 1) {
*flagp |= SIMPLE;
}
}
break;
}
return ret;
}
// Parse something followed by possible [*+=].
//
// Note that the branching code sequences used for = and the general cases
// of * and + are somewhat optimized: they use the same NOTHING node as
// both the endmarker for their branch list and the body of the last branch.
// It might seem that this node could be dispensed with entirely, but the
// endmarker role is not redundant.
static uint8_t *regpiece(int *flagp)
{
uint8_t *ret;
int op;
uint8_t *next;
int flags;
long minval;
long maxval;
ret = regatom(&flags);
if (ret == NULL) {
return NULL;
}
op = peekchr();
if (re_multi_type(op) == NOT_MULTI) {
*flagp = flags;
return ret;
}
// default flags
*flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH)));
skipchr();
switch (op) {
case Magic('*'):
if (flags & SIMPLE) {
reginsert(STAR, ret);
} else {
// Emit x* as (x&|), where & means "self".
reginsert(BRANCH, ret); // Either x
regoptail(ret, regnode(BACK)); // and loop
regoptail(ret, ret); // back
regtail(ret, regnode(BRANCH)); // or
regtail(ret, regnode(NOTHING)); // null.
}
break;
case Magic('+'):
if (flags & SIMPLE) {
reginsert(PLUS, ret);
} else {
// Emit x+ as x(&|), where & means "self".
next = regnode(BRANCH); // Either
regtail(ret, next);
regtail(regnode(BACK), ret); // loop back
regtail(next, regnode(BRANCH)); // or
regtail(ret, regnode(NOTHING)); // null.
}
*flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
case Magic('@'): {
int lop = END;
int64_t nr = getdecchrs();
switch (no_Magic(getchr())) {
case '=':
lop = MATCH; break; // \@=
case '!':
lop = NOMATCH; break; // \@!
case '>':
lop = SUBPAT; break; // \@>
case '<':
switch (no_Magic(getchr())) {
case '=':
lop = BEHIND; break; // \@<=
case '!':
lop = NOBEHIND; break; // \@<!
}
}
if (lop == END) {
EMSG2_RET_NULL(_("E59: invalid character after %s@"),
reg_magic == MAGIC_ALL);
}
// Look behind must match with behind_pos.
if (lop == BEHIND || lop == NOBEHIND) {
regtail(ret, regnode(BHPOS));
*flagp |= HASLOOKBH;
}
regtail(ret, regnode(END)); // operand ends
if (lop == BEHIND || lop == NOBEHIND) {
if (nr < 0) {
nr = 0; // no limit is same as zero limit
}
reginsert_nr(lop, (uint32_t)nr, ret);
} else {
reginsert(lop, ret);
}
break;
}
case Magic('?'):
case Magic('='):
// Emit x= as (x|)
reginsert(BRANCH, ret); // Either x
regtail(ret, regnode(BRANCH)); // or
next = regnode(NOTHING); // null.
regtail(ret, next);
regoptail(ret, next);
break;
case Magic('{'):
if (!read_limits(&minval, &maxval)) {
return NULL;
}
if (flags & SIMPLE) {
reginsert(BRACE_SIMPLE, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
} else {
if (num_complex_braces >= 10) {
EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"),
reg_magic == MAGIC_ALL);
}
reginsert(BRACE_COMPLEX + num_complex_braces, ret);
regoptail(ret, regnode(BACK));
regoptail(ret, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
num_complex_braces++;
}
if (minval > 0 && maxval > 0) {
*flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH)));
}
break;
}
if (re_multi_type(peekchr()) != NOT_MULTI) {
// Can't have a multi follow a multi.
if (peekchr() == Magic('*')) {
EMSG2_RET_NULL(_("E61: Nested %s*"), reg_magic >= MAGIC_ON);
}
EMSG3_RET_NULL(_("E62: Nested %s%c"), reg_magic == MAGIC_ALL, no_Magic(peekchr()));
}
return ret;
}
// Parse one alternative of an | or & operator.
// Implements the concatenation operator.
static uint8_t *regconcat(int *flagp)
{
uint8_t *first = NULL;
uint8_t *chain = NULL;
uint8_t *latest;
int flags;
int cont = true;
*flagp = WORST; // Tentatively.
while (cont) {
switch (peekchr()) {
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = false;
break;
case Magic('Z'):
regflags |= RF_ICOMBINE;
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
latest = regpiece(&flags);
if (latest == NULL || reg_toolong) {
return NULL;
}
*flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH);
if (chain == NULL) { // First piece.
*flagp |= flags & SPSTART;
} else {
regtail(chain, latest);
}
chain = latest;
if (first == NULL) {
first = latest;
}
break;
}
}
if (first == NULL) { // Loop ran zero times.
first = regnode(NOTHING);
}
return first;
}
// Parse one alternative of an | operator.
// Implements the & operator.
static uint8_t *regbranch(int *flagp)
{
uint8_t *ret;
uint8_t *chain = NULL;
uint8_t *latest;
int flags;
*flagp = WORST | HASNL; // Tentatively.
ret = regnode(BRANCH);
for (;;) {
latest = regconcat(&flags);
if (latest == NULL) {
return NULL;
}
// If one of the branches has width, the whole thing has. If one of
// the branches anchors at start-of-line, the whole thing does.
// If one of the branches uses look-behind, the whole thing does.
*flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH);
// If one of the branches doesn't match a line-break, the whole thing
// doesn't.
*flagp &= ~HASNL | (flags & HASNL);
if (chain != NULL) {
regtail(chain, latest);
}
if (peekchr() != Magic('&')) {
break;
}
skipchr();
regtail(latest, regnode(END)); // operand ends
if (reg_toolong) {
break;
}
reginsert(MATCH, latest);
chain = latest;
}
return ret;
}
/// Parse regular expression, i.e. main body or parenthesized thing.
///
/// Caller must absorb opening parenthesis.
///
/// Combining parenthesis handling with the base level of regular expression
/// is a trifle forced, but the need to tie the tails of the branches to what
/// follows makes it hard to avoid.
///
/// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
static uint8_t *reg(int paren, int *flagp)
{
uint8_t *ret;
uint8_t *br;
uint8_t *ender;
int parno = 0;
int flags;
*flagp = HASWIDTH; // Tentatively.
if (paren == REG_ZPAREN) {
// Make a ZOPEN node.
if (regnzpar >= NSUBEXP) {
EMSG_RET_NULL(_("E50: Too many \\z("));
}
parno = regnzpar;
regnzpar++;
ret = regnode(ZOPEN + parno);
} else if (paren == REG_PAREN) {
// Make a MOPEN node.
if (regnpar >= NSUBEXP) {
EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL);
}
parno = regnpar;
regnpar++;
ret = regnode(MOPEN + parno);
} else if (paren == REG_NPAREN) {
// Make a NOPEN node.
ret = regnode(NOPEN);
} else {
ret = NULL;
}
// Pick up the branches, linking them together.
br = regbranch(&flags);
if (br == NULL) {
return NULL;
}
if (ret != NULL) {
regtail(ret, br); // [MZ]OPEN -> first.
} else {
ret = br;
}
// If one of the branches can be zero-width, the whole thing can.
// If one of the branches has * at start or matches a line-break, the
// whole thing can.
if (!(flags & HASWIDTH)) {
*flagp &= ~HASWIDTH;
}
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
while (peekchr() == Magic('|')) {
skipchr();
br = regbranch(&flags);
if (br == NULL || reg_toolong) {
return NULL;
}
regtail(ret, br); // BRANCH -> BRANCH.
if (!(flags & HASWIDTH)) {
*flagp &= ~HASWIDTH;
}
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
}
// Make a closing node, and hook it on the end.
ender = regnode(paren == REG_ZPAREN ? ZCLOSE + parno :
paren == REG_PAREN ? MCLOSE + parno :
paren == REG_NPAREN ? NCLOSE : END);
regtail(ret, ender);
// Hook the tails of the branches to the closing node.
for (br = ret; br != NULL; br = regnext(br)) {
regoptail(br, ender);
}
// Check for proper termination.
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
if (paren == REG_ZPAREN) {
EMSG_RET_NULL(_("E52: Unmatched \\z("));
} else if (paren == REG_NPAREN) {
EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
} else {
EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
}
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
if (curchr == Magic(')')) {
EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
} else {
EMSG_RET_NULL(_(e_trailing)); // "Can't happen".
}
// NOTREACHED
}
// Here we set the flag allowing back references to this set of
// parentheses.
if (paren == REG_PAREN) {
had_endbrace[parno] = true; // have seen the close paren
}
return ret;
}
// bt_regcomp() - compile a regular expression into internal code for the
// traditional back track matcher.
// Returns the program in allocated space. Returns NULL for an error.
//
// We can't allocate space until we know how big the compiled form will be,
// but we can't compile it (and thus know how big it is) until we've got a
// place to put the code. So we cheat: we compile it twice, once with code
// generation turned off and size counting turned on, and once "for real".
// This also means that we don't allocate space until we are sure that the
// thing really will compile successfully, and we never have to move the
// code and thus invalidate pointers into it. (Note that it has to be in
// one piece because free() must be able to free it all.)
//
// Whether upper/lower case is to be ignored is decided when executing the
// program, it does not matter here.
//
// Beware that the optimization-preparation code in here knows about some
// of the structure of the compiled regexp.
// "re_flags": RE_MAGIC and/or RE_STRING.
static regprog_T *bt_regcomp(uint8_t *expr, int re_flags)
{
uint8_t *scan;
uint8_t *longest;
int len;
int flags;
if (expr == NULL) {
IEMSG_RET_NULL(_(e_null));
}
init_class_tab();
// First pass: determine size, legality.
regcomp_start(expr, re_flags);
regcode = JUST_CALC_SIZE;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL) {
return NULL;
}
// Allocate space.
bt_regprog_T *r = xmalloc(offsetof(bt_regprog_T, program) + (size_t)regsize);
r->re_in_use = false;
// Second pass: emit code.
regcomp_start(expr, re_flags);
regcode = r->program;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) {
xfree(r);
if (reg_toolong) {
EMSG_RET_NULL(_("E339: Pattern too long"));
}
return NULL;
}
// Dig out information for optimizations.
r->regstart = NUL; // Worst-case defaults.
r->reganch = 0;
r->regmust = NULL;
r->regmlen = 0;
r->regflags = regflags;
if (flags & HASNL) {
r->regflags |= RF_HASNL;
}
if (flags & HASLOOKBH) {
r->regflags |= RF_LOOKBH;
}
// Remember whether this pattern has any \z specials in it.
r->reghasz = (uint8_t)re_has_z;
scan = r->program + 1; // First BRANCH.
if (OP(regnext(scan)) == END) { // Only one top-level choice.
scan = OPERAND(scan);
// Starting-point info.
if (OP(scan) == BOL || OP(scan) == RE_BOF) {
r->reganch++;
scan = regnext(scan);
}
if (OP(scan) == EXACTLY) {
r->regstart = utf_ptr2char((char *)OPERAND(scan));
} else if (OP(scan) == BOW
|| OP(scan) == EOW
|| OP(scan) == NOTHING
|| OP(scan) == MOPEN + 0 || OP(scan) == NOPEN
|| OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) {
uint8_t *regnext_scan = regnext(scan);
if (OP(regnext_scan) == EXACTLY) {
r->regstart = utf_ptr2char((char *)OPERAND(regnext_scan));
}
}
// If there's something expensive in the r.e., find the longest
// literal string that must appear and make it the regmust. Resolve
// ties in favor of later strings, since the regstart check works
// with the beginning of the r.e. and avoiding duplication
// strengthens checking. Not a strong reason, but sufficient in the
// absence of others.
// When the r.e. starts with BOW, it is faster to look for a regmust
// first. Used a lot for "#" and "*" commands. (Added by mool).
if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW)
&& !(flags & HASNL)) {
longest = NULL;
len = 0;
for (; scan != NULL; scan = regnext(scan)) {
if (OP(scan) == EXACTLY && strlen((char *)OPERAND(scan)) >= (size_t)len) {
longest = OPERAND(scan);
len = (int)strlen((char *)OPERAND(scan));
}
}
r->regmust = longest;
r->regmlen = len;
}
}
#ifdef BT_REGEXP_DUMP
regdump(expr, r);
#endif
r->engine = &bt_regengine;
return (regprog_T *)r;
}
// Check if during the previous call to vim_regcomp the EOL item "$" has been
// found. This is messy, but it works fine.
int vim_regcomp_had_eol(void)
{
return had_eol;
}
// Get a number after a backslash that is inside [].
// When nothing is recognized return a backslash.
static int coll_get_char(void)
{
int64_t nr = -1;
switch (*regparse++) {
case 'd':
nr = getdecchrs(); break;
case 'o':
nr = getoctchrs(); break;
case 'x':
nr = gethexchrs(2); break;
case 'u':
nr = gethexchrs(4); break;
case 'U':
nr = gethexchrs(8); break;
}
if (nr < 0 || nr > INT_MAX) {
// If getting the number fails be backwards compatible: the character
// is a backslash.
regparse--;
nr = '\\';
}
return (int)nr;
}
// Free a compiled regexp program, returned by bt_regcomp().
static void bt_regfree(regprog_T *prog)
{
xfree(prog);
}
#define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input)
// The arguments from BRACE_LIMITS are stored here. They are actually local
// to regmatch(), but they are here to reduce the amount of stack space used
// (it can be called recursively many times).
static long bl_minval;
static long bl_maxval;
// Save the input line and position in a regsave_T.
static void reg_save(regsave_T *save, garray_T *gap)
FUNC_ATTR_NONNULL_ALL
{
if (REG_MULTI) {
save->rs_u.pos.col = (colnr_T)(rex.input - rex.line);
save->rs_u.pos.lnum = rex.lnum;
} else {
save->rs_u.ptr = rex.input;
}
save->rs_len = gap->ga_len;
}
// Restore the input line and position from a regsave_T.
static void reg_restore(regsave_T *save, garray_T *gap)
FUNC_ATTR_NONNULL_ALL
{
if (REG_MULTI) {
if (rex.lnum != save->rs_u.pos.lnum) {
// only call reg_getline() when the line number changed to save
// a bit of time
rex.lnum = save->rs_u.pos.lnum;
rex.line = (uint8_t *)reg_getline(rex.lnum);
}
rex.input = rex.line + save->rs_u.pos.col;
} else {
rex.input = save->rs_u.ptr;
}
gap->ga_len = save->rs_len;
}
// Return true if current position is equal to saved position.
static bool reg_save_equal(const regsave_T *save)
FUNC_ATTR_NONNULL_ALL
{
if (REG_MULTI) {
return rex.lnum == save->rs_u.pos.lnum
&& rex.input == rex.line + save->rs_u.pos.col;
}
return rex.input == save->rs_u.ptr;
}
// Save the sub-expressions before attempting a match.
#define save_se(savep, posp, pp) \
REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp))
// After a failed match restore the sub-expressions.
#define restore_se(savep, posp, pp) { \
if (REG_MULTI) /* NOLINT(readability/braces) */ \
*(posp) = (savep)->se_u.pos; \
else /* NOLINT */ \
*(pp) = (savep)->se_u.ptr; }
// Tentatively set the sub-expression start to the current position (after
// calling regmatch() they will have changed). Need to save the existing
// values for when there is no match.
// Use se_save() to use pointer (save_se_multi()) or position (save_se_one()),
// depending on REG_MULTI.
static void save_se_multi(save_se_T *savep, lpos_T *posp)
{
savep->se_u.pos = *posp;
posp->lnum = rex.lnum;
posp->col = (colnr_T)(rex.input - rex.line);
}
static void save_se_one(save_se_T *savep, uint8_t **pp)
{
savep->se_u.ptr = *pp;
*pp = rex.input;
}
/// regrepeat - repeatedly match something simple, return how many.
/// Advances rex.input (and rex.lnum) to just after the matched chars.
///
/// @param maxcount maximum number of matches allowed
static int regrepeat(uint8_t *p, long maxcount)
{
long count = 0;
uint8_t *opnd;
int mask;
int testval = 0;
uint8_t *scan = rex.input; // Make local copy of rex.input for speed.
opnd = OPERAND(p);
switch (OP(p)) {
case ANY:
case ANY + ADD_NL:
while (count < maxcount) {
// Matching anything means we continue until end-of-line (or
// end-of-file for ANY + ADD_NL), only limited by maxcount.
while (*scan != NUL && count < maxcount) {
count++;
MB_PTR_ADV(scan);
}
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr || count == maxcount) {
break;
}
count++; // count the line-break
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
}
break;
case IDENT:
case IDENT + ADD_NL:
testval = 1;
FALLTHROUGH;
case SIDENT:
case SIDENT + ADD_NL:
while (count < maxcount) {
if (vim_isIDc(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case KWORD:
case KWORD + ADD_NL:
testval = 1;
FALLTHROUGH;
case SKWORD:
case SKWORD + ADD_NL:
while (count < maxcount) {
if (vim_iswordp_buf((char *)scan, rex.reg_buf)
&& (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case FNAME:
case FNAME + ADD_NL:
testval = 1;
FALLTHROUGH;
case SFNAME:
case SFNAME + ADD_NL:
while (count < maxcount) {
if (vim_isfilec(utf_ptr2char((char *)scan)) && (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case PRINT:
case PRINT + ADD_NL:
testval = 1;
FALLTHROUGH;
case SPRINT:
case SPRINT + ADD_NL:
while (count < maxcount) {
if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (vim_isprintc(utf_ptr2char((char *)scan)) == 1
&& (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case WHITE:
case WHITE + ADD_NL:
testval = mask = RI_WHITE;
do_class:
while (count < maxcount) {
int l;
if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if ((l = utfc_ptr2len((char *)scan)) > 1) {
if (testval != 0) {
break;
}
scan += l;
} else if ((class_tab[*scan] & mask) == testval) {
scan++;
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case NWHITE:
case NWHITE + ADD_NL:
mask = RI_WHITE;
goto do_class;
case DIGIT:
case DIGIT + ADD_NL:
testval = mask = RI_DIGIT;
goto do_class;
case NDIGIT:
case NDIGIT + ADD_NL:
mask = RI_DIGIT;
goto do_class;
case HEX:
case HEX + ADD_NL:
testval = mask = RI_HEX;
goto do_class;
case NHEX:
case NHEX + ADD_NL:
mask = RI_HEX;
goto do_class;
case OCTAL:
case OCTAL + ADD_NL:
testval = mask = RI_OCTAL;
goto do_class;
case NOCTAL:
case NOCTAL + ADD_NL:
mask = RI_OCTAL;
goto do_class;
case WORD:
case WORD + ADD_NL:
testval = mask = RI_WORD;
goto do_class;
case NWORD:
case NWORD + ADD_NL:
mask = RI_WORD;
goto do_class;
case HEAD:
case HEAD + ADD_NL:
testval = mask = RI_HEAD;
goto do_class;
case NHEAD:
case NHEAD + ADD_NL:
mask = RI_HEAD;
goto do_class;
case ALPHA:
case ALPHA + ADD_NL:
testval = mask = RI_ALPHA;
goto do_class;
case NALPHA:
case NALPHA + ADD_NL:
mask = RI_ALPHA;
goto do_class;
case LOWER:
case LOWER + ADD_NL:
testval = mask = RI_LOWER;
goto do_class;
case NLOWER:
case NLOWER + ADD_NL:
mask = RI_LOWER;
goto do_class;
case UPPER:
case UPPER + ADD_NL:
testval = mask = RI_UPPER;
goto do_class;
case NUPPER:
case NUPPER + ADD_NL:
mask = RI_UPPER;
goto do_class;
case EXACTLY: {
int cu, cl;
// This doesn't do a multi-byte character, because a MULTIBYTECODE
// would have been used for it. It does handle single-byte
// characters, such as latin1.
if (rex.reg_ic) {
cu = mb_toupper(*opnd);
cl = mb_tolower(*opnd);
while (count < maxcount && (*scan == cu || *scan == cl)) {
count++;
scan++;
}
} else {
cu = *opnd;
while (count < maxcount && *scan == cu) {
count++;
scan++;
}
}
break;
}
case MULTIBYTECODE: {
int i, len, cf = 0;
// Safety check (just in case 'encoding' was changed since
// compiling the program).
if ((len = utfc_ptr2len((char *)opnd)) > 1) {
if (rex.reg_ic) {
cf = utf_fold(utf_ptr2char((char *)opnd));
}
while (count < maxcount && utfc_ptr2len((char *)scan) >= len) {
for (i = 0; i < len; i++) {
if (opnd[i] != scan[i]) {
break;
}
}
if (i < len && (!rex.reg_ic
|| utf_fold(utf_ptr2char((char *)scan)) != cf)) {
break;
}
scan += len;
count++;
}
}
}
break;
case ANYOF:
case ANYOF + ADD_NL:
testval = 1;
FALLTHROUGH;
case ANYBUT:
case ANYBUT + ADD_NL:
while (count < maxcount) {
int len;
if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else if ((len = utfc_ptr2len((char *)scan)) > 1) {
if ((cstrchr((char *)opnd, utf_ptr2char((char *)scan)) == NULL) == testval) {
break;
}
scan += len;
} else {
if ((cstrchr((char *)opnd, *scan) == NULL) == testval) {
break;
}
scan++;
}
count++;
}
break;
case NEWL:
while (count < maxcount
&& ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr
&& REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) {
count++;
if (rex.reg_line_lbr) {
ADVANCE_REGINPUT();
} else {
reg_nextline();
}
scan = rex.input;
if (got_int) {
break;
}
}
break;
default: // Oh dear. Called inappropriately.
iemsg(_(e_re_corr));
#ifdef REGEXP_DEBUG
printf("Called regrepeat with op code %d\n", OP(p));
#endif
break;
}
rex.input = scan;
return (int)count;
}
// Push an item onto the regstack.
// Returns pointer to new item. Returns NULL when out of memory.
static regitem_T *regstack_push(regstate_T state, uint8_t *scan)
{
regitem_T *rp;
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
emsg(_(e_maxmempat));
return NULL;
}
ga_grow(&regstack, sizeof(regitem_T));
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len);
rp->rs_state = state;
rp->rs_scan = scan;
regstack.ga_len += (int)sizeof(regitem_T);
return rp;
}
// Pop an item from the regstack.
static void regstack_pop(uint8_t **scan)
{
regitem_T *rp;
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
*scan = rp->rs_scan;
regstack.ga_len -= (int)sizeof(regitem_T);
}
// Save the current subexpr to "bp", so that they can be restored
// later by restore_subexpr().
static void save_subexpr(regbehind_T *bp)
FUNC_ATTR_NONNULL_ALL
{
// When "rex.need_clear_subexpr" is set we don't need to save the values, only
// remember that this flag needs to be set again when restoring.
bp->save_need_clear_subexpr = rex.need_clear_subexpr;
if (rex.need_clear_subexpr) {
return;
}
for (int i = 0; i < NSUBEXP; i++) {
if (REG_MULTI) {
bp->save_start[i].se_u.pos = rex.reg_startpos[i];
bp->save_end[i].se_u.pos = rex.reg_endpos[i];
} else {
bp->save_start[i].se_u.ptr = rex.reg_startp[i];
bp->save_end[i].se_u.ptr = rex.reg_endp[i];
}
}
}
// Restore the subexpr from "bp".
static void restore_subexpr(regbehind_T *bp)
FUNC_ATTR_NONNULL_ALL
{
// Only need to restore saved values when they are not to be cleared.
rex.need_clear_subexpr = bp->save_need_clear_subexpr;
if (rex.need_clear_subexpr) {
return;
}
for (int i = 0; i < NSUBEXP; i++) {
if (REG_MULTI) {
rex.reg_startpos[i] = bp->save_start[i].se_u.pos;
rex.reg_endpos[i] = bp->save_end[i].se_u.pos;
} else {
rex.reg_startp[i] = bp->save_start[i].se_u.ptr;
rex.reg_endp[i] = bp->save_end[i].se_u.ptr;
}
}
}
/// Main matching routine
///
/// Conceptually the strategy is simple: Check to see whether the current node
/// matches, push an item onto the regstack and loop to see whether the rest
/// matches, and then act accordingly. In practice we make some effort to
/// avoid using the regstack, in particular by going through "ordinary" nodes
/// (that don't need to know whether the rest of the match failed) by a nested
/// loop.
///
/// @param scan Current node.
/// @param tm timeout limit or NULL
/// @param timed_out flag set on timeout or NULL
///
/// @return - true when there is a match. Leaves rex.input and rex.lnum
/// just after the last matched character.
/// - false when there is no match. Leaves rex.input and rex.lnum in an
/// undefined state!
static bool regmatch(uint8_t *scan, proftime_T *tm, int *timed_out)
{
uint8_t *next; // Next node.
int op;
int c;
regitem_T *rp;
int no;
int status; // one of the RA_ values:
int tm_count = 0;
// Make "regstack" and "backpos" empty. They are allocated and freed in
// bt_regexec_both() to reduce malloc()/free() calls.
regstack.ga_len = 0;
backpos.ga_len = 0;
// Repeat until "regstack" is empty.
for (;;) {
// Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q".
// Allow interrupting them with CTRL-C.
reg_breakcheck();
#ifdef REGEXP_DEBUG
if (scan != NULL && regnarrate) {
os_errmsg((char *)regprop(scan));
os_errmsg("(\n");
}
#endif
// Repeat for items that can be matched sequentially, without using the
// regstack.
for (;;) {
if (got_int || scan == NULL) {
status = RA_FAIL;
break;
}
// Check for timeout once in a 100 times to avoid overhead.
if (tm != NULL && ++tm_count == 100) {
tm_count = 0;
if (profile_passed_limit(*tm)) {
if (timed_out != NULL) {
*timed_out = true;
}
status = RA_FAIL;
break;
}
}
status = RA_CONT;
#ifdef REGEXP_DEBUG
if (regnarrate) {
os_errmsg((char *)regprop(scan));
os_errmsg("...\n");
if (re_extmatch_in != NULL) {
int i;
os_errmsg(_("External submatches:\n"));
for (i = 0; i < NSUBEXP; i++) {
os_errmsg(" \"");
if (re_extmatch_in->matches[i] != NULL) {
os_errmsg((char *)re_extmatch_in->matches[i]);
}
os_errmsg("\"\n");
}
}
}
#endif
next = regnext(scan);
op = OP(scan);
// Check for character class with NL added.
if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI
&& *rex.input == NUL && rex.lnum <= rex.reg_maxline) {
reg_nextline();
} else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') {
ADVANCE_REGINPUT();
} else {
if (WITH_NL(op)) {
op -= ADD_NL;
}
c = utf_ptr2char((char *)rex.input);
switch (op) {
case BOL:
if (rex.input != rex.line) {
status = RA_NOMATCH;
}
break;
case EOL:
if (c != NUL) {
status = RA_NOMATCH;
}
break;
case RE_BOF:
// We're not at the beginning of the file when below the first
// line where we started, not at the start of the line or we
// didn't start at the first line of the buffer.
if (rex.lnum != 0 || rex.input != rex.line
|| (REG_MULTI && rex.reg_firstlnum > 1)) {
status = RA_NOMATCH;
}
break;
case RE_EOF:
if (rex.lnum != rex.reg_maxline || c != NUL) {
status = RA_NOMATCH;
}
break;
case CURSOR:
// Check if the buffer is in a window and compare the
// rex.reg_win->w_cursor position to the match position.
if (rex.reg_win == NULL
|| (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum)
|| ((colnr_T)(rex.input - rex.line) !=
rex.reg_win->w_cursor.col)) {
status = RA_NOMATCH;
}
break;
case RE_MARK:
// Compare the mark position to the match position.
{
int mark = OPERAND(scan)[0];
int cmp = OPERAND(scan)[1];
pos_T *pos;
size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0;
fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, mark);
// Line may have been freed, get it again.
if (REG_MULTI) {
rex.line = (uint8_t *)reg_getline(rex.lnum);
rex.input = rex.line + col;
}
if (fm == NULL // mark doesn't exist
|| fm->mark.lnum <= 0) { // mark isn't set in reg_buf
status = RA_NOMATCH;
} else {
pos = &fm->mark;
const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
&& pos->col == MAXCOL
? (colnr_T)strlen((char *)reg_getline(pos->lnum - rex.reg_firstlnum))
: pos->col;
if (pos->lnum == rex.lnum + rex.reg_firstlnum
? (pos_col == (colnr_T)(rex.input - rex.line)
? (cmp == '<' || cmp == '>')
: (pos_col < (colnr_T)(rex.input - rex.line)
? cmp != '>'
: cmp != '<'))
: (pos->lnum < rex.lnum + rex.reg_firstlnum
? cmp != '>'
: cmp != '<')) {
status = RA_NOMATCH;
}
}
}
break;
case RE_VISUAL:
if (!reg_match_visual()) {
status = RA_NOMATCH;
}
break;
case RE_LNUM:
assert(rex.lnum + rex.reg_firstlnum >= 0
&& (uintmax_t)(rex.lnum + rex.reg_firstlnum) <= UINT32_MAX);
if (!REG_MULTI
|| !re_num_cmp((uint32_t)(rex.lnum + rex.reg_firstlnum), scan)) {
status = RA_NOMATCH;
}
break;
case RE_COL:
assert(rex.input - rex.line + 1 >= 0
&& (uintmax_t)(rex.input - rex.line + 1) <= UINT32_MAX);
if (!re_num_cmp((uint32_t)(rex.input - rex.line + 1), scan)) {
status = RA_NOMATCH;
}
break;
case RE_VCOL:
if (!re_num_cmp(win_linetabsize(rex.reg_win == NULL
? curwin : rex.reg_win,
rex.reg_firstlnum + rex.lnum,
(char *)rex.line,
(colnr_T)(rex.input - rex.line)) + 1,
scan)) {
status = RA_NOMATCH;
}
break;
case BOW: // \<word; rex.input points to w
if (c == NUL) { // Can't match at end of line
status = RA_NOMATCH;
} else {
// Get class of current and previous char (if it exists).
const int this_class =
mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
if (this_class <= 1) {
status = RA_NOMATCH; // Not on a word at all.
} else if (reg_prev_class() == this_class) {
status = RA_NOMATCH; // Previous char is in same word.
}
}
break;
case EOW: // word\>; rex.input points after d
if (rex.input == rex.line) { // Can't match at start of line
status = RA_NOMATCH;
} else {
int this_class, prev_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1) {
status = RA_NOMATCH;
}
}
break; // Matched with EOW
case ANY:
// ANY does not match new lines.
if (c == NUL) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case IDENT:
if (!vim_isIDc(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SIDENT:
if (ascii_isdigit(*rex.input) || !vim_isIDc(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case KWORD:
if (!vim_iswordp_buf((char *)rex.input, rex.reg_buf)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SKWORD:
if (ascii_isdigit(*rex.input)
|| !vim_iswordp_buf((char *)rex.input, rex.reg_buf)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case FNAME:
if (!vim_isfilec(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SFNAME:
if (ascii_isdigit(*rex.input) || !vim_isfilec(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case PRINT:
if (!vim_isprintc(utf_ptr2char((char *)rex.input))) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SPRINT:
if (ascii_isdigit(*rex.input) || !vim_isprintc(utf_ptr2char((char *)rex.input))) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case WHITE:
if (!ascii_iswhite(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NWHITE:
if (c == NUL || ascii_iswhite(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case DIGIT:
if (!ri_digit(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NDIGIT:
if (c == NUL || ri_digit(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case HEX:
if (!ri_hex(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NHEX:
if (c == NUL || ri_hex(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case OCTAL:
if (!ri_octal(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NOCTAL:
if (c == NUL || ri_octal(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case WORD:
if (!ri_word(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NWORD:
if (c == NUL || ri_word(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case HEAD:
if (!ri_head(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NHEAD:
if (c == NUL || ri_head(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case ALPHA:
if (!ri_alpha(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NALPHA:
if (c == NUL || ri_alpha(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case LOWER:
if (!ri_lower(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NLOWER:
if (c == NUL || ri_lower(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case UPPER:
if (!ri_upper(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case NUPPER:
if (c == NUL || ri_upper(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case EXACTLY: {
int len;
uint8_t *opnd;
opnd = OPERAND(scan);
// Inline the first byte, for speed.
if (*opnd != *rex.input
&& (!rex.reg_ic)) {
status = RA_NOMATCH;
} else if (*opnd == NUL) {
// match empty string always works; happens when "~" is
// empty.
} else {
if (opnd[1] == NUL && !rex.reg_ic) {
len = 1; // matched a single byte above
} else {
// Need to match first byte again for multi-byte.
len = (int)strlen((char *)opnd);
if (cstrncmp((char *)opnd, (char *)rex.input, &len) != 0) {
status = RA_NOMATCH;
}
}
// Check for following composing character, unless %C
// follows (skips over all composing chars).
if (status != RA_NOMATCH
&& utf_composinglike((char *)rex.input, (char *)rex.input + len)
&& !rex.reg_icombine
&& OP(next) != RE_COMPOSING) {
// raaron: This code makes a composing character get
// ignored, which is the correct behavior (sometimes)
// for voweled Hebrew texts.
status = RA_NOMATCH;
}
if (status != RA_NOMATCH) {
rex.input += len;
}
}
}
break;
case ANYOF:
case ANYBUT:
if (c == NUL) {
status = RA_NOMATCH;
} else if ((cstrchr((char *)OPERAND(scan), c) == NULL) == (op == ANYOF)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case MULTIBYTECODE: {
int i, len;
const uint8_t *opnd = OPERAND(scan);
// Safety check (just in case 'encoding' was changed since
// compiling the program).
if ((len = utfc_ptr2len((char *)opnd)) < 2) {
status = RA_NOMATCH;
break;
}
const int opndc = utf_ptr2char((char *)opnd);
if (utf_iscomposing(opndc)) {
// When only a composing char is given match at any
// position where that composing char appears.
status = RA_NOMATCH;
for (i = 0; rex.input[i] != NUL;
i += utf_ptr2len((char *)rex.input + i)) {
const int inpc = utf_ptr2char((char *)rex.input + i);
if (!utf_iscomposing(inpc)) {
if (i > 0) {
break;
}
} else if (opndc == inpc) {
// Include all following composing chars.
len = i + utfc_ptr2len((char *)rex.input + i);
status = RA_MATCH;
break;
}
}
} else {
for (i = 0; i < len; i++) {
if (opnd[i] != rex.input[i]) {
status = RA_NOMATCH;
break;
}
}
}
rex.input += len;
}
break;
case RE_COMPOSING:
// Skip composing characters.
while (utf_iscomposing(utf_ptr2char((char *)rex.input))) {
MB_CPTR_ADV(rex.input);
}
break;
case NOTHING:
break;
case BACK: {
int i;
// When we run into BACK we need to check if we don't keep
// looping without matching any input. The second and later
// times a BACK is encountered it fails if the input is still
// at the same position as the previous time.
// The positions are stored in "backpos" and found by the
// current value of "scan", the position in the RE program.
backpos_T *bp = (backpos_T *)backpos.ga_data;
for (i = 0; i < backpos.ga_len; i++) {
if (bp[i].bp_scan == scan) {
break;
}
}
if (i == backpos.ga_len) {
backpos_T *p = GA_APPEND_VIA_PTR(backpos_T, &backpos);
p->bp_scan = scan;
} else if (reg_save_equal(&bp[i].bp_pos)) {
// Still at same position as last time, fail.
status = RA_NOMATCH;
}
assert(status != RA_FAIL);
if (status != RA_NOMATCH) {
reg_save(&bp[i].bp_pos, &backpos);
}
}
break;
case MOPEN + 0: // Match start: \zs
case MOPEN + 1: // \(
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
no = op - MOPEN;
cleanup_subexpr();
rp = regstack_push(RS_MOPEN, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)no;
save_se(&rp->rs_un.sesave, &rex.reg_startpos[no],
&rex.reg_startp[no]);
// We simply continue and handle the result when done.
}
break;
case NOPEN: // \%(
case NCLOSE: // \) after \%(
if (regstack_push(RS_NOPEN, scan) == NULL) {
status = RA_FAIL;
}
// We simply continue and handle the result when done.
break;
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
no = op - ZOPEN;
cleanup_zsubexpr();
rp = regstack_push(RS_ZOPEN, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)no;
save_se(&rp->rs_un.sesave, &reg_startzpos[no],
&reg_startzp[no]);
// We simply continue and handle the result when done.
}
break;
case MCLOSE + 0: // Match end: \ze
case MCLOSE + 1: // \)
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
no = op - MCLOSE;
cleanup_subexpr();
rp = regstack_push(RS_MCLOSE, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)no;
save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]);
// We simply continue and handle the result when done.
}
break;
case ZCLOSE + 1: // \) after \z(
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
no = op - ZCLOSE;
cleanup_zsubexpr();
rp = regstack_push(RS_ZCLOSE, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)no;
save_se(&rp->rs_un.sesave, &reg_endzpos[no],
&reg_endzp[no]);
// We simply continue and handle the result when done.
}
break;
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9: {
int len;
no = op - BACKREF;
cleanup_subexpr();
if (!REG_MULTI) { // Single-line regexp
if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) {
// Backref was not set: Match an empty string.
len = 0;
} else {
// Compare current input with back-ref in the same line.
len = (int)(rex.reg_endp[no] - rex.reg_startp[no]);
if (cstrncmp((char *)rex.reg_startp[no], (char *)rex.input, &len) != 0) {
status = RA_NOMATCH;
}
}
} else { // Multi-line regexp
if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) {
// Backref was not set: Match an empty string.
len = 0;
} else {
if (rex.reg_startpos[no].lnum == rex.lnum
&& rex.reg_endpos[no].lnum == rex.lnum) {
// Compare back-ref within the current line.
len = rex.reg_endpos[no].col - rex.reg_startpos[no].col;
if (cstrncmp((char *)rex.line + rex.reg_startpos[no].col,
(char *)rex.input, &len) != 0) {
status = RA_NOMATCH;
}
} else {
// Messy situation: Need to compare between two lines.
int r = match_with_backref(rex.reg_startpos[no].lnum,
rex.reg_startpos[no].col,
rex.reg_endpos[no].lnum,
rex.reg_endpos[no].col,
&len);
if (r != RA_MATCH) {
status = r;
}
}
}
}
// Matched the backref, skip over it.
rex.input += len;
}
break;
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
cleanup_zsubexpr();
no = op - ZREF;
if (re_extmatch_in != NULL
&& re_extmatch_in->matches[no] != NULL) {
int len = (int)strlen((char *)re_extmatch_in->matches[no]);
if (cstrncmp((char *)re_extmatch_in->matches[no], (char *)rex.input, &len) != 0) {
status = RA_NOMATCH;
} else {
rex.input += len;
}
} else {
// Backref was not set: Match an empty string.
}
break;
case BRANCH:
if (OP(next) != BRANCH) { // No choice.
next = OPERAND(scan); // Avoid recursion.
} else {
rp = regstack_push(RS_BRANCH, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
status = RA_BREAK; // rest is below
}
}
break;
case BRACE_LIMITS:
if (OP(next) == BRACE_SIMPLE) {
bl_minval = OPERAND_MIN(scan);
bl_maxval = OPERAND_MAX(scan);
} else if (OP(next) >= BRACE_COMPLEX
&& OP(next) < BRACE_COMPLEX + 10) {
no = OP(next) - BRACE_COMPLEX;
brace_min[no] = OPERAND_MIN(scan);
brace_max[no] = OPERAND_MAX(scan);
brace_count[no] = 0;
} else {
internal_error("BRACE_LIMITS");
status = RA_FAIL;
}
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
no = op - BRACE_COMPLEX;
brace_count[no]++;
// If not matched enough times yet, try one more
if (brace_count[no] <= (brace_min[no] <= brace_max[no]
? brace_min[no] : brace_max[no])) {
rp = regstack_push(RS_BRCPLX_MORE, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
// We continue and handle the result when done.
}
break;
}
// If matched enough times, may try matching some more
if (brace_min[no] <= brace_max[no]) {
// Range is the normal way around, use longest match
if (brace_count[no] <= brace_max[no]) {
rp = regstack_push(RS_BRCPLX_LONG, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
// We continue and handle the result when done.
}
}
} else {
// Range is backwards, use shortest match first
if (brace_count[no] <= brace_min[no]) {
rp = regstack_push(RS_BRCPLX_SHORT, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
reg_save(&rp->rs_un.regsave, &backpos);
// We continue and handle the result when done.
}
}
}
break;
case BRACE_SIMPLE:
case STAR:
case PLUS: {
regstar_T rst;
// Lookahead to avoid useless match attempts when we know
// what character comes next.
if (OP(next) == EXACTLY) {
rst.nextb = *OPERAND(next);
if (rex.reg_ic) {
if (mb_isupper(rst.nextb)) {
rst.nextb_ic = mb_tolower(rst.nextb);
} else {
rst.nextb_ic = mb_toupper(rst.nextb);
}
} else {
rst.nextb_ic = rst.nextb;
}
} else {
rst.nextb = NUL;
rst.nextb_ic = NUL;
}
if (op != BRACE_SIMPLE) {
rst.minval = (op == STAR) ? 0 : 1;
rst.maxval = MAX_LIMIT;
} else {
rst.minval = bl_minval;
rst.maxval = bl_maxval;
}
// When maxval > minval, try matching as much as possible, up
// to maxval. When maxval < minval, try matching at least the
// minimal number (since the range is backwards, that's also
// maxval!).
rst.count = regrepeat(OPERAND(scan), rst.maxval);
if (got_int) {
status = RA_FAIL;
break;
}
if (rst.minval <= rst.maxval
? rst.count >= rst.minval : rst.count >= rst.maxval) {
// It could match. Prepare for trying to match what
// follows. The code is below. Parameters are stored in
// a regstar_T on the regstack.
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
emsg(_(e_maxmempat));
status = RA_FAIL;
} else {
ga_grow(&regstack, sizeof(regstar_T));
regstack.ga_len += (int)sizeof(regstar_T);
rp = regstack_push(rst.minval <= rst.maxval ? RS_STAR_LONG : RS_STAR_SHORT, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
*(((regstar_T *)rp) - 1) = rst;
status = RA_BREAK; // skip the restore bits
}
}
} else {
status = RA_NOMATCH;
}
}
break;
case NOMATCH:
case MATCH:
case SUBPAT:
rp = regstack_push(RS_NOMATCH, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = (int16_t)op;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
// We continue and handle the result when done.
}
break;
case BEHIND:
case NOBEHIND:
// Need a bit of room to store extra positions.
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
emsg(_(e_maxmempat));
status = RA_FAIL;
} else {
ga_grow(&regstack, sizeof(regbehind_T));
regstack.ga_len += (int)sizeof(regbehind_T);
rp = regstack_push(RS_BEHIND1, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
// Need to save the subexpr to be able to restore them
// when there is a match but we don't use it.
save_subexpr(((regbehind_T *)rp) - 1);
rp->rs_no = (int16_t)op;
reg_save(&rp->rs_un.regsave, &backpos);
// First try if what follows matches. If it does then we
// check the behind match by looping.
}
}
break;
case BHPOS:
if (REG_MULTI) {
if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line)
|| behind_pos.rs_u.pos.lnum != rex.lnum) {
status = RA_NOMATCH;
}
} else if (behind_pos.rs_u.ptr != rex.input) {
status = RA_NOMATCH;
}
break;
case NEWL:
if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) {
status = RA_NOMATCH;
} else if (rex.reg_line_lbr) {
ADVANCE_REGINPUT();
} else {
reg_nextline();
}
break;
case END:
status = RA_MATCH; // Success!
break;
default:
iemsg(_(e_re_corr));
#ifdef REGEXP_DEBUG
printf("Illegal op code %d\n", op);
#endif
status = RA_FAIL;
break;
}
}
// If we can't continue sequentially, break the inner loop.
if (status != RA_CONT) {
break;
}
// Continue in inner loop, advance to next item.
scan = next;
} // end of inner loop
// If there is something on the regstack execute the code for the state.
// If the state is popped then loop and use the older state.
while (!GA_EMPTY(&regstack) && status != RA_FAIL) {
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
switch (rp->rs_state) {
case RS_NOPEN:
// Result is passed on as-is, simply pop the state.
regstack_pop(&scan);
break;
case RS_MOPEN:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no],
&rex.reg_startp[rp->rs_no]);
}
regstack_pop(&scan);
break;
case RS_ZOPEN:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
restore_se(&rp->rs_un.sesave, &reg_startzpos[rp->rs_no],
&reg_startzp[rp->rs_no]);
}
regstack_pop(&scan);
break;
case RS_MCLOSE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no],
&rex.reg_endp[rp->rs_no]);
}
regstack_pop(&scan);
break;
case RS_ZCLOSE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
restore_se(&rp->rs_un.sesave, &reg_endzpos[rp->rs_no],
&reg_endzp[rp->rs_no]);
}
regstack_pop(&scan);
break;
case RS_BRANCH:
if (status == RA_MATCH) {
// this branch matched, use it
regstack_pop(&scan);
} else {
if (status != RA_BREAK) {
// After a non-matching branch: try next one.
reg_restore(&rp->rs_un.regsave, &backpos);
scan = rp->rs_scan;
}
if (scan == NULL || OP(scan) != BRANCH) {
// no more branches, didn't find a match
status = RA_NOMATCH;
regstack_pop(&scan);
} else {
// Prepare to try a branch.
rp->rs_scan = regnext(scan);
reg_save(&rp->rs_un.regsave, &backpos);
scan = OPERAND(scan);
}
}
break;
case RS_BRCPLX_MORE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
reg_restore(&rp->rs_un.regsave, &backpos);
brace_count[rp->rs_no]--; // decrement match count
}
regstack_pop(&scan);
break;
case RS_BRCPLX_LONG:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
// There was no match, but we did find enough matches.
reg_restore(&rp->rs_un.regsave, &backpos);
brace_count[rp->rs_no]--;
// continue with the items after "\{}"
status = RA_CONT;
}
regstack_pop(&scan);
if (status == RA_CONT) {
scan = regnext(scan);
}
break;
case RS_BRCPLX_SHORT:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
// There was no match, try to match one more item.
reg_restore(&rp->rs_un.regsave, &backpos);
}
regstack_pop(&scan);
if (status == RA_NOMATCH) {
scan = OPERAND(scan);
status = RA_CONT;
}
break;
case RS_NOMATCH:
// Pop the state. If the operand matches for NOMATCH or
// doesn't match for MATCH/SUBPAT, we fail. Otherwise backup,
// except for SUBPAT, and continue with the next item.
if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH)) {
status = RA_NOMATCH;
} else {
status = RA_CONT;
if (rp->rs_no != SUBPAT) { // zero-width
reg_restore(&rp->rs_un.regsave, &backpos);
}
}
regstack_pop(&scan);
if (status == RA_CONT) {
scan = regnext(scan);
}
break;
case RS_BEHIND1:
if (status == RA_NOMATCH) {
regstack_pop(&scan);
regstack.ga_len -= (int)sizeof(regbehind_T);
} else {
// The stuff after BEHIND/NOBEHIND matches. Now try if
// the behind part does (not) match before the current
// position in the input. This must be done at every
// position in the input and checking if the match ends at
// the current position.
// save the position after the found match for next
reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos);
// Start looking for a match with operand at the current
// position. Go back one character until we find the
// result, hitting the start of the line or the previous
// line (for multi-line matching).
// Set behind_pos to where the match should end, BHPOS
// will match it. Save the current value.
(((regbehind_T *)rp) - 1)->save_behind = behind_pos;
behind_pos = rp->rs_un.regsave;
rp->rs_state = RS_BEHIND2;
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
}
break;
case RS_BEHIND2:
// Looping for BEHIND / NOBEHIND match.
if (status == RA_MATCH && reg_save_equal(&behind_pos)) {
// found a match that ends where "next" started
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == BEHIND) {
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
} else {
// But we didn't want a match. Need to restore the
// subexpr, because what follows matched, so they have
// been set.
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
regstack_pop(&scan);
regstack.ga_len -= (int)sizeof(regbehind_T);
} else {
long limit;
// No match or a match that doesn't end where we want it: Go
// back one character. May go to previous line once.
no = OK;
limit = OPERAND_MIN(rp->rs_scan);
if (REG_MULTI) {
if (limit > 0
&& ((rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
? (colnr_T)strlen((char *)rex.line)
: behind_pos.rs_u.pos.col)
- rp->rs_un.regsave.rs_u.pos.col >= limit)) {
no = FAIL;
} else if (rp->rs_un.regsave.rs_u.pos.col == 0) {
if (rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
|| reg_getline(--rp->rs_un.regsave.rs_u.pos.lnum)
== NULL) {
no = FAIL;
} else {
reg_restore(&rp->rs_un.regsave, &backpos);
rp->rs_un.regsave.rs_u.pos.col =
(colnr_T)strlen((char *)rex.line);
}
} else {
const uint8_t *const line =
(uint8_t *)reg_getline(rp->rs_un.regsave.rs_u.pos.lnum);
rp->rs_un.regsave.rs_u.pos.col -=
utf_head_off((char *)line,
(char *)line + rp->rs_un.regsave.rs_u.pos.col - 1)
+ 1;
}
} else {
if (rp->rs_un.regsave.rs_u.ptr == rex.line) {
no = FAIL;
} else {
MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr);
if (limit > 0
&& (behind_pos.rs_u.ptr - rp->rs_un.regsave.rs_u.ptr) > (ptrdiff_t)limit) {
no = FAIL;
}
}
}
if (no == OK) {
// Advanced, prepare for finding match again.
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
if (status == RA_MATCH) {
// We did match, so subexpr may have been changed,
// need to restore them for the next try.
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
} else {
// Can't advance. For NOBEHIND that's a match.
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == NOBEHIND) {
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
status = RA_MATCH;
} else {
// We do want a proper match. Need to restore the
// subexpr if we had a match, because they may have
// been set.
if (status == RA_MATCH) {
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
}
regstack_pop(&scan);
regstack.ga_len -= (int)sizeof(regbehind_T);
}
}
break;
case RS_STAR_LONG:
case RS_STAR_SHORT: {
regstar_T *rst = ((regstar_T *)rp) - 1;
if (status == RA_MATCH) {
regstack_pop(&scan);
regstack.ga_len -= (int)sizeof(regstar_T);
break;
}
// Tried once already, restore input pointers.
if (status != RA_BREAK) {
reg_restore(&rp->rs_un.regsave, &backpos);
}
// Repeat until we found a position where it could match.
for (;;) {
if (status != RA_BREAK) {
// Tried first position already, advance.
if (rp->rs_state == RS_STAR_LONG) {
// Trying for longest match, but couldn't or
// didn't match -- back up one char.
if (--rst->count < rst->minval) {
break;
}
if (rex.input == rex.line) {
// backup to last char of previous line
if (rex.lnum == 0) {
status = RA_NOMATCH;
break;
}
rex.lnum--;
rex.line = (uint8_t *)reg_getline(rex.lnum);
// Just in case regrepeat() didn't count right.
if (rex.line == NULL) {
break;
}
rex.input = rex.line + strlen((char *)rex.line);
reg_breakcheck();
} else {
MB_PTR_BACK(rex.line, rex.input);
}
} else {
// Range is backwards, use shortest match first.
// Careful: maxval and minval are exchanged!
// Couldn't or didn't match: try advancing one
// char.
if (rst->count == rst->minval
|| regrepeat(OPERAND(rp->rs_scan), 1L) == 0) {
break;
}
rst->count++;
}
if (got_int) {
break;
}
} else {
status = RA_NOMATCH;
}
// If it could match, try it.
if (rst->nextb == NUL || *rex.input == rst->nextb
|| *rex.input == rst->nextb_ic) {
reg_save(&rp->rs_un.regsave, &backpos);
scan = regnext(rp->rs_scan);
status = RA_CONT;
break;
}
}
if (status != RA_CONT) {
// Failed.
regstack_pop(&scan);
regstack.ga_len -= (int)sizeof(regstar_T);
status = RA_NOMATCH;
}
}
break;
}
// If we want to continue the inner loop or didn't pop a state
// continue matching loop
if (status == RA_CONT || rp == (regitem_T *)
((char *)regstack.ga_data + regstack.ga_len) - 1) {
break;
}
}
// May need to continue with the inner loop, starting at "scan".
if (status == RA_CONT) {
continue;
}
// If the regstack is empty or something failed we are done.
if (GA_EMPTY(&regstack) || status == RA_FAIL) {
if (scan == NULL) {
// We get here only if there's trouble -- normally "case END" is
// the terminating point.
iemsg(_(e_re_corr));
#ifdef REGEXP_DEBUG
printf("Premature EOL\n");
#endif
}
return status == RA_MATCH;
}
} // End of loop until the regstack is empty.
// NOTREACHED
}
/// Try match of "prog" with at rex.line["col"].
///
/// @param tm timeout limit or NULL
/// @param timed_out flag set on timeout or NULL
///
/// @return 0 for failure, or number of lines contained in the match.
static long regtry(bt_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out)
{
rex.input = rex.line + col;
rex.need_clear_subexpr = true;
// Clear the external match subpointers if necessaey.
rex.need_clear_zsubexpr = (prog->reghasz == REX_SET);
if (regmatch(prog->program + 1, tm, timed_out) == 0) {
return 0;
}
cleanup_subexpr();
if (REG_MULTI) {
if (rex.reg_startpos[0].lnum < 0) {
rex.reg_startpos[0].lnum = 0;
rex.reg_startpos[0].col = col;
}
if (rex.reg_endpos[0].lnum < 0) {
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
} else {
// Use line number of "\ze".
rex.lnum = rex.reg_endpos[0].lnum;
}
} else {
if (rex.reg_startp[0] == NULL) {
rex.reg_startp[0] = rex.line + col;
}
if (rex.reg_endp[0] == NULL) {
rex.reg_endp[0] = rex.input;
}
}
// Package any found \z(...\) matches for export. Default is none.
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET) {
int i;
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
for (i = 0; i < NSUBEXP; i++) {
if (REG_MULTI) {
// Only accept single line matches.
if (reg_startzpos[i].lnum >= 0
&& reg_endzpos[i].lnum == reg_startzpos[i].lnum
&& reg_endzpos[i].col >= reg_startzpos[i].col) {
re_extmatch_out->matches[i] =
(uint8_t *)xstrnsave((char *)reg_getline(reg_startzpos[i].lnum) + reg_startzpos[i].col,
(size_t)(reg_endzpos[i].col - reg_startzpos[i].col));
}
} else {
if (reg_startzp[i] != NULL && reg_endzp[i] != NULL) {
re_extmatch_out->matches[i] =
(uint8_t *)xstrnsave((char *)reg_startzp[i], (size_t)(reg_endzp[i] - reg_startzp[i]));
}
}
}
}
return 1 + rex.lnum;
}
/// Match a regexp against a string ("line" points to the string) or multiple
/// lines (if "line" is NULL, use reg_getline()).
///
/// @param startcol column to start looking for match
/// @param tm timeout limit or NULL
/// @param timed_out flag set on timeout or NULL
///
/// @return 0 for failure, or number of lines contained in the match.
static long bt_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out)
{
bt_regprog_T *prog;
uint8_t *s;
colnr_T col = startcol;
long retval = 0L;
// Create "regstack" and "backpos" if they are not allocated yet.
// We allocate *_INITIAL amount of bytes first and then set the grow size
// to much bigger value to avoid many malloc calls in case of deep regular
// expressions.
if (regstack.ga_data == NULL) {
// Use an item size of 1 byte, since we push different things
// onto the regstack.
ga_init(&regstack, 1, REGSTACK_INITIAL);
ga_grow(&regstack, REGSTACK_INITIAL);
ga_set_growsize(&regstack, REGSTACK_INITIAL * 8);
}
if (backpos.ga_data == NULL) {
ga_init(&backpos, sizeof(backpos_T), BACKPOS_INITIAL);
ga_grow(&backpos, BACKPOS_INITIAL);
ga_set_growsize(&backpos, BACKPOS_INITIAL * 8);
}
if (REG_MULTI) {
prog = (bt_regprog_T *)rex.reg_mmatch->regprog;
line = (uint8_t *)reg_getline((linenr_T)0);
rex.reg_startpos = rex.reg_mmatch->startpos;
rex.reg_endpos = rex.reg_mmatch->endpos;
} else {
prog = (bt_regprog_T *)rex.reg_match->regprog;
rex.reg_startp = (uint8_t **)rex.reg_match->startp;
rex.reg_endp = (uint8_t **)rex.reg_match->endp;
}
// Be paranoid...
if (prog == NULL || line == NULL) {
iemsg(_(e_null));
goto theend;
}
// Check validity of program.
if (prog_magic_wrong()) {
goto theend;
}
// If the start column is past the maximum column: no need to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
goto theend;
}
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
if (prog->regflags & RF_ICASE) {
rex.reg_ic = true;
} else if (prog->regflags & RF_NOICASE) {
rex.reg_ic = false;
}
// If pattern contains "\Z" overrule value of rex.reg_icombine
if (prog->regflags & RF_ICOMBINE) {
rex.reg_icombine = true;
}
// If there is a "must appear" string, look for it.
if (prog->regmust != NULL) {
int c = utf_ptr2char((char *)prog->regmust);
s = line + col;
// This is used very often, esp. for ":global". Use two versions of
// the loop to avoid overhead of conditions.
if (!rex.reg_ic) {
while ((s = (uint8_t *)vim_strchr((char *)s, c)) != NULL) {
if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) {
break; // Found it.
}
MB_PTR_ADV(s);
}
} else {
while ((s = (uint8_t *)cstrchr((char *)s, c)) != NULL) {
if (cstrncmp((char *)s, (char *)prog->regmust, &prog->regmlen) == 0) {
break; // Found it.
}
MB_PTR_ADV(s);
}
}
if (s == NULL) { // Not present.
goto theend;
}
}
rex.line = line;
rex.lnum = 0;
reg_toolong = false;
// Simplest case: Anchored match need be tried only once.
if (prog->reganch) {
int c = utf_ptr2char((char *)rex.line + col);
if (prog->regstart == NUL
|| prog->regstart == c
|| (rex.reg_ic
&& (utf_fold(prog->regstart) == utf_fold(c)
|| (c < 255 && prog->regstart < 255
&& mb_tolower(prog->regstart) == mb_tolower(c))))) {
retval = regtry(prog, col, tm, timed_out);
} else {
retval = 0;
}
} else {
int tm_count = 0;
// Messy cases: unanchored match.
while (!got_int) {
if (prog->regstart != NUL) {
// Skip until the char we know it must start with.
s = (uint8_t *)cstrchr((char *)rex.line + col, prog->regstart);
if (s == NULL) {
retval = 0;
break;
}
col = (int)(s - rex.line);
}
// Check for maximum column to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
retval = 0;
break;
}
retval = regtry(prog, col, tm, timed_out);
if (retval > 0) {
break;
}
// if not currently on the first line, get it again
if (rex.lnum != 0) {
rex.lnum = 0;
rex.line = (uint8_t *)reg_getline((linenr_T)0);
}
if (rex.line[col] == NUL) {
break;
}
col += utfc_ptr2len((char *)rex.line + col);
// Check for timeout once in a twenty times to avoid overhead.
if (tm != NULL && ++tm_count == 20) {
tm_count = 0;
if (profile_passed_limit(*tm)) {
if (timed_out != NULL) {
*timed_out = true;
}
break;
}
}
}
}
theend:
// Free "reg_tofree" when it's a bit big.
// Free regstack and backpos if they are bigger than their initial size.
if (reg_tofreelen > 400) {
XFREE_CLEAR(reg_tofree);
}
if (regstack.ga_maxlen > REGSTACK_INITIAL) {
ga_clear(&regstack);
}
if (backpos.ga_maxlen > BACKPOS_INITIAL) {
ga_clear(&backpos);
}
if (retval > 0) {
// Make sure the end is never before the start. Can happen when \zs
// and \ze are used.
if (REG_MULTI) {
const lpos_T *const start = &rex.reg_mmatch->startpos[0];
const lpos_T *const end = &rex.reg_mmatch->endpos[0];
if (end->lnum < start->lnum
|| (end->lnum == start->lnum && end->col < start->col)) {
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
}
// startpos[0] may be set by "\zs", also return the column where
// the whole pattern matched.
rex.reg_mmatch->rmm_matchcol = col;
} else {
if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) {
rex.reg_match->endp[0] = rex.reg_match->startp[0];
}
// startpos[0] may be set by "\zs", also return the column where
// the whole pattern matched.
rex.reg_match->rm_matchcol = col;
}
}
return retval;
}
/// Match a regexp against a string.
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
/// Uses curbuf for line count and 'iskeyword'.
/// If "line_lbr" is true, consider a "\n" in "line" to be a line break.
///
/// @param line string to match against
/// @param col column to start looking for match
///
/// @return 0 for failure, number of lines contained in the match otherwise.
static int bt_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr)
{
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_line_lbr = line_lbr;
rex.reg_buf = curbuf;
rex.reg_win = NULL;
rex.reg_ic = rmp->rm_ic;
rex.reg_icombine = false;
rex.reg_nobreak = rmp->regprog->re_flags & RE_NOBREAK;
rex.reg_maxcol = 0;
long r = bt_regexec_both(line, col, NULL, NULL);
assert(r <= INT_MAX);
return (int)r;
}
/// Matches a regexp against multiple lines.
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
/// Uses curbuf for line count and 'iskeyword'.
///
/// @param win Window in which to search or NULL
/// @param buf Buffer in which to search
/// @param lnum Number of line to start looking for match
/// @param col Column to start looking for match
/// @param tm Timeout limit or NULL
///
/// @return zero if there is no match and number of lines contained in the match
/// otherwise.
static long bt_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
proftime_T *tm, int *timed_out)
{
init_regexec_multi(rmp, win, buf, lnum);
return bt_regexec_both(NULL, col, tm, timed_out);
}
// Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL.
static int re_num_cmp(uint32_t val, uint8_t *scan)
{
uint32_t n = (uint32_t)OPERAND_MIN(scan);
if (OPERAND_CMP(scan) == '>') {
return val > n;
}
if (OPERAND_CMP(scan) == '<') {
return val < n;
}
return val == n;
}
#ifdef BT_REGEXP_DUMP
// regdump - dump a regexp onto stdout in vaguely comprehensible form
static void regdump(uint8_t *pattern, bt_regprog_T *r)
{
uint8_t *s;
int op = EXACTLY; // Arbitrary non-END op.
uint8_t *next;
uint8_t *end = NULL;
FILE *f;
# ifdef BT_REGEXP_LOG
f = fopen("bt_regexp_log.log", "a");
# else
f = stdout;
# endif
if (f == NULL) {
return;
}
fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n",
pattern);
s = r->program + 1;
// Loop until we find the END that isn't before a referred next (an END
// can also appear in a NOMATCH operand).
while (op != END || s <= end) {
op = OP(s);
fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); // Where, what.
next = regnext(s);
if (next == NULL) { // Next ptr.
fprintf(f, "(0)");
} else {
fprintf(f, "(%d)", (int)((s - r->program) + (next - s)));
}
if (end < next) {
end = next;
}
if (op == BRACE_LIMITS) {
// Two ints
fprintf(f, " minval %" PRId64 ", maxval %" PRId64,
(int64_t)OPERAND_MIN(s), (int64_t)OPERAND_MAX(s));
s += 8;
} else if (op == BEHIND || op == NOBEHIND) {
// one int
fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s));
s += 4;
} else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) {
// one int plus comparator
fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s));
s += 5;
}
s += 3;
if (op == ANYOF || op == ANYOF + ADD_NL
|| op == ANYBUT || op == ANYBUT + ADD_NL
|| op == EXACTLY) {
// Literal string, where present.
fprintf(f, "\nxxxxxxxxx\n");
while (*s != NUL) {
fprintf(f, "%c", *s++);
}
fprintf(f, "\nxxxxxxxxx\n");
s++;
}
fprintf(f, "\r\n");
}
// Header fields of interest.
if (r->regstart != NUL) {
fprintf(f, "start `%s' 0x%x; ", r->regstart < 256
? (char *)transchar(r->regstart)
: "multibyte", r->regstart);
}
if (r->reganch) {
fprintf(f, "anchored; ");
}
if (r->regmust != NULL) {
fprintf(f, "must have \"%s\"", r->regmust);
}
fprintf(f, "\r\n");
# ifdef BT_REGEXP_LOG
fclose(f);
# endif
}
#endif // BT_REGEXP_DUMP
#ifdef REGEXP_DEBUG
// regprop - printable representation of opcode
static uint8_t *regprop(uint8_t *op)
{
char *p;
static char buf[50];
STRCPY(buf, ":");
switch ((int)OP(op)) {
case BOL:
p = "BOL";
break;
case EOL:
p = "EOL";
break;
case RE_BOF:
p = "BOF";
break;
case RE_EOF:
p = "EOF";
break;
case CURSOR:
p = "CURSOR";
break;
case RE_VISUAL:
p = "RE_VISUAL";
break;
case RE_LNUM:
p = "RE_LNUM";
break;
case RE_MARK:
p = "RE_MARK";
break;
case RE_COL:
p = "RE_COL";
break;
case RE_VCOL:
p = "RE_VCOL";
break;
case BOW:
p = "BOW";
break;
case EOW:
p = "EOW";
break;
case ANY:
p = "ANY";
break;
case ANY + ADD_NL:
p = "ANY+NL";
break;
case ANYOF:
p = "ANYOF";
break;
case ANYOF + ADD_NL:
p = "ANYOF+NL";
break;
case ANYBUT:
p = "ANYBUT";
break;
case ANYBUT + ADD_NL:
p = "ANYBUT+NL";
break;
case IDENT:
p = "IDENT";
break;
case IDENT + ADD_NL:
p = "IDENT+NL";
break;
case SIDENT:
p = "SIDENT";
break;
case SIDENT + ADD_NL:
p = "SIDENT+NL";
break;
case KWORD:
p = "KWORD";
break;
case KWORD + ADD_NL:
p = "KWORD+NL";
break;
case SKWORD:
p = "SKWORD";
break;
case SKWORD + ADD_NL:
p = "SKWORD+NL";
break;
case FNAME:
p = "FNAME";
break;
case FNAME + ADD_NL:
p = "FNAME+NL";
break;
case SFNAME:
p = "SFNAME";
break;
case SFNAME + ADD_NL:
p = "SFNAME+NL";
break;
case PRINT:
p = "PRINT";
break;
case PRINT + ADD_NL:
p = "PRINT+NL";
break;
case SPRINT:
p = "SPRINT";
break;
case SPRINT + ADD_NL:
p = "SPRINT+NL";
break;
case WHITE:
p = "WHITE";
break;
case WHITE + ADD_NL:
p = "WHITE+NL";
break;
case NWHITE:
p = "NWHITE";
break;
case NWHITE + ADD_NL:
p = "NWHITE+NL";
break;
case DIGIT:
p = "DIGIT";
break;
case DIGIT + ADD_NL:
p = "DIGIT+NL";
break;
case NDIGIT:
p = "NDIGIT";
break;
case NDIGIT + ADD_NL:
p = "NDIGIT+NL";
break;
case HEX:
p = "HEX";
break;
case HEX + ADD_NL:
p = "HEX+NL";
break;
case NHEX:
p = "NHEX";
break;
case NHEX + ADD_NL:
p = "NHEX+NL";
break;
case OCTAL:
p = "OCTAL";
break;
case OCTAL + ADD_NL:
p = "OCTAL+NL";
break;
case NOCTAL:
p = "NOCTAL";
break;
case NOCTAL + ADD_NL:
p = "NOCTAL+NL";
break;
case WORD:
p = "WORD";
break;
case WORD + ADD_NL:
p = "WORD+NL";
break;
case NWORD:
p = "NWORD";
break;
case NWORD + ADD_NL:
p = "NWORD+NL";
break;
case HEAD:
p = "HEAD";
break;
case HEAD + ADD_NL:
p = "HEAD+NL";
break;
case NHEAD:
p = "NHEAD";
break;
case NHEAD + ADD_NL:
p = "NHEAD+NL";
break;
case ALPHA:
p = "ALPHA";
break;
case ALPHA + ADD_NL:
p = "ALPHA+NL";
break;
case NALPHA:
p = "NALPHA";
break;
case NALPHA + ADD_NL:
p = "NALPHA+NL";
break;
case LOWER:
p = "LOWER";
break;
case LOWER + ADD_NL:
p = "LOWER+NL";
break;
case NLOWER:
p = "NLOWER";
break;
case NLOWER + ADD_NL:
p = "NLOWER+NL";
break;
case UPPER:
p = "UPPER";
break;
case UPPER + ADD_NL:
p = "UPPER+NL";
break;
case NUPPER:
p = "NUPPER";
break;
case NUPPER + ADD_NL:
p = "NUPPER+NL";
break;
case BRANCH:
p = "BRANCH";
break;
case EXACTLY:
p = "EXACTLY";
break;
case NOTHING:
p = "NOTHING";
break;
case BACK:
p = "BACK";
break;
case END:
p = "END";
break;
case MOPEN + 0:
p = "MATCH START";
break;
case MOPEN + 1:
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "MOPEN%d", OP(op) - MOPEN);
p = NULL;
break;
case MCLOSE + 0:
p = "MATCH END";
break;
case MCLOSE + 1:
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "MCLOSE%d", OP(op) - MCLOSE);
p = NULL;
break;
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "BACKREF%d", OP(op) - BACKREF);
p = NULL;
break;
case NOPEN:
p = "NOPEN";
break;
case NCLOSE:
p = "NCLOSE";
break;
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZOPEN%d", OP(op) - ZOPEN);
p = NULL;
break;
case ZCLOSE + 1:
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZCLOSE%d", OP(op) - ZCLOSE);
p = NULL;
break;
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "ZREF%d", OP(op) - ZREF);
p = NULL;
break;
case STAR:
p = "STAR";
break;
case PLUS:
p = "PLUS";
break;
case NOMATCH:
p = "NOMATCH";
break;
case MATCH:
p = "MATCH";
break;
case BEHIND:
p = "BEHIND";
break;
case NOBEHIND:
p = "NOBEHIND";
break;
case SUBPAT:
p = "SUBPAT";
break;
case BRACE_LIMITS:
p = "BRACE_LIMITS";
break;
case BRACE_SIMPLE:
p = "BRACE_SIMPLE";
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "BRACE_COMPLEX%d",
OP(op) - BRACE_COMPLEX);
p = NULL;
break;
case MULTIBYTECODE:
p = "MULTIBYTECODE";
break;
case NEWL:
p = "NEWL";
break;
default:
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "corrupt %d", OP(op));
p = NULL;
break;
}
if (p != NULL) {
STRCAT(buf, p);
}
return (uint8_t *)buf;
}
#endif // REGEXP_DEBUG