mirror of
https://github.com/neovim/neovim.git
synced 2025-09-14 15:28:17 +00:00
242 lines
10 KiB
Plaintext
242 lines
10 KiB
Plaintext
*msgpack_rpc.txt* {Nvim}
|
|
|
|
|
|
NVIM REFERENCE MANUAL by Thiago de Arruda
|
|
|
|
|
|
RPC API for Nvim *RPC* *rpc* *msgpack-rpc*
|
|
|
|
1. Introduction |rpc-intro|
|
|
2. API mapping |rpc-api|
|
|
3. Connecting |rpc-connecting|
|
|
4. Clients |rpc-api-client|
|
|
5. Types |rpc-types|
|
|
|
|
==============================================================================
|
|
1. Introduction *rpc-intro*
|
|
|
|
The primary way to control Nvim programmatically is the RPC API, which speaks
|
|
MessagePack-RPC ("msgpack-rpc"), a messaging protocol that uses the
|
|
MessagePack serialization format:
|
|
https://github.com/msgpack/msgpack/blob/0b8f5ac/spec.md
|
|
|
|
All kinds of Nvim "clients" use the RPC API: user interfaces (GUIs), remote
|
|
plugins, scripts like "nvr" (https://github.com/mhinz/neovim-remote), and even
|
|
`nvim` itself can control other `nvim` instances. By connecting to the RPC API
|
|
programs can:
|
|
|
|
- Call any API function
|
|
- Listen for events
|
|
- Receive remote calls from Nvim
|
|
|
|
The RPC API is like a more powerful version of Vim's `clientserver` feature.
|
|
|
|
==============================================================================
|
|
2. API mapping *rpc-api*
|
|
|
|
The Nvim C |API| is automatically exposed to the RPC API by the build system,
|
|
which parses headers at src/nvim/api/*. A dispatch function is generated which
|
|
matches RPC API method names with public API functions, converting/validating
|
|
arguments and return values back to msgpack.
|
|
|
|
Client libraries (|api-client|s) normally provide wrappers that hide
|
|
msgpack-rpc details from application developers. The wrappers can be
|
|
automatically generated by reading bundled API metadata from a compiled Nvim
|
|
instance.
|
|
|
|
There are three ways to obtain API metadata:
|
|
|
|
1. Connect to a running Nvim instance and call `vim_get_api_info` via
|
|
msgpack-rpc. This is best for clients written in dynamic languages which
|
|
can define functions at runtime.
|
|
|
|
2. Start Nvim with the |--api-info| option. Useful for clients written in
|
|
statically-compiled languages.
|
|
|
|
3. Use the |api_info()| vimscript function.
|
|
|
|
To get a human-readable list of API functions: >
|
|
:new|put =map(api_info().functions, 'v:val.name')
|
|
<
|
|
To get a formatted dump of the API using python (requires the `pyyaml` and
|
|
`msgpack-python` packages): >
|
|
nvim --api-info | python -c 'import msgpack, sys, yaml; print yaml.dump(msgpack.unpackb(sys.stdin.read()))'
|
|
<
|
|
==============================================================================
|
|
3. Connecting *rpc-connecting*
|
|
|
|
There are several ways to open a msgpack-rpc channel to an Nvim instance:
|
|
|
|
1. Through stdin/stdout when `nvim` is started with `--embed`. This is how
|
|
applications can embed Nvim.
|
|
|
|
2. Through stdin/stdout of some other process spawned by |jobstart()|.
|
|
Set the "rpc" key to |v:true| in the options dict to use the job's stdin
|
|
and stdout as a single msgpack channel that is processed directly by
|
|
Nvim. Then it is not possible to process raw data to or from the
|
|
process's stdin and stdout. stderr can still be used, though.
|
|
|
|
3. Through the socket automatically created with each instance. The socket
|
|
location is stored in |v:servername|.
|
|
|
|
4. Through a TCP/IP socket. To make Nvim listen on a TCP/IP socket, set the
|
|
|$NVIM_LISTEN_ADDRESS| environment variable before starting Nvim: >
|
|
NVIM_LISTEN_ADDRESS=127.0.0.1:6666 nvim
|
|
<
|
|
Connecting to the socket is the easiest way a programmer can test the API,
|
|
which can be done through any msgpack-rpc client library or full-featured
|
|
|api-client|. Here's a Ruby script that prints 'hello world!' in the current
|
|
Nvim instance:
|
|
>
|
|
#!/usr/bin/env ruby
|
|
# Requires msgpack-rpc: gem install msgpack-rpc
|
|
#
|
|
# To run this script, execute it from a running Nvim instance (notice the
|
|
# trailing '&' which is required since Nvim won't process events while
|
|
# running a blocking command):
|
|
#
|
|
# :!./hello.rb &
|
|
#
|
|
# Or from another shell by setting NVIM_LISTEN_ADDRESS:
|
|
# $ NVIM_LISTEN_ADDRESS=[address] ./hello.rb
|
|
|
|
require 'msgpack/rpc'
|
|
require 'msgpack/rpc/transport/unix'
|
|
|
|
nvim = MessagePack::RPC::Client.new(MessagePack::RPC::UNIXTransport.new, ENV['NVIM_LISTEN_ADDRESS'])
|
|
result = nvim.call(:vim_command, 'echo "hello world!"')
|
|
<
|
|
A better way is to use the Python REPL with the `neovim` package, where API
|
|
functions can be called interactively:
|
|
>
|
|
>>> from neovim import attach
|
|
>>> nvim = attach('socket', path='[address]')
|
|
>>> nvim.command('echo "hello world!"')
|
|
<
|
|
You can also embed an Nvim instance via |jobstart()|, and communicate using
|
|
|rpcrequest()| and |rpcnotify()|:
|
|
>
|
|
let vim = jobstart(['nvim', '--embed'], {'rpc': v:true})
|
|
echo rpcrequest(vim, 'vim_eval', '"Hello " . "world!"')
|
|
call jobstop(vim)
|
|
<
|
|
==============================================================================
|
|
4. Implementing API clients *rpc-api-client* *api-client*
|
|
|
|
All external UIs and remote plugins (as opposed to regular Vim plugins) are
|
|
"clients" in general; but we call something an "API client" if its purpose is
|
|
to abstract or wrap the RPC API for the convenience of other applications
|
|
(just like a REST client or SDK such as boto3 for AWS: you can speak AWS REST
|
|
using an HTTP client like curl, but boto3 wraps that in a convenient python
|
|
interface). For example, the lua-client is an API client:
|
|
https://github.com/neovim/lua-client
|
|
|
|
The Python client (pip package "neovim") is the reference implementation of an
|
|
API client. It is always up-to-date with the Nvim API, so its source code and
|
|
test suite are an authoritative reference.
|
|
https://github.com/neovim/python-client
|
|
|
|
API client implementation guidelines ~
|
|
|
|
- Separate the transport layer from the rest of the library. See
|
|
|rpc-connecting| for details on how clients can connect to Nvim.
|
|
- Use a MessagePack library that implements at least version 5 of the
|
|
MessagePack spec, which supports the `bin` and `ext` types used by Nvim.
|
|
- Read API metadata in order to create client-side wrappers for all
|
|
msgpack-rpc methods.
|
|
- Use a single-threaded event loop library/pattern.
|
|
- Use a fiber/coroutine library for the language being used for implementing
|
|
a client. These greatly simplify concurrency and allow the library to
|
|
expose a blocking API on top of a non-blocking event loop without the
|
|
complexity that comes with preemptive multitasking.
|
|
- Don't assume anything about the order that responses to msgpack-rpc
|
|
requests will arrive.
|
|
- Clients should expect msgpack-rpc requests, which need to be handled
|
|
immediately because Nvim is blocked while waiting for the client response.
|
|
- Clients should expect to receive msgpack-rpc notifications, but these
|
|
don't need to be handled immediately because they won't block Nvim
|
|
(although they should probably be handled immediately anyway).
|
|
|
|
Note: Most of the complexity could be handled by a msgpack-rpc library that
|
|
supports server to client requests and notifications, but it's not clear if
|
|
this is part of the msgpack-rpc spec. At least the Ruby msgpack-rpc library
|
|
does not seem to support it:
|
|
https://github.com/msgpack-rpc/msgpack-rpc-ruby/blob/master/lib/msgpack/rpc/transport/tcp.rb#L150-L158
|
|
|
|
API metadata object ~
|
|
|
|
API clients exist to hide msgpack-rpc details. The API metadata object
|
|
contains information that makes this task easier (see also |rpc-types|):
|
|
|
|
- The "functions" key contains a list of metadata objects for individual
|
|
functions.
|
|
- Each function metadata object has |rpc-types| information about the return
|
|
value and parameters. These can be used for generating strongly-typed APIs
|
|
in static languages.
|
|
- Container types may be decorated with type/size constraints, e.g.
|
|
ArrayOf(Buffer) or ArrayOf(Integer, 2). This can be useful to generate
|
|
even more strongly-typed APIs.
|
|
- Methods that operate on instances of Nvim special types (msgpack EXT) are
|
|
prefixed with the type name in lower case, e.g. `buffer_get_line`
|
|
represents the `get_line` method of a Buffer instance.
|
|
- Global methods are prefixed with `vim`, e.g. `vim_get_buffers`.
|
|
|
|
So for an object-oriented language, an API client contains the classes
|
|
representing Nvim special types, and the methods of each class could be
|
|
defined by inspecting the method name prefix. There could also be a singleton
|
|
Vim class with methods mapped to functions prefixed with `vim_`.
|
|
|
|
==============================================================================
|
|
5. Types *rpc-types*
|
|
|
|
The Nvim C API uses custom types for all functions. |api-types|
|
|
For the purpose of mapping to msgpack, the types can be split into two groups:
|
|
|
|
- Basic types that map natively to msgpack (and probably have a default
|
|
representation in msgpack-supported programming languages)
|
|
- Special Nvim types that map to msgpack EXT with custom type codes.
|
|
|
|
Basic types ~
|
|
|
|
Nil -> msgpack nil
|
|
Boolean -> msgpack boolean
|
|
Integer (signed 64-bit integer) -> msgpack integer
|
|
Float (IEEE 754 double precision) -> msgpack float
|
|
String -> msgpack string
|
|
Array -> msgpack array
|
|
Dictionary -> msgpack map
|
|
|
|
Special types (msgpack EXT) ~
|
|
|
|
Buffer -> enum value kObjectTypeBuffer
|
|
Window -> enum value kObjectTypeWindow
|
|
Tabpage -> enum value kObjectTypeTabpage
|
|
|
|
An API method expecting one of these types may be passed an integer instead,
|
|
although they are not interchangeable. For example, a Buffer may be passed as
|
|
an integer, but not a Window or Tabpage.
|
|
|
|
The most reliable way of determining the type codes for the special Nvim types
|
|
is to inspect the `types` key of metadata dictionary returned by the
|
|
`vim_get_api_info` method at runtime. Here's a sample JSON representation of
|
|
the `types` object:
|
|
>
|
|
"types": {
|
|
"Buffer": {
|
|
"id": 0
|
|
},
|
|
"Window": {
|
|
"id": 1
|
|
},
|
|
"Tabpage": {
|
|
"id": 2
|
|
}
|
|
}
|
|
<
|
|
Even for statically compiled clients it is good practice to avoid hardcoding
|
|
the type codes, because a client may be built against one Nvim version but
|
|
connect to another with different type codes.
|
|
|
|
==============================================================================
|
|
vim:tw=78:ts=8:noet:ft=help:norl:
|