Files
neovim/src/nvim/marktree.c
bfredl 5970157e1d refactor(map): enhanced implementation, Clean Code™, etc etc
This involves two redesigns of the map.c implementations:

1. Change of macro style and code organization

The old khash.h and map.c implementation used huge #define blocks with a
lot of backslash line continuations.

This instead uses the "implementation file" .c.h pattern. Such a file is
meant to be included multiple times, with different macros set prior to
inclusion as parameters. we already use this pattern e.g. for
eval/typval_encode.c.h to implement different typval encoders reusing a
similar structure.

We can structure this code into two parts. one that only depends on key
type and is enough to implement sets, and one which depends on both key
and value to implement maps (as a wrapper around sets, with an added
value[] array)

2. Separate the main hash buckets from the key / value arrays

Change the hack buckets to only contain an index into separate key /
value arrays
This is a common pattern in modern, state of the art hashmap
implementations. Even though this leads to one more allocated array, it
is this often is a net reduction of memory consumption. Consider
key+value consuming at least 12 bytes per pair. On average, we will have
twice as many buckets per item.
Thus old implementation:

  2*12 = 24 bytes per item

New implementation

  1*12 + 2*4 = 20 bytes per item

And the difference gets bigger with larger items.
One might think we have pulled a fast one here, as wouldn't the average size of
the new key/value arrays be 1.5 slots per items due to amortized grows?
But remember, these arrays are fully dense, and thus the accessed memory,
measured in _cache lines_, the unit which actually matters, will be the
fully used memory but just rounded up to the nearest cache line
boundary.

This has some other interesting properties, such as an insert-only
set/map will be fully ordered by insert only. Preserving this ordering
in face of deletions is more tricky tho. As we currently don't use
ordered maps, the "delete" operation maintains compactness of the item
arrays in the simplest way by breaking the ordering. It would be
possible to implement an order-preserving delete although at some cost,
like allowing the items array to become non-dense until the next rehash.

Finally, in face of these two major changes, all code used in khash.h
has been integrated into map.c and friends. Given the heavy edits it
makes no sense to "layer" the code into a vendored and a wrapper part.
Rather, the layered cake follows the specialization depth: code shared
for all maps, code specialized to a key type (and its equivalence
relation), and finally code specialized to value+key type.
2023-09-08 12:48:46 +02:00

1227 lines
32 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// Tree data structure for storing marks at (row, col) positions and updating
// them to arbitrary text changes. Derivative work of kbtree in klib, whose
// copyright notice is reproduced below. Also inspired by the design of the
// marker tree data structure of the Atom editor, regarding efficient updates
// to text changes.
//
// Marks are inserted using marktree_put. Text changes are processed using
// marktree_splice. All read and delete operations use the iterator.
// use marktree_itr_get to put an iterator at a given position or
// marktree_lookup to lookup a mark by its id (iterator optional in this case).
// Use marktree_itr_current and marktree_itr_next/prev to read marks in a loop.
// marktree_del_itr deletes the current mark of the iterator and implicitly
// moves the iterator to the next mark.
//
// Work is ongoing to fully support ranges (mark pairs).
// Copyright notice for kbtree (included in heavily modified form):
//
// Copyright 1997-1999, 2001, John-Mark Gurney.
// 2008-2009, Attractive Chaos <attractor@live.co.uk>
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
// OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
// LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
// OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE.
//
// Changes done by by the neovim project follow the Apache v2 license available
// at the repo root.
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "klib/kvec.h"
#include "nvim/garray.h"
#include "nvim/marktree.h"
#include "nvim/memory.h"
#include "nvim/pos.h"
#define T MT_BRANCH_FACTOR
#define ILEN (sizeof(mtnode_t) + (2 * T) * sizeof(void *))
#define ID_INCR (((uint64_t)1) << 2)
#define rawkey(itr) ((itr)->node->key[(itr)->i])
static bool pos_leq(mtpos_t a, mtpos_t b)
{
return a.row < b.row || (a.row == b.row && a.col <= b.col);
}
static void relative(mtpos_t base, mtpos_t *val)
{
assert(pos_leq(base, *val));
if (val->row == base.row) {
val->row = 0;
val->col -= base.col;
} else {
val->row -= base.row;
}
}
static void unrelative(mtpos_t base, mtpos_t *val)
{
if (val->row == 0) {
val->row = base.row;
val->col += base.col;
} else {
val->row += base.row;
}
}
static void compose(mtpos_t *base, mtpos_t val)
{
if (val.row == 0) {
base->col += val.col;
} else {
base->row += val.row;
base->col = val.col;
}
}
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "marktree.c.generated.h"
#endif
#define mt_generic_cmp(a, b) (((b) < (a)) - ((a) < (b)))
static int key_cmp(mtkey_t a, mtkey_t b)
{
int cmp = mt_generic_cmp(a.pos.row, b.pos.row);
if (cmp != 0) {
return cmp;
}
cmp = mt_generic_cmp(a.pos.col, b.pos.col);
if (cmp != 0) {
return cmp;
}
// NB: keeping the events at the same pos sorted by id is actually not
// necessary only make sure that START is before END etc.
return mt_generic_cmp(a.flags, b.flags);
}
static inline int marktree_getp_aux(const mtnode_t *x, mtkey_t k, int *r)
{
int tr, *rr, begin = 0, end = x->n;
if (x->n == 0) {
return -1;
}
rr = r ? r : &tr;
while (begin < end) {
int mid = (begin + end) >> 1;
if (key_cmp(x->key[mid], k) < 0) {
begin = mid + 1;
} else {
end = mid;
}
}
if (begin == x->n) {
*rr = 1; return x->n - 1;
}
if ((*rr = key_cmp(k, x->key[begin])) < 0) {
begin--;
}
return begin;
}
static inline void refkey(MarkTree *b, mtnode_t *x, int i)
{
pmap_put(uint64_t)(b->id2node, mt_lookup_key(x->key[i]), x);
}
// put functions
// x must be an internal node, which is not full
// x->ptr[i] should be a full node, i e x->ptr[i]->n == 2*T-1
static inline void split_node(MarkTree *b, mtnode_t *x, const int i)
{
mtnode_t *y = x->ptr[i];
mtnode_t *z;
z = (mtnode_t *)xcalloc(1, y->level ? ILEN : sizeof(mtnode_t));
b->n_nodes++;
z->level = y->level;
z->n = T - 1;
memcpy(z->key, &y->key[T], sizeof(mtkey_t) * (T - 1));
for (int j = 0; j < T - 1; j++) {
refkey(b, z, j);
}
if (y->level) {
memcpy(z->ptr, &y->ptr[T], sizeof(mtnode_t *) * T);
for (int j = 0; j < T; j++) {
z->ptr[j]->parent = z;
}
}
y->n = T - 1;
memmove(&x->ptr[i + 2], &x->ptr[i + 1],
sizeof(mtnode_t *) * (size_t)(x->n - i));
x->ptr[i + 1] = z;
z->parent = x; // == y->parent
memmove(&x->key[i + 1], &x->key[i], sizeof(mtkey_t) * (size_t)(x->n - i));
// move key to internal layer:
x->key[i] = y->key[T - 1];
refkey(b, x, i);
x->n++;
for (int j = 0; j < T - 1; j++) {
relative(x->key[i].pos, &z->key[j].pos);
}
if (i > 0) {
unrelative(x->key[i - 1].pos, &x->key[i].pos);
}
}
// x must not be a full node (even if there might be internal space)
static inline void marktree_putp_aux(MarkTree *b, mtnode_t *x, mtkey_t k)
{
int i;
if (x->level == 0) {
i = marktree_getp_aux(x, k, 0);
if (i != x->n - 1) {
memmove(&x->key[i + 2], &x->key[i + 1],
(size_t)(x->n - i - 1) * sizeof(mtkey_t));
}
x->key[i + 1] = k;
refkey(b, x, i + 1);
x->n++;
} else {
i = marktree_getp_aux(x, k, 0) + 1;
if (x->ptr[i]->n == 2 * T - 1) {
split_node(b, x, i);
if (key_cmp(k, x->key[i]) > 0) {
i++;
}
}
if (i > 0) {
relative(x->key[i - 1].pos, &k.pos);
}
marktree_putp_aux(b, x->ptr[i], k);
}
}
void marktree_put(MarkTree *b, mtkey_t key, int end_row, int end_col, bool end_right)
{
assert(!(key.flags & ~MT_FLAG_EXTERNAL_MASK));
if (end_row >= 0) {
key.flags |= MT_FLAG_PAIRED;
}
marktree_put_key(b, key);
if (end_row >= 0) {
mtkey_t end_key = key;
end_key.flags = (uint16_t)((uint16_t)(key.flags & ~MT_FLAG_RIGHT_GRAVITY)
|(uint16_t)MT_FLAG_END
|(uint16_t)(end_right ? MT_FLAG_RIGHT_GRAVITY : 0));
end_key.pos = (mtpos_t){ end_row, end_col };
marktree_put_key(b, end_key);
}
}
void marktree_put_key(MarkTree *b, mtkey_t k)
{
k.flags |= MT_FLAG_REAL; // let's be real.
if (!b->root) {
b->root = (mtnode_t *)xcalloc(1, ILEN);
b->n_nodes++;
}
mtnode_t *r, *s;
b->n_keys++;
r = b->root;
if (r->n == 2 * T - 1) {
b->n_nodes++;
s = (mtnode_t *)xcalloc(1, ILEN);
b->root = s; s->level = r->level + 1; s->n = 0;
s->ptr[0] = r;
r->parent = s;
split_node(b, s, 0);
r = s;
}
marktree_putp_aux(b, r, k);
}
/// INITIATING DELETION PROTOCOL:
///
/// 1. Construct a valid iterator to the node to delete (argument)
/// 2. If an "internal" key. Iterate one step to the left or right,
/// which gives an internal key "auxiliary key".
/// 3. Now delete this internal key (intended or auxiliary).
/// The leaf node X might become undersized.
/// 4. If step two was done: now replace the key that _should_ be
/// deleted with the auxiliary key. Adjust relative
/// 5. Now "repair" the tree as needed. We always start at a leaf node X.
/// - if the node is big enough, terminate
/// - if we can steal from the left, steal
/// - if we can steal from the right, steal
/// - otherwise merge this node with a neighbour. This might make our
/// parent undersized. So repeat 5 for the parent.
/// 6. If 4 went all the way to the root node. The root node
/// might have ended up with size 0. Delete it then.
///
/// The iterator remains valid, and now points at the key _after_ the deleted
/// one.
///
/// @param rev should be true if we plan to iterate _backwards_ and delete
/// stuff before this key. Most of the time this is false (the
/// recommended strategy is to always iterate forward)
uint64_t marktree_del_itr(MarkTree *b, MarkTreeIter *itr, bool rev)
{
int adjustment = 0;
mtnode_t *cur = itr->node;
int curi = itr->i;
uint64_t id = mt_lookup_key(cur->key[curi]);
// fprintf(stderr, "\nDELET %lu\n", id);
mtkey_t raw = rawkey(itr);
uint64_t other = 0;
if (mt_paired(raw)) {
other = mt_lookup_id(raw.ns, raw.id, !mt_end(raw));
}
if (itr->node->level) {
if (rev) {
abort();
} else {
// fprintf(stderr, "INTERNAL %d\n", cur->level);
// steal previous node
marktree_itr_prev(b, itr);
adjustment = -1;
}
}
// 3.
mtnode_t *x = itr->node;
assert(x->level == 0);
mtkey_t intkey = x->key[itr->i];
if (x->n > itr->i + 1) {
memmove(&x->key[itr->i], &x->key[itr->i + 1],
sizeof(mtkey_t) * (size_t)(x->n - itr->i - 1));
}
x->n--;
// 4.
// if (adjustment == 1) {
// abort();
// }
if (adjustment == -1) {
int ilvl = itr->lvl - 1;
const mtnode_t *lnode = x;
do {
const mtnode_t *const p = lnode->parent;
if (ilvl < 0) {
abort();
}
const int i = itr->s[ilvl].i;
assert(p->ptr[i] == lnode);
if (i > 0) {
unrelative(p->key[i - 1].pos, &intkey.pos);
}
lnode = p;
ilvl--;
} while (lnode != cur);
mtkey_t deleted = cur->key[curi];
cur->key[curi] = intkey;
refkey(b, cur, curi);
relative(intkey.pos, &deleted.pos);
mtnode_t *y = cur->ptr[curi + 1];
if (deleted.pos.row || deleted.pos.col) {
while (y) {
for (int k = 0; k < y->n; k++) {
unrelative(deleted.pos, &y->key[k].pos);
}
y = y->level ? y->ptr[0] : NULL;
}
}
itr->i--;
}
b->n_keys--;
pmap_del(uint64_t)(b->id2node, id, NULL);
// 5.
bool itr_dirty = false;
int rlvl = itr->lvl - 1;
int *lasti = &itr->i;
while (x != b->root) {
assert(rlvl >= 0);
mtnode_t *p = x->parent;
if (x->n >= T - 1) {
// we are done, if this node is fine the rest of the tree will be
break;
}
int pi = itr->s[rlvl].i;
assert(p->ptr[pi] == x);
if (pi > 0 && p->ptr[pi - 1]->n > T - 1) {
*lasti += 1;
itr_dirty = true;
// steal one key from the left neighbour
pivot_right(b, p, pi - 1);
break;
} else if (pi < p->n && p->ptr[pi + 1]->n > T - 1) {
// steal one key from right neighbour
pivot_left(b, p, pi);
break;
} else if (pi > 0) {
// fprintf(stderr, "LEFT ");
assert(p->ptr[pi - 1]->n == T - 1);
// merge with left neighbour
*lasti += T;
x = merge_node(b, p, pi - 1);
if (lasti == &itr->i) {
// TRICKY: we merged the node the iterator was on
itr->node = x;
}
itr->s[rlvl].i--;
itr_dirty = true;
} else {
// fprintf(stderr, "RIGHT ");
assert(pi < p->n && p->ptr[pi + 1]->n == T - 1);
merge_node(b, p, pi);
// no iter adjustment needed
}
lasti = &itr->s[rlvl].i;
rlvl--;
x = p;
}
// 6.
if (b->root->n == 0) {
if (itr->lvl > 0) {
memmove(itr->s, itr->s + 1, (size_t)(itr->lvl - 1) * sizeof(*itr->s));
itr->lvl--;
}
if (b->root->level) {
mtnode_t *oldroot = b->root;
b->root = b->root->ptr[0];
b->root->parent = NULL;
xfree(oldroot);
} else {
// no items, nothing for iterator to point to
// not strictly needed, should handle delete right-most mark anyway
itr->node = NULL;
}
}
if (itr->node && itr_dirty) {
marktree_itr_fix_pos(b, itr);
}
// BONUS STEP: fix the iterator, so that it points to the key afterwards
// TODO(bfredl): with "rev" should point before
// if (adjustment == 1) {
// abort();
// }
if (adjustment == -1) {
// tricky: we stand at the deleted space in the previous leaf node.
// But the inner key is now the previous key we stole, so we need
// to skip that one as well.
marktree_itr_next(b, itr);
marktree_itr_next(b, itr);
} else {
if (itr->node && itr->i >= itr->node->n) {
// we deleted the last key of a leaf node
// go to the inner key after that.
assert(itr->node->level == 0);
marktree_itr_next(b, itr);
}
}
return other;
}
static mtnode_t *merge_node(MarkTree *b, mtnode_t *p, int i)
{
mtnode_t *x = p->ptr[i], *y = p->ptr[i + 1];
x->key[x->n] = p->key[i];
refkey(b, x, x->n);
if (i > 0) {
relative(p->key[i - 1].pos, &x->key[x->n].pos);
}
memmove(&x->key[x->n + 1], y->key, (size_t)y->n * sizeof(mtkey_t));
for (int k = 0; k < y->n; k++) {
refkey(b, x, x->n + 1 + k);
unrelative(x->key[x->n].pos, &x->key[x->n + 1 + k].pos);
}
if (x->level) {
memmove(&x->ptr[x->n + 1], y->ptr, ((size_t)y->n + 1) * sizeof(mtnode_t *));
for (int k = 0; k < y->n + 1; k++) {
x->ptr[x->n + k + 1]->parent = x;
}
}
x->n += y->n + 1;
memmove(&p->key[i], &p->key[i + 1], (size_t)(p->n - i - 1) * sizeof(mtkey_t));
memmove(&p->ptr[i + 1], &p->ptr[i + 2],
(size_t)(p->n - i - 1) * sizeof(mtkey_t *));
p->n--;
xfree(y);
b->n_nodes--;
return x;
}
// TODO(bfredl): as a potential "micro" optimization, pivoting should balance
// the two nodes instead of stealing just one key
static void pivot_right(MarkTree *b, mtnode_t *p, int i)
{
mtnode_t *x = p->ptr[i], *y = p->ptr[i + 1];
memmove(&y->key[1], y->key, (size_t)y->n * sizeof(mtkey_t));
if (y->level) {
memmove(&y->ptr[1], y->ptr, ((size_t)y->n + 1) * sizeof(mtnode_t *));
}
y->key[0] = p->key[i];
refkey(b, y, 0);
p->key[i] = x->key[x->n - 1];
refkey(b, p, i);
if (x->level) {
y->ptr[0] = x->ptr[x->n];
y->ptr[0]->parent = y;
}
x->n--;
y->n++;
if (i > 0) {
unrelative(p->key[i - 1].pos, &p->key[i].pos);
}
relative(p->key[i].pos, &y->key[0].pos);
for (int k = 1; k < y->n; k++) {
unrelative(y->key[0].pos, &y->key[k].pos);
}
}
static void pivot_left(MarkTree *b, mtnode_t *p, int i)
{
mtnode_t *x = p->ptr[i], *y = p->ptr[i + 1];
// reverse from how we "always" do it. but pivot_left
// is just the inverse of pivot_right, so reverse it literally.
for (int k = 1; k < y->n; k++) {
relative(y->key[0].pos, &y->key[k].pos);
}
unrelative(p->key[i].pos, &y->key[0].pos);
if (i > 0) {
relative(p->key[i - 1].pos, &p->key[i].pos);
}
x->key[x->n] = p->key[i];
refkey(b, x, x->n);
p->key[i] = y->key[0];
refkey(b, p, i);
if (x->level) {
x->ptr[x->n + 1] = y->ptr[0];
x->ptr[x->n + 1]->parent = x;
}
memmove(y->key, &y->key[1], (size_t)(y->n - 1) * sizeof(mtkey_t));
if (y->level) {
memmove(y->ptr, &y->ptr[1], (size_t)y->n * sizeof(mtnode_t *));
}
x->n++;
y->n--;
}
/// frees all mem, resets tree to valid empty state
void marktree_clear(MarkTree *b)
{
if (b->root) {
marktree_free_node(b->root);
b->root = NULL;
}
map_destroy(uint64_t, b->id2node);
*b->id2node = (PMap(uint64_t)) MAP_INIT;
b->n_keys = 0;
b->n_nodes = 0;
}
void marktree_free_node(mtnode_t *x)
{
if (x->level) {
for (int i = 0; i < x->n + 1; i++) {
marktree_free_node(x->ptr[i]);
}
}
xfree(x);
}
/// NB: caller must check not pair!
void marktree_revise(MarkTree *b, MarkTreeIter *itr, uint8_t decor_level, mtkey_t key)
{
// TODO(bfredl): clean up this mess and re-instantiate &= and |= forms
// once we upgrade to a non-broken version of gcc in functionaltest-lua CI
rawkey(itr).flags = (uint16_t)(rawkey(itr).flags & (uint16_t) ~MT_FLAG_DECOR_MASK);
rawkey(itr).flags = (uint16_t)(rawkey(itr).flags
| (uint16_t)(decor_level << MT_FLAG_DECOR_OFFSET)
| (uint16_t)(key.flags & MT_FLAG_DECOR_MASK));
rawkey(itr).decor_full = key.decor_full;
rawkey(itr).hl_id = key.hl_id;
rawkey(itr).priority = key.priority;
}
void marktree_move(MarkTree *b, MarkTreeIter *itr, int row, int col)
{
mtkey_t key = rawkey(itr);
// TODO(bfredl): optimize when moving a mark within a leaf without moving it
// across neighbours!
marktree_del_itr(b, itr, false);
key.pos = (mtpos_t){ row, col };
marktree_put_key(b, key);
itr->node = NULL; // itr might become invalid by put
}
// itr functions
// TODO(bfredl): static inline?
bool marktree_itr_get(MarkTree *b, int32_t row, int col, MarkTreeIter *itr)
{
return marktree_itr_get_ext(b, (mtpos_t){ row, col },
itr, false, false, NULL);
}
bool marktree_itr_get_ext(MarkTree *b, mtpos_t p, MarkTreeIter *itr, bool last, bool gravity,
mtpos_t *oldbase)
{
if (b->n_keys == 0) {
itr->node = NULL;
return false;
}
mtkey_t k = { .pos = p, .flags = gravity ? MT_FLAG_RIGHT_GRAVITY : 0 };
if (last && !gravity) {
k.flags = MT_FLAG_LAST;
}
itr->pos = (mtpos_t){ 0, 0 };
itr->node = b->root;
itr->lvl = 0;
if (oldbase) {
oldbase[itr->lvl] = itr->pos;
}
while (true) {
itr->i = marktree_getp_aux(itr->node, k, 0) + 1;
if (itr->node->level == 0) {
break;
}
itr->s[itr->lvl].i = itr->i;
itr->s[itr->lvl].oldcol = itr->pos.col;
if (itr->i > 0) {
compose(&itr->pos, itr->node->key[itr->i - 1].pos);
relative(itr->node->key[itr->i - 1].pos, &k.pos);
}
itr->node = itr->node->ptr[itr->i];
itr->lvl++;
if (oldbase) {
oldbase[itr->lvl] = itr->pos;
}
}
if (last) {
return marktree_itr_prev(b, itr);
} else if (itr->i >= itr->node->n) {
return marktree_itr_next(b, itr);
}
return true;
}
bool marktree_itr_first(MarkTree *b, MarkTreeIter *itr)
{
itr->node = b->root;
if (b->n_keys == 0) {
return false;
}
itr->i = 0;
itr->lvl = 0;
itr->pos = (mtpos_t){ 0, 0 };
while (itr->node->level > 0) {
itr->s[itr->lvl].i = 0;
itr->s[itr->lvl].oldcol = 0;
itr->lvl++;
itr->node = itr->node->ptr[0];
}
return true;
}
// gives the first key that is greater or equal to p
int marktree_itr_last(MarkTree *b, MarkTreeIter *itr)
{
if (b->n_keys == 0) {
itr->node = NULL;
return false;
}
itr->pos = (mtpos_t){ 0, 0 };
itr->node = b->root;
itr->lvl = 0;
while (true) {
itr->i = itr->node->n;
if (itr->node->level == 0) {
break;
}
itr->s[itr->lvl].i = itr->i;
itr->s[itr->lvl].oldcol = itr->pos.col;
assert(itr->i > 0);
compose(&itr->pos, itr->node->key[itr->i - 1].pos);
itr->node = itr->node->ptr[itr->i];
itr->lvl++;
}
itr->i--;
return true;
}
// TODO(bfredl): static inline
bool marktree_itr_next(MarkTree *b, MarkTreeIter *itr)
{
return marktree_itr_next_skip(b, itr, false, NULL);
}
static bool marktree_itr_next_skip(MarkTree *b, MarkTreeIter *itr, bool skip, mtpos_t oldbase[])
{
if (!itr->node) {
return false;
}
itr->i++;
if (itr->node->level == 0 || skip) {
if (itr->i < itr->node->n) {
// TODO(bfredl): this is the common case,
// and could be handled by inline wrapper
return true;
}
// we ran out of non-internal keys. Go up until we find an internal key
while (itr->i >= itr->node->n) {
itr->node = itr->node->parent;
if (itr->node == NULL) {
return false;
}
itr->lvl--;
itr->i = itr->s[itr->lvl].i;
if (itr->i > 0) {
itr->pos.row -= itr->node->key[itr->i - 1].pos.row;
itr->pos.col = itr->s[itr->lvl].oldcol;
}
}
} else {
// we stood at an "internal" key. Go down to the first non-internal
// key after it.
while (itr->node->level > 0) {
// internal key, there is always a child after
if (itr->i > 0) {
itr->s[itr->lvl].oldcol = itr->pos.col;
compose(&itr->pos, itr->node->key[itr->i - 1].pos);
}
if (oldbase && itr->i == 0) {
oldbase[itr->lvl + 1] = oldbase[itr->lvl];
}
itr->s[itr->lvl].i = itr->i;
assert(itr->node->ptr[itr->i]->parent == itr->node);
itr->node = itr->node->ptr[itr->i];
itr->i = 0;
itr->lvl++;
}
}
return true;
}
bool marktree_itr_prev(MarkTree *b, MarkTreeIter *itr)
{
if (!itr->node) {
return false;
}
if (itr->node->level == 0) {
itr->i--;
if (itr->i >= 0) {
// TODO(bfredl): this is the common case,
// and could be handled by inline wrapper
return true;
}
// we ran out of non-internal keys. Go up until we find a non-internal key
while (itr->i < 0) {
itr->node = itr->node->parent;
if (itr->node == NULL) {
return false;
}
itr->lvl--;
itr->i = itr->s[itr->lvl].i - 1;
if (itr->i >= 0) {
itr->pos.row -= itr->node->key[itr->i].pos.row;
itr->pos.col = itr->s[itr->lvl].oldcol;
}
}
} else {
// we stood at an "internal" key. Go down to the last non-internal
// key before it.
while (itr->node->level > 0) {
// internal key, there is always a child before
if (itr->i > 0) {
itr->s[itr->lvl].oldcol = itr->pos.col;
compose(&itr->pos, itr->node->key[itr->i - 1].pos);
}
itr->s[itr->lvl].i = itr->i;
assert(itr->node->ptr[itr->i]->parent == itr->node);
itr->node = itr->node->ptr[itr->i];
itr->i = itr->node->n;
itr->lvl++;
}
itr->i--;
}
return true;
}
void marktree_itr_rewind(MarkTree *b, MarkTreeIter *itr)
{
if (!itr->node) {
return;
}
if (itr->node->level) {
marktree_itr_prev(b, itr);
}
itr->i = 0;
}
bool marktree_itr_node_done(MarkTreeIter *itr)
{
return !itr->node || itr->i == itr->node->n - 1;
}
mtpos_t marktree_itr_pos(MarkTreeIter *itr)
{
mtpos_t pos = rawkey(itr).pos;
unrelative(itr->pos, &pos);
return pos;
}
mtkey_t marktree_itr_current(MarkTreeIter *itr)
{
if (itr->node) {
mtkey_t key = rawkey(itr);
key.pos = marktree_itr_pos(itr);
return key;
}
return MT_INVALID_KEY;
}
static bool itr_eq(MarkTreeIter *itr1, MarkTreeIter *itr2)
{
return (&rawkey(itr1) == &rawkey(itr2));
}
static void itr_swap(MarkTreeIter *itr1, MarkTreeIter *itr2)
{
mtkey_t key1 = rawkey(itr1);
mtkey_t key2 = rawkey(itr2);
rawkey(itr1) = key2;
rawkey(itr1).pos = key1.pos;
rawkey(itr2) = key1;
rawkey(itr2).pos = key2.pos;
}
bool marktree_splice(MarkTree *b, int32_t start_line, int start_col, int old_extent_line,
int old_extent_col, int new_extent_line, int new_extent_col)
{
mtpos_t start = { start_line, start_col };
mtpos_t old_extent = { old_extent_line, old_extent_col };
mtpos_t new_extent = { new_extent_line, new_extent_col };
bool may_delete = (old_extent.row != 0 || old_extent.col != 0);
bool same_line = old_extent.row == 0 && new_extent.row == 0;
unrelative(start, &old_extent);
unrelative(start, &new_extent);
MarkTreeIter itr[1] = { 0 };
MarkTreeIter enditr[1] = { 0 };
mtpos_t oldbase[MT_MAX_DEPTH] = { 0 };
marktree_itr_get_ext(b, start, itr, false, true, oldbase);
if (!itr->node) {
// den e FÄRDIG
return false;
}
mtpos_t delta = { new_extent.row - old_extent.row,
new_extent.col - old_extent.col };
if (may_delete) {
mtpos_t ipos = marktree_itr_pos(itr);
if (!pos_leq(old_extent, ipos)
|| (old_extent.row == ipos.row && old_extent.col == ipos.col
&& !mt_right(rawkey(itr)))) {
marktree_itr_get_ext(b, old_extent, enditr, true, true, NULL);
assert(enditr->node);
// "assert" (itr <= enditr)
} else {
may_delete = false;
}
}
bool past_right = false;
bool moved = false;
// Follow the general strategy of messing things up and fix them later
// "oldbase" carries the information needed to calculate old position of
// children.
if (may_delete) {
while (itr->node && !past_right) {
mtpos_t loc_start = start;
mtpos_t loc_old = old_extent;
relative(itr->pos, &loc_start);
relative(oldbase[itr->lvl], &loc_old);
continue_same_node:
// NB: strictly should be less than the right gravity of loc_old, but
// the iter comparison below will already break on that.
if (!pos_leq(rawkey(itr).pos, loc_old)) {
break;
}
if (mt_right(rawkey(itr))) {
while (!itr_eq(itr, enditr)
&& mt_right(rawkey(enditr))) {
marktree_itr_prev(b, enditr);
}
if (!mt_right(rawkey(enditr))) {
itr_swap(itr, enditr);
refkey(b, itr->node, itr->i);
refkey(b, enditr->node, enditr->i);
} else {
past_right = true; // NOLINT
(void)past_right;
break;
}
}
if (itr_eq(itr, enditr)) {
// actually, will be past_right after this key
past_right = true;
}
moved = true;
if (itr->node->level) {
oldbase[itr->lvl + 1] = rawkey(itr).pos;
unrelative(oldbase[itr->lvl], &oldbase[itr->lvl + 1]);
rawkey(itr).pos = loc_start;
marktree_itr_next_skip(b, itr, false, oldbase);
} else {
rawkey(itr).pos = loc_start;
if (itr->i < itr->node->n - 1) {
itr->i++;
if (!past_right) {
goto continue_same_node;
}
} else {
marktree_itr_next(b, itr);
}
}
}
while (itr->node) {
mtpos_t loc_new = new_extent;
relative(itr->pos, &loc_new);
mtpos_t limit = old_extent;
relative(oldbase[itr->lvl], &limit);
past_continue_same_node:
if (pos_leq(limit, rawkey(itr).pos)) {
break;
}
mtpos_t oldpos = rawkey(itr).pos;
rawkey(itr).pos = loc_new;
moved = true;
if (itr->node->level) {
oldbase[itr->lvl + 1] = oldpos;
unrelative(oldbase[itr->lvl], &oldbase[itr->lvl + 1]);
marktree_itr_next_skip(b, itr, false, oldbase);
} else {
if (itr->i < itr->node->n - 1) {
itr->i++;
goto past_continue_same_node;
} else {
marktree_itr_next(b, itr);
}
}
}
}
while (itr->node) {
unrelative(oldbase[itr->lvl], &rawkey(itr).pos);
int realrow = rawkey(itr).pos.row;
assert(realrow >= old_extent.row);
bool done = false;
if (realrow == old_extent.row) {
if (delta.col) {
rawkey(itr).pos.col += delta.col;
moved = true;
}
} else {
if (same_line) {
// optimization: column only adjustment can skip remaining rows
done = true;
}
}
if (delta.row) {
rawkey(itr).pos.row += delta.row;
moved = true;
}
relative(itr->pos, &rawkey(itr).pos);
if (done) {
break;
}
marktree_itr_next_skip(b, itr, true, NULL);
}
return moved;
}
void marktree_move_region(MarkTree *b, int start_row, colnr_T start_col, int extent_row,
colnr_T extent_col, int new_row, colnr_T new_col)
{
mtpos_t start = { start_row, start_col }, size = { extent_row, extent_col };
mtpos_t end = size;
unrelative(start, &end);
MarkTreeIter itr[1] = { 0 };
marktree_itr_get_ext(b, start, itr, false, true, NULL);
kvec_t(mtkey_t) saved = KV_INITIAL_VALUE;
while (itr->node) {
mtkey_t k = marktree_itr_current(itr);
if (!pos_leq(k.pos, end) || (k.pos.row == end.row && k.pos.col == end.col
&& mt_right(k))) {
break;
}
relative(start, &k.pos);
kv_push(saved, k);
marktree_del_itr(b, itr, false);
}
marktree_splice(b, start.row, start.col, size.row, size.col, 0, 0);
mtpos_t new = { new_row, new_col };
marktree_splice(b, new.row, new.col,
0, 0, size.row, size.col);
for (size_t i = 0; i < kv_size(saved); i++) {
mtkey_t item = kv_A(saved, i);
unrelative(new, &item.pos);
marktree_put_key(b, item);
}
kv_destroy(saved);
}
/// @param itr OPTIONAL. set itr to pos.
mtkey_t marktree_lookup_ns(MarkTree *b, uint32_t ns, uint32_t id, bool end, MarkTreeIter *itr)
{
return marktree_lookup(b, mt_lookup_id(ns, id, end), itr);
}
/// @param itr OPTIONAL. set itr to pos.
mtkey_t marktree_lookup(MarkTree *b, uint64_t id, MarkTreeIter *itr)
{
mtnode_t *n = pmap_get(uint64_t)(b->id2node, id);
if (n == NULL) {
if (itr) {
itr->node = NULL;
}
return MT_INVALID_KEY;
}
int i = 0;
for (i = 0; i < n->n; i++) {
if (mt_lookup_key(n->key[i]) == id) {
goto found;
}
}
abort();
found: {}
mtkey_t key = n->key[i];
if (itr) {
itr->i = i;
itr->node = n;
itr->lvl = b->root->level - n->level;
}
while (n->parent != NULL) {
mtnode_t *p = n->parent;
for (i = 0; i < p->n + 1; i++) {
if (p->ptr[i] == n) {
goto found_node;
}
}
abort();
found_node:
if (itr) {
itr->s[b->root->level - p->level].i = i;
}
if (i > 0) {
unrelative(p->key[i - 1].pos, &key.pos);
}
n = p;
}
if (itr) {
marktree_itr_fix_pos(b, itr);
}
return key;
}
mtpos_t marktree_get_altpos(MarkTree *b, mtkey_t mark, MarkTreeIter *itr)
{
return marktree_get_alt(b, mark, itr).pos;
}
mtkey_t marktree_get_alt(MarkTree *b, mtkey_t mark, MarkTreeIter *itr)
{
mtkey_t end = MT_INVALID_KEY;
if (mt_paired(mark)) {
end = marktree_lookup_ns(b, mark.ns, mark.id, !mt_end(mark), itr);
}
return end;
}
static void marktree_itr_fix_pos(MarkTree *b, MarkTreeIter *itr)
{
itr->pos = (mtpos_t){ 0, 0 };
mtnode_t *x = b->root;
for (int lvl = 0; lvl < itr->lvl; lvl++) {
itr->s[lvl].oldcol = itr->pos.col;
int i = itr->s[lvl].i;
if (i > 0) {
compose(&itr->pos, x->key[i - 1].pos);
}
assert(x->level);
x = x->ptr[i];
}
assert(x == itr->node);
}
// for unit test
void marktree_put_test(MarkTree *b, uint32_t id, int row, int col, bool right_gravity)
{
mtkey_t key = { { row, col }, UINT32_MAX, id, 0,
mt_flags(right_gravity, 0), 0, NULL };
marktree_put(b, key, -1, -1, false);
}
// for unit test
bool mt_right_test(mtkey_t key)
{
return mt_right(key);
}
void marktree_check(MarkTree *b)
{
#ifndef NDEBUG
if (b->root == NULL) {
assert(b->n_keys == 0);
assert(b->n_nodes == 0);
assert(b->id2node == NULL || map_size(b->id2node) == 0);
return;
}
mtpos_t dummy;
bool last_right = false;
size_t nkeys = marktree_check_node(b, b->root, &dummy, &last_right);
assert(b->n_keys == nkeys);
assert(b->n_keys == map_size(b->id2node));
#else
// Do nothing, as assertions are required
(void)b;
#endif
}
#ifndef NDEBUG
size_t marktree_check_node(MarkTree *b, mtnode_t *x, mtpos_t *last, bool *last_right)
{
assert(x->n <= 2 * T - 1);
// TODO(bfredl): too strict if checking "in repair" post-delete tree.
assert(x->n >= (x != b->root ? T - 1 : 0));
size_t n_keys = (size_t)x->n;
for (int i = 0; i < x->n; i++) {
if (x->level) {
n_keys += marktree_check_node(b, x->ptr[i], last, last_right);
} else {
*last = (mtpos_t) { 0, 0 };
}
if (i > 0) {
unrelative(x->key[i - 1].pos, last);
}
assert(pos_leq(*last, x->key[i].pos));
if (last->row == x->key[i].pos.row && last->col == x->key[i].pos.col) {
assert(!*last_right || mt_right(x->key[i]));
}
*last_right = mt_right(x->key[i]);
assert(x->key[i].pos.col >= 0);
assert(pmap_get(uint64_t)(b->id2node, mt_lookup_key(x->key[i])) == x);
}
if (x->level) {
n_keys += marktree_check_node(b, x->ptr[x->n], last, last_right);
unrelative(x->key[x->n - 1].pos, last);
for (int i = 0; i < x->n + 1; i++) {
assert(x->ptr[i]->parent == x);
assert(x->ptr[i]->level == x->level - 1);
// PARANOIA: check no double node ref
for (int j = 0; j < i; j++) {
assert(x->ptr[i] != x->ptr[j]);
}
}
} else if (x->n > 0) {
*last = x->key[x->n - 1].pos;
}
return n_keys;
}
#endif
char *mt_inspect_rec(MarkTree *b)
{
garray_T ga;
ga_init(&ga, (int)sizeof(char), 80);
mtpos_t p = { 0, 0 };
mt_inspect_node(b, &ga, b->root, p);
return ga.ga_data;
}
void mt_inspect_node(MarkTree *b, garray_T *ga, mtnode_t *n, mtpos_t off)
{
static char buf[1024];
ga_concat(ga, "[");
if (n->level) {
mt_inspect_node(b, ga, n->ptr[0], off);
}
for (int i = 0; i < n->n; i++) {
mtpos_t p = n->key[i].pos;
unrelative(off, &p);
snprintf(buf, sizeof(buf), "%d/%d", p.row, p.col);
ga_concat(ga, buf);
if (n->level) {
mt_inspect_node(b, ga, n->ptr[i + 1], p);
} else {
ga_concat(ga, ",");
}
}
ga_concat(ga, "]");
}