mirror of
https://github.com/neovim/neovim.git
synced 2025-09-15 15:58:17 +00:00

Ran some commands on terminal, reviewed changes, and made some manual changes too. find src | xargs perl -i -p -e "s/vim_memset/memset/g" git grep -l memset | egrep "\.c$" | xargs perl -i -p -e \ 's/(#include "vim\.h")/#include <string.h>\n\n\1/g'
419 lines
12 KiB
C
419 lines
12 KiB
C
/// @file sha256.c
|
|
///
|
|
/// FIPS-180-2 compliant SHA-256 implementation
|
|
/// GPL by Christophe Devine, applies to older version.
|
|
/// Modified for md5deep, in public domain.
|
|
/// Modified For Vim, Mohsin Ahmed, http://www.cs.albany.edu/~mosh
|
|
/// Mohsin Ahmed states this work is distributed under the VIM License or GPL,
|
|
/// at your choice.
|
|
///
|
|
/// Vim specific notes:
|
|
/// Functions exported by this file:
|
|
/// 1. sha256_key() hashes the password to 64 bytes char string.
|
|
/// 2. sha2_seed() generates a random header.
|
|
/// sha256_self_test() is implicitly called once.
|
|
|
|
#include <string.h>
|
|
|
|
#include "vim.h"
|
|
#include "sha256.h"
|
|
|
|
static void sha256_process(context_sha256_T *ctx, char_u data[64]);
|
|
|
|
#define GET_UINT32(n, b, i) { \
|
|
(n) = ((uint32_t)(b)[(i)] << 24) \
|
|
| ((uint32_t)(b)[(i) + 1] << 16) \
|
|
| ((uint32_t)(b)[(i) + 2] << 8) \
|
|
| ((uint32_t)(b)[(i) + 3]); \
|
|
}
|
|
|
|
#define PUT_UINT32(n, b, i) { \
|
|
(b)[(i)] = (char_u)((n) >> 24); \
|
|
(b)[(i) + 1] = (char_u)((n) >> 16); \
|
|
(b)[(i) + 2] = (char_u)((n) >> 8); \
|
|
(b)[(i) + 3] = (char_u)((n)); \
|
|
}
|
|
|
|
void sha256_start(context_sha256_T *ctx)
|
|
{
|
|
ctx->total[0] = 0;
|
|
ctx->total[1] = 0;
|
|
|
|
ctx->state[0] = 0x6A09E667;
|
|
ctx->state[1] = 0xBB67AE85;
|
|
ctx->state[2] = 0x3C6EF372;
|
|
ctx->state[3] = 0xA54FF53A;
|
|
ctx->state[4] = 0x510E527F;
|
|
ctx->state[5] = 0x9B05688C;
|
|
ctx->state[6] = 0x1F83D9AB;
|
|
ctx->state[7] = 0x5BE0CD19;
|
|
}
|
|
|
|
static void sha256_process(context_sha256_T *ctx, char_u data[64])
|
|
{
|
|
uint32_t temp1, temp2, W[64];
|
|
uint32_t A, B, C, D, E, F, G, H;
|
|
|
|
GET_UINT32(W[0], data, 0);
|
|
GET_UINT32(W[1], data, 4);
|
|
GET_UINT32(W[2], data, 8);
|
|
GET_UINT32(W[3], data, 12);
|
|
GET_UINT32(W[4], data, 16);
|
|
GET_UINT32(W[5], data, 20);
|
|
GET_UINT32(W[6], data, 24);
|
|
GET_UINT32(W[7], data, 28);
|
|
GET_UINT32(W[8], data, 32);
|
|
GET_UINT32(W[9], data, 36);
|
|
GET_UINT32(W[10], data, 40);
|
|
GET_UINT32(W[11], data, 44);
|
|
GET_UINT32(W[12], data, 48);
|
|
GET_UINT32(W[13], data, 52);
|
|
GET_UINT32(W[14], data, 56);
|
|
GET_UINT32(W[15], data, 60);
|
|
|
|
#define SHR(x, n) ((x & 0xFFFFFFFF) >> n)
|
|
#define ROTR(x, n) (SHR(x, n) | (x << (32 - n)))
|
|
|
|
#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
|
|
#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
|
|
|
|
#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
|
|
#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
|
|
|
|
#define F0(x, y, z) ((x & y) | (z & (x | y)))
|
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
|
|
|
#define R(t) \
|
|
(W[t] = S1(W[t - 2]) + W[t - 7] + \
|
|
S0(W[t - 15]) + W[t - 16])
|
|
|
|
#define P(a, b, c, d, e, f, g, h, x, K) { \
|
|
temp1 = h + S3(e) + F1(e, f, g) + K + x; \
|
|
temp2 = S2(a) + F0(a, b, c); \
|
|
d += temp1; h = temp1 + temp2; \
|
|
}
|
|
|
|
A = ctx->state[0];
|
|
B = ctx->state[1];
|
|
C = ctx->state[2];
|
|
D = ctx->state[3];
|
|
E = ctx->state[4];
|
|
F = ctx->state[5];
|
|
G = ctx->state[6];
|
|
H = ctx->state[7];
|
|
|
|
P(A, B, C, D, E, F, G, H, W[0], 0x428A2F98);
|
|
P(H, A, B, C, D, E, F, G, W[1], 0x71374491);
|
|
P(G, H, A, B, C, D, E, F, W[2], 0xB5C0FBCF);
|
|
P(F, G, H, A, B, C, D, E, W[3], 0xE9B5DBA5);
|
|
P(E, F, G, H, A, B, C, D, W[4], 0x3956C25B);
|
|
P(D, E, F, G, H, A, B, C, W[5], 0x59F111F1);
|
|
P(C, D, E, F, G, H, A, B, W[6], 0x923F82A4);
|
|
P(B, C, D, E, F, G, H, A, W[7], 0xAB1C5ED5);
|
|
P(A, B, C, D, E, F, G, H, W[8], 0xD807AA98);
|
|
P(H, A, B, C, D, E, F, G, W[9], 0x12835B01);
|
|
P(G, H, A, B, C, D, E, F, W[10], 0x243185BE);
|
|
P(F, G, H, A, B, C, D, E, W[11], 0x550C7DC3);
|
|
P(E, F, G, H, A, B, C, D, W[12], 0x72BE5D74);
|
|
P(D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE);
|
|
P(C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7);
|
|
P(B, C, D, E, F, G, H, A, W[15], 0xC19BF174);
|
|
P(A, B, C, D, E, F, G, H, R(16), 0xE49B69C1);
|
|
P(H, A, B, C, D, E, F, G, R(17), 0xEFBE4786);
|
|
P(G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6);
|
|
P(F, G, H, A, B, C, D, E, R(19), 0x240CA1CC);
|
|
P(E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F);
|
|
P(D, E, F, G, H, A, B, C, R(21), 0x4A7484AA);
|
|
P(C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC);
|
|
P(B, C, D, E, F, G, H, A, R(23), 0x76F988DA);
|
|
P(A, B, C, D, E, F, G, H, R(24), 0x983E5152);
|
|
P(H, A, B, C, D, E, F, G, R(25), 0xA831C66D);
|
|
P(G, H, A, B, C, D, E, F, R(26), 0xB00327C8);
|
|
P(F, G, H, A, B, C, D, E, R(27), 0xBF597FC7);
|
|
P(E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3);
|
|
P(D, E, F, G, H, A, B, C, R(29), 0xD5A79147);
|
|
P(C, D, E, F, G, H, A, B, R(30), 0x06CA6351);
|
|
P(B, C, D, E, F, G, H, A, R(31), 0x14292967);
|
|
P(A, B, C, D, E, F, G, H, R(32), 0x27B70A85);
|
|
P(H, A, B, C, D, E, F, G, R(33), 0x2E1B2138);
|
|
P(G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC);
|
|
P(F, G, H, A, B, C, D, E, R(35), 0x53380D13);
|
|
P(E, F, G, H, A, B, C, D, R(36), 0x650A7354);
|
|
P(D, E, F, G, H, A, B, C, R(37), 0x766A0ABB);
|
|
P(C, D, E, F, G, H, A, B, R(38), 0x81C2C92E);
|
|
P(B, C, D, E, F, G, H, A, R(39), 0x92722C85);
|
|
P(A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1);
|
|
P(H, A, B, C, D, E, F, G, R(41), 0xA81A664B);
|
|
P(G, H, A, B, C, D, E, F, R(42), 0xC24B8B70);
|
|
P(F, G, H, A, B, C, D, E, R(43), 0xC76C51A3);
|
|
P(E, F, G, H, A, B, C, D, R(44), 0xD192E819);
|
|
P(D, E, F, G, H, A, B, C, R(45), 0xD6990624);
|
|
P(C, D, E, F, G, H, A, B, R(46), 0xF40E3585);
|
|
P(B, C, D, E, F, G, H, A, R(47), 0x106AA070);
|
|
P(A, B, C, D, E, F, G, H, R(48), 0x19A4C116);
|
|
P(H, A, B, C, D, E, F, G, R(49), 0x1E376C08);
|
|
P(G, H, A, B, C, D, E, F, R(50), 0x2748774C);
|
|
P(F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5);
|
|
P(E, F, G, H, A, B, C, D, R(52), 0x391C0CB3);
|
|
P(D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A);
|
|
P(C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F);
|
|
P(B, C, D, E, F, G, H, A, R(55), 0x682E6FF3);
|
|
P(A, B, C, D, E, F, G, H, R(56), 0x748F82EE);
|
|
P(H, A, B, C, D, E, F, G, R(57), 0x78A5636F);
|
|
P(G, H, A, B, C, D, E, F, R(58), 0x84C87814);
|
|
P(F, G, H, A, B, C, D, E, R(59), 0x8CC70208);
|
|
P(E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA);
|
|
P(D, E, F, G, H, A, B, C, R(61), 0xA4506CEB);
|
|
P(C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7);
|
|
P(B, C, D, E, F, G, H, A, R(63), 0xC67178F2);
|
|
|
|
ctx->state[0] += A;
|
|
ctx->state[1] += B;
|
|
ctx->state[2] += C;
|
|
ctx->state[3] += D;
|
|
ctx->state[4] += E;
|
|
ctx->state[5] += F;
|
|
ctx->state[6] += G;
|
|
ctx->state[7] += H;
|
|
}
|
|
|
|
void sha256_update(context_sha256_T *ctx, char_u *input, uint32_t length)
|
|
{
|
|
uint32_t left, fill;
|
|
|
|
if (length == 0) {
|
|
return;
|
|
}
|
|
|
|
left = ctx->total[0] & 0x3F;
|
|
fill = 64 - left;
|
|
|
|
ctx->total[0] += length;
|
|
ctx->total[0] &= 0xFFFFFFFF;
|
|
|
|
if (ctx->total[0] < length) {
|
|
ctx->total[1]++;
|
|
}
|
|
|
|
if (left && (length >= fill)) {
|
|
memcpy((void *)(ctx->buffer + left), (void *)input, fill);
|
|
sha256_process(ctx, ctx->buffer);
|
|
length -= fill;
|
|
input += fill;
|
|
left = 0;
|
|
}
|
|
|
|
while (length >= 64) {
|
|
sha256_process(ctx, input);
|
|
length -= 64;
|
|
input += 64;
|
|
}
|
|
|
|
if (length) {
|
|
memcpy((void *)(ctx->buffer + left), (void *)input, length);
|
|
}
|
|
}
|
|
|
|
static char_u sha256_padding[64] = {
|
|
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
|
};
|
|
|
|
void sha256_finish(context_sha256_T *ctx, char_u digest[32])
|
|
{
|
|
uint32_t last, padn;
|
|
uint32_t high, low;
|
|
char_u msglen[8];
|
|
|
|
high = (ctx->total[0] >> 29) | (ctx->total[1] << 3);
|
|
low = (ctx->total[0] << 3);
|
|
|
|
PUT_UINT32(high, msglen, 0);
|
|
PUT_UINT32(low, msglen, 4);
|
|
|
|
last = ctx->total[0] & 0x3F;
|
|
padn = (last < 56) ? (56 - last) : (120 - last);
|
|
|
|
sha256_update(ctx, sha256_padding, padn);
|
|
sha256_update(ctx, msglen, 8);
|
|
|
|
PUT_UINT32(ctx->state[0], digest, 0);
|
|
PUT_UINT32(ctx->state[1], digest, 4);
|
|
PUT_UINT32(ctx->state[2], digest, 8);
|
|
PUT_UINT32(ctx->state[3], digest, 12);
|
|
PUT_UINT32(ctx->state[4], digest, 16);
|
|
PUT_UINT32(ctx->state[5], digest, 20);
|
|
PUT_UINT32(ctx->state[6], digest, 24);
|
|
PUT_UINT32(ctx->state[7], digest, 28);
|
|
}
|
|
|
|
static unsigned int get_some_time(void);
|
|
|
|
/// Gets the hex digest of the buffer.
|
|
///
|
|
/// @param buf
|
|
/// @param buf_len
|
|
/// @param salt
|
|
/// @param salt_len
|
|
///
|
|
/// @returns hex digest of "buf[buf_len]" in a static array.
|
|
/// if "salt" is not NULL also do "salt[salt_len]".
|
|
char_u *sha256_bytes(char_u *buf, int buf_len, char_u *salt, int salt_len)
|
|
{
|
|
char_u sha256sum[32];
|
|
static char_u hexit[65];
|
|
int j;
|
|
context_sha256_T ctx;
|
|
|
|
sha256_self_test();
|
|
|
|
sha256_start(&ctx);
|
|
sha256_update(&ctx, buf, buf_len);
|
|
|
|
if (salt != NULL) {
|
|
sha256_update(&ctx, salt, salt_len);
|
|
}
|
|
sha256_finish(&ctx, sha256sum);
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
sprintf((char *) hexit + j * 2, "%02x", sha256sum[j]);
|
|
}
|
|
hexit[sizeof(hexit) - 1] = '\0';
|
|
return hexit;
|
|
}
|
|
|
|
/// Gets sha256(buf) as 64 hex characters in a static array.
|
|
///
|
|
/// @param buf
|
|
/// @param salt
|
|
/// @param salt_len
|
|
///
|
|
/// @returns sha256(buf) as 64 hex chars in static array.
|
|
char_u* sha256_key(char_u *buf, char_u *salt, int salt_len)
|
|
{
|
|
// No passwd means don't encrypt
|
|
if ((buf == NULL) || (*buf == NUL)) {
|
|
return (char_u *)"";
|
|
}
|
|
|
|
return sha256_bytes(buf, (int)STRLEN(buf), salt, salt_len);
|
|
}
|
|
|
|
// These are the standard FIPS-180-2 test vectors
|
|
static char *sha_self_test_msg[] = {
|
|
"abc",
|
|
"abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
|
|
NULL
|
|
};
|
|
|
|
static char *sha_self_test_vector[] = {
|
|
"ba7816bf8f01cfea414140de5dae2223" \
|
|
"b00361a396177a9cb410ff61f20015ad",
|
|
"248d6a61d20638b8e5c026930c3e6039" \
|
|
"a33ce45964ff2167f6ecedd419db06c1",
|
|
"cdc76e5c9914fb9281a1c7e284d73e67" \
|
|
"f1809a48a497200e046d39ccc7112cd0"
|
|
};
|
|
|
|
/// Perform a test on the SHA256 algorithm.
|
|
///
|
|
/// @return FAIL or OK.
|
|
int sha256_self_test(void)
|
|
{
|
|
int i, j;
|
|
char output[65];
|
|
context_sha256_T ctx;
|
|
char_u buf[1000];
|
|
char_u sha256sum[32];
|
|
static int failures = 0;
|
|
char_u *hexit;
|
|
static int sha256_self_tested = 0;
|
|
|
|
if (sha256_self_tested > 0) {
|
|
return failures > 0 ? FAIL : OK;
|
|
}
|
|
sha256_self_tested = 1;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
if (i < 2) {
|
|
hexit = sha256_bytes((char_u *) sha_self_test_msg[i],
|
|
(int) STRLEN(sha_self_test_msg[i]),
|
|
NULL, 0);
|
|
STRCPY(output, hexit);
|
|
} else {
|
|
sha256_start(&ctx);
|
|
memset(buf, 'a', 1000);
|
|
|
|
for (j = 0; j < 1000; j++) {
|
|
sha256_update(&ctx, (char_u *) buf, 1000);
|
|
}
|
|
sha256_finish(&ctx, sha256sum);
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
sprintf(output + j * 2, "%02x", sha256sum[j]);
|
|
}
|
|
}
|
|
|
|
if (memcmp(output, sha_self_test_vector[i], 64)) {
|
|
failures++;
|
|
output[sizeof(output) - 1] = '\0';
|
|
|
|
// printf("sha256_self_test %d failed %s\n", i, output);
|
|
}
|
|
}
|
|
return failures > 0 ? FAIL : OK;
|
|
}
|
|
|
|
static unsigned int get_some_time(void)
|
|
{
|
|
#ifdef HAVE_GETTIMEOFDAY
|
|
struct timeval tv;
|
|
|
|
// Using usec makes it less predictable.
|
|
gettimeofday(&tv, NULL);
|
|
return (unsigned int) (tv.tv_sec + tv.tv_usec);
|
|
|
|
#else // ifdef HAVE_GETTIMEOFDAY
|
|
return (unsigned int) time(NULL);
|
|
|
|
#endif // ifdef HAVE_GETTIMEOFDAY
|
|
}
|
|
|
|
/// Fill "header[header_len]" with random_data.
|
|
/// Also "salt[salt_len]" when "salt" is not NULL.
|
|
///
|
|
/// @param header
|
|
/// @param header_len
|
|
/// @param salt
|
|
/// @param salt_len
|
|
void sha2_seed(char_u *header, int header_len, char_u *salt, int salt_len)
|
|
{
|
|
static char_u random_data[1000];
|
|
char_u sha256sum[32];
|
|
context_sha256_T ctx;
|
|
|
|
srand(get_some_time());
|
|
|
|
int i;
|
|
for (i = 0; i < (int) sizeof(random_data) - 1; i++) {
|
|
random_data[i] = (char_u) ((get_some_time() ^ rand()) & 0xff);
|
|
}
|
|
sha256_start(&ctx);
|
|
sha256_update(&ctx, (char_u *) random_data, sizeof(random_data));
|
|
sha256_finish(&ctx, sha256sum);
|
|
|
|
// put first block into header.
|
|
for (i = 0; i < header_len; i++) {
|
|
header[i] = sha256sum[i % sizeof(sha256sum)];
|
|
}
|
|
|
|
// put remaining block into salt.
|
|
if (salt != NULL) {
|
|
for (i = 0; i < salt_len; i++) {
|
|
salt[i] = sha256sum[(i + header_len) % sizeof(sha256sum)];
|
|
}
|
|
}
|
|
}
|