mirror of
https://github.com/neovim/neovim.git
synced 2025-09-27 13:38:34 +00:00

Problem: Variables are often assigned multiple places in common patterns. Solution: Replace these common patterns with different patterns that reduce the number of assignments. Use `MAX` and `MIN`: ```c if (x < y) { x = y; } // --> x = MAX(x, y); ``` ```c if (x > y) { x = y; } // --> x = MIN(x, y); ``` Use ternary: ```c int a; if (cond) { a = b; } els { a = c; } // --> int a = cond ? b : c; ```
459 lines
14 KiB
C
459 lines
14 KiB
C
/// @file hashtab.c
|
|
///
|
|
/// Handling of a hashtable with Vim-specific properties.
|
|
///
|
|
/// Each item in a hashtable has a NUL terminated string key. A key can appear
|
|
/// only once in the table.
|
|
///
|
|
/// A hash number is computed from the key for quick lookup. When the hashes
|
|
/// of two different keys point to the same entry an algorithm is used to
|
|
/// iterate over other entries in the table until the right one is found.
|
|
/// To make the iteration work removed keys are different from entries where a
|
|
/// key was never present.
|
|
///
|
|
/// The mechanism has been partly based on how Python Dictionaries are
|
|
/// implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4.
|
|
///
|
|
/// The hashtable grows to accommodate more entries when needed. At least 1/3
|
|
/// of the entries is empty to keep the lookup efficient (at the cost of extra
|
|
/// memory).
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
|
|
#include "nvim/ascii_defs.h"
|
|
#include "nvim/gettext_defs.h"
|
|
#include "nvim/hashtab.h"
|
|
#include "nvim/memory.h"
|
|
#include "nvim/message.h"
|
|
#include "nvim/vim_defs.h"
|
|
|
|
// Magic value for algorithm that walks through the array.
|
|
#define PERTURB_SHIFT 5
|
|
|
|
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
|
# include "hashtab.c.generated.h"
|
|
#endif
|
|
|
|
char hash_removed;
|
|
|
|
/// Initialize an empty hash table.
|
|
void hash_init(hashtab_T *ht)
|
|
{
|
|
// This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray".
|
|
CLEAR_POINTER(ht);
|
|
ht->ht_array = ht->ht_smallarray;
|
|
ht->ht_mask = HT_INIT_SIZE - 1;
|
|
}
|
|
|
|
/// Free the array of a hash table without freeing contained values.
|
|
///
|
|
/// If "ht" is not freed (after calling this) then you should call hash_init()
|
|
/// right next!
|
|
void hash_clear(hashtab_T *ht)
|
|
{
|
|
if (ht->ht_array != ht->ht_smallarray) {
|
|
xfree(ht->ht_array);
|
|
}
|
|
}
|
|
|
|
/// Free the array of a hash table and all contained values.
|
|
///
|
|
/// @param off the offset from start of value to start of key (@see hashitem_T).
|
|
void hash_clear_all(hashtab_T *ht, unsigned off)
|
|
{
|
|
size_t todo = ht->ht_used;
|
|
for (hashitem_T *hi = ht->ht_array; todo > 0; hi++) {
|
|
if (!HASHITEM_EMPTY(hi)) {
|
|
xfree(hi->hi_key - off);
|
|
todo--;
|
|
}
|
|
}
|
|
hash_clear(ht);
|
|
}
|
|
|
|
/// Find item for given "key" in hashtable "ht".
|
|
///
|
|
/// @param key The key of the looked-for item. Must not be NULL.
|
|
///
|
|
/// @return Pointer to the hash item corresponding to the given key.
|
|
/// If not found, then return pointer to the empty item that would be
|
|
/// used for that key.
|
|
/// WARNING: Returned pointer becomes invalid as soon as the hash table
|
|
/// is changed in any way.
|
|
hashitem_T *hash_find(const hashtab_T *const ht, const char *const key)
|
|
{
|
|
return hash_lookup(ht, key, strlen(key), hash_hash(key));
|
|
}
|
|
|
|
/// Like hash_find, but key is not NUL-terminated
|
|
///
|
|
/// @param[in] ht Hashtab to look in.
|
|
/// @param[in] key Key of the looked-for item. Must not be NULL.
|
|
/// @param[in] len Key length.
|
|
///
|
|
/// @return Pointer to the hash item corresponding to the given key.
|
|
/// If not found, then return pointer to the empty item that would be
|
|
/// used for that key.
|
|
///
|
|
/// @warning Returned pointer becomes invalid as soon as the hash table
|
|
/// is changed in any way.
|
|
hashitem_T *hash_find_len(const hashtab_T *const ht, const char *const key, const size_t len)
|
|
{
|
|
return hash_lookup(ht, key, len, hash_hash_len(key, len));
|
|
}
|
|
|
|
/// Like hash_find(), but caller computes "hash".
|
|
///
|
|
/// @param[in] key The key of the looked-for item. Must not be NULL.
|
|
/// @param[in] key_len Key length.
|
|
/// @param[in] hash The precomputed hash for the key.
|
|
///
|
|
/// @return Pointer to the hashitem corresponding to the given key.
|
|
/// If not found, then return pointer to the empty item that would be
|
|
/// used for that key.
|
|
/// WARNING: Returned pointer becomes invalid as soon as the hash table
|
|
/// is changed in any way.
|
|
hashitem_T *hash_lookup(const hashtab_T *const ht, const char *const key, const size_t key_len,
|
|
const hash_T hash)
|
|
{
|
|
#ifdef HT_DEBUG
|
|
hash_count_lookup++;
|
|
#endif
|
|
|
|
// Quickly handle the most common situations:
|
|
// - return if there is no item at all
|
|
// - skip over a removed item
|
|
// - return if the item matches
|
|
hash_T idx = hash & ht->ht_mask;
|
|
hashitem_T *hi = &ht->ht_array[idx];
|
|
|
|
if (hi->hi_key == NULL) {
|
|
return hi;
|
|
}
|
|
|
|
hashitem_T *freeitem = NULL;
|
|
if (hi->hi_key == HI_KEY_REMOVED) {
|
|
freeitem = hi;
|
|
} else if ((hi->hi_hash == hash)
|
|
&& (strncmp(hi->hi_key, key, key_len) == 0)
|
|
&& hi->hi_key[key_len] == NUL) {
|
|
return hi;
|
|
}
|
|
|
|
// Need to search through the table to find the key. The algorithm
|
|
// to step through the table starts with large steps, gradually becoming
|
|
// smaller down to (1/4 table size + 1). This means it goes through all
|
|
// table entries in the end.
|
|
// When we run into a NULL key it's clear that the key isn't there.
|
|
// Return the first available slot found (can be a slot of a removed
|
|
// item).
|
|
for (hash_T perturb = hash;; perturb >>= PERTURB_SHIFT) {
|
|
#ifdef HT_DEBUG
|
|
// count a "miss" for hashtab lookup
|
|
hash_count_perturb++;
|
|
#endif
|
|
idx = 5 * idx + perturb + 1;
|
|
hi = &ht->ht_array[idx & ht->ht_mask];
|
|
|
|
if (hi->hi_key == NULL) {
|
|
return freeitem == NULL ? hi : freeitem;
|
|
}
|
|
|
|
if ((hi->hi_hash == hash)
|
|
&& (hi->hi_key != HI_KEY_REMOVED)
|
|
&& (strncmp(hi->hi_key, key, key_len) == 0)
|
|
&& hi->hi_key[key_len] == NUL) {
|
|
return hi;
|
|
}
|
|
|
|
if ((hi->hi_key == HI_KEY_REMOVED) && (freeitem == NULL)) {
|
|
freeitem = hi;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Print the efficiency of hashtable lookups.
|
|
///
|
|
/// Useful when trying different hash algorithms.
|
|
/// Called when exiting.
|
|
void hash_debug_results(void)
|
|
{
|
|
#ifdef HT_DEBUG
|
|
fprintf(stderr, "\r\n\r\n\r\n\r\n");
|
|
fprintf(stderr, "Number of hashtable lookups: %" PRId64 "\r\n",
|
|
(int64_t)hash_count_lookup);
|
|
fprintf(stderr, "Number of perturb loops: %" PRId64 "\r\n",
|
|
(int64_t)hash_count_perturb);
|
|
fprintf(stderr, "Percentage of perturb loops: %" PRId64 "%%\r\n",
|
|
(int64_t)(hash_count_perturb * 100 / hash_count_lookup));
|
|
#endif
|
|
}
|
|
|
|
/// Add (empty) item for key `key` to hashtable `ht`.
|
|
///
|
|
/// @param key Pointer to the key for the new item. The key has to be contained
|
|
/// in the new item (@see hashitem_T). Must not be NULL.
|
|
///
|
|
/// @return OK if success.
|
|
/// FAIL if key already present
|
|
int hash_add(hashtab_T *ht, char *key)
|
|
{
|
|
hash_T hash = hash_hash(key);
|
|
hashitem_T *hi = hash_lookup(ht, key, strlen(key), hash);
|
|
if (!HASHITEM_EMPTY(hi)) {
|
|
siemsg(_("E685: Internal error: hash_add(): duplicate key \"%s\""), key);
|
|
return FAIL;
|
|
}
|
|
hash_add_item(ht, hi, key, hash);
|
|
return OK;
|
|
}
|
|
|
|
/// Add item "hi" for key "key" to hashtable "ht".
|
|
///
|
|
/// @param hi The hash item to be used. Must have been obtained through
|
|
/// hash_lookup() and point to an empty item.
|
|
/// @param key Pointer to the key for the new item. The key has to be contained
|
|
/// in the new item (@see hashitem_T). Must not be NULL.
|
|
/// @param hash The precomputed hash value for the key.
|
|
void hash_add_item(hashtab_T *ht, hashitem_T *hi, char *key, hash_T hash)
|
|
{
|
|
ht->ht_used++;
|
|
ht->ht_changed++;
|
|
if (hi->hi_key == NULL) {
|
|
ht->ht_filled++;
|
|
}
|
|
hi->hi_key = key;
|
|
hi->hi_hash = hash;
|
|
|
|
// When the space gets low may resize the array.
|
|
hash_may_resize(ht, 0);
|
|
}
|
|
|
|
/// Remove item "hi" from hashtable "ht".
|
|
///
|
|
/// Caller must take care of freeing the item itself.
|
|
///
|
|
/// @param hi The hash item to be removed.
|
|
/// It must have been obtained with hash_lookup().
|
|
void hash_remove(hashtab_T *ht, hashitem_T *hi)
|
|
{
|
|
ht->ht_used--;
|
|
ht->ht_changed++;
|
|
hi->hi_key = HI_KEY_REMOVED;
|
|
hash_may_resize(ht, 0);
|
|
}
|
|
|
|
/// Lock hashtable (prevent changes in ht_array).
|
|
///
|
|
/// Don't use this when items are to be added!
|
|
/// Must call hash_unlock() later.
|
|
void hash_lock(hashtab_T *ht)
|
|
{
|
|
ht->ht_locked++;
|
|
}
|
|
|
|
/// Unlock hashtable (allow changes in ht_array again).
|
|
///
|
|
/// Table will be resized (shrunk) when necessary.
|
|
/// This must balance a call to hash_lock().
|
|
void hash_unlock(hashtab_T *ht)
|
|
{
|
|
ht->ht_locked--;
|
|
hash_may_resize(ht, 0);
|
|
}
|
|
|
|
/// Resize hashtable (new size can be given or automatically computed).
|
|
///
|
|
/// @param minitems Minimum number of items the new table should hold.
|
|
/// If zero, new size will depend on currently used items:
|
|
/// - Shrink when too much empty space.
|
|
/// - Grow when not enough empty space.
|
|
/// If non-zero, passed minitems will be used.
|
|
static void hash_may_resize(hashtab_T *ht, size_t minitems)
|
|
{
|
|
// Don't resize a locked table.
|
|
if (ht->ht_locked > 0) {
|
|
return;
|
|
}
|
|
|
|
#ifdef HT_DEBUG
|
|
if (ht->ht_used > ht->ht_filled) {
|
|
emsg("hash_may_resize(): more used than filled");
|
|
}
|
|
|
|
if (ht->ht_filled >= ht->ht_mask + 1) {
|
|
emsg("hash_may_resize(): table completely filled");
|
|
}
|
|
#endif
|
|
|
|
size_t minsize;
|
|
const size_t oldsize = ht->ht_mask + 1;
|
|
if (minitems == 0) {
|
|
// Return quickly for small tables with at least two NULL items.
|
|
// items are required for the lookup to decide a key isn't there.
|
|
if ((ht->ht_filled < HT_INIT_SIZE - 1)
|
|
&& (ht->ht_array == ht->ht_smallarray)) {
|
|
return;
|
|
}
|
|
|
|
// Grow or refill the array when it's more than 2/3 full (including
|
|
// removed items, so that they get cleaned up).
|
|
// Shrink the array when it's less than 1/5 full. When growing it is
|
|
// at least 1/4 full (avoids repeated grow-shrink operations)
|
|
if ((ht->ht_filled * 3 < oldsize * 2) && (ht->ht_used > oldsize / 5)) {
|
|
return;
|
|
}
|
|
|
|
if (ht->ht_used > 1000) {
|
|
// it's big, don't make too much room
|
|
minsize = ht->ht_used * 2;
|
|
} else {
|
|
// make plenty of room
|
|
minsize = ht->ht_used * 4;
|
|
}
|
|
} else {
|
|
// Use specified size.
|
|
minitems = MAX(minitems, ht->ht_used);
|
|
// array is up to 2/3 full
|
|
minsize = minitems * 3 / 2;
|
|
}
|
|
|
|
size_t newsize = HT_INIT_SIZE;
|
|
while (newsize < minsize) {
|
|
// make sure it's always a power of 2
|
|
newsize <<= 1;
|
|
// assert newsize didn't overflow
|
|
assert(newsize != 0);
|
|
}
|
|
|
|
bool newarray_is_small = newsize == HT_INIT_SIZE;
|
|
|
|
if (!newarray_is_small && newsize == oldsize && ht->ht_filled * 3 < oldsize * 2) {
|
|
// The hashtab is already at the desired size, and there are not too
|
|
// many removed items, bail out.
|
|
return;
|
|
}
|
|
|
|
bool keep_smallarray = newarray_is_small
|
|
&& ht->ht_array == ht->ht_smallarray;
|
|
|
|
// Make sure that oldarray and newarray do not overlap,
|
|
// so that copying is possible.
|
|
hashitem_T temparray[HT_INIT_SIZE];
|
|
hashitem_T *oldarray = keep_smallarray
|
|
? memcpy(temparray, ht->ht_smallarray, sizeof(temparray))
|
|
: ht->ht_array;
|
|
|
|
if (newarray_is_small) {
|
|
CLEAR_FIELD(ht->ht_smallarray);
|
|
}
|
|
hashitem_T *newarray = newarray_is_small
|
|
? ht->ht_smallarray
|
|
: xcalloc(newsize, sizeof(hashitem_T));
|
|
|
|
// Move all the items from the old array to the new one, placing them in
|
|
// the right spot. The new array won't have any removed items, thus this
|
|
// is also a cleanup action.
|
|
hash_T newmask = newsize - 1;
|
|
size_t todo = ht->ht_used;
|
|
|
|
for (hashitem_T *olditem = oldarray; todo > 0; olditem++) {
|
|
if (HASHITEM_EMPTY(olditem)) {
|
|
continue;
|
|
}
|
|
// The algorithm to find the spot to add the item is identical to
|
|
// the algorithm to find an item in hash_lookup(). But we only
|
|
// need to search for a NULL key, thus it's simpler.
|
|
hash_T newi = olditem->hi_hash & newmask;
|
|
hashitem_T *newitem = &newarray[newi];
|
|
if (newitem->hi_key != NULL) {
|
|
for (hash_T perturb = olditem->hi_hash;; perturb >>= PERTURB_SHIFT) {
|
|
newi = 5 * newi + perturb + 1;
|
|
newitem = &newarray[newi & newmask];
|
|
if (newitem->hi_key == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*newitem = *olditem;
|
|
todo--;
|
|
}
|
|
|
|
if (ht->ht_array != ht->ht_smallarray) {
|
|
xfree(ht->ht_array);
|
|
}
|
|
ht->ht_array = newarray;
|
|
ht->ht_mask = newmask;
|
|
ht->ht_filled = ht->ht_used;
|
|
ht->ht_changed++;
|
|
}
|
|
|
|
#define HASH_CYCLE_BODY(hash, p) \
|
|
hash = hash * 101 + *p++
|
|
|
|
/// Get the hash number for a key.
|
|
///
|
|
/// If you think you know a better hash function: Compile with HT_DEBUG set and
|
|
/// run a script that uses hashtables a lot. Vim will then print statistics
|
|
/// when exiting. Try that with the current hash algorithm and yours. The
|
|
/// lower the percentage the better.
|
|
hash_T hash_hash(const char *key)
|
|
{
|
|
hash_T hash = (uint8_t)(*key);
|
|
|
|
if (hash == 0) {
|
|
return 0;
|
|
}
|
|
|
|
// A simplistic algorithm that appears to do very well.
|
|
// Suggested by George Reilly.
|
|
const uint8_t *p = (uint8_t *)key + 1;
|
|
while (*p != NUL) {
|
|
HASH_CYCLE_BODY(hash, p);
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
/// Get the hash number for a key that is not a NUL-terminated string
|
|
///
|
|
/// @warning Function does not check whether key contains NUL. But you will not
|
|
/// be able to get hash entry in this case.
|
|
///
|
|
/// @param[in] key Key.
|
|
/// @param[in] len Key length.
|
|
///
|
|
/// @return Key hash.
|
|
hash_T hash_hash_len(const char *key, const size_t len)
|
|
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
if (len == 0) {
|
|
return 0;
|
|
}
|
|
|
|
hash_T hash = *(uint8_t *)key;
|
|
const uint8_t *end = (uint8_t *)key + len;
|
|
|
|
const uint8_t *p = (const uint8_t *)key + 1;
|
|
while (p < end) {
|
|
HASH_CYCLE_BODY(hash, p);
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
#undef HASH_CYCLE_BODY
|
|
|
|
/// Function to get HI_KEY_REMOVED value
|
|
///
|
|
/// Used for testing because luajit ffi does not allow getting addresses of
|
|
/// globals.
|
|
const char *_hash_key_removed(void)
|
|
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
return HI_KEY_REMOVED;
|
|
}
|