mirror of
https://github.com/neovim/neovim.git
synced 2025-09-14 23:38:17 +00:00
429 lines
12 KiB
C
429 lines
12 KiB
C
/// @file hashtab.c
|
|
///
|
|
/// Handling of a hashtable with Vim-specific properties.
|
|
///
|
|
/// Each item in a hashtable has a NUL terminated string key. A key can appear
|
|
/// only once in the table.
|
|
///
|
|
/// A hash number is computed from the key for quick lookup. When the hashes
|
|
/// of two different keys point to the same entry an algorithm is used to
|
|
/// iterate over other entries in the table until the right one is found.
|
|
/// To make the iteration work removed keys are different from entries where a
|
|
/// key was never present.
|
|
///
|
|
/// The mechanism has been partly based on how Python Dictionaries are
|
|
/// implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4.
|
|
///
|
|
/// The hashtable grows to accommodate more entries when needed. At least 1/3
|
|
/// of the entries is empty to keep the lookup efficient (at the cost of extra
|
|
/// memory).
|
|
|
|
#include <string.h>
|
|
|
|
#include "vim.h"
|
|
#include "hashtab.h"
|
|
#include "message.h"
|
|
#include "misc2.h"
|
|
|
|
// Magic value for algorithm that walks through the array.
|
|
#define PERTURB_SHIFT 5
|
|
|
|
static int hash_may_resize(hashtab_T *ht, int minitems);
|
|
|
|
|
|
/// Initialize an empty hash table.
|
|
///
|
|
/// @param ht
|
|
void hash_init(hashtab_T *ht)
|
|
{
|
|
// This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray".
|
|
memset(ht, 0, sizeof(hashtab_T));
|
|
ht->ht_array = ht->ht_smallarray;
|
|
ht->ht_mask = HT_INIT_SIZE - 1;
|
|
}
|
|
|
|
/// Free the array of a hash table. Does not free the items it contains!
|
|
/// If "ht" is not freed then you should call hash_init() next!
|
|
///
|
|
/// @param ht
|
|
void hash_clear(hashtab_T *ht)
|
|
{
|
|
if (ht->ht_array != ht->ht_smallarray) {
|
|
vim_free(ht->ht_array);
|
|
}
|
|
}
|
|
|
|
/// Free the array of a hash table and all the keys it contains. The keys must
|
|
/// have been allocated. "off" is the offset from the start of the allocate
|
|
/// memory to the location of the key (it's always positive).
|
|
///
|
|
/// @param ht
|
|
/// @param off
|
|
void hash_clear_all(hashtab_T *ht, int off)
|
|
{
|
|
long todo;
|
|
hashitem_T *hi;
|
|
|
|
todo = (long)ht->ht_used;
|
|
|
|
for (hi = ht->ht_array; todo > 0; ++hi) {
|
|
if (!HASHITEM_EMPTY(hi)) {
|
|
vim_free(hi->hi_key - off);
|
|
todo--;
|
|
}
|
|
}
|
|
hash_clear(ht);
|
|
}
|
|
|
|
/// Find "key" in hashtable "ht". "key" must not be NULL.
|
|
/// Always returns a pointer to a hashitem. If the item was not found then
|
|
/// HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key
|
|
/// would be added.
|
|
/// WARNING: The returned pointer becomes invalid when the hashtable is changed
|
|
/// (adding, setting or removing an item)!
|
|
///
|
|
/// @param ht
|
|
/// @param key
|
|
///
|
|
/// @return Pointer to the hashitem stored with the given key.
|
|
hashitem_T* hash_find(hashtab_T *ht, char_u *key)
|
|
{
|
|
return hash_lookup(ht, key, hash_hash(key));
|
|
}
|
|
|
|
/// Like hash_find(), but caller computes "hash".
|
|
///
|
|
/// @param ht
|
|
/// @param key
|
|
/// @param hash
|
|
///
|
|
/// @return Pointer to the hashitem stored with the given key.
|
|
hashitem_T* hash_lookup(hashtab_T *ht, char_u *key, hash_T hash)
|
|
{
|
|
hash_T perturb;
|
|
hashitem_T *freeitem;
|
|
hashitem_T *hi;
|
|
unsigned idx;
|
|
|
|
#ifdef HT_DEBUG
|
|
hash_count_lookup++;
|
|
#endif // ifdef HT_DEBUG
|
|
|
|
// Quickly handle the most common situations:
|
|
// - return if there is no item at all
|
|
// - skip over a removed item
|
|
// - return if the item matches
|
|
idx = (unsigned)(hash & ht->ht_mask);
|
|
hi = &ht->ht_array[idx];
|
|
|
|
if (hi->hi_key == NULL) {
|
|
return hi;
|
|
}
|
|
|
|
if (hi->hi_key == HI_KEY_REMOVED) {
|
|
freeitem = hi;
|
|
} else if ((hi->hi_hash == hash) && (STRCMP(hi->hi_key, key) == 0)) {
|
|
return hi;
|
|
} else {
|
|
freeitem = NULL;
|
|
}
|
|
|
|
// Need to search through the table to find the key. The algorithm
|
|
// to step through the table starts with large steps, gradually becoming
|
|
// smaller down to (1/4 table size + 1). This means it goes through all
|
|
// table entries in the end.
|
|
// When we run into a NULL key it's clear that the key isn't there.
|
|
// Return the first available slot found (can be a slot of a removed
|
|
// item).
|
|
for (perturb = hash;; perturb >>= PERTURB_SHIFT) {
|
|
#ifdef HT_DEBUG
|
|
// count a "miss" for hashtab lookup
|
|
hash_count_perturb++;
|
|
#endif // ifdef HT_DEBUG
|
|
idx = (unsigned)((idx << 2U) + idx + perturb + 1U);
|
|
hi = &ht->ht_array[idx & ht->ht_mask];
|
|
|
|
if (hi->hi_key == NULL) {
|
|
return freeitem == NULL ? hi : freeitem;
|
|
}
|
|
|
|
if ((hi->hi_hash == hash)
|
|
&& (hi->hi_key != HI_KEY_REMOVED)
|
|
&& (STRCMP(hi->hi_key, key) == 0)) {
|
|
return hi;
|
|
}
|
|
|
|
if ((hi->hi_key == HI_KEY_REMOVED) && (freeitem == NULL)) {
|
|
freeitem = hi;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Print the efficiency of hashtable lookups.
|
|
/// Useful when trying different hash algorithms.
|
|
/// Called when exiting.
|
|
void hash_debug_results(void)
|
|
{
|
|
#ifdef HT_DEBUG
|
|
fprintf(stderr, "\r\n\r\n\r\n\r\n");
|
|
fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
|
|
fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
|
|
fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
|
|
hash_count_perturb * 100 / hash_count_lookup);
|
|
#endif // ifdef HT_DEBUG
|
|
}
|
|
|
|
/// Add item with key "key" to hashtable "ht".
|
|
///
|
|
/// @param ht
|
|
/// @param key
|
|
///
|
|
/// @returns FAIL when out of memory or the key is already present.
|
|
int hash_add(hashtab_T *ht, char_u *key)
|
|
{
|
|
hash_T hash = hash_hash(key);
|
|
hashitem_T *hi = hash_lookup(ht, key, hash);
|
|
if (!HASHITEM_EMPTY(hi)) {
|
|
EMSG2(_(e_intern2), "hash_add()");
|
|
return FAIL;
|
|
}
|
|
return hash_add_item(ht, hi, key, hash);
|
|
}
|
|
|
|
/// Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and
|
|
/// "hi" must have been obtained with hash_lookup() and point to an empty item.
|
|
/// "hi" is invalid after this!
|
|
///
|
|
/// @param ht
|
|
/// @param hi
|
|
/// @param key
|
|
/// @param hash
|
|
///
|
|
/// @returns OK or FAIL (out of memory).
|
|
int hash_add_item(hashtab_T *ht, hashitem_T *hi, char_u *key, hash_T hash)
|
|
{
|
|
// If resizing failed before and it fails again we can't add an item.
|
|
if (ht->ht_error && (hash_may_resize(ht, 0) == FAIL)) {
|
|
return FAIL;
|
|
}
|
|
|
|
ht->ht_used++;
|
|
if (hi->hi_key == NULL) {
|
|
ht->ht_filled++;
|
|
}
|
|
hi->hi_key = key;
|
|
hi->hi_hash = hash;
|
|
|
|
// When the space gets low may resize the array.
|
|
return hash_may_resize(ht, 0);
|
|
}
|
|
|
|
/// Remove item "hi" from hashtable "ht". "hi" must have been obtained with
|
|
/// hash_lookup().
|
|
///
|
|
/// The caller must take care of freeing the item itself.
|
|
///
|
|
/// @param ht
|
|
/// @param hi
|
|
void hash_remove(hashtab_T *ht, hashitem_T *hi)
|
|
{
|
|
ht->ht_used--;
|
|
hi->hi_key = HI_KEY_REMOVED;
|
|
hash_may_resize(ht, 0);
|
|
}
|
|
|
|
/// Lock a hashtable: prevent that ht_array changes.
|
|
/// Don't use this when items are to be added!
|
|
/// Must call hash_unlock() later.
|
|
///
|
|
/// @param ht
|
|
void hash_lock(hashtab_T *ht)
|
|
{
|
|
ht->ht_locked++;
|
|
}
|
|
|
|
/// Unlock a hashtable: allow ht_array changes again.
|
|
/// Table will be resized (shrink) when necessary.
|
|
/// This must balance a call to hash_lock().
|
|
void hash_unlock(hashtab_T *ht)
|
|
{
|
|
ht->ht_locked--;
|
|
(void)hash_may_resize(ht, 0);
|
|
}
|
|
|
|
/// Shrink a hashtable when there is too much empty space.
|
|
/// Grow a hashtable when there is not enough empty space.
|
|
///
|
|
/// @param ht
|
|
/// @param minitems minimal number of items
|
|
///
|
|
/// @returns OK or FAIL (out of memory).
|
|
static int hash_may_resize(hashtab_T *ht, int minitems)
|
|
{
|
|
hashitem_T temparray[HT_INIT_SIZE];
|
|
hashitem_T *oldarray, *newarray;
|
|
hashitem_T *olditem, *newitem;
|
|
unsigned newi;
|
|
int todo;
|
|
long_u oldsize, newsize;
|
|
long_u minsize;
|
|
long_u newmask;
|
|
hash_T perturb;
|
|
|
|
// Don't resize a locked table.
|
|
if (ht->ht_locked > 0) {
|
|
return OK;
|
|
}
|
|
|
|
#ifdef HT_DEBUG
|
|
if (ht->ht_used > ht->ht_filled) {
|
|
EMSG("hash_may_resize(): more used than filled");
|
|
}
|
|
|
|
if (ht->ht_filled >= ht->ht_mask + 1) {
|
|
EMSG("hash_may_resize(): table completely filled");
|
|
}
|
|
#endif // ifdef HT_DEBUG
|
|
|
|
if (minitems == 0) {
|
|
// Return quickly for small tables with at least two NULL items. NULL
|
|
// items are required for the lookup to decide a key isn't there.
|
|
if ((ht->ht_filled < HT_INIT_SIZE - 1)
|
|
&& (ht->ht_array == ht->ht_smallarray)) {
|
|
return OK;
|
|
}
|
|
|
|
// Grow or refill the array when it's more than 2/3 full (including
|
|
// removed items, so that they get cleaned up).
|
|
// Shrink the array when it's less than 1/5 full. When growing it is
|
|
// at least 1/4 full (avoids repeated grow-shrink operations)
|
|
oldsize = ht->ht_mask + 1;
|
|
if ((ht->ht_filled * 3 < oldsize * 2) && (ht->ht_used > oldsize / 5)) {
|
|
return OK;
|
|
}
|
|
|
|
if (ht->ht_used > 1000) {
|
|
// it's big, don't make too much room
|
|
minsize = ht->ht_used * 2;
|
|
} else {
|
|
// make plenty of room
|
|
minsize = ht->ht_used * 4;
|
|
}
|
|
} else {
|
|
// Use specified size.
|
|
if ((long_u)minitems < ht->ht_used) {
|
|
// just in case...
|
|
minitems = (int)ht->ht_used;
|
|
}
|
|
// array is up to 2/3 full
|
|
minsize = minitems * 3 / 2;
|
|
}
|
|
|
|
newsize = HT_INIT_SIZE;
|
|
|
|
while (newsize < minsize) {
|
|
// make sure it's always a power of 2
|
|
newsize <<= 1;
|
|
if (newsize == 0) {
|
|
// overflow
|
|
return FAIL;
|
|
}
|
|
}
|
|
|
|
if (newsize == HT_INIT_SIZE) {
|
|
// Use the small array inside the hashdict structure.
|
|
newarray = ht->ht_smallarray;
|
|
if (ht->ht_array == newarray) {
|
|
// Moving from ht_smallarray to ht_smallarray! Happens when there
|
|
// are many removed items. Copy the items to be able to clean up
|
|
// removed items.
|
|
memmove(temparray, newarray, sizeof(temparray));
|
|
oldarray = temparray;
|
|
} else {
|
|
oldarray = ht->ht_array;
|
|
}
|
|
} else {
|
|
// Allocate an array.
|
|
newarray = (hashitem_T *)alloc((unsigned)(sizeof(hashitem_T) * newsize));
|
|
|
|
if (newarray == NULL) {
|
|
// Out of memory. When there are NULL items still return OK.
|
|
// Otherwise set ht_error, because lookup may result in a hang if
|
|
// we add another item.
|
|
if (ht->ht_filled < ht->ht_mask) {
|
|
return OK;
|
|
}
|
|
ht->ht_error = TRUE;
|
|
return FAIL;
|
|
}
|
|
oldarray = ht->ht_array;
|
|
}
|
|
memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize));
|
|
|
|
// Move all the items from the old array to the new one, placing them in
|
|
// the right spot. The new array won't have any removed items, thus this
|
|
// is also a cleanup action.
|
|
newmask = newsize - 1;
|
|
todo = (int)ht->ht_used;
|
|
|
|
for (olditem = oldarray; todo > 0; ++olditem) {
|
|
if (!HASHITEM_EMPTY(olditem)) {
|
|
// The algorithm to find the spot to add the item is identical to
|
|
// the algorithm to find an item in hash_lookup(). But we only
|
|
// need to search for a NULL key, thus it's simpler.
|
|
newi = (unsigned)(olditem->hi_hash & newmask);
|
|
newitem = &newarray[newi];
|
|
if (newitem->hi_key != NULL) {
|
|
for (perturb = olditem->hi_hash;; perturb >>= PERTURB_SHIFT) {
|
|
newi = (unsigned)((newi << 2U) + newi + perturb + 1U);
|
|
newitem = &newarray[newi & newmask];
|
|
if (newitem->hi_key == NULL) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
*newitem = *olditem;
|
|
todo--;
|
|
}
|
|
}
|
|
|
|
if (ht->ht_array != ht->ht_smallarray) {
|
|
vim_free(ht->ht_array);
|
|
}
|
|
ht->ht_array = newarray;
|
|
ht->ht_mask = newmask;
|
|
ht->ht_filled = ht->ht_used;
|
|
ht->ht_error = FALSE;
|
|
|
|
return OK;
|
|
}
|
|
|
|
/// Get the hash number for a key.
|
|
/// If you think you know a better hash function: Compile with HT_DEBUG set and
|
|
/// run a script that uses hashtables a lot. Vim will then print statistics
|
|
/// when exiting. Try that with the current hash algorithm and yours. The
|
|
/// lower the percentage the better.
|
|
///
|
|
/// @param key
|
|
///
|
|
/// @return Hash number for the key.
|
|
hash_T hash_hash(char_u *key)
|
|
{
|
|
hash_T hash;
|
|
char_u *p;
|
|
|
|
if ((hash = *key) == 0) {
|
|
// Empty keys are not allowed, but we don't want to crash if we get one.
|
|
return (hash_T) 0;
|
|
}
|
|
p = key + 1;
|
|
|
|
// A simplistic algorithm that appears to do very well.
|
|
// Suggested by George Reilly.
|
|
while (*p != NUL) {
|
|
hash = hash * 101 + *p++;
|
|
}
|
|
|
|
return hash;
|
|
}
|