Files
neovim/src/nvim/profile.c
zeertzjq 095c0876c2 fix(api): don't override Vimscript SID (#32610)
Problem:  When calling an API from Vimscript to set an option, mapping,
          etc., :verbose shows that it's set from an API client.
Solution: Don't override current_sctx.sc_sid when calling an API from
          Vimscript. Also fix the inverse case where API channel id is
          not set when calling an API from RPC. Move channel id into
          sctx_T to make saving and restoring easier.

Related #8329
2025-02-25 01:17:51 +00:00

989 lines
28 KiB
C

#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <uv.h>
#include "nvim/ascii_defs.h"
#include "nvim/charset.h"
#include "nvim/cmdexpand_defs.h"
#include "nvim/debugger.h"
#include "nvim/errors.h"
#include "nvim/eval.h"
#include "nvim/eval/typval_defs.h"
#include "nvim/eval/userfunc.h"
#include "nvim/ex_cmds_defs.h"
#include "nvim/fileio.h"
#include "nvim/garray.h"
#include "nvim/gettext_defs.h"
#include "nvim/globals.h"
#include "nvim/hashtab.h"
#include "nvim/hashtab_defs.h"
#include "nvim/keycodes.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/os/fs.h"
#include "nvim/os/os.h"
#include "nvim/os/time.h"
#include "nvim/pos_defs.h"
#include "nvim/profile.h"
#include "nvim/runtime.h"
#include "nvim/types_defs.h"
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "profile.c.generated.h"
#endif
/// Struct used in sn_prl_ga for every line of a script.
typedef struct {
int snp_count; ///< nr of times line was executed
proftime_T sn_prl_total; ///< time spent in a line + children
proftime_T sn_prl_self; ///< time spent in a line itself
} sn_prl_T;
#define PRL_ITEM(si, idx) (((sn_prl_T *)(si)->sn_prl_ga.ga_data)[(idx)])
static proftime_T prof_wait_time;
static char *startuptime_buf = NULL; // --startuptime buffer
/// Gets the current time.
///
/// @return the current time
proftime_T profile_start(void) FUNC_ATTR_WARN_UNUSED_RESULT
{
return os_hrtime();
}
/// Computes the time elapsed.
///
/// @return Elapsed time from `tm` until now.
proftime_T profile_end(proftime_T tm) FUNC_ATTR_WARN_UNUSED_RESULT
{
return profile_sub(os_hrtime(), tm);
}
/// Gets a string representing time `tm`.
///
/// @warning Do not modify or free this string, not multithread-safe.
///
/// @param tm Time
/// @return Static string representing `tm` in the form "seconds.microseconds".
const char *profile_msg(proftime_T tm) FUNC_ATTR_WARN_UNUSED_RESULT
{
static char buf[50];
snprintf(buf, sizeof(buf), "%10.6lf",
(double)profile_signed(tm) / 1000000000.0);
return buf;
}
/// Gets the time `msec` into the future.
///
/// @param msec milliseconds, the maximum number of milliseconds is
/// (2^63 / 10^6) - 1 = 9.223372e+12.
/// @return if msec > 0, returns the time msec past now. Otherwise returns
/// the zero time.
proftime_T profile_setlimit(int64_t msec) FUNC_ATTR_WARN_UNUSED_RESULT
{
if (msec <= 0) {
// no limit
return profile_zero();
}
assert(msec <= (INT64_MAX / 1000000LL) - 1);
proftime_T nsec = (proftime_T)msec * 1000000ULL;
return os_hrtime() + nsec;
}
/// Checks if current time has passed `tm`.
///
/// @return true if the current time is past `tm`, false if not or if the
/// timer was not set.
bool profile_passed_limit(proftime_T tm) FUNC_ATTR_WARN_UNUSED_RESULT
{
if (tm == 0) {
// timer was not set
return false;
}
return profile_cmp(os_hrtime(), tm) < 0;
}
/// Gets the zero time.
///
/// @return the zero time
proftime_T profile_zero(void) FUNC_ATTR_CONST
{
return 0;
}
/// Divides time `tm` by `count`.
///
/// @return 0 if count <= 0, otherwise tm / count
proftime_T profile_divide(proftime_T tm, int count) FUNC_ATTR_CONST
{
if (count <= 0) {
return profile_zero();
}
return (proftime_T)round((double)tm / (double)count);
}
/// Adds time `tm2` to `tm1`.
///
/// @return `tm1` + `tm2`
proftime_T profile_add(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
return tm1 + tm2;
}
/// Subtracts time `tm2` from `tm1`.
///
/// Unsigned overflow (wraparound) occurs if `tm2` is greater than `tm1`.
/// Use `profile_signed()` to get the signed integer value.
///
/// @see profile_signed
///
/// @return `tm1` - `tm2`
proftime_T profile_sub(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
return tm1 - tm2;
}
/// Adds the `self` time from the total time and the `children` time.
///
/// @return if `total` <= `children`, then self, otherwise `self` + `total` -
/// `children`
proftime_T profile_self(proftime_T self, proftime_T total, proftime_T children)
FUNC_ATTR_CONST
{
// check that the result won't be negative, which can happen with
// recursive calls.
if (total <= children) {
return self;
}
// add the total time to self and subtract the children's time from self
return profile_sub(profile_add(self, total), children);
}
/// Gets the current waittime.
///
/// @return the current waittime
proftime_T profile_get_wait(void) FUNC_ATTR_PURE
{
return prof_wait_time;
}
/// Sets the current waittime.
void profile_set_wait(proftime_T wait)
{
prof_wait_time = wait;
}
/// Subtracts the passed waittime since `tm`.
///
/// @return `tma` - (waittime - `tm`)
proftime_T profile_sub_wait(proftime_T tm, proftime_T tma) FUNC_ATTR_PURE
{
proftime_T tm3 = profile_sub(profile_get_wait(), tm);
return profile_sub(tma, tm3);
}
/// Checks if time `tm1` is equal to `tm2`.
///
/// @return true if `tm1` == `tm2`
bool profile_equal(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
return tm1 == tm2;
}
/// Converts time duration `tm` (`profile_sub` result) to a signed integer.
///
/// @return signed representation of the given time value
int64_t profile_signed(proftime_T tm)
FUNC_ATTR_CONST
{
// (tm > INT64_MAX) is >=150 years, so we can assume it was produced by
// arithmetic of two proftime_T values. For human-readable representation
// (and Vim-compat) we want the difference after unsigned wraparound. #10452
return (tm <= INT64_MAX) ? (int64_t)tm : -(int64_t)(UINT64_MAX - tm);
}
/// Compares profiling times.
///
/// Times `tm1` and `tm2` must be less than 150 years apart.
///
/// @return <0: `tm2` < `tm1`
/// 0: `tm2` == `tm1`
/// >0: `tm2` > `tm1`
int profile_cmp(proftime_T tm1, proftime_T tm2) FUNC_ATTR_CONST
{
if (tm1 == tm2) {
return 0;
}
return profile_signed(tm2 - tm1) < 0 ? -1 : 1;
}
static char *profile_fname = NULL;
/// Reset all profiling information.
void profile_reset(void)
{
// Reset sourced files.
for (int id = 1; id <= script_items.ga_len; id++) {
scriptitem_T *si = SCRIPT_ITEM(id);
if (si->sn_prof_on) {
si->sn_prof_on = false;
si->sn_pr_force = false;
si->sn_pr_child = profile_zero();
si->sn_pr_nest = 0;
si->sn_pr_count = 0;
si->sn_pr_total = profile_zero();
si->sn_pr_self = profile_zero();
si->sn_pr_start = profile_zero();
si->sn_pr_children = profile_zero();
ga_clear(&si->sn_prl_ga);
si->sn_prl_start = profile_zero();
si->sn_prl_children = profile_zero();
si->sn_prl_wait = profile_zero();
si->sn_prl_idx = -1;
si->sn_prl_execed = 0;
}
}
// Reset functions.
hashtab_T *const functbl = func_tbl_get();
size_t todo = functbl->ht_used;
hashitem_T *hi = functbl->ht_array;
for (; todo > 0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
ufunc_T *uf = HI2UF(hi);
if (uf->uf_prof_initialized) {
uf->uf_profiling = 0;
uf->uf_tm_count = 0;
uf->uf_tm_total = profile_zero();
uf->uf_tm_self = profile_zero();
uf->uf_tm_children = profile_zero();
for (int i = 0; i < uf->uf_lines.ga_len; i++) {
uf->uf_tml_count[i] = 0;
uf->uf_tml_total[i] = uf->uf_tml_self[i] = 0;
}
uf->uf_tml_start = profile_zero();
uf->uf_tml_children = profile_zero();
uf->uf_tml_wait = profile_zero();
uf->uf_tml_idx = -1;
uf->uf_tml_execed = 0;
}
}
}
XFREE_CLEAR(profile_fname);
}
/// ":profile cmd args"
void ex_profile(exarg_T *eap)
{
static proftime_T pause_time;
char *e = skiptowhite(eap->arg);
int len = (int)(e - eap->arg);
e = skipwhite(e);
if (len == 5 && strncmp(eap->arg, "start", 5) == 0 && *e != NUL) {
xfree(profile_fname);
profile_fname = expand_env_save_opt(e, true);
do_profiling = PROF_YES;
profile_set_wait(profile_zero());
set_vim_var_nr(VV_PROFILING, 1);
} else if (do_profiling == PROF_NONE) {
emsg(_("E750: First use \":profile start {fname}\""));
} else if (strcmp(eap->arg, "stop") == 0) {
profile_dump();
do_profiling = PROF_NONE;
set_vim_var_nr(VV_PROFILING, 0);
profile_reset();
} else if (strcmp(eap->arg, "pause") == 0) {
if (do_profiling == PROF_YES) {
pause_time = profile_start();
}
do_profiling = PROF_PAUSED;
} else if (strcmp(eap->arg, "continue") == 0) {
if (do_profiling == PROF_PAUSED) {
pause_time = profile_end(pause_time);
profile_set_wait(profile_add(profile_get_wait(), pause_time));
}
do_profiling = PROF_YES;
} else if (strcmp(eap->arg, "dump") == 0) {
profile_dump();
} else {
// The rest is similar to ":breakadd".
ex_breakadd(eap);
}
}
/// Command line expansion for :profile.
static enum {
PEXP_SUBCMD, ///< expand :profile sub-commands
PEXP_FUNC, ///< expand :profile func {funcname}
} pexpand_what;
static char *pexpand_cmds[] = {
"continue",
"dump",
"file",
"func",
"pause",
"start",
"stop",
NULL
};
/// Function given to ExpandGeneric() to obtain the profile command
/// specific expansion.
char *get_profile_name(expand_T *xp, int idx)
FUNC_ATTR_PURE
{
switch (pexpand_what) {
case PEXP_SUBCMD:
return pexpand_cmds[idx];
default:
return NULL;
}
}
/// Handle command line completion for :profile command.
void set_context_in_profile_cmd(expand_T *xp, const char *arg)
{
// Default: expand subcommands.
xp->xp_context = EXPAND_PROFILE;
pexpand_what = PEXP_SUBCMD;
xp->xp_pattern = (char *)arg;
char *const end_subcmd = skiptowhite(arg);
if (*end_subcmd == NUL) {
return;
}
if ((end_subcmd - arg == 5 && strncmp(arg, "start", 5) == 0)
|| (end_subcmd - arg == 4 && strncmp(arg, "file", 4) == 0)) {
xp->xp_context = EXPAND_FILES;
xp->xp_pattern = skipwhite(end_subcmd);
return;
} else if (end_subcmd - arg == 4 && strncmp(arg, "func", 4) == 0) {
xp->xp_context = EXPAND_USER_FUNC;
xp->xp_pattern = skipwhite(end_subcmd);
return;
}
xp->xp_context = EXPAND_NOTHING;
}
static proftime_T wait_time;
/// Called when starting to wait for the user to type a character.
void prof_input_start(void)
{
wait_time = profile_start();
}
/// Called when finished waiting for the user to type a character.
void prof_input_end(void)
{
wait_time = profile_end(wait_time);
profile_set_wait(profile_add(profile_get_wait(), wait_time));
}
/// @return true when a function defined in the current script should be
/// profiled.
bool prof_def_func(void)
FUNC_ATTR_PURE
{
if (current_sctx.sc_sid > 0) {
return SCRIPT_ITEM(current_sctx.sc_sid)->sn_pr_force;
}
return false;
}
/// Print the count and times for one function or function line.
///
/// @param prefer_self when equal print only self time
static void prof_func_line(FILE *fd, int count, const proftime_T *total, const proftime_T *self,
bool prefer_self)
{
if (count > 0) {
fprintf(fd, "%5d ", count);
if (prefer_self && profile_equal(*total, *self)) {
fprintf(fd, " ");
} else {
fprintf(fd, "%s ", profile_msg(*total));
}
if (!prefer_self && profile_equal(*total, *self)) {
fprintf(fd, " ");
} else {
fprintf(fd, "%s ", profile_msg(*self));
}
} else {
fprintf(fd, " ");
}
}
/// @param prefer_self when equal print only self time
static void prof_sort_list(FILE *fd, ufunc_T **sorttab, int st_len, char *title, bool prefer_self)
{
fprintf(fd, "FUNCTIONS SORTED ON %s TIME\n", title);
fprintf(fd, "count total (s) self (s) function\n");
for (int i = 0; i < 20 && i < st_len; i++) {
ufunc_T *fp = sorttab[i];
prof_func_line(fd, fp->uf_tm_count, &fp->uf_tm_total, &fp->uf_tm_self,
prefer_self);
if ((uint8_t)fp->uf_name[0] == K_SPECIAL) {
fprintf(fd, " <SNR>%s()\n", fp->uf_name + 3);
} else {
fprintf(fd, " %s()\n", fp->uf_name);
}
}
fprintf(fd, "\n");
}
/// Compare function for total time sorting.
static int prof_total_cmp(const void *s1, const void *s2)
{
ufunc_T *p1 = *(ufunc_T **)s1;
ufunc_T *p2 = *(ufunc_T **)s2;
return profile_cmp(p1->uf_tm_total, p2->uf_tm_total);
}
/// Compare function for self time sorting.
static int prof_self_cmp(const void *s1, const void *s2)
{
ufunc_T *p1 = *(ufunc_T **)s1;
ufunc_T *p2 = *(ufunc_T **)s2;
return profile_cmp(p1->uf_tm_self, p2->uf_tm_self);
}
/// Start profiling function "fp".
void func_do_profile(ufunc_T *fp)
{
int len = fp->uf_lines.ga_len;
if (!fp->uf_prof_initialized) {
if (len == 0) {
len = 1; // avoid getting error for allocating zero bytes
}
fp->uf_tm_count = 0;
fp->uf_tm_self = profile_zero();
fp->uf_tm_total = profile_zero();
if (fp->uf_tml_count == NULL) {
fp->uf_tml_count = xcalloc((size_t)len, sizeof(int));
}
if (fp->uf_tml_total == NULL) {
fp->uf_tml_total = xcalloc((size_t)len, sizeof(proftime_T));
}
if (fp->uf_tml_self == NULL) {
fp->uf_tml_self = xcalloc((size_t)len, sizeof(proftime_T));
}
fp->uf_tml_idx = -1;
fp->uf_prof_initialized = true;
}
fp->uf_profiling = true;
}
/// Prepare profiling for entering a child or something else that is not
/// counted for the script/function itself.
/// Should always be called in pair with prof_child_exit().
///
/// @param tm place to store waittime
void prof_child_enter(proftime_T *tm)
{
funccall_T *fc = get_current_funccal();
if (fc != NULL && fc->fc_func->uf_profiling) {
fc->fc_prof_child = profile_start();
}
script_prof_save(tm);
}
/// Take care of time spent in a child.
/// Should always be called after prof_child_enter().
///
/// @param tm where waittime was stored
void prof_child_exit(proftime_T *tm)
{
funccall_T *fc = get_current_funccal();
if (fc != NULL && fc->fc_func->uf_profiling) {
fc->fc_prof_child = profile_end(fc->fc_prof_child);
// don't count waiting time
fc->fc_prof_child = profile_sub_wait(*tm, fc->fc_prof_child);
fc->fc_func->uf_tm_children =
profile_add(fc->fc_func->uf_tm_children, fc->fc_prof_child);
fc->fc_func->uf_tml_children =
profile_add(fc->fc_func->uf_tml_children, fc->fc_prof_child);
}
script_prof_restore(tm);
}
/// Called when starting to read a function line.
/// "sourcing_lnum" must be correct!
/// When skipping lines it may not actually be executed, but we won't find out
/// until later and we need to store the time now.
void func_line_start(void *cookie)
{
funccall_T *fcp = (funccall_T *)cookie;
ufunc_T *fp = fcp->fc_func;
if (fp->uf_profiling && SOURCING_LNUM >= 1 && SOURCING_LNUM <= fp->uf_lines.ga_len) {
fp->uf_tml_idx = SOURCING_LNUM - 1;
// Skip continuation lines.
while (fp->uf_tml_idx > 0 && FUNCLINE(fp, fp->uf_tml_idx) == NULL) {
fp->uf_tml_idx--;
}
fp->uf_tml_execed = false;
fp->uf_tml_start = profile_start();
fp->uf_tml_children = profile_zero();
fp->uf_tml_wait = profile_get_wait();
}
}
/// Called when actually executing a function line.
void func_line_exec(void *cookie)
{
funccall_T *fcp = (funccall_T *)cookie;
ufunc_T *fp = fcp->fc_func;
if (fp->uf_profiling && fp->uf_tml_idx >= 0) {
fp->uf_tml_execed = true;
}
}
/// Called when done with a function line.
void func_line_end(void *cookie)
{
funccall_T *fcp = (funccall_T *)cookie;
ufunc_T *fp = fcp->fc_func;
if (fp->uf_profiling && fp->uf_tml_idx >= 0) {
if (fp->uf_tml_execed) {
fp->uf_tml_count[fp->uf_tml_idx]++;
fp->uf_tml_start = profile_end(fp->uf_tml_start);
fp->uf_tml_start = profile_sub_wait(fp->uf_tml_wait, fp->uf_tml_start);
fp->uf_tml_total[fp->uf_tml_idx] =
profile_add(fp->uf_tml_total[fp->uf_tml_idx], fp->uf_tml_start);
fp->uf_tml_self[fp->uf_tml_idx] =
profile_self(fp->uf_tml_self[fp->uf_tml_idx], fp->uf_tml_start,
fp->uf_tml_children);
}
fp->uf_tml_idx = -1;
}
}
/// Dump the profiling results for all functions in file "fd".
static void func_dump_profile(FILE *fd)
{
hashtab_T *const functbl = func_tbl_get();
int st_len = 0;
int todo = (int)functbl->ht_used;
if (todo == 0) {
return; // nothing to dump
}
ufunc_T **sorttab = xmalloc(sizeof(ufunc_T *) * (size_t)todo);
for (hashitem_T *hi = functbl->ht_array; todo > 0; hi++) {
if (!HASHITEM_EMPTY(hi)) {
todo--;
ufunc_T *fp = HI2UF(hi);
if (fp->uf_prof_initialized) {
sorttab[st_len++] = fp;
if ((uint8_t)fp->uf_name[0] == K_SPECIAL) {
fprintf(fd, "FUNCTION <SNR>%s()\n", fp->uf_name + 3);
} else {
fprintf(fd, "FUNCTION %s()\n", fp->uf_name);
}
if (fp->uf_script_ctx.sc_sid != 0) {
bool should_free;
char *p = get_scriptname(fp->uf_script_ctx, &should_free);
fprintf(fd, " Defined: %s:%" PRIdLINENR "\n",
p, fp->uf_script_ctx.sc_lnum);
if (should_free) {
xfree(p);
}
}
if (fp->uf_tm_count == 1) {
fprintf(fd, "Called 1 time\n");
} else {
fprintf(fd, "Called %d times\n", fp->uf_tm_count);
}
fprintf(fd, "Total time: %s\n", profile_msg(fp->uf_tm_total));
fprintf(fd, " Self time: %s\n", profile_msg(fp->uf_tm_self));
fprintf(fd, "\n");
fprintf(fd, "count total (s) self (s)\n");
for (int i = 0; i < fp->uf_lines.ga_len; i++) {
if (FUNCLINE(fp, i) == NULL) {
continue;
}
prof_func_line(fd, fp->uf_tml_count[i],
&fp->uf_tml_total[i], &fp->uf_tml_self[i], true);
fprintf(fd, "%s\n", FUNCLINE(fp, i));
}
fprintf(fd, "\n");
}
}
}
if (st_len > 0) {
qsort((void *)sorttab, (size_t)st_len, sizeof(ufunc_T *),
prof_total_cmp);
prof_sort_list(fd, sorttab, st_len, "TOTAL", false);
qsort((void *)sorttab, (size_t)st_len, sizeof(ufunc_T *),
prof_self_cmp);
prof_sort_list(fd, sorttab, st_len, "SELF", true);
}
xfree(sorttab);
}
/// Start profiling a script.
void profile_init(scriptitem_T *si)
{
si->sn_pr_count = 0;
si->sn_pr_total = profile_zero();
si->sn_pr_self = profile_zero();
ga_init(&si->sn_prl_ga, sizeof(sn_prl_T), 100);
si->sn_prl_idx = -1;
si->sn_prof_on = true;
si->sn_pr_nest = 0;
}
/// Save time when starting to invoke another script or function.
///
/// @param tm place to store wait time
void script_prof_save(proftime_T *tm)
{
if (current_sctx.sc_sid > 0 && current_sctx.sc_sid <= script_items.ga_len) {
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && si->sn_pr_nest++ == 0) {
si->sn_pr_child = profile_start();
}
}
*tm = profile_get_wait();
}
/// Count time spent in children after invoking another script or function.
void script_prof_restore(const proftime_T *tm)
{
if (!SCRIPT_ID_VALID(current_sctx.sc_sid)) {
return;
}
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && --si->sn_pr_nest == 0) {
si->sn_pr_child = profile_end(si->sn_pr_child);
// don't count wait time
si->sn_pr_child = profile_sub_wait(*tm, si->sn_pr_child);
si->sn_pr_children = profile_add(si->sn_pr_children, si->sn_pr_child);
si->sn_prl_children = profile_add(si->sn_prl_children, si->sn_pr_child);
}
}
/// Dump the profiling results for all scripts in file "fd".
static void script_dump_profile(FILE *fd)
{
sn_prl_T *pp;
for (int id = 1; id <= script_items.ga_len; id++) {
scriptitem_T *si = SCRIPT_ITEM(id);
if (si->sn_prof_on) {
fprintf(fd, "SCRIPT %s\n", si->sn_name);
if (si->sn_pr_count == 1) {
fprintf(fd, "Sourced 1 time\n");
} else {
fprintf(fd, "Sourced %d times\n", si->sn_pr_count);
}
fprintf(fd, "Total time: %s\n", profile_msg(si->sn_pr_total));
fprintf(fd, " Self time: %s\n", profile_msg(si->sn_pr_self));
fprintf(fd, "\n");
fprintf(fd, "count total (s) self (s)\n");
FILE *sfd = os_fopen(si->sn_name, "r");
if (sfd == NULL) {
fprintf(fd, "Cannot open file!\n");
} else {
// Keep going till the end of file, so that trailing
// continuation lines are listed.
for (int i = 0;; i++) {
if (vim_fgets(IObuff, IOSIZE, sfd)) {
break;
}
// When a line has been truncated, append NL, taking care
// of multi-byte characters .
if (IObuff[IOSIZE - 2] != NUL && IObuff[IOSIZE - 2] != NL) {
int n = IOSIZE - 2;
// Move to the first byte of this char.
// utf_head_off() doesn't work, because it checks
// for a truncated character.
while (n > 0 && (IObuff[n] & 0xc0) == 0x80) {
n--;
}
IObuff[n] = NL;
IObuff[n + 1] = NUL;
}
if (i < si->sn_prl_ga.ga_len
&& (pp = &PRL_ITEM(si, i))->snp_count > 0) {
fprintf(fd, "%5d ", pp->snp_count);
if (profile_equal(pp->sn_prl_total, pp->sn_prl_self)) {
fprintf(fd, " ");
} else {
fprintf(fd, "%s ", profile_msg(pp->sn_prl_total));
}
fprintf(fd, "%s ", profile_msg(pp->sn_prl_self));
} else {
fprintf(fd, " ");
}
fprintf(fd, "%s", IObuff);
}
fclose(sfd);
}
fprintf(fd, "\n");
}
}
}
/// Dump the profiling info.
void profile_dump(void)
{
if (profile_fname == NULL) {
return;
}
FILE *fd = os_fopen(profile_fname, "w");
if (fd == NULL) {
semsg(_(e_notopen), profile_fname);
} else {
script_dump_profile(fd);
func_dump_profile(fd);
fclose(fd);
}
}
/// Called when starting to read a script line.
/// "sourcing_lnum" must be correct!
/// When skipping lines it may not actually be executed, but we won't find out
/// until later and we need to store the time now.
void script_line_start(void)
{
if (current_sctx.sc_sid <= 0 || current_sctx.sc_sid > script_items.ga_len) {
return;
}
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && SOURCING_LNUM >= 1) {
// Grow the array before starting the timer, so that the time spent
// here isn't counted.
ga_grow(&si->sn_prl_ga, SOURCING_LNUM - si->sn_prl_ga.ga_len);
si->sn_prl_idx = SOURCING_LNUM - 1;
while (si->sn_prl_ga.ga_len <= si->sn_prl_idx
&& si->sn_prl_ga.ga_len < si->sn_prl_ga.ga_maxlen) {
// Zero counters for a line that was not used before.
sn_prl_T *pp = &PRL_ITEM(si, si->sn_prl_ga.ga_len);
pp->snp_count = 0;
pp->sn_prl_total = profile_zero();
pp->sn_prl_self = profile_zero();
si->sn_prl_ga.ga_len++;
}
si->sn_prl_execed = false;
si->sn_prl_start = profile_start();
si->sn_prl_children = profile_zero();
si->sn_prl_wait = profile_get_wait();
}
}
/// Called when actually executing a function line.
void script_line_exec(void)
{
if (current_sctx.sc_sid <= 0 || current_sctx.sc_sid > script_items.ga_len) {
return;
}
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && si->sn_prl_idx >= 0) {
si->sn_prl_execed = true;
}
}
/// Called when done with a function line.
void script_line_end(void)
{
if (current_sctx.sc_sid <= 0 || current_sctx.sc_sid > script_items.ga_len) {
return;
}
scriptitem_T *si = SCRIPT_ITEM(current_sctx.sc_sid);
if (si->sn_prof_on && si->sn_prl_idx >= 0
&& si->sn_prl_idx < si->sn_prl_ga.ga_len) {
if (si->sn_prl_execed) {
sn_prl_T *pp = &PRL_ITEM(si, si->sn_prl_idx);
pp->snp_count++;
si->sn_prl_start = profile_end(si->sn_prl_start);
si->sn_prl_start = profile_sub_wait(si->sn_prl_wait, si->sn_prl_start);
pp->sn_prl_total = profile_add(pp->sn_prl_total, si->sn_prl_start);
pp->sn_prl_self = profile_self(pp->sn_prl_self, si->sn_prl_start,
si->sn_prl_children);
}
si->sn_prl_idx = -1;
}
}
/// globals for use in the startuptime related functionality (time_*).
static proftime_T g_start_time;
static proftime_T g_prev_time;
/// Saves the previous time before doing something that could nest.
///
/// After calling this function, the static global `g_prev_time` will
/// contain the current time.
///
/// @param[out] rel to the time elapsed so far
/// @param[out] start the current time
void time_push(proftime_T *rel, proftime_T *start)
{
proftime_T now = profile_start();
// subtract the previous time from now, store it in `rel`
*rel = profile_sub(now, g_prev_time);
*start = now;
// reset global `g_prev_time` for the next call
g_prev_time = now;
}
/// Computes the prev time after doing something that could nest.
///
/// Subtracts `tp` from the static global `g_prev_time`.
///
/// @param tp the time to subtract
void time_pop(proftime_T tp)
{
g_prev_time -= tp;
}
/// Prints the difference between `then` and `now`.
///
/// the format is "msec.usec".
static void time_diff(proftime_T then, proftime_T now)
{
proftime_T diff = profile_sub(now, then);
fprintf(time_fd, "%07.3lf", (double)diff / 1.0E6);
}
/// Initializes the startuptime code.
///
/// Must be called once before calling other startuptime code (such as
/// time_{push,pop,msg,...}).
///
/// @param message the message that will be displayed
void time_start(const char *message)
{
if (time_fd == NULL) {
return;
}
// initialize the global variables
g_prev_time = g_start_time = profile_start();
fprintf(time_fd, "\ntimes in msec\n");
fprintf(time_fd, " clock self+sourced self: sourced script\n");
fprintf(time_fd, " clock elapsed: other lines\n\n");
time_msg(message, NULL);
}
/// Prints out timing info.
///
/// @warning don't forget to call `time_start()` once before calling this.
///
/// @param mesg the message to display next to the timing information
/// @param start only for do_source: start time
void time_msg(const char *mesg, const proftime_T *start)
{
if (time_fd == NULL) {
return;
}
// print out the difference between `start` (init earlier) and `now`
proftime_T now = profile_start();
time_diff(g_start_time, now);
// if `start` was supplied, print the diff between `start` and `now`
if (start != NULL) {
fprintf(time_fd, " ");
time_diff(*start, now);
}
// print the difference between the global `g_prev_time` and `now`
fprintf(time_fd, " ");
time_diff(g_prev_time, now);
// reset `g_prev_time` and print the message
g_prev_time = now;
fprintf(time_fd, ": %s\n", mesg);
}
/// Initializes the `time_fd` stream for the --startuptime report.
///
/// @param fname startuptime report file path
/// @param proc_name name of the current Nvim process to write in the report.
void time_init(const char *fname, const char *proc_name)
{
const size_t bufsize = 8192; // Big enough for the entire --startuptime report.
time_fd = fopen(fname, "a");
if (time_fd == NULL) {
fprintf(stderr, _(e_notopen), fname);
return;
}
startuptime_buf = xmalloc(sizeof(char) * (bufsize + 1));
// The startuptime file is (potentially) written by multiple Nvim processes concurrently. So each
// report is buffered, and flushed to disk (`time_finish`) once after startup. `_IOFBF` mode
// ensures the buffer is not auto-flushed ("controlled buffering").
int r = setvbuf(time_fd, startuptime_buf, _IOFBF, bufsize + 1);
if (r != 0) {
XFREE_CLEAR(startuptime_buf);
fclose(time_fd);
time_fd = NULL;
fprintf(stderr, "time_init: setvbuf failed: %d %s", r, uv_err_name(r));
return;
}
fprintf(time_fd, "--- Startup times for process: %s ---\n", proc_name);
}
/// Flushes the startuptimes to disk for the current process
void time_finish(void)
{
if (time_fd == NULL) {
return;
}
assert(startuptime_buf != NULL);
TIME_MSG("--- NVIM STARTED ---\n");
// flush buffer to disk
fclose(time_fd);
time_fd = NULL;
XFREE_CLEAR(startuptime_buf);
}