mirror of
https://github.com/neovim/neovim.git
synced 2025-10-16 14:56:08 +00:00

Problem: Using sizeof() and subtract array size is tricky.
Solution: Use offsetof() instead. (closes vim/vim#11926)
1b438a8228
7640 lines
201 KiB
C
7640 lines
201 KiB
C
// This is an open source non-commercial project. Dear PVS-Studio, please check
|
|
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
|
|
|
|
// NFA regular expression implementation.
|
|
//
|
|
// This file is included in "regexp.c".
|
|
|
|
#include <assert.h>
|
|
#include <inttypes.h>
|
|
#include <limits.h>
|
|
#include <stdbool.h>
|
|
|
|
#include "nvim/ascii.h"
|
|
#include "nvim/garray.h"
|
|
#include "nvim/os/input.h"
|
|
|
|
// Logging of NFA engine.
|
|
//
|
|
// The NFA engine can write four log files:
|
|
// - Error log: Contains NFA engine's fatal errors.
|
|
// - Dump log: Contains compiled NFA state machine's information.
|
|
// - Run log: Contains information of matching procedure.
|
|
// - Debug log: Contains detailed information of matching procedure. Can be
|
|
// disabled by undefining NFA_REGEXP_DEBUG_LOG.
|
|
// The first one can also be used without debug mode.
|
|
// The last three are enabled when compiled as debug mode and individually
|
|
// disabled by commenting them out.
|
|
// The log files can get quite big!
|
|
// To disable all of this when compiling Vim for debugging, undefine REGEXP_DEBUG in
|
|
// regexp.c
|
|
#ifdef REGEXP_DEBUG
|
|
# define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log"
|
|
# define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log"
|
|
# define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log"
|
|
# define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log"
|
|
#endif
|
|
|
|
// Added to NFA_ANY - NFA_NUPPER_IC to include a NL.
|
|
#define NFA_ADD_NL 31
|
|
|
|
enum {
|
|
NFA_SPLIT = -1024,
|
|
NFA_MATCH,
|
|
NFA_EMPTY, // matches 0-length
|
|
|
|
NFA_START_COLL, // [abc] start
|
|
NFA_END_COLL, // [abc] end
|
|
NFA_START_NEG_COLL, // [^abc] start
|
|
NFA_END_NEG_COLL, // [^abc] end (postfix only)
|
|
NFA_RANGE, // range of the two previous items
|
|
// (postfix only)
|
|
NFA_RANGE_MIN, // low end of a range
|
|
NFA_RANGE_MAX, // high end of a range
|
|
|
|
NFA_CONCAT, // concatenate two previous items (postfix
|
|
// only)
|
|
NFA_OR, // \| (postfix only)
|
|
NFA_STAR, // greedy * (postfix only)
|
|
NFA_STAR_NONGREEDY, // non-greedy * (postfix only)
|
|
NFA_QUEST, // greedy \? (postfix only)
|
|
NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only)
|
|
|
|
NFA_BOL, // ^ Begin line
|
|
NFA_EOL, // $ End line
|
|
NFA_BOW, // \< Begin word
|
|
NFA_EOW, // \> End word
|
|
NFA_BOF, // \%^ Begin file
|
|
NFA_EOF, // \%$ End file
|
|
NFA_NEWL,
|
|
NFA_ZSTART, // Used for \zs
|
|
NFA_ZEND, // Used for \ze
|
|
NFA_NOPEN, // Start of subexpression marked with \%(
|
|
NFA_NCLOSE, // End of subexpr. marked with \%( ... \)
|
|
NFA_START_INVISIBLE,
|
|
NFA_START_INVISIBLE_FIRST,
|
|
NFA_START_INVISIBLE_NEG,
|
|
NFA_START_INVISIBLE_NEG_FIRST,
|
|
NFA_START_INVISIBLE_BEFORE,
|
|
NFA_START_INVISIBLE_BEFORE_FIRST,
|
|
NFA_START_INVISIBLE_BEFORE_NEG,
|
|
NFA_START_INVISIBLE_BEFORE_NEG_FIRST,
|
|
NFA_START_PATTERN,
|
|
NFA_END_INVISIBLE,
|
|
NFA_END_INVISIBLE_NEG,
|
|
NFA_END_PATTERN,
|
|
NFA_COMPOSING, // Next nodes in NFA are part of the
|
|
// composing multibyte char
|
|
NFA_END_COMPOSING, // End of a composing char in the NFA
|
|
NFA_ANY_COMPOSING, // \%C: Any composing characters.
|
|
NFA_OPT_CHARS, // \%[abc]
|
|
|
|
// The following are used only in the postfix form, not in the NFA
|
|
NFA_PREV_ATOM_NO_WIDTH, // Used for \@=
|
|
NFA_PREV_ATOM_NO_WIDTH_NEG, // Used for \@!
|
|
NFA_PREV_ATOM_JUST_BEFORE, // Used for \@<=
|
|
NFA_PREV_ATOM_JUST_BEFORE_NEG, // Used for \@<!
|
|
NFA_PREV_ATOM_LIKE_PATTERN, // Used for \@>
|
|
|
|
NFA_BACKREF1, // \1
|
|
NFA_BACKREF2, // \2
|
|
NFA_BACKREF3, // \3
|
|
NFA_BACKREF4, // \4
|
|
NFA_BACKREF5, // \5
|
|
NFA_BACKREF6, // \6
|
|
NFA_BACKREF7, // \7
|
|
NFA_BACKREF8, // \8
|
|
NFA_BACKREF9, // \9
|
|
NFA_ZREF1, // \z1
|
|
NFA_ZREF2, // \z2
|
|
NFA_ZREF3, // \z3
|
|
NFA_ZREF4, // \z4
|
|
NFA_ZREF5, // \z5
|
|
NFA_ZREF6, // \z6
|
|
NFA_ZREF7, // \z7
|
|
NFA_ZREF8, // \z8
|
|
NFA_ZREF9, // \z9
|
|
NFA_SKIP, // Skip characters
|
|
|
|
NFA_MOPEN,
|
|
NFA_MOPEN1,
|
|
NFA_MOPEN2,
|
|
NFA_MOPEN3,
|
|
NFA_MOPEN4,
|
|
NFA_MOPEN5,
|
|
NFA_MOPEN6,
|
|
NFA_MOPEN7,
|
|
NFA_MOPEN8,
|
|
NFA_MOPEN9,
|
|
|
|
NFA_MCLOSE,
|
|
NFA_MCLOSE1,
|
|
NFA_MCLOSE2,
|
|
NFA_MCLOSE3,
|
|
NFA_MCLOSE4,
|
|
NFA_MCLOSE5,
|
|
NFA_MCLOSE6,
|
|
NFA_MCLOSE7,
|
|
NFA_MCLOSE8,
|
|
NFA_MCLOSE9,
|
|
|
|
NFA_ZOPEN,
|
|
NFA_ZOPEN1,
|
|
NFA_ZOPEN2,
|
|
NFA_ZOPEN3,
|
|
NFA_ZOPEN4,
|
|
NFA_ZOPEN5,
|
|
NFA_ZOPEN6,
|
|
NFA_ZOPEN7,
|
|
NFA_ZOPEN8,
|
|
NFA_ZOPEN9,
|
|
|
|
NFA_ZCLOSE,
|
|
NFA_ZCLOSE1,
|
|
NFA_ZCLOSE2,
|
|
NFA_ZCLOSE3,
|
|
NFA_ZCLOSE4,
|
|
NFA_ZCLOSE5,
|
|
NFA_ZCLOSE6,
|
|
NFA_ZCLOSE7,
|
|
NFA_ZCLOSE8,
|
|
NFA_ZCLOSE9,
|
|
|
|
// NFA_FIRST_NL
|
|
NFA_ANY, // Match any one character.
|
|
NFA_IDENT, // Match identifier char
|
|
NFA_SIDENT, // Match identifier char but no digit
|
|
NFA_KWORD, // Match keyword char
|
|
NFA_SKWORD, // Match word char but no digit
|
|
NFA_FNAME, // Match file name char
|
|
NFA_SFNAME, // Match file name char but no digit
|
|
NFA_PRINT, // Match printable char
|
|
NFA_SPRINT, // Match printable char but no digit
|
|
NFA_WHITE, // Match whitespace char
|
|
NFA_NWHITE, // Match non-whitespace char
|
|
NFA_DIGIT, // Match digit char
|
|
NFA_NDIGIT, // Match non-digit char
|
|
NFA_HEX, // Match hex char
|
|
NFA_NHEX, // Match non-hex char
|
|
NFA_OCTAL, // Match octal char
|
|
NFA_NOCTAL, // Match non-octal char
|
|
NFA_WORD, // Match word char
|
|
NFA_NWORD, // Match non-word char
|
|
NFA_HEAD, // Match head char
|
|
NFA_NHEAD, // Match non-head char
|
|
NFA_ALPHA, // Match alpha char
|
|
NFA_NALPHA, // Match non-alpha char
|
|
NFA_LOWER, // Match lowercase char
|
|
NFA_NLOWER, // Match non-lowercase char
|
|
NFA_UPPER, // Match uppercase char
|
|
NFA_NUPPER, // Match non-uppercase char
|
|
NFA_LOWER_IC, // Match [a-z]
|
|
NFA_NLOWER_IC, // Match [^a-z]
|
|
NFA_UPPER_IC, // Match [A-Z]
|
|
NFA_NUPPER_IC, // Match [^A-Z]
|
|
|
|
NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL,
|
|
NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL,
|
|
|
|
NFA_CURSOR, // Match cursor pos
|
|
NFA_LNUM, // Match line number
|
|
NFA_LNUM_GT, // Match > line number
|
|
NFA_LNUM_LT, // Match < line number
|
|
NFA_COL, // Match cursor column
|
|
NFA_COL_GT, // Match > cursor column
|
|
NFA_COL_LT, // Match < cursor column
|
|
NFA_VCOL, // Match cursor virtual column
|
|
NFA_VCOL_GT, // Match > cursor virtual column
|
|
NFA_VCOL_LT, // Match < cursor virtual column
|
|
NFA_MARK, // Match mark
|
|
NFA_MARK_GT, // Match > mark
|
|
NFA_MARK_LT, // Match < mark
|
|
NFA_VISUAL, // Match Visual area
|
|
|
|
// Character classes [:alnum:] etc
|
|
NFA_CLASS_ALNUM,
|
|
NFA_CLASS_ALPHA,
|
|
NFA_CLASS_BLANK,
|
|
NFA_CLASS_CNTRL,
|
|
NFA_CLASS_DIGIT,
|
|
NFA_CLASS_GRAPH,
|
|
NFA_CLASS_LOWER,
|
|
NFA_CLASS_PRINT,
|
|
NFA_CLASS_PUNCT,
|
|
NFA_CLASS_SPACE,
|
|
NFA_CLASS_UPPER,
|
|
NFA_CLASS_XDIGIT,
|
|
NFA_CLASS_TAB,
|
|
NFA_CLASS_RETURN,
|
|
NFA_CLASS_BACKSPACE,
|
|
NFA_CLASS_ESCAPE,
|
|
NFA_CLASS_IDENT,
|
|
NFA_CLASS_KEYWORD,
|
|
NFA_CLASS_FNAME,
|
|
};
|
|
|
|
// Keep in sync with classchars.
|
|
static int nfa_classcodes[] = {
|
|
NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD, NFA_SKWORD,
|
|
NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT,
|
|
NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT,
|
|
NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL,
|
|
NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD,
|
|
NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER,
|
|
NFA_UPPER, NFA_NUPPER
|
|
};
|
|
|
|
static char e_nul_found[] = N_("E865: (NFA) Regexp end encountered prematurely");
|
|
static char e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c");
|
|
static char e_ill_char_class[] = N_("E877: (NFA regexp) Invalid character class: %" PRId64);
|
|
static char e_value_too_large[] = N_("E951: \\% value too large");
|
|
|
|
// Since the out pointers in the list are always
|
|
// uninitialized, we use the pointers themselves
|
|
// as storage for the Ptrlists.
|
|
typedef union Ptrlist Ptrlist;
|
|
union Ptrlist {
|
|
Ptrlist *next;
|
|
nfa_state_T *s;
|
|
};
|
|
|
|
struct Frag {
|
|
nfa_state_T *start;
|
|
Ptrlist *out;
|
|
};
|
|
typedef struct Frag Frag_T;
|
|
|
|
typedef struct {
|
|
int in_use; ///< number of subexpr with useful info
|
|
|
|
// When REG_MULTI is true list.multi is used, otherwise list.line.
|
|
union {
|
|
struct multipos {
|
|
linenr_T start_lnum;
|
|
linenr_T end_lnum;
|
|
colnr_T start_col;
|
|
colnr_T end_col;
|
|
} multi[NSUBEXP];
|
|
struct linepos {
|
|
uint8_t *start;
|
|
uint8_t *end;
|
|
} line[NSUBEXP];
|
|
} list;
|
|
colnr_T orig_start_col; // list.multi[0].start_col without \zs
|
|
} regsub_T;
|
|
|
|
typedef struct {
|
|
regsub_T norm; // \( .. \) matches
|
|
regsub_T synt; // \z( .. \) matches
|
|
} regsubs_T;
|
|
|
|
// nfa_pim_T stores a Postponed Invisible Match.
|
|
typedef struct nfa_pim_S nfa_pim_T;
|
|
struct nfa_pim_S {
|
|
int result; // NFA_PIM_*, see below
|
|
nfa_state_T *state; // the invisible match start state
|
|
regsubs_T subs; // submatch info, only party used
|
|
union {
|
|
lpos_T pos;
|
|
uint8_t *ptr;
|
|
} end; // where the match must end
|
|
};
|
|
|
|
// nfa_thread_T contains execution information of a NFA state
|
|
typedef struct {
|
|
nfa_state_T *state;
|
|
int count;
|
|
nfa_pim_T pim; // if pim.result != NFA_PIM_UNUSED: postponed
|
|
// invisible match
|
|
regsubs_T subs; // submatch info, only party used
|
|
} nfa_thread_T;
|
|
|
|
// nfa_list_T contains the alternative NFA execution states.
|
|
typedef struct {
|
|
nfa_thread_T *t; ///< allocated array of states
|
|
int n; ///< nr of states currently in "t"
|
|
int len; ///< max nr of states in "t"
|
|
int id; ///< ID of the list
|
|
int has_pim; ///< true when any state has a PIM
|
|
} nfa_list_T;
|
|
|
|
// Variables only used in nfa_regcomp() and descendants.
|
|
static int nfa_re_flags; ///< re_flags passed to nfa_regcomp().
|
|
static int *post_start; ///< holds the postfix form of r.e.
|
|
static int *post_end;
|
|
static int *post_ptr;
|
|
|
|
// Set when the pattern should use the NFA engine.
|
|
// E.g. [[:upper:]] only allows 8bit characters for BT engine,
|
|
// while NFA engine handles multibyte characters correctly.
|
|
static bool wants_nfa;
|
|
|
|
static int nstate; ///< Number of states in the NFA. Also used when executing.
|
|
static int istate; ///< Index in the state vector, used in alloc_state()
|
|
|
|
// If not NULL match must end at this position
|
|
static save_se_T *nfa_endp = NULL;
|
|
|
|
// 0 for first call to nfa_regmatch(), 1 for recursive call.
|
|
static int nfa_ll_index = 0;
|
|
|
|
#ifdef INCLUDE_GENERATED_DECLARATIONS
|
|
# include "regexp_nfa.c.generated.h"
|
|
#endif
|
|
|
|
// Helper functions used when doing re2post() ... regatom() parsing
|
|
#define EMIT(c) \
|
|
do { \
|
|
if (post_ptr >= post_end) { \
|
|
realloc_post_list(); \
|
|
} \
|
|
*post_ptr++ = c; \
|
|
} while (0)
|
|
|
|
/// Initialize internal variables before NFA compilation.
|
|
///
|
|
/// @param re_flags @see vim_regcomp()
|
|
static void nfa_regcomp_start(uint8_t *expr, int re_flags)
|
|
{
|
|
size_t postfix_size;
|
|
size_t nstate_max;
|
|
|
|
nstate = 0;
|
|
istate = 0;
|
|
// A reasonable estimation for maximum size
|
|
nstate_max = (strlen((char *)expr) + 1) * 25;
|
|
|
|
// Some items blow up in size, such as [A-z]. Add more space for that.
|
|
// When it is still not enough realloc_post_list() will be used.
|
|
nstate_max += 1000;
|
|
|
|
// Size for postfix representation of expr.
|
|
postfix_size = sizeof(int) * nstate_max;
|
|
|
|
post_start = (int *)xmalloc(postfix_size);
|
|
post_ptr = post_start;
|
|
post_end = post_start + nstate_max;
|
|
wants_nfa = false;
|
|
rex.nfa_has_zend = false;
|
|
rex.nfa_has_backref = false;
|
|
|
|
// shared with BT engine
|
|
regcomp_start(expr, re_flags);
|
|
}
|
|
|
|
// Figure out if the NFA state list starts with an anchor, must match at start
|
|
// of the line.
|
|
static int nfa_get_reganch(nfa_state_T *start, int depth)
|
|
{
|
|
nfa_state_T *p = start;
|
|
|
|
if (depth > 4) {
|
|
return 0;
|
|
}
|
|
|
|
while (p != NULL) {
|
|
switch (p->c) {
|
|
case NFA_BOL:
|
|
case NFA_BOF:
|
|
return 1; // yes!
|
|
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
case NFA_CURSOR:
|
|
case NFA_VISUAL:
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
p = p->out;
|
|
break;
|
|
|
|
case NFA_SPLIT:
|
|
return nfa_get_reganch(p->out, depth + 1)
|
|
&& nfa_get_reganch(p->out1, depth + 1);
|
|
|
|
default:
|
|
return 0; // noooo
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Figure out if the NFA state list starts with a character which must match
|
|
// at start of the match.
|
|
static int nfa_get_regstart(nfa_state_T *start, int depth)
|
|
{
|
|
nfa_state_T *p = start;
|
|
|
|
if (depth > 4) {
|
|
return 0;
|
|
}
|
|
|
|
while (p != NULL) {
|
|
switch (p->c) {
|
|
// all kinds of zero-width matches
|
|
case NFA_BOL:
|
|
case NFA_BOF:
|
|
case NFA_BOW:
|
|
case NFA_EOW:
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
case NFA_CURSOR:
|
|
case NFA_VISUAL:
|
|
case NFA_LNUM:
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_COL:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_VCOL:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_MARK:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT:
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
p = p->out;
|
|
break;
|
|
|
|
case NFA_SPLIT: {
|
|
int c1 = nfa_get_regstart(p->out, depth + 1);
|
|
int c2 = nfa_get_regstart(p->out1, depth + 1);
|
|
|
|
if (c1 == c2) {
|
|
return c1; // yes!
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
default:
|
|
if (p->c > 0) {
|
|
return p->c; // yes!
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Figure out if the NFA state list contains just literal text and nothing
|
|
// else. If so return a string in allocated memory with what must match after
|
|
// regstart. Otherwise return NULL.
|
|
static uint8_t *nfa_get_match_text(nfa_state_T *start)
|
|
{
|
|
nfa_state_T *p = start;
|
|
int len = 0;
|
|
uint8_t *ret;
|
|
uint8_t *s;
|
|
|
|
if (p->c != NFA_MOPEN) {
|
|
return NULL; // just in case
|
|
}
|
|
p = p->out;
|
|
while (p->c > 0) {
|
|
len += utf_char2len(p->c);
|
|
p = p->out;
|
|
}
|
|
if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = xmalloc((size_t)len);
|
|
p = start->out->out; // skip first char, it goes into regstart
|
|
s = ret;
|
|
while (p->c > 0) {
|
|
s += utf_char2bytes(p->c, (char *)s);
|
|
p = p->out;
|
|
}
|
|
*s = NUL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Allocate more space for post_start. Called when
|
|
// running above the estimated number of states.
|
|
static void realloc_post_list(void)
|
|
{
|
|
// For weird patterns the number of states can be very high. Increasing by
|
|
// 50% seems a reasonable compromise between memory use and speed.
|
|
const size_t new_max = (size_t)(post_end - post_start) * 3 / 2;
|
|
int *new_start = xrealloc(post_start, new_max * sizeof(int));
|
|
post_ptr = new_start + (post_ptr - post_start);
|
|
post_end = new_start + new_max;
|
|
post_start = new_start;
|
|
}
|
|
|
|
// Search between "start" and "end" and try to recognize a
|
|
// character class in expanded form. For example [0-9].
|
|
// On success, return the id the character class to be emitted.
|
|
// On failure, return 0 (=FAIL)
|
|
// Start points to the first char of the range, while end should point
|
|
// to the closing brace.
|
|
// Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may
|
|
// need to be interpreted as [a-zA-Z].
|
|
static int nfa_recognize_char_class(uint8_t *start, uint8_t *end, int extra_newl)
|
|
{
|
|
#define CLASS_not 0x80
|
|
#define CLASS_af 0x40
|
|
#define CLASS_AF 0x20
|
|
#define CLASS_az 0x10
|
|
#define CLASS_AZ 0x08
|
|
#define CLASS_o7 0x04
|
|
#define CLASS_o9 0x02
|
|
#define CLASS_underscore 0x01
|
|
|
|
uint8_t *p;
|
|
int config = 0;
|
|
|
|
bool newl = extra_newl == true;
|
|
|
|
if (*end != ']') {
|
|
return FAIL;
|
|
}
|
|
p = start;
|
|
if (*p == '^') {
|
|
config |= CLASS_not;
|
|
p++;
|
|
}
|
|
|
|
while (p < end) {
|
|
if (p + 2 < end && *(p + 1) == '-') {
|
|
switch (*p) {
|
|
case '0':
|
|
if (*(p + 2) == '9') {
|
|
config |= CLASS_o9;
|
|
break;
|
|
} else if (*(p + 2) == '7') {
|
|
config |= CLASS_o7;
|
|
break;
|
|
}
|
|
return FAIL;
|
|
case 'a':
|
|
if (*(p + 2) == 'z') {
|
|
config |= CLASS_az;
|
|
break;
|
|
} else if (*(p + 2) == 'f') {
|
|
config |= CLASS_af;
|
|
break;
|
|
}
|
|
return FAIL;
|
|
case 'A':
|
|
if (*(p + 2) == 'Z') {
|
|
config |= CLASS_AZ;
|
|
break;
|
|
} else if (*(p + 2) == 'F') {
|
|
config |= CLASS_AF;
|
|
break;
|
|
}
|
|
return FAIL;
|
|
default:
|
|
return FAIL;
|
|
}
|
|
p += 3;
|
|
} else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') {
|
|
newl = true;
|
|
p += 2;
|
|
} else if (*p == '_') {
|
|
config |= CLASS_underscore;
|
|
p++;
|
|
} else if (*p == '\n') {
|
|
newl = true;
|
|
p++;
|
|
} else {
|
|
return FAIL;
|
|
}
|
|
} // while (p < end)
|
|
|
|
if (p != end) {
|
|
return FAIL;
|
|
}
|
|
|
|
if (newl == true) {
|
|
extra_newl = NFA_ADD_NL;
|
|
}
|
|
|
|
switch (config) {
|
|
case CLASS_o9:
|
|
return extra_newl + NFA_DIGIT;
|
|
case CLASS_not | CLASS_o9:
|
|
return extra_newl + NFA_NDIGIT;
|
|
case CLASS_af | CLASS_AF | CLASS_o9:
|
|
return extra_newl + NFA_HEX;
|
|
case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9:
|
|
return extra_newl + NFA_NHEX;
|
|
case CLASS_o7:
|
|
return extra_newl + NFA_OCTAL;
|
|
case CLASS_not | CLASS_o7:
|
|
return extra_newl + NFA_NOCTAL;
|
|
case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
|
|
return extra_newl + NFA_WORD;
|
|
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
|
|
return extra_newl + NFA_NWORD;
|
|
case CLASS_az | CLASS_AZ | CLASS_underscore:
|
|
return extra_newl + NFA_HEAD;
|
|
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore:
|
|
return extra_newl + NFA_NHEAD;
|
|
case CLASS_az | CLASS_AZ:
|
|
return extra_newl + NFA_ALPHA;
|
|
case CLASS_not | CLASS_az | CLASS_AZ:
|
|
return extra_newl + NFA_NALPHA;
|
|
case CLASS_az:
|
|
return extra_newl + NFA_LOWER_IC;
|
|
case CLASS_not | CLASS_az:
|
|
return extra_newl + NFA_NLOWER_IC;
|
|
case CLASS_AZ:
|
|
return extra_newl + NFA_UPPER_IC;
|
|
case CLASS_not | CLASS_AZ:
|
|
return extra_newl + NFA_NUPPER_IC;
|
|
}
|
|
return FAIL;
|
|
}
|
|
|
|
// Produce the bytes for equivalence class "c".
|
|
// Currently only handles latin1, latin9 and utf-8.
|
|
// Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is
|
|
// equivalent to 'a OR b OR c'
|
|
//
|
|
// NOTE! When changing this function, also update reg_equi_class()
|
|
static void nfa_emit_equi_class(int c)
|
|
{
|
|
#define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT);
|
|
|
|
{
|
|
#define A_grave 0xc0
|
|
#define A_acute 0xc1
|
|
#define A_circumflex 0xc2
|
|
#define A_virguilla 0xc3
|
|
#define A_diaeresis 0xc4
|
|
#define A_ring 0xc5
|
|
#define C_cedilla 0xc7
|
|
#define E_grave 0xc8
|
|
#define E_acute 0xc9
|
|
#define E_circumflex 0xca
|
|
#define E_diaeresis 0xcb
|
|
#define I_grave 0xcc
|
|
#define I_acute 0xcd
|
|
#define I_circumflex 0xce
|
|
#define I_diaeresis 0xcf
|
|
#define N_virguilla 0xd1
|
|
#define O_grave 0xd2
|
|
#define O_acute 0xd3
|
|
#define O_circumflex 0xd4
|
|
#define O_virguilla 0xd5
|
|
#define O_diaeresis 0xd6
|
|
#define O_slash 0xd8
|
|
#define U_grave 0xd9
|
|
#define U_acute 0xda
|
|
#define U_circumflex 0xdb
|
|
#define U_diaeresis 0xdc
|
|
#define Y_acute 0xdd
|
|
#define a_grave 0xe0
|
|
#define a_acute 0xe1
|
|
#define a_circumflex 0xe2
|
|
#define a_virguilla 0xe3
|
|
#define a_diaeresis 0xe4
|
|
#define a_ring 0xe5
|
|
#define c_cedilla 0xe7
|
|
#define e_grave 0xe8
|
|
#define e_acute 0xe9
|
|
#define e_circumflex 0xea
|
|
#define e_diaeresis 0xeb
|
|
#define i_grave 0xec
|
|
#define i_acute 0xed
|
|
#define i_circumflex 0xee
|
|
#define i_diaeresis 0xef
|
|
#define n_virguilla 0xf1
|
|
#define o_grave 0xf2
|
|
#define o_acute 0xf3
|
|
#define o_circumflex 0xf4
|
|
#define o_virguilla 0xf5
|
|
#define o_diaeresis 0xf6
|
|
#define o_slash 0xf8
|
|
#define u_grave 0xf9
|
|
#define u_acute 0xfa
|
|
#define u_circumflex 0xfb
|
|
#define u_diaeresis 0xfc
|
|
#define y_acute 0xfd
|
|
#define y_diaeresis 0xff
|
|
switch (c) {
|
|
case 'A':
|
|
case A_grave:
|
|
case A_acute:
|
|
case A_circumflex:
|
|
case A_virguilla:
|
|
case A_diaeresis:
|
|
case A_ring:
|
|
case 0x100:
|
|
case 0x102:
|
|
case 0x104:
|
|
case 0x1cd:
|
|
case 0x1de:
|
|
case 0x1e0:
|
|
case 0x1fa:
|
|
case 0x200:
|
|
case 0x202:
|
|
case 0x226:
|
|
case 0x23a:
|
|
case 0x1e00:
|
|
case 0x1ea0:
|
|
case 0x1ea2:
|
|
case 0x1ea4:
|
|
case 0x1ea6:
|
|
case 0x1ea8:
|
|
case 0x1eaa:
|
|
case 0x1eac:
|
|
case 0x1eae:
|
|
case 0x1eb0:
|
|
case 0x1eb2:
|
|
case 0x1eb4:
|
|
case 0x1eb6:
|
|
EMIT2('A') EMIT2(A_grave) EMIT2(A_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(A_circumflex) EMIT2(A_virguilla) // NOLINT(whitespace/cast)
|
|
EMIT2(A_diaeresis) EMIT2(A_ring) // NOLINT(whitespace/cast)
|
|
EMIT2(0x100) EMIT2(0x102) EMIT2(0x104)
|
|
EMIT2(0x1cd) EMIT2(0x1de) EMIT2(0x1e0)
|
|
EMIT2(0x1fa) EMIT2(0x200) EMIT2(0x202)
|
|
EMIT2(0x226) EMIT2(0x23a) EMIT2(0x1e00)
|
|
EMIT2(0x1ea0) EMIT2(0x1ea2) EMIT2(0x1ea4)
|
|
EMIT2(0x1ea6) EMIT2(0x1ea8) EMIT2(0x1eaa)
|
|
EMIT2(0x1eac) EMIT2(0x1eae) EMIT2(0x1eb0)
|
|
EMIT2(0x1eb2) EMIT2(0x1eb6) EMIT2(0x1eb4)
|
|
return;
|
|
|
|
case 'B':
|
|
case 0x181:
|
|
case 0x243:
|
|
case 0x1e02:
|
|
case 0x1e04:
|
|
case 0x1e06:
|
|
EMIT2('B')
|
|
EMIT2(0x181) EMIT2(0x243) EMIT2(0x1e02)
|
|
EMIT2(0x1e04) EMIT2(0x1e06)
|
|
return;
|
|
|
|
case 'C':
|
|
case C_cedilla:
|
|
case 0x106:
|
|
case 0x108:
|
|
case 0x10a:
|
|
case 0x10c:
|
|
case 0x187:
|
|
case 0x23b:
|
|
case 0x1e08:
|
|
case 0xa792:
|
|
EMIT2('C') EMIT2(C_cedilla)
|
|
EMIT2(0x106) EMIT2(0x108) EMIT2(0x10a)
|
|
EMIT2(0x10c) EMIT2(0x187) EMIT2(0x23b)
|
|
EMIT2(0x1e08) EMIT2(0xa792)
|
|
return;
|
|
|
|
case 'D':
|
|
case 0x10e:
|
|
case 0x110:
|
|
case 0x18a:
|
|
case 0x1e0a:
|
|
case 0x1e0c:
|
|
case 0x1e0e:
|
|
case 0x1e10:
|
|
case 0x1e12:
|
|
EMIT2('D') EMIT2(0x10e) EMIT2(0x110) EMIT2(0x18a)
|
|
EMIT2(0x1e0a) EMIT2(0x1e0c) EMIT2(0x1e0e)
|
|
EMIT2(0x1e10) EMIT2(0x1e12)
|
|
return;
|
|
|
|
case 'E':
|
|
case E_grave:
|
|
case E_acute:
|
|
case E_circumflex:
|
|
case E_diaeresis:
|
|
case 0x112:
|
|
case 0x114:
|
|
case 0x116:
|
|
case 0x118:
|
|
case 0x11a:
|
|
case 0x204:
|
|
case 0x206:
|
|
case 0x228:
|
|
case 0x246:
|
|
case 0x1e14:
|
|
case 0x1e16:
|
|
case 0x1e18:
|
|
case 0x1e1a:
|
|
case 0x1e1c:
|
|
case 0x1eb8:
|
|
case 0x1eba:
|
|
case 0x1ebc:
|
|
case 0x1ebe:
|
|
case 0x1ec0:
|
|
case 0x1ec2:
|
|
case 0x1ec4:
|
|
case 0x1ec6:
|
|
EMIT2('E') EMIT2(E_grave) EMIT2(E_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(E_circumflex) EMIT2(E_diaeresis) // NOLINT(whitespace/cast)
|
|
EMIT2(0x112) EMIT2(0x114) EMIT2(0x116)
|
|
EMIT2(0x118) EMIT2(0x11a) EMIT2(0x204)
|
|
EMIT2(0x206) EMIT2(0x228) EMIT2(0x246)
|
|
EMIT2(0x1e14) EMIT2(0x1e16) EMIT2(0x1e18)
|
|
EMIT2(0x1e1a) EMIT2(0x1e1c) EMIT2(0x1eb8)
|
|
EMIT2(0x1eba) EMIT2(0x1ebc) EMIT2(0x1ebe)
|
|
EMIT2(0x1ec0) EMIT2(0x1ec2) EMIT2(0x1ec4)
|
|
EMIT2(0x1ec6)
|
|
return;
|
|
|
|
case 'F':
|
|
case 0x191:
|
|
case 0x1e1e:
|
|
case 0xa798:
|
|
EMIT2('F') EMIT2(0x191) EMIT2(0x1e1e) EMIT2(0xa798)
|
|
return;
|
|
|
|
case 'G':
|
|
case 0x11c:
|
|
case 0x11e:
|
|
case 0x120:
|
|
case 0x122:
|
|
case 0x193:
|
|
case 0x1e4:
|
|
case 0x1e6:
|
|
case 0x1f4:
|
|
case 0x1e20:
|
|
case 0xa7a0:
|
|
EMIT2('G') EMIT2(0x11c) EMIT2(0x11e) EMIT2(0x120)
|
|
EMIT2(0x122) EMIT2(0x193) EMIT2(0x1e4)
|
|
EMIT2(0x1e6) EMIT2(0x1f4) EMIT2(0x1e20)
|
|
EMIT2(0xa7a0)
|
|
return;
|
|
|
|
case 'H':
|
|
case 0x124:
|
|
case 0x126:
|
|
case 0x21e:
|
|
case 0x1e22:
|
|
case 0x1e24:
|
|
case 0x1e26:
|
|
case 0x1e28:
|
|
case 0x1e2a:
|
|
case 0x2c67:
|
|
EMIT2('H') EMIT2(0x124) EMIT2(0x126) EMIT2(0x21e)
|
|
EMIT2(0x1e22) EMIT2(0x1e24) EMIT2(0x1e26)
|
|
EMIT2(0x1e28) EMIT2(0x1e2a) EMIT2(0x2c67)
|
|
return;
|
|
|
|
case 'I':
|
|
case I_grave:
|
|
case I_acute:
|
|
case I_circumflex:
|
|
case I_diaeresis:
|
|
case 0x128:
|
|
case 0x12a:
|
|
case 0x12c:
|
|
case 0x12e:
|
|
case 0x130:
|
|
case 0x197:
|
|
case 0x1cf:
|
|
case 0x208:
|
|
case 0x20a:
|
|
case 0x1e2c:
|
|
case 0x1e2e:
|
|
case 0x1ec8:
|
|
case 0x1eca:
|
|
EMIT2('I') EMIT2(I_grave) EMIT2(I_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(I_circumflex) EMIT2(I_diaeresis) // NOLINT(whitespace/cast)
|
|
EMIT2(0x128) EMIT2(0x12a) EMIT2(0x12c)
|
|
EMIT2(0x12e) EMIT2(0x130) EMIT2(0x197)
|
|
EMIT2(0x1cf) EMIT2(0x208) EMIT2(0x20a)
|
|
EMIT2(0x1e2c) EMIT2(0x1e2e) EMIT2(0x1ec8)
|
|
EMIT2(0x1eca)
|
|
return;
|
|
|
|
case 'J':
|
|
case 0x134:
|
|
case 0x248:
|
|
EMIT2('J') EMIT2(0x134) EMIT2(0x248)
|
|
return;
|
|
|
|
case 'K':
|
|
case 0x136:
|
|
case 0x198:
|
|
case 0x1e8:
|
|
case 0x1e30:
|
|
case 0x1e32:
|
|
case 0x1e34:
|
|
case 0x2c69:
|
|
case 0xa740:
|
|
EMIT2('K') EMIT2(0x136) EMIT2(0x198) EMIT2(0x1e8)
|
|
EMIT2(0x1e30) EMIT2(0x1e32) EMIT2(0x1e34)
|
|
EMIT2(0x2c69) EMIT2(0xa740)
|
|
return;
|
|
|
|
case 'L':
|
|
case 0x139:
|
|
case 0x13b:
|
|
case 0x13d:
|
|
case 0x13f:
|
|
case 0x141:
|
|
case 0x23d:
|
|
case 0x1e36:
|
|
case 0x1e38:
|
|
case 0x1e3a:
|
|
case 0x1e3c:
|
|
case 0x2c60:
|
|
EMIT2('L') EMIT2(0x139) EMIT2(0x13b)
|
|
EMIT2(0x13d) EMIT2(0x13f) EMIT2(0x141)
|
|
EMIT2(0x23d) EMIT2(0x1e36) EMIT2(0x1e38)
|
|
EMIT2(0x1e3a) EMIT2(0x1e3c) EMIT2(0x2c60)
|
|
return;
|
|
|
|
case 'M':
|
|
case 0x1e3e:
|
|
case 0x1e40:
|
|
case 0x1e42:
|
|
EMIT2('M') EMIT2(0x1e3e) EMIT2(0x1e40)
|
|
EMIT2(0x1e42)
|
|
return;
|
|
|
|
case 'N':
|
|
case N_virguilla:
|
|
case 0x143:
|
|
case 0x145:
|
|
case 0x147:
|
|
case 0x1f8:
|
|
case 0x1e44:
|
|
case 0x1e46:
|
|
case 0x1e48:
|
|
case 0x1e4a:
|
|
case 0xa7a4:
|
|
EMIT2('N') EMIT2(N_virguilla)
|
|
EMIT2(0x143) EMIT2(0x145) EMIT2(0x147)
|
|
EMIT2(0x1f8) EMIT2(0x1e44) EMIT2(0x1e46)
|
|
EMIT2(0x1e48) EMIT2(0x1e4a) EMIT2(0xa7a4)
|
|
return;
|
|
|
|
case 'O':
|
|
case O_grave:
|
|
case O_acute:
|
|
case O_circumflex:
|
|
case O_virguilla:
|
|
case O_diaeresis:
|
|
case O_slash:
|
|
case 0x14c:
|
|
case 0x14e:
|
|
case 0x150:
|
|
case 0x19f:
|
|
case 0x1a0:
|
|
case 0x1d1:
|
|
case 0x1ea:
|
|
case 0x1ec:
|
|
case 0x1fe:
|
|
case 0x20c:
|
|
case 0x20e:
|
|
case 0x22a:
|
|
case 0x22c:
|
|
case 0x22e:
|
|
case 0x230:
|
|
case 0x1e4c:
|
|
case 0x1e4e:
|
|
case 0x1e50:
|
|
case 0x1e52:
|
|
case 0x1ecc:
|
|
case 0x1ece:
|
|
case 0x1ed0:
|
|
case 0x1ed2:
|
|
case 0x1ed4:
|
|
case 0x1ed6:
|
|
case 0x1ed8:
|
|
case 0x1eda:
|
|
case 0x1edc:
|
|
case 0x1ede:
|
|
case 0x1ee0:
|
|
case 0x1ee2:
|
|
EMIT2('O') EMIT2(O_grave) EMIT2(O_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(O_circumflex) EMIT2(O_virguilla) // NOLINT(whitespace/cast)
|
|
EMIT2(O_diaeresis) EMIT2(O_slash) // NOLINT(whitespace/cast)
|
|
EMIT2(0x14c) EMIT2(0x14e) EMIT2(0x150)
|
|
EMIT2(0x19f) EMIT2(0x1a0) EMIT2(0x1d1)
|
|
EMIT2(0x1ea) EMIT2(0x1ec) EMIT2(0x1fe)
|
|
EMIT2(0x20c) EMIT2(0x20e) EMIT2(0x22a)
|
|
EMIT2(0x22c) EMIT2(0x22e) EMIT2(0x230)
|
|
EMIT2(0x1e4c) EMIT2(0x1e4e) EMIT2(0x1e50)
|
|
EMIT2(0x1e52) EMIT2(0x1ecc) EMIT2(0x1ece)
|
|
EMIT2(0x1ed0) EMIT2(0x1ed2) EMIT2(0x1ed4)
|
|
EMIT2(0x1ed6) EMIT2(0x1ed8) EMIT2(0x1eda)
|
|
EMIT2(0x1edc) EMIT2(0x1ede) EMIT2(0x1ee0)
|
|
EMIT2(0x1ee2)
|
|
return;
|
|
|
|
case 'P':
|
|
case 0x1a4:
|
|
case 0x1e54:
|
|
case 0x1e56:
|
|
case 0x2c63:
|
|
EMIT2('P') EMIT2(0x1a4) EMIT2(0x1e54) EMIT2(0x1e56)
|
|
EMIT2(0x2c63)
|
|
return;
|
|
|
|
case 'Q':
|
|
case 0x24a:
|
|
EMIT2('Q') EMIT2(0x24a)
|
|
return;
|
|
|
|
case 'R':
|
|
case 0x154:
|
|
case 0x156:
|
|
case 0x158:
|
|
case 0x210:
|
|
case 0x212:
|
|
case 0x24c:
|
|
case 0x1e58:
|
|
case 0x1e5a:
|
|
case 0x1e5c:
|
|
case 0x1e5e:
|
|
case 0x2c64:
|
|
case 0xa7a6:
|
|
EMIT2('R') EMIT2(0x154) EMIT2(0x156) EMIT2(0x158)
|
|
EMIT2(0x210) EMIT2(0x212) EMIT2(0x24c) EMIT2(0x1e58)
|
|
EMIT2(0x1e5a) EMIT2(0x1e5c) EMIT2(0x1e5e) EMIT2(0x2c64)
|
|
EMIT2(0xa7a6)
|
|
return;
|
|
|
|
case 'S':
|
|
case 0x15a:
|
|
case 0x15c:
|
|
case 0x15e:
|
|
case 0x160:
|
|
case 0x218:
|
|
case 0x1e60:
|
|
case 0x1e62:
|
|
case 0x1e64:
|
|
case 0x1e66:
|
|
case 0x1e68:
|
|
case 0x2c7e:
|
|
case 0xa7a8:
|
|
EMIT2('S') EMIT2(0x15a) EMIT2(0x15c) EMIT2(0x15e)
|
|
EMIT2(0x160) EMIT2(0x218) EMIT2(0x1e60) EMIT2(0x1e62)
|
|
EMIT2(0x1e64) EMIT2(0x1e66) EMIT2(0x1e68) EMIT2(0x2c7e)
|
|
EMIT2(0xa7a8)
|
|
return;
|
|
|
|
case 'T':
|
|
case 0x162:
|
|
case 0x164:
|
|
case 0x166:
|
|
case 0x1ac:
|
|
case 0x1ae:
|
|
case 0x21a:
|
|
case 0x23e:
|
|
case 0x1e6a:
|
|
case 0x1e6c:
|
|
case 0x1e6e:
|
|
case 0x1e70:
|
|
EMIT2('T') EMIT2(0x162) EMIT2(0x164) EMIT2(0x166)
|
|
EMIT2(0x1ac) EMIT2(0x1ae) EMIT2(0x23e) EMIT2(0x21a)
|
|
EMIT2(0x1e6a) EMIT2(0x1e6c) EMIT2(0x1e6e) EMIT2(0x1e70)
|
|
return;
|
|
|
|
case 'U':
|
|
case U_grave:
|
|
case U_acute:
|
|
case U_diaeresis:
|
|
case U_circumflex:
|
|
case 0x168:
|
|
case 0x16a:
|
|
case 0x16c:
|
|
case 0x16e:
|
|
case 0x170:
|
|
case 0x172:
|
|
case 0x1af:
|
|
case 0x1d3:
|
|
case 0x1d5:
|
|
case 0x1d7:
|
|
case 0x1d9:
|
|
case 0x1db:
|
|
case 0x214:
|
|
case 0x216:
|
|
case 0x244:
|
|
case 0x1e72:
|
|
case 0x1e74:
|
|
case 0x1e76:
|
|
case 0x1e78:
|
|
case 0x1e7a:
|
|
case 0x1ee4:
|
|
case 0x1ee6:
|
|
case 0x1ee8:
|
|
case 0x1eea:
|
|
case 0x1eec:
|
|
case 0x1eee:
|
|
case 0x1ef0:
|
|
EMIT2('U') EMIT2(U_grave) EMIT2(U_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(U_diaeresis) EMIT2(U_circumflex) // NOLINT(whitespace/cast)
|
|
EMIT2(0x168) EMIT2(0x16a)
|
|
EMIT2(0x16c) EMIT2(0x16e) EMIT2(0x170)
|
|
EMIT2(0x172) EMIT2(0x1af) EMIT2(0x1d3)
|
|
EMIT2(0x1d5) EMIT2(0x1d7) EMIT2(0x1d9)
|
|
EMIT2(0x1db) EMIT2(0x214) EMIT2(0x216)
|
|
EMIT2(0x244) EMIT2(0x1e72) EMIT2(0x1e74)
|
|
EMIT2(0x1e76) EMIT2(0x1e78) EMIT2(0x1e7a)
|
|
EMIT2(0x1ee4) EMIT2(0x1ee6) EMIT2(0x1ee8)
|
|
EMIT2(0x1eea) EMIT2(0x1eec) EMIT2(0x1eee)
|
|
EMIT2(0x1ef0)
|
|
return;
|
|
|
|
case 'V':
|
|
case 0x1b2:
|
|
case 0x1e7c:
|
|
case 0x1e7e:
|
|
EMIT2('V') EMIT2(0x1b2) EMIT2(0x1e7c) EMIT2(0x1e7e)
|
|
return;
|
|
|
|
case 'W':
|
|
case 0x174:
|
|
case 0x1e80:
|
|
case 0x1e82:
|
|
case 0x1e84:
|
|
case 0x1e86:
|
|
case 0x1e88:
|
|
EMIT2('W') EMIT2(0x174) EMIT2(0x1e80) EMIT2(0x1e82)
|
|
EMIT2(0x1e84) EMIT2(0x1e86) EMIT2(0x1e88)
|
|
return;
|
|
|
|
case 'X':
|
|
case 0x1e8a:
|
|
case 0x1e8c:
|
|
EMIT2('X') EMIT2(0x1e8a) EMIT2(0x1e8c)
|
|
return;
|
|
|
|
case 'Y':
|
|
case Y_acute:
|
|
case 0x176:
|
|
case 0x178:
|
|
case 0x1b3:
|
|
case 0x232:
|
|
case 0x24e:
|
|
case 0x1e8e:
|
|
case 0x1ef2:
|
|
case 0x1ef4:
|
|
case 0x1ef6:
|
|
case 0x1ef8:
|
|
EMIT2('Y') EMIT2(Y_acute)
|
|
EMIT2(0x176) EMIT2(0x178) EMIT2(0x1b3)
|
|
EMIT2(0x232) EMIT2(0x24e) EMIT2(0x1e8e)
|
|
EMIT2(0x1ef2) EMIT2(0x1ef4) EMIT2(0x1ef6)
|
|
EMIT2(0x1ef8)
|
|
return;
|
|
|
|
case 'Z':
|
|
case 0x179:
|
|
case 0x17b:
|
|
case 0x17d:
|
|
case 0x1b5:
|
|
case 0x1e90:
|
|
case 0x1e92:
|
|
case 0x1e94:
|
|
case 0x2c6b:
|
|
EMIT2('Z') EMIT2(0x179) EMIT2(0x17b) EMIT2(0x17d)
|
|
EMIT2(0x1b5) EMIT2(0x1e90) EMIT2(0x1e92)
|
|
EMIT2(0x1e94) EMIT2(0x2c6b)
|
|
return;
|
|
|
|
case 'a':
|
|
case a_grave:
|
|
case a_acute:
|
|
case a_circumflex:
|
|
case a_virguilla:
|
|
case a_diaeresis:
|
|
case a_ring:
|
|
case 0x101:
|
|
case 0x103:
|
|
case 0x105:
|
|
case 0x1ce:
|
|
case 0x1df:
|
|
case 0x1e1:
|
|
case 0x1fb:
|
|
case 0x201:
|
|
case 0x203:
|
|
case 0x227:
|
|
case 0x1d8f:
|
|
case 0x1e01:
|
|
case 0x1e9a:
|
|
case 0x1ea1:
|
|
case 0x1ea3:
|
|
case 0x1ea5:
|
|
case 0x1ea7:
|
|
case 0x1ea9:
|
|
case 0x1eab:
|
|
case 0x1ead:
|
|
case 0x1eaf:
|
|
case 0x1eb1:
|
|
case 0x1eb3:
|
|
case 0x1eb5:
|
|
case 0x1eb7:
|
|
case 0x2c65:
|
|
EMIT2('a') EMIT2(a_grave) EMIT2(a_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(a_circumflex) EMIT2(a_virguilla) // NOLINT(whitespace/cast)
|
|
EMIT2(a_diaeresis) EMIT2(a_ring) // NOLINT(whitespace/cast)
|
|
EMIT2(0x101) EMIT2(0x103) EMIT2(0x105)
|
|
EMIT2(0x1ce) EMIT2(0x1df) EMIT2(0x1e1)
|
|
EMIT2(0x1fb) EMIT2(0x201) EMIT2(0x203)
|
|
EMIT2(0x227) EMIT2(0x1d8f) EMIT2(0x1e01)
|
|
EMIT2(0x1e9a) EMIT2(0x1ea1) EMIT2(0x1ea3)
|
|
EMIT2(0x1ea5) EMIT2(0x1ea7) EMIT2(0x1ea9)
|
|
EMIT2(0x1eab) EMIT2(0x1ead) EMIT2(0x1eaf)
|
|
EMIT2(0x1eb1) EMIT2(0x1eb3) EMIT2(0x1eb5)
|
|
EMIT2(0x1eb7) EMIT2(0x2c65)
|
|
return;
|
|
|
|
case 'b':
|
|
case 0x180:
|
|
case 0x253:
|
|
case 0x1d6c:
|
|
case 0x1d80:
|
|
case 0x1e03:
|
|
case 0x1e05:
|
|
case 0x1e07:
|
|
EMIT2('b') EMIT2(0x180) EMIT2(0x253) EMIT2(0x1d6c)
|
|
EMIT2(0x1d80) EMIT2(0x1e03) EMIT2(0x1e05) EMIT2(0x1e07)
|
|
return;
|
|
|
|
case 'c':
|
|
case c_cedilla:
|
|
case 0x107:
|
|
case 0x109:
|
|
case 0x10b:
|
|
case 0x10d:
|
|
case 0x188:
|
|
case 0x23c:
|
|
case 0x1e09:
|
|
case 0xa793:
|
|
case 0xa794:
|
|
EMIT2('c') EMIT2(c_cedilla)
|
|
EMIT2(0x107) EMIT2(0x109) EMIT2(0x10b)
|
|
EMIT2(0x10d) EMIT2(0x188) EMIT2(0x23c)
|
|
EMIT2(0x1e09) EMIT2(0xa793) EMIT2(0xa794)
|
|
return;
|
|
|
|
case 'd':
|
|
case 0x10f:
|
|
case 0x111:
|
|
case 0x257:
|
|
case 0x1d6d:
|
|
case 0x1d81:
|
|
case 0x1d91:
|
|
case 0x1e0b:
|
|
case 0x1e0d:
|
|
case 0x1e0f:
|
|
case 0x1e11:
|
|
case 0x1e13:
|
|
EMIT2('d') EMIT2(0x10f) EMIT2(0x111)
|
|
EMIT2(0x257) EMIT2(0x1d6d) EMIT2(0x1d81)
|
|
EMIT2(0x1d91) EMIT2(0x1e0b) EMIT2(0x1e0d)
|
|
EMIT2(0x1e0f) EMIT2(0x1e11) EMIT2(0x1e13)
|
|
return;
|
|
|
|
case 'e':
|
|
case e_grave:
|
|
case e_acute:
|
|
case e_circumflex:
|
|
case e_diaeresis:
|
|
case 0x113:
|
|
case 0x115:
|
|
case 0x117:
|
|
case 0x119:
|
|
case 0x11b:
|
|
case 0x205:
|
|
case 0x207:
|
|
case 0x229:
|
|
case 0x247:
|
|
case 0x1d92:
|
|
case 0x1e15:
|
|
case 0x1e17:
|
|
case 0x1e19:
|
|
case 0x1e1b:
|
|
case 0x1e1d:
|
|
case 0x1eb9:
|
|
case 0x1ebb:
|
|
case 0x1ebd:
|
|
case 0x1ebf:
|
|
case 0x1ec1:
|
|
case 0x1ec3:
|
|
case 0x1ec5:
|
|
case 0x1ec7:
|
|
EMIT2('e') EMIT2(e_grave) EMIT2(e_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(e_circumflex) EMIT2(e_diaeresis) // NOLINT(whitespace/cast)
|
|
EMIT2(0x113) EMIT2(0x115)
|
|
EMIT2(0x117) EMIT2(0x119) EMIT2(0x11b)
|
|
EMIT2(0x205) EMIT2(0x207) EMIT2(0x229)
|
|
EMIT2(0x247) EMIT2(0x1d92) EMIT2(0x1e15)
|
|
EMIT2(0x1e17) EMIT2(0x1e19) EMIT2(0x1e1b)
|
|
EMIT2(0x1e1d) EMIT2(0x1eb9) EMIT2(0x1ebb)
|
|
EMIT2(0x1ebd) EMIT2(0x1ebf) EMIT2(0x1ec1)
|
|
EMIT2(0x1ec3) EMIT2(0x1ec5) EMIT2(0x1ec7)
|
|
return;
|
|
|
|
case 'f':
|
|
case 0x192:
|
|
case 0x1d6e:
|
|
case 0x1d82:
|
|
case 0x1e1f:
|
|
case 0xa799:
|
|
EMIT2('f') EMIT2(0x192) EMIT2(0x1d6e) EMIT2(0x1d82)
|
|
EMIT2(0x1e1f) EMIT2(0xa799)
|
|
return;
|
|
|
|
case 'g':
|
|
case 0x11d:
|
|
case 0x11f:
|
|
case 0x121:
|
|
case 0x123:
|
|
case 0x1e5:
|
|
case 0x1e7:
|
|
case 0x1f5:
|
|
case 0x260:
|
|
case 0x1d83:
|
|
case 0x1e21:
|
|
case 0xa7a1:
|
|
EMIT2('g') EMIT2(0x11d) EMIT2(0x11f) EMIT2(0x121)
|
|
EMIT2(0x123) EMIT2(0x1e5) EMIT2(0x1e7)
|
|
EMIT2(0x1f5) EMIT2(0x260) EMIT2(0x1d83)
|
|
EMIT2(0x1e21) EMIT2(0xa7a1)
|
|
return;
|
|
|
|
case 'h':
|
|
case 0x125:
|
|
case 0x127:
|
|
case 0x21f:
|
|
case 0x1e23:
|
|
case 0x1e25:
|
|
case 0x1e27:
|
|
case 0x1e29:
|
|
case 0x1e2b:
|
|
case 0x1e96:
|
|
case 0x2c68:
|
|
case 0xa795:
|
|
EMIT2('h') EMIT2(0x125) EMIT2(0x127) EMIT2(0x21f)
|
|
EMIT2(0x1e23) EMIT2(0x1e25) EMIT2(0x1e27)
|
|
EMIT2(0x1e29) EMIT2(0x1e2b) EMIT2(0x1e96)
|
|
EMIT2(0x2c68) EMIT2(0xa795)
|
|
return;
|
|
|
|
case 'i':
|
|
case i_grave:
|
|
case i_acute:
|
|
case i_circumflex:
|
|
case i_diaeresis:
|
|
case 0x129:
|
|
case 0x12b:
|
|
case 0x12d:
|
|
case 0x12f:
|
|
case 0x1d0:
|
|
case 0x209:
|
|
case 0x20b:
|
|
case 0x268:
|
|
case 0x1d96:
|
|
case 0x1e2d:
|
|
case 0x1e2f:
|
|
case 0x1ec9:
|
|
case 0x1ecb:
|
|
EMIT2('i') EMIT2(i_grave) EMIT2(i_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(i_circumflex) EMIT2(i_diaeresis) // NOLINT(whitespace/cast)
|
|
EMIT2(0x129) EMIT2(0x12b) EMIT2(0x12d)
|
|
EMIT2(0x12f) EMIT2(0x1d0) EMIT2(0x209)
|
|
EMIT2(0x20b) EMIT2(0x268) EMIT2(0x1d96)
|
|
EMIT2(0x1e2d) EMIT2(0x1e2f) EMIT2(0x1ec9)
|
|
EMIT2(0x1ecb) EMIT2(0x1ecb)
|
|
return;
|
|
|
|
case 'j':
|
|
case 0x135:
|
|
case 0x1f0:
|
|
case 0x249:
|
|
EMIT2('j') EMIT2(0x135) EMIT2(0x1f0) EMIT2(0x249)
|
|
return;
|
|
|
|
case 'k':
|
|
case 0x137:
|
|
case 0x199:
|
|
case 0x1e9:
|
|
case 0x1d84:
|
|
case 0x1e31:
|
|
case 0x1e33:
|
|
case 0x1e35:
|
|
case 0x2c6a:
|
|
case 0xa741:
|
|
EMIT2('k') EMIT2(0x137) EMIT2(0x199) EMIT2(0x1e9)
|
|
EMIT2(0x1d84) EMIT2(0x1e31) EMIT2(0x1e33)
|
|
EMIT2(0x1e35) EMIT2(0x2c6a) EMIT2(0xa741)
|
|
return;
|
|
|
|
case 'l':
|
|
case 0x13a:
|
|
case 0x13c:
|
|
case 0x13e:
|
|
case 0x140:
|
|
case 0x142:
|
|
case 0x19a:
|
|
case 0x1e37:
|
|
case 0x1e39:
|
|
case 0x1e3b:
|
|
case 0x1e3d:
|
|
case 0x2c61:
|
|
EMIT2('l') EMIT2(0x13a) EMIT2(0x13c)
|
|
EMIT2(0x13e) EMIT2(0x140) EMIT2(0x142)
|
|
EMIT2(0x19a) EMIT2(0x1e37) EMIT2(0x1e39)
|
|
EMIT2(0x1e3b) EMIT2(0x1e3d) EMIT2(0x2c61)
|
|
return;
|
|
|
|
case 'm':
|
|
case 0x1d6f:
|
|
case 0x1e3f:
|
|
case 0x1e41:
|
|
case 0x1e43:
|
|
EMIT2('m') EMIT2(0x1d6f) EMIT2(0x1e3f)
|
|
EMIT2(0x1e41) EMIT2(0x1e43)
|
|
return;
|
|
|
|
case 'n':
|
|
case n_virguilla:
|
|
case 0x144:
|
|
case 0x146:
|
|
case 0x148:
|
|
case 0x149:
|
|
case 0x1f9:
|
|
case 0x1d70:
|
|
case 0x1d87:
|
|
case 0x1e45:
|
|
case 0x1e47:
|
|
case 0x1e49:
|
|
case 0x1e4b:
|
|
case 0xa7a5:
|
|
EMIT2('n') EMIT2(n_virguilla)
|
|
EMIT2(0x144) EMIT2(0x146) EMIT2(0x148)
|
|
EMIT2(0x149) EMIT2(0x1f9) EMIT2(0x1d70)
|
|
EMIT2(0x1d87) EMIT2(0x1e45) EMIT2(0x1e47)
|
|
EMIT2(0x1e49) EMIT2(0x1e4b) EMIT2(0xa7a5)
|
|
return;
|
|
|
|
case 'o':
|
|
case o_grave:
|
|
case o_acute:
|
|
case o_circumflex:
|
|
case o_virguilla:
|
|
case o_diaeresis:
|
|
case o_slash:
|
|
case 0x14d:
|
|
case 0x14f:
|
|
case 0x151:
|
|
case 0x1a1:
|
|
case 0x1d2:
|
|
case 0x1eb:
|
|
case 0x1ed:
|
|
case 0x1ff:
|
|
case 0x20d:
|
|
case 0x20f:
|
|
case 0x22b:
|
|
case 0x22d:
|
|
case 0x22f:
|
|
case 0x231:
|
|
case 0x275:
|
|
case 0x1e4d:
|
|
case 0x1e4f:
|
|
case 0x1e51:
|
|
case 0x1e53:
|
|
case 0x1ecd:
|
|
case 0x1ecf:
|
|
case 0x1ed1:
|
|
case 0x1ed3:
|
|
case 0x1ed5:
|
|
case 0x1ed7:
|
|
case 0x1ed9:
|
|
case 0x1edb:
|
|
case 0x1edd:
|
|
case 0x1edf:
|
|
case 0x1ee1:
|
|
case 0x1ee3:
|
|
EMIT2('o') EMIT2(o_grave) EMIT2(o_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(o_circumflex) EMIT2(o_virguilla) // NOLINT(whitespace/cast)
|
|
EMIT2(o_diaeresis) EMIT2(o_slash) // NOLINT(whitespace/cast)
|
|
EMIT2(0x14d) EMIT2(0x14f) EMIT2(0x151)
|
|
EMIT2(0x1a1) EMIT2(0x1d2) EMIT2(0x1eb)
|
|
EMIT2(0x1ed) EMIT2(0x1ff) EMIT2(0x20d)
|
|
EMIT2(0x20f) EMIT2(0x22b) EMIT2(0x22d)
|
|
EMIT2(0x22f) EMIT2(0x231) EMIT2(0x275)
|
|
EMIT2(0x1e4d) EMIT2(0x1e4f) EMIT2(0x1e51)
|
|
EMIT2(0x1e53) EMIT2(0x1ecd) EMIT2(0x1ecf)
|
|
EMIT2(0x1ed1) EMIT2(0x1ed3) EMIT2(0x1ed5)
|
|
EMIT2(0x1ed7) EMIT2(0x1ed9) EMIT2(0x1edb)
|
|
EMIT2(0x1edd) EMIT2(0x1edf) EMIT2(0x1ee1)
|
|
EMIT2(0x1ee3)
|
|
return;
|
|
|
|
case 'p':
|
|
case 0x1a5:
|
|
case 0x1d71:
|
|
case 0x1d7d:
|
|
case 0x1d88:
|
|
case 0x1e55:
|
|
case 0x1e57:
|
|
EMIT2('p') EMIT2(0x1a5) EMIT2(0x1d71) EMIT2(0x1d7d)
|
|
EMIT2(0x1d88) EMIT2(0x1e55) EMIT2(0x1e57)
|
|
return;
|
|
|
|
case 'q':
|
|
case 0x24b:
|
|
case 0x2a0:
|
|
EMIT2('q') EMIT2(0x24b) EMIT2(0x2a0)
|
|
return;
|
|
|
|
case 'r':
|
|
case 0x155:
|
|
case 0x157:
|
|
case 0x159:
|
|
case 0x211:
|
|
case 0x213:
|
|
case 0x24d:
|
|
case 0x27d:
|
|
case 0x1d72:
|
|
case 0x1d73:
|
|
case 0x1d89:
|
|
case 0x1e59:
|
|
case 0x1e5b:
|
|
case 0x1e5d:
|
|
case 0x1e5f:
|
|
case 0xa7a7:
|
|
EMIT2('r') EMIT2(0x155) EMIT2(0x157) EMIT2(0x159)
|
|
EMIT2(0x211) EMIT2(0x213) EMIT2(0x24d) EMIT2(0x27d)
|
|
EMIT2(0x1d72) EMIT2(0x1d73) EMIT2(0x1d89) EMIT2(0x1e59)
|
|
EMIT2(0x1e5b) EMIT2(0x1e5d) EMIT2(0x1e5f) EMIT2(0xa7a7)
|
|
return;
|
|
|
|
case 's':
|
|
case 0x15b:
|
|
case 0x15d:
|
|
case 0x15f:
|
|
case 0x161:
|
|
case 0x219:
|
|
case 0x23f:
|
|
case 0x1d74:
|
|
case 0x1d8a:
|
|
case 0x1e61:
|
|
case 0x1e63:
|
|
case 0x1e65:
|
|
case 0x1e67:
|
|
case 0x1e69:
|
|
case 0xa7a9:
|
|
EMIT2('s') EMIT2(0x15b) EMIT2(0x15d) EMIT2(0x15f)
|
|
EMIT2(0x161) EMIT2(0x219) EMIT2(0x23f) EMIT2(0x1d74)
|
|
EMIT2(0x1d8a) EMIT2(0x1e61) EMIT2(0x1e63) EMIT2(0x1e65)
|
|
EMIT2(0x1e67) EMIT2(0x1e69) EMIT2(0xa7a9)
|
|
return;
|
|
|
|
case 't':
|
|
case 0x163:
|
|
case 0x165:
|
|
case 0x167:
|
|
case 0x1ab:
|
|
case 0x1ad:
|
|
case 0x21b:
|
|
case 0x288:
|
|
case 0x1d75:
|
|
case 0x1e6b:
|
|
case 0x1e6d:
|
|
case 0x1e6f:
|
|
case 0x1e71:
|
|
case 0x1e97:
|
|
case 0x2c66:
|
|
EMIT2('t') EMIT2(0x163) EMIT2(0x165) EMIT2(0x167)
|
|
EMIT2(0x1ab) EMIT2(0x1ad) EMIT2(0x21b) EMIT2(0x288)
|
|
EMIT2(0x1d75) EMIT2(0x1e6b) EMIT2(0x1e6d) EMIT2(0x1e6f)
|
|
EMIT2(0x1e71) EMIT2(0x1e97) EMIT2(0x2c66)
|
|
return;
|
|
|
|
case 'u':
|
|
case u_grave:
|
|
case u_acute:
|
|
case u_circumflex:
|
|
case u_diaeresis:
|
|
case 0x169:
|
|
case 0x16b:
|
|
case 0x16d:
|
|
case 0x16f:
|
|
case 0x171:
|
|
case 0x173:
|
|
case 0x1b0:
|
|
case 0x1d4:
|
|
case 0x1d6:
|
|
case 0x1d8:
|
|
case 0x1da:
|
|
case 0x1dc:
|
|
case 0x215:
|
|
case 0x217:
|
|
case 0x289:
|
|
case 0x1d7e:
|
|
case 0x1d99:
|
|
case 0x1e73:
|
|
case 0x1e75:
|
|
case 0x1e77:
|
|
case 0x1e79:
|
|
case 0x1e7b:
|
|
case 0x1ee5:
|
|
case 0x1ee7:
|
|
case 0x1ee9:
|
|
case 0x1eeb:
|
|
case 0x1eed:
|
|
case 0x1eef:
|
|
case 0x1ef1:
|
|
EMIT2('u') EMIT2(u_grave) EMIT2(u_acute) // NOLINT(whitespace/cast)
|
|
EMIT2(u_circumflex) EMIT2(u_diaeresis) // NOLINT(whitespace/cast)
|
|
EMIT2(0x169) EMIT2(0x16b)
|
|
EMIT2(0x16d) EMIT2(0x16f) EMIT2(0x171)
|
|
EMIT2(0x173) EMIT2(0x1d6) EMIT2(0x1d8)
|
|
EMIT2(0x215) EMIT2(0x217) EMIT2(0x1b0)
|
|
EMIT2(0x1d4) EMIT2(0x1da) EMIT2(0x1dc)
|
|
EMIT2(0x289) EMIT2(0x1e73) EMIT2(0x1d7e)
|
|
EMIT2(0x1d99) EMIT2(0x1e75) EMIT2(0x1e77)
|
|
EMIT2(0x1e79) EMIT2(0x1e7b) EMIT2(0x1ee5)
|
|
EMIT2(0x1ee7) EMIT2(0x1ee9) EMIT2(0x1eeb)
|
|
EMIT2(0x1eed) EMIT2(0x1eef) EMIT2(0x1ef1)
|
|
return;
|
|
|
|
case 'v':
|
|
case 0x28b:
|
|
case 0x1d8c:
|
|
case 0x1e7d:
|
|
case 0x1e7f:
|
|
EMIT2('v') EMIT2(0x28b) EMIT2(0x1d8c) EMIT2(0x1e7d)
|
|
EMIT2(0x1e7f)
|
|
return;
|
|
|
|
case 'w':
|
|
case 0x175:
|
|
case 0x1e81:
|
|
case 0x1e83:
|
|
case 0x1e85:
|
|
case 0x1e87:
|
|
case 0x1e89:
|
|
case 0x1e98:
|
|
EMIT2('w') EMIT2(0x175) EMIT2(0x1e81) EMIT2(0x1e83)
|
|
EMIT2(0x1e85) EMIT2(0x1e87) EMIT2(0x1e89) EMIT2(0x1e98)
|
|
return;
|
|
|
|
case 'x':
|
|
case 0x1e8b:
|
|
case 0x1e8d:
|
|
EMIT2('x') EMIT2(0x1e8b) EMIT2(0x1e8d)
|
|
return;
|
|
|
|
case 'y':
|
|
case y_acute:
|
|
case y_diaeresis:
|
|
case 0x177:
|
|
case 0x1b4:
|
|
case 0x233:
|
|
case 0x24f:
|
|
case 0x1e8f:
|
|
case 0x1e99:
|
|
case 0x1ef3:
|
|
case 0x1ef5:
|
|
case 0x1ef7:
|
|
case 0x1ef9:
|
|
EMIT2('y') EMIT2(y_acute) EMIT2(y_diaeresis) // NOLINT(whitespace/cast)
|
|
EMIT2(0x177) EMIT2(0x1b4) EMIT2(0x233) EMIT2(0x24f)
|
|
EMIT2(0x1e8f) EMIT2(0x1e99) EMIT2(0x1ef3)
|
|
EMIT2(0x1ef5) EMIT2(0x1ef7) EMIT2(0x1ef9)
|
|
return;
|
|
|
|
case 'z':
|
|
case 0x17a:
|
|
case 0x17c:
|
|
case 0x17e:
|
|
case 0x1b6:
|
|
case 0x1d76:
|
|
case 0x1d8e:
|
|
case 0x1e91:
|
|
case 0x1e93:
|
|
case 0x1e95:
|
|
case 0x2c6c:
|
|
EMIT2('z') EMIT2(0x17a) EMIT2(0x17c) EMIT2(0x17e)
|
|
EMIT2(0x1b6) EMIT2(0x1d76) EMIT2(0x1d8e) EMIT2(0x1e91)
|
|
EMIT2(0x1e93) EMIT2(0x1e95) EMIT2(0x2c6c)
|
|
return;
|
|
|
|
// default: character itself
|
|
}
|
|
}
|
|
|
|
EMIT2(c);
|
|
#undef EMIT2
|
|
}
|
|
|
|
// Code to parse regular expression.
|
|
//
|
|
// We try to reuse parsing functions in regexp.c to
|
|
// minimize surprise and keep the syntax consistent.
|
|
|
|
// Parse the lowest level.
|
|
//
|
|
// An atom can be one of a long list of items. Many atoms match one character
|
|
// in the text. It is often an ordinary character or a character class.
|
|
// Braces can be used to make a pattern into an atom. The "\z(\)" construct
|
|
// is only for syntax highlighting.
|
|
//
|
|
// atom ::= ordinary-atom
|
|
// or \( pattern \)
|
|
// or \%( pattern \)
|
|
// or \z( pattern \)
|
|
static int nfa_regatom(void)
|
|
{
|
|
int c;
|
|
int charclass;
|
|
int equiclass;
|
|
int collclass;
|
|
int got_coll_char;
|
|
uint8_t *p;
|
|
uint8_t *endp;
|
|
uint8_t *old_regparse = (uint8_t *)regparse;
|
|
int extra = 0;
|
|
int emit_range;
|
|
int negated;
|
|
int startc = -1;
|
|
int save_prev_at_start = prev_at_start;
|
|
|
|
c = getchr();
|
|
switch (c) {
|
|
case NUL:
|
|
EMSG_RET_FAIL(_(e_nul_found));
|
|
|
|
case Magic('^'):
|
|
EMIT(NFA_BOL);
|
|
break;
|
|
|
|
case Magic('$'):
|
|
EMIT(NFA_EOL);
|
|
had_eol = true;
|
|
break;
|
|
|
|
case Magic('<'):
|
|
EMIT(NFA_BOW);
|
|
break;
|
|
|
|
case Magic('>'):
|
|
EMIT(NFA_EOW);
|
|
break;
|
|
|
|
case Magic('_'):
|
|
c = no_Magic(getchr());
|
|
if (c == NUL) {
|
|
EMSG_RET_FAIL(_(e_nul_found));
|
|
}
|
|
|
|
if (c == '^') { // "\_^" is start-of-line
|
|
EMIT(NFA_BOL);
|
|
break;
|
|
}
|
|
if (c == '$') { // "\_$" is end-of-line
|
|
EMIT(NFA_EOL);
|
|
had_eol = true;
|
|
break;
|
|
}
|
|
|
|
extra = NFA_ADD_NL;
|
|
|
|
// "\_[" is collection plus newline
|
|
if (c == '[') {
|
|
goto collection;
|
|
}
|
|
|
|
// "\_x" is character class plus newline
|
|
FALLTHROUGH;
|
|
|
|
// Character classes.
|
|
case Magic('.'):
|
|
case Magic('i'):
|
|
case Magic('I'):
|
|
case Magic('k'):
|
|
case Magic('K'):
|
|
case Magic('f'):
|
|
case Magic('F'):
|
|
case Magic('p'):
|
|
case Magic('P'):
|
|
case Magic('s'):
|
|
case Magic('S'):
|
|
case Magic('d'):
|
|
case Magic('D'):
|
|
case Magic('x'):
|
|
case Magic('X'):
|
|
case Magic('o'):
|
|
case Magic('O'):
|
|
case Magic('w'):
|
|
case Magic('W'):
|
|
case Magic('h'):
|
|
case Magic('H'):
|
|
case Magic('a'):
|
|
case Magic('A'):
|
|
case Magic('l'):
|
|
case Magic('L'):
|
|
case Magic('u'):
|
|
case Magic('U'):
|
|
p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c));
|
|
if (p == NULL) {
|
|
if (extra == NFA_ADD_NL) {
|
|
semsg(_(e_ill_char_class), (int64_t)c);
|
|
rc_did_emsg = true;
|
|
return FAIL;
|
|
}
|
|
siemsg("INTERNAL: Unknown character class char: %" PRId64, (int64_t)c);
|
|
return FAIL;
|
|
}
|
|
// When '.' is followed by a composing char ignore the dot, so that
|
|
// the composing char is matched here.
|
|
if (c == Magic('.') && utf_iscomposing(peekchr())) {
|
|
old_regparse = (uint8_t *)regparse;
|
|
c = getchr();
|
|
goto nfa_do_multibyte;
|
|
}
|
|
EMIT(nfa_classcodes[p - classchars]);
|
|
if (extra == NFA_ADD_NL) {
|
|
EMIT(NFA_NEWL);
|
|
EMIT(NFA_OR);
|
|
regflags |= RF_HASNL;
|
|
}
|
|
break;
|
|
|
|
case Magic('n'):
|
|
if (reg_string) {
|
|
// In a string "\n" matches a newline character.
|
|
EMIT(NL);
|
|
} else {
|
|
// In buffer text "\n" matches the end of a line.
|
|
EMIT(NFA_NEWL);
|
|
regflags |= RF_HASNL;
|
|
}
|
|
break;
|
|
|
|
case Magic('('):
|
|
if (nfa_reg(REG_PAREN) == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
break;
|
|
|
|
case Magic('|'):
|
|
case Magic('&'):
|
|
case Magic(')'):
|
|
semsg(_(e_misplaced), (int64_t)no_Magic(c)); // -V1037
|
|
return FAIL;
|
|
|
|
case Magic('='):
|
|
case Magic('?'):
|
|
case Magic('+'):
|
|
case Magic('@'):
|
|
case Magic('*'):
|
|
case Magic('{'):
|
|
// these should follow an atom, not form an atom
|
|
semsg(_(e_misplaced), (int64_t)no_Magic(c));
|
|
return FAIL;
|
|
|
|
case Magic('~'): {
|
|
uint8_t *lp;
|
|
|
|
// Previous substitute pattern.
|
|
// Generated as "\%(pattern\)".
|
|
if (reg_prev_sub == NULL) {
|
|
emsg(_(e_nopresub));
|
|
return FAIL;
|
|
}
|
|
for (lp = (uint8_t *)reg_prev_sub; *lp != NUL; MB_CPTR_ADV(lp)) {
|
|
EMIT(utf_ptr2char((char *)lp));
|
|
if (lp != (uint8_t *)reg_prev_sub) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
}
|
|
EMIT(NFA_NOPEN);
|
|
break;
|
|
}
|
|
|
|
case Magic('1'):
|
|
case Magic('2'):
|
|
case Magic('3'):
|
|
case Magic('4'):
|
|
case Magic('5'):
|
|
case Magic('6'):
|
|
case Magic('7'):
|
|
case Magic('8'):
|
|
case Magic('9'): {
|
|
int refnum = no_Magic(c) - '1';
|
|
|
|
if (!seen_endbrace(refnum + 1)) {
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_BACKREF1 + refnum);
|
|
rex.nfa_has_backref = true;
|
|
}
|
|
break;
|
|
|
|
case Magic('z'):
|
|
c = no_Magic(getchr());
|
|
switch (c) {
|
|
case 's':
|
|
EMIT(NFA_ZSTART);
|
|
if (!re_mult_next("\\zs")) {
|
|
return false;
|
|
}
|
|
break;
|
|
case 'e':
|
|
EMIT(NFA_ZEND);
|
|
rex.nfa_has_zend = true;
|
|
if (!re_mult_next("\\zs")) {
|
|
return false;
|
|
}
|
|
break;
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
// \z1...\z9
|
|
if ((reg_do_extmatch & REX_USE) == 0) {
|
|
EMSG_RET_FAIL(_(e_z1_not_allowed));
|
|
}
|
|
EMIT(NFA_ZREF1 + (no_Magic(c) - '1'));
|
|
// No need to set rex.nfa_has_backref, the sub-matches don't
|
|
// change when \z1 .. \z9 matches or not.
|
|
re_has_z = REX_USE;
|
|
break;
|
|
case '(':
|
|
// \z(
|
|
if (reg_do_extmatch != REX_SET) {
|
|
EMSG_RET_FAIL(_(e_z_not_allowed));
|
|
}
|
|
if (nfa_reg(REG_ZPAREN) == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
re_has_z = REX_SET;
|
|
break;
|
|
default:
|
|
semsg(_("E867: (NFA) Unknown operator '\\z%c'"),
|
|
no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
break;
|
|
|
|
case Magic('%'):
|
|
c = no_Magic(getchr());
|
|
switch (c) {
|
|
// () without a back reference
|
|
case '(':
|
|
if (nfa_reg(REG_NPAREN) == FAIL) {
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_NOPEN);
|
|
break;
|
|
|
|
case 'd': // %d123 decimal
|
|
case 'o': // %o123 octal
|
|
case 'x': // %xab hex 2
|
|
case 'u': // %uabcd hex 4
|
|
case 'U': // %U1234abcd hex 8
|
|
{
|
|
int64_t nr;
|
|
|
|
switch (c) {
|
|
case 'd':
|
|
nr = getdecchrs(); break;
|
|
case 'o':
|
|
nr = getoctchrs(); break;
|
|
case 'x':
|
|
nr = gethexchrs(2); break;
|
|
case 'u':
|
|
nr = gethexchrs(4); break;
|
|
case 'U':
|
|
nr = gethexchrs(8); break;
|
|
default:
|
|
nr = -1; break;
|
|
}
|
|
|
|
if (nr < 0 || nr > INT_MAX) {
|
|
EMSG2_RET_FAIL(_("E678: Invalid character after %s%%[dxouU]"),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
// A NUL is stored in the text as NL
|
|
// TODO(vim): what if a composing character follows?
|
|
EMIT(nr == 0 ? 0x0a : (int)nr);
|
|
}
|
|
break;
|
|
|
|
// Catch \%^ and \%$ regardless of where they appear in the
|
|
// pattern -- regardless of whether or not it makes sense.
|
|
case '^':
|
|
EMIT(NFA_BOF);
|
|
break;
|
|
|
|
case '$':
|
|
EMIT(NFA_EOF);
|
|
break;
|
|
|
|
case '#':
|
|
if (regparse[0] == '=' && regparse[1] >= 48
|
|
&& regparse[1] <= 50) {
|
|
// misplaced \%#=1
|
|
semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]);
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_CURSOR);
|
|
break;
|
|
|
|
case 'V':
|
|
EMIT(NFA_VISUAL);
|
|
break;
|
|
|
|
case 'C':
|
|
EMIT(NFA_ANY_COMPOSING);
|
|
break;
|
|
|
|
case '[': {
|
|
int n;
|
|
|
|
// \%[abc]
|
|
for (n = 0; (c = peekchr()) != ']'; n++) {
|
|
if (c == NUL) {
|
|
EMSG2_RET_FAIL(_(e_missing_sb),
|
|
reg_magic == MAGIC_ALL);
|
|
}
|
|
// recursive call!
|
|
if (nfa_regatom() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
}
|
|
(void)getchr(); // get the ]
|
|
if (n == 0) {
|
|
EMSG2_RET_FAIL(_(e_empty_sb), reg_magic == MAGIC_ALL);
|
|
}
|
|
EMIT(NFA_OPT_CHARS);
|
|
EMIT(n);
|
|
|
|
// Emit as "\%(\%[abc]\)" to be able to handle
|
|
// "\%[abc]*" which would cause the empty string to be
|
|
// matched an unlimited number of times. NFA_NOPEN is
|
|
// added only once at a position, while NFA_SPLIT is
|
|
// added multiple times. This is more efficient than
|
|
// not allowing NFA_SPLIT multiple times, it is used
|
|
// a lot.
|
|
EMIT(NFA_NOPEN);
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
int64_t n = 0;
|
|
const int cmp = c;
|
|
bool cur = false;
|
|
bool got_digit = false;
|
|
|
|
if (c == '<' || c == '>') {
|
|
c = getchr();
|
|
}
|
|
if (no_Magic(c) == '.') {
|
|
cur = true;
|
|
c = getchr();
|
|
}
|
|
while (ascii_isdigit(c)) {
|
|
if (cur) {
|
|
semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
if (n > (INT32_MAX - (c - '0')) / 10) {
|
|
// overflow.
|
|
emsg(_(e_value_too_large));
|
|
return FAIL;
|
|
}
|
|
n = n * 10 + (c - '0');
|
|
c = getchr();
|
|
got_digit = true;
|
|
}
|
|
if (c == 'l' || c == 'c' || c == 'v') {
|
|
int32_t limit = INT32_MAX;
|
|
|
|
if (!cur && !got_digit) {
|
|
semsg(_(e_nfa_regexp_missing_value_in_chr), no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
if (c == 'l') {
|
|
if (cur) {
|
|
n = curwin->w_cursor.lnum;
|
|
}
|
|
// \%{n}l \%{n}<l \%{n}>l
|
|
EMIT(cmp == '<' ? NFA_LNUM_LT :
|
|
cmp == '>' ? NFA_LNUM_GT : NFA_LNUM);
|
|
if (save_prev_at_start) {
|
|
at_start = true;
|
|
}
|
|
} else if (c == 'c') {
|
|
if (cur) {
|
|
n = curwin->w_cursor.col;
|
|
n++;
|
|
}
|
|
// \%{n}c \%{n}<c \%{n}>c
|
|
EMIT(cmp == '<' ? NFA_COL_LT :
|
|
cmp == '>' ? NFA_COL_GT : NFA_COL);
|
|
} else {
|
|
if (cur) {
|
|
colnr_T vcol = 0;
|
|
getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol);
|
|
n = ++vcol;
|
|
}
|
|
// \%{n}v \%{n}<v \%{n}>v
|
|
EMIT(cmp == '<' ? NFA_VCOL_LT :
|
|
cmp == '>' ? NFA_VCOL_GT : NFA_VCOL);
|
|
limit = INT32_MAX / MB_MAXBYTES;
|
|
}
|
|
if (n >= limit) {
|
|
emsg(_(e_value_too_large));
|
|
return FAIL;
|
|
}
|
|
EMIT((int)n);
|
|
break;
|
|
} else if (c == '\'' && n == 0) {
|
|
// \%'m \%<'m \%>'m
|
|
EMIT(cmp == '<' ? NFA_MARK_LT :
|
|
cmp == '>' ? NFA_MARK_GT : NFA_MARK);
|
|
EMIT(getchr());
|
|
break;
|
|
}
|
|
}
|
|
semsg(_("E867: (NFA) Unknown operator '\\%%%c'"),
|
|
no_Magic(c));
|
|
return FAIL;
|
|
}
|
|
break;
|
|
|
|
case Magic('['):
|
|
collection:
|
|
// [abc] uses NFA_START_COLL - NFA_END_COLL
|
|
// [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL
|
|
// Each character is produced as a regular state, using
|
|
// NFA_CONCAT to bind them together.
|
|
// Besides normal characters there can be:
|
|
// - character classes NFA_CLASS_*
|
|
// - ranges, two characters followed by NFA_RANGE.
|
|
|
|
p = (uint8_t *)regparse;
|
|
endp = (uint8_t *)skip_anyof((char *)p);
|
|
if (*endp == ']') {
|
|
// Try to reverse engineer character classes. For example,
|
|
// recognize that [0-9] stands for \d and [A-Za-z_] for \h,
|
|
// and perform the necessary substitutions in the NFA.
|
|
int result = nfa_recognize_char_class((uint8_t *)regparse, endp, extra == NFA_ADD_NL);
|
|
if (result != FAIL) {
|
|
if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) {
|
|
EMIT(result - NFA_ADD_NL);
|
|
EMIT(NFA_NEWL);
|
|
EMIT(NFA_OR);
|
|
} else {
|
|
EMIT(result);
|
|
}
|
|
regparse = (char *)endp;
|
|
MB_PTR_ADV(regparse);
|
|
return OK;
|
|
}
|
|
// Failed to recognize a character class. Use the simple
|
|
// version that turns [abc] into 'a' OR 'b' OR 'c'
|
|
startc = -1;
|
|
negated = false;
|
|
if (*regparse == '^') { // negated range
|
|
negated = true;
|
|
MB_PTR_ADV(regparse);
|
|
EMIT(NFA_START_NEG_COLL);
|
|
} else {
|
|
EMIT(NFA_START_COLL);
|
|
}
|
|
if (*regparse == '-') {
|
|
startc = '-';
|
|
EMIT(startc);
|
|
EMIT(NFA_CONCAT);
|
|
MB_PTR_ADV(regparse);
|
|
}
|
|
// Emit the OR branches for each character in the []
|
|
emit_range = false;
|
|
while ((uint8_t *)regparse < endp) {
|
|
int oldstartc = startc;
|
|
startc = -1;
|
|
got_coll_char = false;
|
|
if (*regparse == '[') {
|
|
// Check for [: :], [= =], [. .]
|
|
equiclass = collclass = 0;
|
|
charclass = get_char_class(®parse);
|
|
if (charclass == CLASS_NONE) {
|
|
equiclass = get_equi_class(®parse);
|
|
if (equiclass == 0) {
|
|
collclass = get_coll_element(®parse);
|
|
}
|
|
}
|
|
|
|
// Character class like [:alpha:]
|
|
if (charclass != CLASS_NONE) {
|
|
switch (charclass) {
|
|
case CLASS_ALNUM:
|
|
EMIT(NFA_CLASS_ALNUM);
|
|
break;
|
|
case CLASS_ALPHA:
|
|
EMIT(NFA_CLASS_ALPHA);
|
|
break;
|
|
case CLASS_BLANK:
|
|
EMIT(NFA_CLASS_BLANK);
|
|
break;
|
|
case CLASS_CNTRL:
|
|
EMIT(NFA_CLASS_CNTRL);
|
|
break;
|
|
case CLASS_DIGIT:
|
|
EMIT(NFA_CLASS_DIGIT);
|
|
break;
|
|
case CLASS_GRAPH:
|
|
EMIT(NFA_CLASS_GRAPH);
|
|
break;
|
|
case CLASS_LOWER:
|
|
wants_nfa = true;
|
|
EMIT(NFA_CLASS_LOWER);
|
|
break;
|
|
case CLASS_PRINT:
|
|
EMIT(NFA_CLASS_PRINT);
|
|
break;
|
|
case CLASS_PUNCT:
|
|
EMIT(NFA_CLASS_PUNCT);
|
|
break;
|
|
case CLASS_SPACE:
|
|
EMIT(NFA_CLASS_SPACE);
|
|
break;
|
|
case CLASS_UPPER:
|
|
wants_nfa = true;
|
|
EMIT(NFA_CLASS_UPPER);
|
|
break;
|
|
case CLASS_XDIGIT:
|
|
EMIT(NFA_CLASS_XDIGIT);
|
|
break;
|
|
case CLASS_TAB:
|
|
EMIT(NFA_CLASS_TAB);
|
|
break;
|
|
case CLASS_RETURN:
|
|
EMIT(NFA_CLASS_RETURN);
|
|
break;
|
|
case CLASS_BACKSPACE:
|
|
EMIT(NFA_CLASS_BACKSPACE);
|
|
break;
|
|
case CLASS_ESCAPE:
|
|
EMIT(NFA_CLASS_ESCAPE);
|
|
break;
|
|
case CLASS_IDENT:
|
|
EMIT(NFA_CLASS_IDENT);
|
|
break;
|
|
case CLASS_KEYWORD:
|
|
EMIT(NFA_CLASS_KEYWORD);
|
|
break;
|
|
case CLASS_FNAME:
|
|
EMIT(NFA_CLASS_FNAME);
|
|
break;
|
|
}
|
|
EMIT(NFA_CONCAT);
|
|
continue;
|
|
}
|
|
// Try equivalence class [=a=] and the like
|
|
if (equiclass != 0) {
|
|
nfa_emit_equi_class(equiclass);
|
|
continue;
|
|
}
|
|
// Try collating class like [. .]
|
|
if (collclass != 0) {
|
|
startc = collclass; // allow [.a.]-x as a range
|
|
// Will emit the proper atom at the end of the
|
|
// while loop.
|
|
}
|
|
}
|
|
// Try a range like 'a-x' or '\t-z'. Also allows '-' as a
|
|
// start character.
|
|
if (*regparse == '-' && oldstartc != -1) {
|
|
emit_range = true;
|
|
startc = oldstartc;
|
|
MB_PTR_ADV(regparse);
|
|
continue; // reading the end of the range
|
|
}
|
|
|
|
// Now handle simple and escaped characters.
|
|
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
|
|
// accepts "\t", "\e", etc., but only when the 'l' flag in
|
|
// 'cpoptions' is not included.
|
|
if (*regparse == '\\'
|
|
&& (uint8_t *)regparse + 1 <= endp
|
|
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL
|
|
|| (!reg_cpo_lit
|
|
&& vim_strchr(REGEXP_ABBR, (uint8_t)regparse[1])
|
|
!= NULL))) {
|
|
MB_PTR_ADV(regparse);
|
|
|
|
if (*regparse == 'n') {
|
|
startc = (reg_string || emit_range || regparse[1] == '-')
|
|
? NL : NFA_NEWL;
|
|
} else if (*regparse == 'd'
|
|
|| *regparse == 'o'
|
|
|| *regparse == 'x'
|
|
|| *regparse == 'u'
|
|
|| *regparse == 'U') {
|
|
// TODO(RE): This needs more testing
|
|
startc = coll_get_char();
|
|
got_coll_char = true;
|
|
MB_PTR_BACK(old_regparse, regparse);
|
|
} else {
|
|
// \r,\t,\e,\b
|
|
startc = backslash_trans(*regparse);
|
|
}
|
|
}
|
|
|
|
// Normal printable char
|
|
if (startc == -1) {
|
|
startc = utf_ptr2char((char *)regparse);
|
|
}
|
|
|
|
// Previous char was '-', so this char is end of range.
|
|
if (emit_range) {
|
|
int endc = startc;
|
|
startc = oldstartc;
|
|
if (startc > endc) {
|
|
EMSG_RET_FAIL(_(e_reverse_range));
|
|
}
|
|
|
|
if (endc > startc + 2) {
|
|
// Emit a range instead of the sequence of
|
|
// individual characters.
|
|
if (startc == 0) {
|
|
// \x00 is translated to \x0a, start at \x01.
|
|
EMIT(1);
|
|
} else {
|
|
post_ptr--; // remove NFA_CONCAT
|
|
}
|
|
EMIT(endc);
|
|
EMIT(NFA_RANGE);
|
|
EMIT(NFA_CONCAT);
|
|
} else if (utf_char2len(startc) > 1
|
|
|| utf_char2len(endc) > 1) {
|
|
// Emit the characters in the range.
|
|
// "startc" was already emitted, so skip it.
|
|
for (c = startc + 1; c <= endc; c++) {
|
|
EMIT(c);
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
} else {
|
|
// Emit the range. "startc" was already emitted, so
|
|
// skip it.
|
|
for (c = startc + 1; c <= endc; c++) {
|
|
EMIT(c);
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
}
|
|
emit_range = false;
|
|
startc = -1;
|
|
} else {
|
|
// This char (startc) is not part of a range. Just
|
|
// emit it.
|
|
// Normally, simply emit startc. But if we get char
|
|
// code=0 from a collating char, then replace it with
|
|
// 0x0a.
|
|
// This is needed to completely mimic the behaviour of
|
|
// the backtracking engine.
|
|
if (startc == NFA_NEWL) {
|
|
// Line break can't be matched as part of the
|
|
// collection, add an OR below. But not for negated
|
|
// range.
|
|
if (!negated) {
|
|
extra = NFA_ADD_NL;
|
|
}
|
|
} else {
|
|
if (got_coll_char == true && startc == 0) {
|
|
EMIT(0x0a);
|
|
} else {
|
|
EMIT(startc);
|
|
}
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
}
|
|
|
|
MB_PTR_ADV(regparse);
|
|
} // while (p < endp)
|
|
|
|
MB_PTR_BACK(old_regparse, regparse);
|
|
if (*regparse == '-') { // if last, '-' is just a char
|
|
EMIT('-');
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
|
|
// skip the trailing ]
|
|
regparse = (char *)endp;
|
|
MB_PTR_ADV(regparse);
|
|
|
|
// Mark end of the collection.
|
|
if (negated == true) {
|
|
EMIT(NFA_END_NEG_COLL);
|
|
} else {
|
|
EMIT(NFA_END_COLL);
|
|
}
|
|
|
|
// \_[] also matches \n but it's not negated
|
|
if (extra == NFA_ADD_NL) {
|
|
EMIT(reg_string ? NL : NFA_NEWL);
|
|
EMIT(NFA_OR);
|
|
}
|
|
|
|
return OK;
|
|
} // if exists closing ]
|
|
|
|
if (reg_strict) {
|
|
EMSG_RET_FAIL(_(e_missingbracket));
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
default: {
|
|
int plen;
|
|
|
|
nfa_do_multibyte:
|
|
// plen is length of current char with composing chars
|
|
if (utf_char2len(c) != (plen = utfc_ptr2len((char *)old_regparse))
|
|
|| utf_iscomposing(c)) {
|
|
int i = 0;
|
|
|
|
// A base character plus composing characters, or just one
|
|
// or more composing characters.
|
|
// This requires creating a separate atom as if enclosing
|
|
// the characters in (), where NFA_COMPOSING is the ( and
|
|
// NFA_END_COMPOSING is the ). Note that right now we are
|
|
// building the postfix form, not the NFA itself;
|
|
// a composing char could be: a, b, c, NFA_COMPOSING
|
|
// where 'b' and 'c' are chars with codes > 256. */
|
|
for (;;) {
|
|
EMIT(c);
|
|
if (i > 0) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
if ((i += utf_char2len(c)) >= plen) {
|
|
break;
|
|
}
|
|
c = utf_ptr2char((char *)old_regparse + i);
|
|
}
|
|
EMIT(NFA_COMPOSING);
|
|
regparse = (char *)old_regparse + plen;
|
|
} else {
|
|
c = no_Magic(c);
|
|
EMIT(c);
|
|
}
|
|
return OK;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Parse something followed by possible [*+=].
|
|
//
|
|
// A piece is an atom, possibly followed by a multi, an indication of how many
|
|
// times the atom can be matched. Example: "a*" matches any sequence of "a"
|
|
// characters: "", "a", "aa", etc.
|
|
//
|
|
// piece ::= atom
|
|
// or atom multi
|
|
static int nfa_regpiece(void)
|
|
{
|
|
int i;
|
|
int op;
|
|
int ret;
|
|
long minval, maxval;
|
|
bool greedy = true; // Braces are prefixed with '-' ?
|
|
parse_state_T old_state;
|
|
parse_state_T new_state;
|
|
int64_t c2;
|
|
int old_post_pos;
|
|
int my_post_start;
|
|
int quest;
|
|
|
|
// Save the current parse state, so that we can use it if <atom>{m,n} is
|
|
// next.
|
|
save_parse_state(&old_state);
|
|
|
|
// store current pos in the postfix form, for \{m,n} involving 0s
|
|
my_post_start = (int)(post_ptr - post_start);
|
|
|
|
ret = nfa_regatom();
|
|
if (ret == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
op = peekchr();
|
|
if (re_multi_type(op) == NOT_MULTI) {
|
|
return OK;
|
|
}
|
|
|
|
skipchr();
|
|
switch (op) {
|
|
case Magic('*'):
|
|
EMIT(NFA_STAR);
|
|
break;
|
|
|
|
case Magic('+'):
|
|
// Trick: Normally, (a*)\+ would match the whole input "aaa". The
|
|
// first and only submatch would be "aaa". But the backtracking
|
|
// engine interprets the plus as "try matching one more time", and
|
|
// a* matches a second time at the end of the input, the empty
|
|
// string.
|
|
// The submatch will be the empty string.
|
|
//
|
|
// In order to be consistent with the old engine, we replace
|
|
// <atom>+ with <atom><atom>*
|
|
restore_parse_state(&old_state);
|
|
curchr = -1;
|
|
if (nfa_regatom() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
EMIT(NFA_STAR);
|
|
EMIT(NFA_CONCAT);
|
|
skipchr(); // skip the \+
|
|
break;
|
|
|
|
case Magic('@'):
|
|
c2 = getdecchrs();
|
|
op = no_Magic(getchr());
|
|
i = 0;
|
|
switch (op) {
|
|
case '=':
|
|
// \@=
|
|
i = NFA_PREV_ATOM_NO_WIDTH;
|
|
break;
|
|
case '!':
|
|
// \@!
|
|
i = NFA_PREV_ATOM_NO_WIDTH_NEG;
|
|
break;
|
|
case '<':
|
|
op = no_Magic(getchr());
|
|
if (op == '=') {
|
|
// \@<=
|
|
i = NFA_PREV_ATOM_JUST_BEFORE;
|
|
} else if (op == '!') {
|
|
// \@<!
|
|
i = NFA_PREV_ATOM_JUST_BEFORE_NEG;
|
|
}
|
|
break;
|
|
case '>':
|
|
// \@>
|
|
i = NFA_PREV_ATOM_LIKE_PATTERN;
|
|
break;
|
|
}
|
|
if (i == 0) {
|
|
semsg(_("E869: (NFA) Unknown operator '\\@%c'"), op);
|
|
return FAIL;
|
|
}
|
|
EMIT(i);
|
|
if (i == NFA_PREV_ATOM_JUST_BEFORE
|
|
|| i == NFA_PREV_ATOM_JUST_BEFORE_NEG) {
|
|
EMIT((int)c2);
|
|
}
|
|
break;
|
|
|
|
case Magic('?'):
|
|
case Magic('='):
|
|
EMIT(NFA_QUEST);
|
|
break;
|
|
|
|
case Magic('{'):
|
|
// a{2,5} will expand to 'aaa?a?a?'
|
|
// a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy
|
|
// version of '?'
|
|
// \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the
|
|
// parenthesis have the same id
|
|
|
|
greedy = true;
|
|
c2 = peekchr();
|
|
if (c2 == '-' || c2 == Magic('-')) {
|
|
skipchr();
|
|
greedy = false;
|
|
}
|
|
if (!read_limits(&minval, &maxval)) {
|
|
EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits"));
|
|
}
|
|
|
|
// <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to
|
|
// <atom>*
|
|
if (minval == 0 && maxval == MAX_LIMIT) {
|
|
if (greedy) {
|
|
// \{}, \{0,}
|
|
EMIT(NFA_STAR);
|
|
} else {
|
|
// \{-}, \{-0,}
|
|
EMIT(NFA_STAR_NONGREEDY);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Special case: x{0} or x{-0}
|
|
if (maxval == 0) {
|
|
// Ignore result of previous call to nfa_regatom()
|
|
post_ptr = post_start + my_post_start;
|
|
// NFA_EMPTY is 0-length and works everywhere
|
|
EMIT(NFA_EMPTY);
|
|
return OK;
|
|
}
|
|
|
|
// The engine is very inefficient (uses too many states) when the
|
|
// maximum is much larger than the minimum and when the maximum is
|
|
// large. However, when maxval is MAX_LIMIT, it is okay, as this
|
|
// will emit NFA_STAR.
|
|
// Bail out if we can use the other engine, but only, when the
|
|
// pattern does not need the NFA engine like (e.g. [[:upper:]]\{2,\}
|
|
// does not work with characters > 8 bit with the BT engine)
|
|
if ((nfa_re_flags & RE_AUTO)
|
|
&& (maxval > 500 || maxval > minval + 200)
|
|
&& (maxval != MAX_LIMIT && minval < 200)
|
|
&& !wants_nfa) {
|
|
return FAIL;
|
|
}
|
|
|
|
// Ignore previous call to nfa_regatom()
|
|
post_ptr = post_start + my_post_start;
|
|
// Save parse state after the repeated atom and the \{}
|
|
save_parse_state(&new_state);
|
|
|
|
quest = (greedy == true ? NFA_QUEST : NFA_QUEST_NONGREEDY);
|
|
for (i = 0; i < maxval; i++) {
|
|
// Goto beginning of the repeated atom
|
|
restore_parse_state(&old_state);
|
|
old_post_pos = (int)(post_ptr - post_start);
|
|
if (nfa_regatom() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
// after "minval" times, atoms are optional
|
|
if (i + 1 > minval) {
|
|
if (maxval == MAX_LIMIT) {
|
|
if (greedy) {
|
|
EMIT(NFA_STAR);
|
|
} else {
|
|
EMIT(NFA_STAR_NONGREEDY);
|
|
}
|
|
} else {
|
|
EMIT(quest);
|
|
}
|
|
}
|
|
if (old_post_pos != my_post_start) {
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
if (i + 1 > minval && maxval == MAX_LIMIT) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Go to just after the repeated atom and the \{}
|
|
restore_parse_state(&new_state);
|
|
curchr = -1;
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
} // end switch
|
|
|
|
if (re_multi_type(peekchr()) != NOT_MULTI) {
|
|
// Can't have a multi follow a multi.
|
|
EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi"));
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Parse one or more pieces, concatenated. It matches a match for the
|
|
// first piece, followed by a match for the second piece, etc. Example:
|
|
// "f[0-9]b", first matches "f", then a digit and then "b".
|
|
//
|
|
// concat ::= piece
|
|
// or piece piece
|
|
// or piece piece piece
|
|
// etc.
|
|
static int nfa_regconcat(void)
|
|
{
|
|
bool cont = true;
|
|
bool first = true;
|
|
|
|
while (cont) {
|
|
switch (peekchr()) {
|
|
case NUL:
|
|
case Magic('|'):
|
|
case Magic('&'):
|
|
case Magic(')'):
|
|
cont = false;
|
|
break;
|
|
|
|
case Magic('Z'):
|
|
regflags |= RF_ICOMBINE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('c'):
|
|
regflags |= RF_ICASE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('C'):
|
|
regflags |= RF_NOICASE;
|
|
skipchr_keepstart();
|
|
break;
|
|
case Magic('v'):
|
|
reg_magic = MAGIC_ALL;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('m'):
|
|
reg_magic = MAGIC_ON;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('M'):
|
|
reg_magic = MAGIC_OFF;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
case Magic('V'):
|
|
reg_magic = MAGIC_NONE;
|
|
skipchr_keepstart();
|
|
curchr = -1;
|
|
break;
|
|
|
|
default:
|
|
if (nfa_regpiece() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
if (first == false) {
|
|
EMIT(NFA_CONCAT);
|
|
} else {
|
|
first = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
// Parse a branch, one or more concats, separated by "\&". It matches the
|
|
// last concat, but only if all the preceding concats also match at the same
|
|
// position. Examples:
|
|
// "foobeep\&..." matches "foo" in "foobeep".
|
|
// ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"
|
|
//
|
|
// branch ::= concat
|
|
// or concat \& concat
|
|
// or concat \& concat \& concat
|
|
// etc.
|
|
static int nfa_regbranch(void)
|
|
{
|
|
int old_post_pos;
|
|
|
|
old_post_pos = (int)(post_ptr - post_start);
|
|
|
|
// First branch, possibly the only one
|
|
if (nfa_regconcat() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
|
|
// Try next concats
|
|
while (peekchr() == Magic('&')) {
|
|
skipchr();
|
|
// if concat is empty do emit a node
|
|
if (old_post_pos == (int)(post_ptr - post_start)) {
|
|
EMIT(NFA_EMPTY);
|
|
}
|
|
EMIT(NFA_NOPEN);
|
|
EMIT(NFA_PREV_ATOM_NO_WIDTH);
|
|
old_post_pos = (int)(post_ptr - post_start);
|
|
if (nfa_regconcat() == FAIL) {
|
|
return FAIL;
|
|
}
|
|
// if concat is empty do emit a node
|
|
if (old_post_pos == (int)(post_ptr - post_start)) {
|
|
EMIT(NFA_EMPTY);
|
|
}
|
|
EMIT(NFA_CONCAT);
|
|
}
|
|
|
|
// if a branch is empty, emit one node for it
|
|
if (old_post_pos == (int)(post_ptr - post_start)) {
|
|
EMIT(NFA_EMPTY);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
/// Parse a pattern, one or more branches, separated by "\|". It matches
|
|
/// anything that matches one of the branches. Example: "foo\|beep" matches
|
|
/// "foo" and matches "beep". If more than one branch matches, the first one
|
|
/// is used.
|
|
///
|
|
/// pattern ::= branch
|
|
/// or branch \| branch
|
|
/// or branch \| branch \| branch
|
|
/// etc.
|
|
///
|
|
/// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
|
|
static int nfa_reg(int paren)
|
|
{
|
|
int parno = 0;
|
|
|
|
if (paren == REG_PAREN) {
|
|
if (regnpar >= NSUBEXP) { // Too many `('
|
|
EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('"));
|
|
}
|
|
parno = regnpar++;
|
|
} else if (paren == REG_ZPAREN) {
|
|
// Make a ZOPEN node.
|
|
if (regnzpar >= NSUBEXP) {
|
|
EMSG_RET_FAIL(_("E879: (NFA regexp) Too many \\z("));
|
|
}
|
|
parno = regnzpar++;
|
|
}
|
|
|
|
if (nfa_regbranch() == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
while (peekchr() == Magic('|')) {
|
|
skipchr();
|
|
if (nfa_regbranch() == FAIL) {
|
|
return FAIL; // cascaded error
|
|
}
|
|
EMIT(NFA_OR);
|
|
}
|
|
|
|
// Check for proper termination.
|
|
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
|
|
if (paren == REG_NPAREN) {
|
|
EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
|
|
} else {
|
|
EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
|
|
}
|
|
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
|
|
if (peekchr() == Magic(')')) {
|
|
EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
|
|
} else {
|
|
EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error"));
|
|
}
|
|
}
|
|
// Here we set the flag allowing back references to this set of
|
|
// parentheses.
|
|
if (paren == REG_PAREN) {
|
|
had_endbrace[parno] = true; // have seen the close paren
|
|
EMIT(NFA_MOPEN + parno);
|
|
} else if (paren == REG_ZPAREN) {
|
|
EMIT(NFA_ZOPEN + parno);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static uint8_t code[50];
|
|
|
|
static void nfa_set_code(int c)
|
|
{
|
|
int addnl = false;
|
|
|
|
if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) {
|
|
addnl = true;
|
|
c -= NFA_ADD_NL;
|
|
}
|
|
|
|
STRCPY(code, "");
|
|
switch (c) {
|
|
case NFA_MATCH:
|
|
STRCPY(code, "NFA_MATCH "); break;
|
|
case NFA_SPLIT:
|
|
STRCPY(code, "NFA_SPLIT "); break;
|
|
case NFA_CONCAT:
|
|
STRCPY(code, "NFA_CONCAT "); break;
|
|
case NFA_NEWL:
|
|
STRCPY(code, "NFA_NEWL "); break;
|
|
case NFA_ZSTART:
|
|
STRCPY(code, "NFA_ZSTART"); break;
|
|
case NFA_ZEND:
|
|
STRCPY(code, "NFA_ZEND"); break;
|
|
|
|
case NFA_BACKREF1:
|
|
STRCPY(code, "NFA_BACKREF1"); break;
|
|
case NFA_BACKREF2:
|
|
STRCPY(code, "NFA_BACKREF2"); break;
|
|
case NFA_BACKREF3:
|
|
STRCPY(code, "NFA_BACKREF3"); break;
|
|
case NFA_BACKREF4:
|
|
STRCPY(code, "NFA_BACKREF4"); break;
|
|
case NFA_BACKREF5:
|
|
STRCPY(code, "NFA_BACKREF5"); break;
|
|
case NFA_BACKREF6:
|
|
STRCPY(code, "NFA_BACKREF6"); break;
|
|
case NFA_BACKREF7:
|
|
STRCPY(code, "NFA_BACKREF7"); break;
|
|
case NFA_BACKREF8:
|
|
STRCPY(code, "NFA_BACKREF8"); break;
|
|
case NFA_BACKREF9:
|
|
STRCPY(code, "NFA_BACKREF9"); break;
|
|
case NFA_ZREF1:
|
|
STRCPY(code, "NFA_ZREF1"); break;
|
|
case NFA_ZREF2:
|
|
STRCPY(code, "NFA_ZREF2"); break;
|
|
case NFA_ZREF3:
|
|
STRCPY(code, "NFA_ZREF3"); break;
|
|
case NFA_ZREF4:
|
|
STRCPY(code, "NFA_ZREF4"); break;
|
|
case NFA_ZREF5:
|
|
STRCPY(code, "NFA_ZREF5"); break;
|
|
case NFA_ZREF6:
|
|
STRCPY(code, "NFA_ZREF6"); break;
|
|
case NFA_ZREF7:
|
|
STRCPY(code, "NFA_ZREF7"); break;
|
|
case NFA_ZREF8:
|
|
STRCPY(code, "NFA_ZREF8"); break;
|
|
case NFA_ZREF9:
|
|
STRCPY(code, "NFA_ZREF9"); break;
|
|
case NFA_SKIP:
|
|
STRCPY(code, "NFA_SKIP"); break;
|
|
|
|
case NFA_PREV_ATOM_NO_WIDTH:
|
|
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break;
|
|
case NFA_PREV_ATOM_NO_WIDTH_NEG:
|
|
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE:
|
|
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
|
|
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break;
|
|
case NFA_PREV_ATOM_LIKE_PATTERN:
|
|
STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break;
|
|
|
|
case NFA_NOPEN:
|
|
STRCPY(code, "NFA_NOPEN"); break;
|
|
case NFA_NCLOSE:
|
|
STRCPY(code, "NFA_NCLOSE"); break;
|
|
case NFA_START_INVISIBLE:
|
|
STRCPY(code, "NFA_START_INVISIBLE"); break;
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break;
|
|
case NFA_START_INVISIBLE_NEG:
|
|
STRCPY(code, "NFA_START_INVISIBLE_NEG"); break;
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break;
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break;
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break;
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break;
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break;
|
|
case NFA_START_PATTERN:
|
|
STRCPY(code, "NFA_START_PATTERN"); break;
|
|
case NFA_END_INVISIBLE:
|
|
STRCPY(code, "NFA_END_INVISIBLE"); break;
|
|
case NFA_END_INVISIBLE_NEG:
|
|
STRCPY(code, "NFA_END_INVISIBLE_NEG"); break;
|
|
case NFA_END_PATTERN:
|
|
STRCPY(code, "NFA_END_PATTERN"); break;
|
|
|
|
case NFA_COMPOSING:
|
|
STRCPY(code, "NFA_COMPOSING"); break;
|
|
case NFA_END_COMPOSING:
|
|
STRCPY(code, "NFA_END_COMPOSING"); break;
|
|
case NFA_OPT_CHARS:
|
|
STRCPY(code, "NFA_OPT_CHARS"); break;
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
STRCPY(code, "NFA_MOPEN(x)");
|
|
code[10] = c - NFA_MOPEN + '0';
|
|
break;
|
|
case NFA_MCLOSE:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
STRCPY(code, "NFA_MCLOSE(x)");
|
|
code[11] = c - NFA_MCLOSE + '0';
|
|
break;
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
STRCPY(code, "NFA_ZOPEN(x)");
|
|
code[10] = c - NFA_ZOPEN + '0';
|
|
break;
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
STRCPY(code, "NFA_ZCLOSE(x)");
|
|
code[11] = c - NFA_ZCLOSE + '0';
|
|
break;
|
|
case NFA_EOL:
|
|
STRCPY(code, "NFA_EOL "); break;
|
|
case NFA_BOL:
|
|
STRCPY(code, "NFA_BOL "); break;
|
|
case NFA_EOW:
|
|
STRCPY(code, "NFA_EOW "); break;
|
|
case NFA_BOW:
|
|
STRCPY(code, "NFA_BOW "); break;
|
|
case NFA_EOF:
|
|
STRCPY(code, "NFA_EOF "); break;
|
|
case NFA_BOF:
|
|
STRCPY(code, "NFA_BOF "); break;
|
|
case NFA_LNUM:
|
|
STRCPY(code, "NFA_LNUM "); break;
|
|
case NFA_LNUM_GT:
|
|
STRCPY(code, "NFA_LNUM_GT "); break;
|
|
case NFA_LNUM_LT:
|
|
STRCPY(code, "NFA_LNUM_LT "); break;
|
|
case NFA_COL:
|
|
STRCPY(code, "NFA_COL "); break;
|
|
case NFA_COL_GT:
|
|
STRCPY(code, "NFA_COL_GT "); break;
|
|
case NFA_COL_LT:
|
|
STRCPY(code, "NFA_COL_LT "); break;
|
|
case NFA_VCOL:
|
|
STRCPY(code, "NFA_VCOL "); break;
|
|
case NFA_VCOL_GT:
|
|
STRCPY(code, "NFA_VCOL_GT "); break;
|
|
case NFA_VCOL_LT:
|
|
STRCPY(code, "NFA_VCOL_LT "); break;
|
|
case NFA_MARK:
|
|
STRCPY(code, "NFA_MARK "); break;
|
|
case NFA_MARK_GT:
|
|
STRCPY(code, "NFA_MARK_GT "); break;
|
|
case NFA_MARK_LT:
|
|
STRCPY(code, "NFA_MARK_LT "); break;
|
|
case NFA_CURSOR:
|
|
STRCPY(code, "NFA_CURSOR "); break;
|
|
case NFA_VISUAL:
|
|
STRCPY(code, "NFA_VISUAL "); break;
|
|
case NFA_ANY_COMPOSING:
|
|
STRCPY(code, "NFA_ANY_COMPOSING "); break;
|
|
|
|
case NFA_STAR:
|
|
STRCPY(code, "NFA_STAR "); break;
|
|
case NFA_STAR_NONGREEDY:
|
|
STRCPY(code, "NFA_STAR_NONGREEDY "); break;
|
|
case NFA_QUEST:
|
|
STRCPY(code, "NFA_QUEST"); break;
|
|
case NFA_QUEST_NONGREEDY:
|
|
STRCPY(code, "NFA_QUEST_NON_GREEDY"); break;
|
|
case NFA_EMPTY:
|
|
STRCPY(code, "NFA_EMPTY"); break;
|
|
case NFA_OR:
|
|
STRCPY(code, "NFA_OR"); break;
|
|
|
|
case NFA_START_COLL:
|
|
STRCPY(code, "NFA_START_COLL"); break;
|
|
case NFA_END_COLL:
|
|
STRCPY(code, "NFA_END_COLL"); break;
|
|
case NFA_START_NEG_COLL:
|
|
STRCPY(code, "NFA_START_NEG_COLL"); break;
|
|
case NFA_END_NEG_COLL:
|
|
STRCPY(code, "NFA_END_NEG_COLL"); break;
|
|
case NFA_RANGE:
|
|
STRCPY(code, "NFA_RANGE"); break;
|
|
case NFA_RANGE_MIN:
|
|
STRCPY(code, "NFA_RANGE_MIN"); break;
|
|
case NFA_RANGE_MAX:
|
|
STRCPY(code, "NFA_RANGE_MAX"); break;
|
|
|
|
case NFA_CLASS_ALNUM:
|
|
STRCPY(code, "NFA_CLASS_ALNUM"); break;
|
|
case NFA_CLASS_ALPHA:
|
|
STRCPY(code, "NFA_CLASS_ALPHA"); break;
|
|
case NFA_CLASS_BLANK:
|
|
STRCPY(code, "NFA_CLASS_BLANK"); break;
|
|
case NFA_CLASS_CNTRL:
|
|
STRCPY(code, "NFA_CLASS_CNTRL"); break;
|
|
case NFA_CLASS_DIGIT:
|
|
STRCPY(code, "NFA_CLASS_DIGIT"); break;
|
|
case NFA_CLASS_GRAPH:
|
|
STRCPY(code, "NFA_CLASS_GRAPH"); break;
|
|
case NFA_CLASS_LOWER:
|
|
STRCPY(code, "NFA_CLASS_LOWER"); break;
|
|
case NFA_CLASS_PRINT:
|
|
STRCPY(code, "NFA_CLASS_PRINT"); break;
|
|
case NFA_CLASS_PUNCT:
|
|
STRCPY(code, "NFA_CLASS_PUNCT"); break;
|
|
case NFA_CLASS_SPACE:
|
|
STRCPY(code, "NFA_CLASS_SPACE"); break;
|
|
case NFA_CLASS_UPPER:
|
|
STRCPY(code, "NFA_CLASS_UPPER"); break;
|
|
case NFA_CLASS_XDIGIT:
|
|
STRCPY(code, "NFA_CLASS_XDIGIT"); break;
|
|
case NFA_CLASS_TAB:
|
|
STRCPY(code, "NFA_CLASS_TAB"); break;
|
|
case NFA_CLASS_RETURN:
|
|
STRCPY(code, "NFA_CLASS_RETURN"); break;
|
|
case NFA_CLASS_BACKSPACE:
|
|
STRCPY(code, "NFA_CLASS_BACKSPACE"); break;
|
|
case NFA_CLASS_ESCAPE:
|
|
STRCPY(code, "NFA_CLASS_ESCAPE"); break;
|
|
case NFA_CLASS_IDENT:
|
|
STRCPY(code, "NFA_CLASS_IDENT"); break;
|
|
case NFA_CLASS_KEYWORD:
|
|
STRCPY(code, "NFA_CLASS_KEYWORD"); break;
|
|
case NFA_CLASS_FNAME:
|
|
STRCPY(code, "NFA_CLASS_FNAME"); break;
|
|
|
|
case NFA_ANY:
|
|
STRCPY(code, "NFA_ANY"); break;
|
|
case NFA_IDENT:
|
|
STRCPY(code, "NFA_IDENT"); break;
|
|
case NFA_SIDENT:
|
|
STRCPY(code, "NFA_SIDENT"); break;
|
|
case NFA_KWORD:
|
|
STRCPY(code, "NFA_KWORD"); break;
|
|
case NFA_SKWORD:
|
|
STRCPY(code, "NFA_SKWORD"); break;
|
|
case NFA_FNAME:
|
|
STRCPY(code, "NFA_FNAME"); break;
|
|
case NFA_SFNAME:
|
|
STRCPY(code, "NFA_SFNAME"); break;
|
|
case NFA_PRINT:
|
|
STRCPY(code, "NFA_PRINT"); break;
|
|
case NFA_SPRINT:
|
|
STRCPY(code, "NFA_SPRINT"); break;
|
|
case NFA_WHITE:
|
|
STRCPY(code, "NFA_WHITE"); break;
|
|
case NFA_NWHITE:
|
|
STRCPY(code, "NFA_NWHITE"); break;
|
|
case NFA_DIGIT:
|
|
STRCPY(code, "NFA_DIGIT"); break;
|
|
case NFA_NDIGIT:
|
|
STRCPY(code, "NFA_NDIGIT"); break;
|
|
case NFA_HEX:
|
|
STRCPY(code, "NFA_HEX"); break;
|
|
case NFA_NHEX:
|
|
STRCPY(code, "NFA_NHEX"); break;
|
|
case NFA_OCTAL:
|
|
STRCPY(code, "NFA_OCTAL"); break;
|
|
case NFA_NOCTAL:
|
|
STRCPY(code, "NFA_NOCTAL"); break;
|
|
case NFA_WORD:
|
|
STRCPY(code, "NFA_WORD"); break;
|
|
case NFA_NWORD:
|
|
STRCPY(code, "NFA_NWORD"); break;
|
|
case NFA_HEAD:
|
|
STRCPY(code, "NFA_HEAD"); break;
|
|
case NFA_NHEAD:
|
|
STRCPY(code, "NFA_NHEAD"); break;
|
|
case NFA_ALPHA:
|
|
STRCPY(code, "NFA_ALPHA"); break;
|
|
case NFA_NALPHA:
|
|
STRCPY(code, "NFA_NALPHA"); break;
|
|
case NFA_LOWER:
|
|
STRCPY(code, "NFA_LOWER"); break;
|
|
case NFA_NLOWER:
|
|
STRCPY(code, "NFA_NLOWER"); break;
|
|
case NFA_UPPER:
|
|
STRCPY(code, "NFA_UPPER"); break;
|
|
case NFA_NUPPER:
|
|
STRCPY(code, "NFA_NUPPER"); break;
|
|
case NFA_LOWER_IC:
|
|
STRCPY(code, "NFA_LOWER_IC"); break;
|
|
case NFA_NLOWER_IC:
|
|
STRCPY(code, "NFA_NLOWER_IC"); break;
|
|
case NFA_UPPER_IC:
|
|
STRCPY(code, "NFA_UPPER_IC"); break;
|
|
case NFA_NUPPER_IC:
|
|
STRCPY(code, "NFA_NUPPER_IC"); break;
|
|
|
|
default:
|
|
STRCPY(code, "CHAR(x)");
|
|
code[5] = c;
|
|
}
|
|
|
|
if (addnl == true) {
|
|
STRCAT(code, " + NEWLINE ");
|
|
}
|
|
}
|
|
|
|
static FILE *log_fd;
|
|
static uint8_t e_log_open_failed[] =
|
|
N_("Could not open temporary log file for writing, displaying on stderr... ");
|
|
|
|
// Print the postfix notation of the current regexp.
|
|
static void nfa_postfix_dump(uint8_t *expr, int retval)
|
|
{
|
|
int *p;
|
|
FILE *f;
|
|
|
|
f = fopen(NFA_REGEXP_DUMP_LOG, "a");
|
|
if (f == NULL) {
|
|
return;
|
|
}
|
|
|
|
fprintf(f, "\n-------------------------\n");
|
|
if (retval == FAIL) {
|
|
fprintf(f, ">>> NFA engine failed... \n");
|
|
} else if (retval == OK) {
|
|
fprintf(f, ">>> NFA engine succeeded !\n");
|
|
}
|
|
fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr);
|
|
for (p = post_start; *p && p < post_ptr; p++) {
|
|
nfa_set_code(*p);
|
|
fprintf(f, "%s, ", code);
|
|
}
|
|
fprintf(f, "\"\nPostfix notation (int): ");
|
|
for (p = post_start; *p && p < post_ptr; p++) {
|
|
fprintf(f, "%d ", *p);
|
|
}
|
|
fprintf(f, "\n\n");
|
|
fclose(f);
|
|
}
|
|
|
|
// Print the NFA starting with a root node "state".
|
|
static void nfa_print_state(FILE *debugf, nfa_state_T *state)
|
|
{
|
|
garray_T indent;
|
|
|
|
ga_init(&indent, 1, 64);
|
|
ga_append(&indent, '\0');
|
|
nfa_print_state2(debugf, state, &indent);
|
|
ga_clear(&indent);
|
|
}
|
|
|
|
static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent)
|
|
{
|
|
uint8_t *p;
|
|
|
|
if (state == NULL) {
|
|
return;
|
|
}
|
|
|
|
fprintf(debugf, "(%2d)", abs(state->id));
|
|
|
|
// Output indent
|
|
p = (uint8_t *)indent->ga_data;
|
|
if (indent->ga_len >= 3) {
|
|
int last = indent->ga_len - 3;
|
|
uint8_t save[2];
|
|
|
|
strncpy(save, &p[last], 2); // NOLINT(runtime/printf)
|
|
memcpy(&p[last], "+-", 2);
|
|
fprintf(debugf, " %s", p);
|
|
strncpy(&p[last], save, 2); // NOLINT(runtime/printf)
|
|
} else {
|
|
fprintf(debugf, " %s", p);
|
|
}
|
|
|
|
nfa_set_code(state->c);
|
|
fprintf(debugf, "%s (%d) (id=%d) val=%d\n",
|
|
code,
|
|
state->c,
|
|
abs(state->id),
|
|
state->val);
|
|
if (state->id < 0) {
|
|
return;
|
|
}
|
|
|
|
state->id = abs(state->id) * -1;
|
|
|
|
// grow indent for state->out
|
|
indent->ga_len -= 1;
|
|
if (state->out1) {
|
|
ga_concat(indent, (uint8_t *)"| ");
|
|
} else {
|
|
ga_concat(indent, (uint8_t *)" ");
|
|
}
|
|
ga_append(indent, NUL);
|
|
|
|
nfa_print_state2(debugf, state->out, indent);
|
|
|
|
// replace last part of indent for state->out1
|
|
indent->ga_len -= 3;
|
|
ga_concat(indent, (uint8_t *)" ");
|
|
ga_append(indent, NUL);
|
|
|
|
nfa_print_state2(debugf, state->out1, indent);
|
|
|
|
// shrink indent
|
|
indent->ga_len -= 3;
|
|
ga_append(indent, NUL);
|
|
}
|
|
|
|
// Print the NFA state machine.
|
|
static void nfa_dump(nfa_regprog_T *prog)
|
|
{
|
|
FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a");
|
|
|
|
if (debugf == NULL) {
|
|
return;
|
|
}
|
|
|
|
nfa_print_state(debugf, prog->start);
|
|
|
|
if (prog->reganch) {
|
|
fprintf(debugf, "reganch: %d\n", prog->reganch);
|
|
}
|
|
if (prog->regstart != NUL) {
|
|
fprintf(debugf, "regstart: %c (decimal: %d)\n",
|
|
prog->regstart, prog->regstart);
|
|
}
|
|
if (prog->match_text != NULL) {
|
|
fprintf(debugf, "match_text: \"%s\"\n", prog->match_text);
|
|
}
|
|
|
|
fclose(debugf);
|
|
}
|
|
#endif // REGEXP_DEBUG
|
|
|
|
// Parse r.e. @expr and convert it into postfix form.
|
|
// Return the postfix string on success, NULL otherwise.
|
|
static int *re2post(void)
|
|
{
|
|
if (nfa_reg(REG_NOPAREN) == FAIL) {
|
|
return NULL;
|
|
}
|
|
EMIT(NFA_MOPEN);
|
|
return post_start;
|
|
}
|
|
|
|
// NB. Some of the code below is inspired by Russ's.
|
|
|
|
// Represents an NFA state plus zero or one or two arrows exiting.
|
|
// if c == MATCH, no arrows out; matching state.
|
|
// If c == SPLIT, unlabeled arrows to out and out1 (if != NULL).
|
|
// If c < 256, labeled arrow with character c to out.
|
|
|
|
static nfa_state_T *state_ptr; // points to nfa_prog->state
|
|
|
|
// Allocate and initialize nfa_state_T.
|
|
static nfa_state_T *alloc_state(int c, nfa_state_T *out, nfa_state_T *out1)
|
|
{
|
|
nfa_state_T *s;
|
|
|
|
if (istate >= nstate) {
|
|
return NULL;
|
|
}
|
|
|
|
s = &state_ptr[istate++];
|
|
|
|
s->c = c;
|
|
s->out = out;
|
|
s->out1 = out1;
|
|
s->val = 0;
|
|
|
|
s->id = istate;
|
|
s->lastlist[0] = 0;
|
|
s->lastlist[1] = 0;
|
|
|
|
return s;
|
|
}
|
|
|
|
// A partially built NFA without the matching state filled in.
|
|
// Frag_T.start points at the start state.
|
|
// Frag_T.out is a list of places that need to be set to the
|
|
// next state for this fragment.
|
|
|
|
// Initialize a Frag_T struct and return it.
|
|
static Frag_T frag(nfa_state_T *start, Ptrlist *out)
|
|
{
|
|
Frag_T n;
|
|
|
|
n.start = start;
|
|
n.out = out;
|
|
return n;
|
|
}
|
|
|
|
// Create singleton list containing just outp.
|
|
static Ptrlist *list1(nfa_state_T **outp)
|
|
{
|
|
Ptrlist *l;
|
|
|
|
l = (Ptrlist *)outp;
|
|
l->next = NULL;
|
|
return l;
|
|
}
|
|
|
|
// Patch the list of states at out to point to start.
|
|
static void patch(Ptrlist *l, nfa_state_T *s)
|
|
{
|
|
Ptrlist *next;
|
|
|
|
for (; l; l = next) {
|
|
next = l->next;
|
|
l->s = s;
|
|
}
|
|
}
|
|
|
|
// Join the two lists l1 and l2, returning the combination.
|
|
static Ptrlist *append(Ptrlist *l1, Ptrlist *l2)
|
|
{
|
|
Ptrlist *oldl1;
|
|
|
|
oldl1 = l1;
|
|
while (l1->next) {
|
|
l1 = l1->next;
|
|
}
|
|
l1->next = l2;
|
|
return oldl1;
|
|
}
|
|
|
|
// Stack used for transforming postfix form into NFA.
|
|
static Frag_T empty;
|
|
|
|
static void st_error(int *postfix, int *end, int *p)
|
|
{
|
|
#ifdef NFA_REGEXP_ERROR_LOG
|
|
FILE *df;
|
|
int *p2;
|
|
|
|
df = fopen(NFA_REGEXP_ERROR_LOG, "a");
|
|
if (df) {
|
|
fprintf(df, "Error popping the stack!\n");
|
|
# ifdef REGEXP_DEBUG
|
|
fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr);
|
|
# endif
|
|
fprintf(df, "Postfix form is: ");
|
|
# ifdef REGEXP_DEBUG
|
|
for (p2 = postfix; p2 < end; p2++) {
|
|
nfa_set_code(*p2);
|
|
fprintf(df, "%s, ", code);
|
|
}
|
|
nfa_set_code(*p);
|
|
fprintf(df, "\nCurrent position is: ");
|
|
for (p2 = postfix; p2 <= p; p2++) {
|
|
nfa_set_code(*p2);
|
|
fprintf(df, "%s, ", code);
|
|
}
|
|
# else
|
|
for (p2 = postfix; p2 < end; p2++) {
|
|
fprintf(df, "%d, ", *p2);
|
|
}
|
|
fprintf(df, "\nCurrent position is: ");
|
|
for (p2 = postfix; p2 <= p; p2++) {
|
|
fprintf(df, "%d, ", *p2);
|
|
}
|
|
# endif
|
|
fprintf(df, "\n--------------------------\n");
|
|
fclose(df);
|
|
}
|
|
#endif
|
|
emsg(_("E874: (NFA) Could not pop the stack!"));
|
|
}
|
|
|
|
// Push an item onto the stack.
|
|
static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end)
|
|
{
|
|
Frag_T *stackp = *p;
|
|
|
|
if (stackp >= stack_end) {
|
|
return;
|
|
}
|
|
*stackp = s;
|
|
*p = *p + 1;
|
|
}
|
|
|
|
// Pop an item from the stack.
|
|
static Frag_T st_pop(Frag_T **p, Frag_T *stack)
|
|
{
|
|
Frag_T *stackp;
|
|
|
|
*p = *p - 1;
|
|
stackp = *p;
|
|
if (stackp < stack) {
|
|
return empty;
|
|
}
|
|
return **p;
|
|
}
|
|
|
|
// Estimate the maximum byte length of anything matching "state".
|
|
// When unknown or unlimited return -1.
|
|
static int nfa_max_width(nfa_state_T *startstate, int depth)
|
|
{
|
|
int l, r;
|
|
nfa_state_T *state = startstate;
|
|
int len = 0;
|
|
|
|
// detect looping in a NFA_SPLIT
|
|
if (depth > 4) {
|
|
return -1;
|
|
}
|
|
|
|
while (state != NULL) {
|
|
switch (state->c) {
|
|
case NFA_END_INVISIBLE:
|
|
case NFA_END_INVISIBLE_NEG:
|
|
// the end, return what we have
|
|
return len;
|
|
|
|
case NFA_SPLIT:
|
|
// two alternatives, use the maximum
|
|
l = nfa_max_width(state->out, depth + 1);
|
|
r = nfa_max_width(state->out1, depth + 1);
|
|
if (l < 0 || r < 0) {
|
|
return -1;
|
|
}
|
|
return len + (l > r ? l : r);
|
|
|
|
case NFA_ANY:
|
|
case NFA_START_COLL:
|
|
case NFA_START_NEG_COLL:
|
|
// Matches some character, including composing chars.
|
|
len += MB_MAXBYTES;
|
|
if (state->c != NFA_ANY) {
|
|
// Skip over the characters.
|
|
state = state->out1->out;
|
|
continue;
|
|
}
|
|
break;
|
|
|
|
case NFA_DIGIT:
|
|
case NFA_WHITE:
|
|
case NFA_HEX:
|
|
case NFA_OCTAL:
|
|
// ascii
|
|
len++;
|
|
break;
|
|
|
|
case NFA_IDENT:
|
|
case NFA_SIDENT:
|
|
case NFA_KWORD:
|
|
case NFA_SKWORD:
|
|
case NFA_FNAME:
|
|
case NFA_SFNAME:
|
|
case NFA_PRINT:
|
|
case NFA_SPRINT:
|
|
case NFA_NWHITE:
|
|
case NFA_NDIGIT:
|
|
case NFA_NHEX:
|
|
case NFA_NOCTAL:
|
|
case NFA_WORD:
|
|
case NFA_NWORD:
|
|
case NFA_HEAD:
|
|
case NFA_NHEAD:
|
|
case NFA_ALPHA:
|
|
case NFA_NALPHA:
|
|
case NFA_LOWER:
|
|
case NFA_NLOWER:
|
|
case NFA_UPPER:
|
|
case NFA_NUPPER:
|
|
case NFA_LOWER_IC:
|
|
case NFA_NLOWER_IC:
|
|
case NFA_UPPER_IC:
|
|
case NFA_NUPPER_IC:
|
|
case NFA_ANY_COMPOSING:
|
|
// possibly non-ascii
|
|
len += 3;
|
|
break;
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
// zero-width, out1 points to the END state
|
|
state = state->out1->out;
|
|
continue;
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
case NFA_NEWL:
|
|
case NFA_SKIP:
|
|
// unknown width
|
|
return -1;
|
|
|
|
case NFA_BOL:
|
|
case NFA_EOL:
|
|
case NFA_BOF:
|
|
case NFA_EOF:
|
|
case NFA_BOW:
|
|
case NFA_EOW:
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_MCLOSE:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_NOPEN:
|
|
case NFA_NCLOSE:
|
|
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT:
|
|
case NFA_VISUAL:
|
|
case NFA_LNUM:
|
|
case NFA_CURSOR:
|
|
case NFA_COL:
|
|
case NFA_VCOL:
|
|
case NFA_MARK:
|
|
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
case NFA_OPT_CHARS:
|
|
case NFA_EMPTY:
|
|
case NFA_START_PATTERN:
|
|
case NFA_END_PATTERN:
|
|
case NFA_COMPOSING:
|
|
case NFA_END_COMPOSING:
|
|
// zero-width
|
|
break;
|
|
|
|
default:
|
|
if (state->c < 0) {
|
|
// don't know what this is
|
|
return -1;
|
|
}
|
|
// normal character
|
|
len += utf_char2len(state->c);
|
|
break;
|
|
}
|
|
|
|
// normal way to continue
|
|
state = state->out;
|
|
}
|
|
|
|
// unrecognized, "cannot happen"
|
|
return -1;
|
|
}
|
|
|
|
// Convert a postfix form into its equivalent NFA.
|
|
// Return the NFA start state on success, NULL otherwise.
|
|
static nfa_state_T *post2nfa(int *postfix, int *end, int nfa_calc_size)
|
|
{
|
|
int *p;
|
|
int mopen;
|
|
int mclose;
|
|
Frag_T *stack = NULL;
|
|
Frag_T *stackp = NULL;
|
|
Frag_T *stack_end = NULL;
|
|
Frag_T e1;
|
|
Frag_T e2;
|
|
Frag_T e;
|
|
nfa_state_T *s;
|
|
nfa_state_T *s1;
|
|
nfa_state_T *matchstate;
|
|
nfa_state_T *ret = NULL;
|
|
|
|
if (postfix == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
#define PUSH(s) st_push((s), &stackp, stack_end)
|
|
#define POP() st_pop(&stackp, stack); \
|
|
if (stackp < stack) { \
|
|
st_error(postfix, end, p); \
|
|
xfree(stack); \
|
|
return NULL; \
|
|
}
|
|
|
|
if (nfa_calc_size == false) {
|
|
// Allocate space for the stack. Max states on the stack: "nstate".
|
|
stack = xmalloc((size_t)(nstate + 1) * sizeof(Frag_T));
|
|
stackp = stack;
|
|
stack_end = stack + (nstate + 1);
|
|
}
|
|
|
|
for (p = postfix; p < end; p++) {
|
|
switch (*p) {
|
|
case NFA_CONCAT:
|
|
// Concatenation.
|
|
// Pay attention: this operator does not exist in the r.e. itself
|
|
// (it is implicit, really). It is added when r.e. is translated
|
|
// to postfix form in re2post().
|
|
if (nfa_calc_size == true) {
|
|
// nstate += 0;
|
|
break;
|
|
}
|
|
e2 = POP();
|
|
e1 = POP();
|
|
patch(e1.out, e2.start);
|
|
PUSH(frag(e1.start, e2.out));
|
|
break;
|
|
|
|
case NFA_OR:
|
|
// Alternation
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e2 = POP();
|
|
e1 = POP();
|
|
s = alloc_state(NFA_SPLIT, e1.start, e2.start);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, append(e1.out, e2.out)));
|
|
break;
|
|
|
|
case NFA_STAR:
|
|
// Zero or more, prefer more
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, e.start, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s);
|
|
PUSH(frag(s, list1(&s->out1)));
|
|
break;
|
|
|
|
case NFA_STAR_NONGREEDY:
|
|
// Zero or more, prefer zero
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, NULL, e.start);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s);
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
|
|
case NFA_QUEST:
|
|
// one or zero atoms=> greedy match
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, e.start, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, append(e.out, list1(&s->out1))));
|
|
break;
|
|
|
|
case NFA_QUEST_NONGREEDY:
|
|
// zero or one atoms => non-greedy match
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_SPLIT, NULL, e.start);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, append(e.out, list1(&s->out))));
|
|
break;
|
|
|
|
case NFA_END_COLL:
|
|
case NFA_END_NEG_COLL:
|
|
// On the stack is the sequence starting with NFA_START_COLL or
|
|
// NFA_START_NEG_COLL and all possible characters. Patch it to
|
|
// add the output to the start.
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s = alloc_state(NFA_END_COLL, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s);
|
|
e.start->out1 = s;
|
|
PUSH(frag(e.start, list1(&s->out)));
|
|
break;
|
|
|
|
case NFA_RANGE:
|
|
// Before this are two characters, the low and high end of a
|
|
// range. Turn them into two states with MIN and MAX.
|
|
if (nfa_calc_size == true) {
|
|
// nstate += 0;
|
|
break;
|
|
}
|
|
e2 = POP();
|
|
e1 = POP();
|
|
e2.start->val = e2.start->c;
|
|
e2.start->c = NFA_RANGE_MAX;
|
|
e1.start->val = e1.start->c;
|
|
e1.start->c = NFA_RANGE_MIN;
|
|
patch(e1.out, e2.start);
|
|
PUSH(frag(e1.start, e2.out));
|
|
break;
|
|
|
|
case NFA_EMPTY:
|
|
// 0-length, used in a repetition with max/min count of 0
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
s = alloc_state(NFA_EMPTY, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
|
|
case NFA_OPT_CHARS: {
|
|
int n;
|
|
|
|
// \%[abc] implemented as:
|
|
// NFA_SPLIT
|
|
// +-CHAR(a)
|
|
// | +-NFA_SPLIT
|
|
// | +-CHAR(b)
|
|
// | | +-NFA_SPLIT
|
|
// | | +-CHAR(c)
|
|
// | | | +-next
|
|
// | | +- next
|
|
// | +- next
|
|
// +- next
|
|
n = *++p; // get number of characters
|
|
if (nfa_calc_size == true) {
|
|
nstate += n;
|
|
break;
|
|
}
|
|
s = NULL; // avoid compiler warning
|
|
e1.out = NULL; // stores list with out1's
|
|
s1 = NULL; // previous NFA_SPLIT to connect to
|
|
while (n-- > 0) {
|
|
e = POP(); // get character
|
|
s = alloc_state(NFA_SPLIT, e.start, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
if (e1.out == NULL) {
|
|
e1 = e;
|
|
}
|
|
patch(e.out, s1);
|
|
append(e1.out, list1(&s->out1));
|
|
s1 = s;
|
|
}
|
|
PUSH(frag(s, e1.out));
|
|
break;
|
|
}
|
|
|
|
case NFA_PREV_ATOM_NO_WIDTH:
|
|
case NFA_PREV_ATOM_NO_WIDTH_NEG:
|
|
case NFA_PREV_ATOM_JUST_BEFORE:
|
|
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
|
|
case NFA_PREV_ATOM_LIKE_PATTERN: {
|
|
int before = (*p == NFA_PREV_ATOM_JUST_BEFORE
|
|
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG);
|
|
int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN);
|
|
int start_state;
|
|
int end_state;
|
|
int n = 0;
|
|
nfa_state_T *zend;
|
|
nfa_state_T *skip;
|
|
|
|
switch (*p) {
|
|
case NFA_PREV_ATOM_NO_WIDTH:
|
|
start_state = NFA_START_INVISIBLE;
|
|
end_state = NFA_END_INVISIBLE;
|
|
break;
|
|
case NFA_PREV_ATOM_NO_WIDTH_NEG:
|
|
start_state = NFA_START_INVISIBLE_NEG;
|
|
end_state = NFA_END_INVISIBLE_NEG;
|
|
break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE:
|
|
start_state = NFA_START_INVISIBLE_BEFORE;
|
|
end_state = NFA_END_INVISIBLE;
|
|
break;
|
|
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
|
|
start_state = NFA_START_INVISIBLE_BEFORE_NEG;
|
|
end_state = NFA_END_INVISIBLE_NEG;
|
|
break;
|
|
default: // NFA_PREV_ATOM_LIKE_PATTERN:
|
|
start_state = NFA_START_PATTERN;
|
|
end_state = NFA_END_PATTERN;
|
|
break;
|
|
}
|
|
|
|
if (before) {
|
|
n = *++p; // get the count
|
|
}
|
|
// The \@= operator: match the preceding atom with zero width.
|
|
// The \@! operator: no match for the preceding atom.
|
|
// The \@<= operator: match for the preceding atom.
|
|
// The \@<! operator: no match for the preceding atom.
|
|
// Surrounds the preceding atom with START_INVISIBLE and
|
|
// END_INVISIBLE, similarly to MOPEN.
|
|
|
|
if (nfa_calc_size == true) {
|
|
nstate += pattern ? 4 : 2;
|
|
break;
|
|
}
|
|
e = POP();
|
|
s1 = alloc_state(end_state, NULL, NULL);
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
|
|
s = alloc_state(start_state, e.start, s1);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
if (pattern) {
|
|
// NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows.
|
|
skip = alloc_state(NFA_SKIP, NULL, NULL);
|
|
if (skip == NULL) {
|
|
goto theend;
|
|
}
|
|
zend = alloc_state(NFA_ZEND, s1, NULL);
|
|
if (zend == NULL) {
|
|
goto theend;
|
|
}
|
|
s1->out= skip;
|
|
patch(e.out, zend);
|
|
PUSH(frag(s, list1(&skip->out)));
|
|
} else {
|
|
patch(e.out, s1);
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
if (before) {
|
|
if (n <= 0) {
|
|
// See if we can guess the maximum width, it avoids a
|
|
// lot of pointless tries.
|
|
n = nfa_max_width(e.start, 0);
|
|
}
|
|
s->val = n; // store the count
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_COMPOSING: // char with composing char
|
|
FALLTHROUGH;
|
|
|
|
case NFA_MOPEN: // \( \) Submatch
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN: // \z( \) Submatch
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_NOPEN: // \%( \) "Invisible Submatch"
|
|
if (nfa_calc_size == true) {
|
|
nstate += 2;
|
|
break;
|
|
}
|
|
|
|
mopen = *p;
|
|
switch (*p) {
|
|
case NFA_NOPEN:
|
|
mclose = NFA_NCLOSE; break;
|
|
case NFA_ZOPEN:
|
|
mclose = NFA_ZCLOSE; break;
|
|
case NFA_ZOPEN1:
|
|
mclose = NFA_ZCLOSE1; break;
|
|
case NFA_ZOPEN2:
|
|
mclose = NFA_ZCLOSE2; break;
|
|
case NFA_ZOPEN3:
|
|
mclose = NFA_ZCLOSE3; break;
|
|
case NFA_ZOPEN4:
|
|
mclose = NFA_ZCLOSE4; break;
|
|
case NFA_ZOPEN5:
|
|
mclose = NFA_ZCLOSE5; break;
|
|
case NFA_ZOPEN6:
|
|
mclose = NFA_ZCLOSE6; break;
|
|
case NFA_ZOPEN7:
|
|
mclose = NFA_ZCLOSE7; break;
|
|
case NFA_ZOPEN8:
|
|
mclose = NFA_ZCLOSE8; break;
|
|
case NFA_ZOPEN9:
|
|
mclose = NFA_ZCLOSE9; break;
|
|
case NFA_COMPOSING:
|
|
mclose = NFA_END_COMPOSING; break;
|
|
default:
|
|
// NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9
|
|
mclose = *p + NSUBEXP;
|
|
break;
|
|
}
|
|
|
|
// Allow "NFA_MOPEN" as a valid postfix representation for
|
|
// the empty regexp "". In this case, the NFA will be
|
|
// NFA_MOPEN -> NFA_MCLOSE. Note that this also allows
|
|
// empty groups of parenthesis, and empty mbyte chars
|
|
if (stackp == stack) {
|
|
s = alloc_state(mopen, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
s1 = alloc_state(mclose, NULL, NULL);
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(list1(&s->out), s1);
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
break;
|
|
}
|
|
|
|
// At least one node was emitted before NFA_MOPEN, so
|
|
// at least one node will be between NFA_MOPEN and NFA_MCLOSE
|
|
e = POP();
|
|
s = alloc_state(mopen, e.start, NULL); // `('
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
|
|
s1 = alloc_state(mclose, NULL, NULL); // `)'
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(e.out, s1);
|
|
|
|
if (mopen == NFA_COMPOSING) {
|
|
// COMPOSING->out1 = END_COMPOSING
|
|
patch(list1(&s->out1), s1);
|
|
}
|
|
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
break;
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
if (nfa_calc_size == true) {
|
|
nstate += 2;
|
|
break;
|
|
}
|
|
s = alloc_state(*p, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
s1 = alloc_state(NFA_SKIP, NULL, NULL);
|
|
if (s1 == NULL) {
|
|
goto theend;
|
|
}
|
|
patch(list1(&s->out), s1);
|
|
PUSH(frag(s, list1(&s1->out)));
|
|
break;
|
|
|
|
case NFA_LNUM:
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_VCOL:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_COL:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_MARK:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT: {
|
|
int n = *++p; // lnum, col or mark name
|
|
|
|
if (nfa_calc_size == true) {
|
|
nstate += 1;
|
|
break;
|
|
}
|
|
s = alloc_state(p[-1], NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
s->val = n;
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
}
|
|
|
|
case NFA_ZSTART:
|
|
case NFA_ZEND:
|
|
default:
|
|
// Operands
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
break;
|
|
}
|
|
s = alloc_state(*p, NULL, NULL);
|
|
if (s == NULL) {
|
|
goto theend;
|
|
}
|
|
PUSH(frag(s, list1(&s->out)));
|
|
break;
|
|
} // switch(*p)
|
|
} // for(p = postfix; *p; ++p)
|
|
|
|
if (nfa_calc_size == true) {
|
|
nstate++;
|
|
goto theend; // Return value when counting size is ignored anyway
|
|
}
|
|
|
|
e = POP();
|
|
if (stackp != stack) {
|
|
xfree(stack);
|
|
EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA),"
|
|
"too many states left on stack"));
|
|
}
|
|
|
|
if (istate >= nstate) {
|
|
xfree(stack);
|
|
EMSG_RET_NULL(_("E876: (NFA regexp) "
|
|
"Not enough space to store the whole NFA "));
|
|
}
|
|
|
|
matchstate = &state_ptr[istate++]; // the match state
|
|
matchstate->c = NFA_MATCH;
|
|
matchstate->out = matchstate->out1 = NULL;
|
|
matchstate->id = 0;
|
|
|
|
patch(e.out, matchstate);
|
|
ret = e.start;
|
|
|
|
theend:
|
|
xfree(stack);
|
|
return ret;
|
|
|
|
#undef POP1
|
|
#undef PUSH1
|
|
#undef POP2
|
|
#undef PUSH2
|
|
#undef POP
|
|
#undef PUSH
|
|
}
|
|
|
|
// After building the NFA program, inspect it to add optimization hints.
|
|
static void nfa_postprocess(nfa_regprog_T *prog)
|
|
{
|
|
int i;
|
|
int c;
|
|
|
|
for (i = 0; i < prog->nstate; i++) {
|
|
c = prog->state[i].c;
|
|
if (c == NFA_START_INVISIBLE
|
|
|| c == NFA_START_INVISIBLE_NEG
|
|
|| c == NFA_START_INVISIBLE_BEFORE
|
|
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
|
|
int directly;
|
|
|
|
// Do it directly when what follows is possibly the end of the
|
|
// match.
|
|
if (match_follows(prog->state[i].out1->out, 0)) {
|
|
directly = true;
|
|
} else {
|
|
int ch_invisible = failure_chance(prog->state[i].out, 0);
|
|
int ch_follows = failure_chance(prog->state[i].out1->out, 0);
|
|
|
|
// Postpone when the invisible match is expensive or has a
|
|
// lower chance of failing.
|
|
if (c == NFA_START_INVISIBLE_BEFORE
|
|
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
|
|
// "before" matches are very expensive when
|
|
// unbounded, always prefer what follows then,
|
|
// unless what follows will always match.
|
|
// Otherwise strongly prefer what follows.
|
|
if (prog->state[i].val <= 0 && ch_follows > 0) {
|
|
directly = false;
|
|
} else {
|
|
directly = ch_follows * 10 < ch_invisible;
|
|
}
|
|
} else {
|
|
// normal invisible, first do the one with the
|
|
// highest failure chance
|
|
directly = ch_follows < ch_invisible;
|
|
}
|
|
}
|
|
if (directly) {
|
|
// switch to the _FIRST state
|
|
prog->state[i].c++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////
|
|
// NFA execution code.
|
|
/////////////////////////////////////////////////////////////////
|
|
|
|
// Values for done in nfa_pim_T.
|
|
#define NFA_PIM_UNUSED 0 // pim not used
|
|
#define NFA_PIM_TODO 1 // pim not done yet
|
|
#define NFA_PIM_MATCH 2 // pim executed, matches
|
|
#define NFA_PIM_NOMATCH 3 // pim executed, no match
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static void log_subsexpr(regsubs_T *subs)
|
|
{
|
|
log_subexpr(&subs->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
log_subexpr(&subs->synt);
|
|
}
|
|
}
|
|
|
|
static void log_subexpr(regsub_T *sub)
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < sub->in_use; j++) {
|
|
if (REG_MULTI) {
|
|
fprintf(log_fd, "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n",
|
|
j,
|
|
sub->list.multi[j].start_col,
|
|
(int)sub->list.multi[j].start_lnum,
|
|
sub->list.multi[j].end_col,
|
|
(int)sub->list.multi[j].end_lnum);
|
|
} else {
|
|
char *s = (char *)sub->list.line[j].start;
|
|
char *e = (char *)sub->list.line[j].end;
|
|
|
|
fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n",
|
|
j,
|
|
s == NULL ? "NULL" : s,
|
|
e == NULL ? "NULL" : e);
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *pim_info(const nfa_pim_T *pim)
|
|
{
|
|
static char buf[30];
|
|
|
|
if (pim == NULL || pim->result == NFA_PIM_UNUSED) {
|
|
buf[0] = NUL;
|
|
} else {
|
|
snprintf(buf, sizeof(buf), " PIM col %d",
|
|
REG_MULTI
|
|
? (int)pim->end.pos.col
|
|
: (int)(pim->end.ptr - rex.input));
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Used during execution: whether a match has been found.
|
|
static int nfa_match;
|
|
static proftime_T *nfa_time_limit;
|
|
static int *nfa_timed_out;
|
|
static int nfa_time_count;
|
|
|
|
// Copy postponed invisible match info from "from" to "to".
|
|
static void copy_pim(nfa_pim_T *to, nfa_pim_T *from)
|
|
{
|
|
to->result = from->result;
|
|
to->state = from->state;
|
|
copy_sub(&to->subs.norm, &from->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&to->subs.synt, &from->subs.synt);
|
|
}
|
|
to->end = from->end;
|
|
}
|
|
|
|
static void clear_sub(regsub_T *sub)
|
|
{
|
|
if (REG_MULTI) {
|
|
// Use 0xff to set lnum to -1
|
|
memset(sub->list.multi, 0xff, sizeof(struct multipos) * (size_t)rex.nfa_nsubexpr);
|
|
} else {
|
|
memset(sub->list.line, 0, sizeof(struct linepos) * (size_t)rex.nfa_nsubexpr);
|
|
}
|
|
sub->in_use = 0;
|
|
}
|
|
|
|
// Copy the submatches from "from" to "to".
|
|
static void copy_sub(regsub_T *to, regsub_T *from)
|
|
{
|
|
to->in_use = from->in_use;
|
|
if (from->in_use <= 0) {
|
|
return;
|
|
}
|
|
|
|
// Copy the match start and end positions.
|
|
if (REG_MULTI) {
|
|
memmove(&to->list.multi[0], &from->list.multi[0],
|
|
sizeof(struct multipos) * (size_t)from->in_use);
|
|
to->orig_start_col = from->orig_start_col;
|
|
} else {
|
|
memmove(&to->list.line[0], &from->list.line[0],
|
|
sizeof(struct linepos) * (size_t)from->in_use);
|
|
}
|
|
}
|
|
|
|
// Like copy_sub() but exclude the main match.
|
|
static void copy_sub_off(regsub_T *to, regsub_T *from)
|
|
{
|
|
if (to->in_use < from->in_use) {
|
|
to->in_use = from->in_use;
|
|
}
|
|
if (from->in_use <= 1) {
|
|
return;
|
|
}
|
|
|
|
// Copy the match start and end positions.
|
|
if (REG_MULTI) {
|
|
memmove(&to->list.multi[1], &from->list.multi[1],
|
|
sizeof(struct multipos) * (size_t)(from->in_use - 1));
|
|
} else {
|
|
memmove(&to->list.line[1], &from->list.line[1],
|
|
sizeof(struct linepos) * (size_t)(from->in_use - 1));
|
|
}
|
|
}
|
|
|
|
// Like copy_sub() but only do the end of the main match if \ze is present.
|
|
static void copy_ze_off(regsub_T *to, regsub_T *from)
|
|
{
|
|
if (!rex.nfa_has_zend) {
|
|
return;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
if (from->list.multi[0].end_lnum >= 0) {
|
|
to->list.multi[0].end_lnum = from->list.multi[0].end_lnum;
|
|
to->list.multi[0].end_col = from->list.multi[0].end_col;
|
|
}
|
|
} else {
|
|
if (from->list.line[0].end != NULL) {
|
|
to->list.line[0].end = from->list.line[0].end;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return true if "sub1" and "sub2" have the same start positions.
|
|
// When using back-references also check the end position.
|
|
static bool sub_equal(regsub_T *sub1, regsub_T *sub2)
|
|
{
|
|
int i;
|
|
int todo;
|
|
linenr_T s1;
|
|
linenr_T s2;
|
|
uint8_t *sp1;
|
|
uint8_t *sp2;
|
|
|
|
todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use;
|
|
if (REG_MULTI) {
|
|
for (i = 0; i < todo; i++) {
|
|
if (i < sub1->in_use) {
|
|
s1 = sub1->list.multi[i].start_lnum;
|
|
} else {
|
|
s1 = -1;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
s2 = sub2->list.multi[i].start_lnum;
|
|
} else {
|
|
s2 = -1;
|
|
}
|
|
if (s1 != s2) {
|
|
return false;
|
|
}
|
|
if (s1 != -1 && sub1->list.multi[i].start_col
|
|
!= sub2->list.multi[i].start_col) {
|
|
return false;
|
|
}
|
|
if (rex.nfa_has_backref) {
|
|
if (i < sub1->in_use) {
|
|
s1 = sub1->list.multi[i].end_lnum;
|
|
} else {
|
|
s1 = -1;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
s2 = sub2->list.multi[i].end_lnum;
|
|
} else {
|
|
s2 = -1;
|
|
}
|
|
if (s1 != s2) {
|
|
return false;
|
|
}
|
|
if (s1 != -1
|
|
&& sub1->list.multi[i].end_col != sub2->list.multi[i].end_col) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < todo; i++) {
|
|
if (i < sub1->in_use) {
|
|
sp1 = sub1->list.line[i].start;
|
|
} else {
|
|
sp1 = NULL;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
sp2 = sub2->list.line[i].start;
|
|
} else {
|
|
sp2 = NULL;
|
|
}
|
|
if (sp1 != sp2) {
|
|
return false;
|
|
}
|
|
if (rex.nfa_has_backref) {
|
|
if (i < sub1->in_use) {
|
|
sp1 = sub1->list.line[i].end;
|
|
} else {
|
|
sp1 = NULL;
|
|
}
|
|
if (i < sub2->in_use) {
|
|
sp2 = sub2->list.line[i].end;
|
|
} else {
|
|
sp2 = NULL;
|
|
}
|
|
if (sp1 != sp2) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
static void open_debug_log(TriState result)
|
|
{
|
|
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
if (log_fd == NULL) {
|
|
emsg(_(e_log_open_failed));
|
|
log_fd = stderr;
|
|
}
|
|
|
|
fprintf(log_fd, "****************************\n");
|
|
fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n");
|
|
fprintf(log_fd, "MATCH = %s\n", result == kTrue ? "OK" : result == kNone ? "MAYBE" : "FALSE");
|
|
fprintf(log_fd, "****************************\n");
|
|
}
|
|
|
|
static void report_state(char *action, regsub_T *sub, nfa_state_T *state, int lid, nfa_pim_T *pim)
|
|
{
|
|
int col;
|
|
|
|
if (sub->in_use <= 0) {
|
|
col = -1;
|
|
} else if (REG_MULTI) {
|
|
col = sub->list.multi[0].start_col;
|
|
} else {
|
|
col = (int)(sub->list.line[0].start - rex.line);
|
|
}
|
|
nfa_set_code(state->c);
|
|
if (log_fd == NULL) {
|
|
open_debug_log(kNone);
|
|
}
|
|
fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n",
|
|
action, abs(state->id), lid, state->c, code, col,
|
|
pim_info(pim));
|
|
}
|
|
|
|
#endif
|
|
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs pointers to subexpressions
|
|
/// @param pim postponed match or NULL
|
|
///
|
|
/// @return true if the same state is already in list "l" with the same
|
|
/// positions as "subs".
|
|
static bool has_state_with_pos(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2, 3)
|
|
{
|
|
for (int i = 0; i < l->n; i++) {
|
|
nfa_thread_T *thread = &l->t[i];
|
|
if (thread->state->id == state->id
|
|
&& sub_equal(&thread->subs.norm, &subs->norm)
|
|
&& (!rex.nfa_has_zsubexpr
|
|
|| sub_equal(&thread->subs.synt, &subs->synt))
|
|
&& pim_equal(&thread->pim, pim)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Return true if "one" and "two" are equal. That includes when both are not
|
|
// set.
|
|
static bool pim_equal(const nfa_pim_T *one, const nfa_pim_T *two)
|
|
{
|
|
const bool one_unused = (one == NULL || one->result == NFA_PIM_UNUSED);
|
|
const bool two_unused = (two == NULL || two->result == NFA_PIM_UNUSED);
|
|
|
|
if (one_unused) {
|
|
// one is unused: equal when two is also unused
|
|
return two_unused;
|
|
}
|
|
if (two_unused) {
|
|
// one is used and two is not: not equal
|
|
return false;
|
|
}
|
|
// compare the state id
|
|
if (one->state->id != two->state->id) {
|
|
return false;
|
|
}
|
|
// compare the position
|
|
if (REG_MULTI) {
|
|
return one->end.pos.lnum == two->end.pos.lnum
|
|
&& one->end.pos.col == two->end.pos.col;
|
|
}
|
|
return one->end.ptr == two->end.ptr;
|
|
}
|
|
|
|
// Return true if "state" leads to a NFA_MATCH without advancing the input.
|
|
static bool match_follows(const nfa_state_T *startstate, int depth)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
const nfa_state_T *state = startstate;
|
|
|
|
// avoid too much recursion
|
|
if (depth > 10) {
|
|
return false;
|
|
}
|
|
while (state != NULL) {
|
|
switch (state->c) {
|
|
case NFA_MATCH:
|
|
case NFA_MCLOSE:
|
|
case NFA_END_INVISIBLE:
|
|
case NFA_END_INVISIBLE_NEG:
|
|
case NFA_END_PATTERN:
|
|
return true;
|
|
|
|
case NFA_SPLIT:
|
|
return match_follows(state->out, depth + 1)
|
|
|| match_follows(state->out1, depth + 1);
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
case NFA_COMPOSING:
|
|
// skip ahead to next state
|
|
state = state->out1->out;
|
|
continue;
|
|
|
|
case NFA_ANY:
|
|
case NFA_ANY_COMPOSING:
|
|
case NFA_IDENT:
|
|
case NFA_SIDENT:
|
|
case NFA_KWORD:
|
|
case NFA_SKWORD:
|
|
case NFA_FNAME:
|
|
case NFA_SFNAME:
|
|
case NFA_PRINT:
|
|
case NFA_SPRINT:
|
|
case NFA_WHITE:
|
|
case NFA_NWHITE:
|
|
case NFA_DIGIT:
|
|
case NFA_NDIGIT:
|
|
case NFA_HEX:
|
|
case NFA_NHEX:
|
|
case NFA_OCTAL:
|
|
case NFA_NOCTAL:
|
|
case NFA_WORD:
|
|
case NFA_NWORD:
|
|
case NFA_HEAD:
|
|
case NFA_NHEAD:
|
|
case NFA_ALPHA:
|
|
case NFA_NALPHA:
|
|
case NFA_LOWER:
|
|
case NFA_NLOWER:
|
|
case NFA_UPPER:
|
|
case NFA_NUPPER:
|
|
case NFA_LOWER_IC:
|
|
case NFA_NLOWER_IC:
|
|
case NFA_UPPER_IC:
|
|
case NFA_NUPPER_IC:
|
|
case NFA_START_COLL:
|
|
case NFA_START_NEG_COLL:
|
|
case NFA_NEWL:
|
|
// state will advance input
|
|
return false;
|
|
|
|
default:
|
|
if (state->c > 0) {
|
|
// state will advance input
|
|
return false;
|
|
}
|
|
// Others: zero-width or possibly zero-width, might still find
|
|
// a match at the same position, keep looking.
|
|
break;
|
|
}
|
|
state = state->out;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs pointers to subexpressions
|
|
///
|
|
/// @return true if "state" is already in list "l".
|
|
static bool state_in_list(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs)
|
|
FUNC_ATTR_NONNULL_ALL
|
|
{
|
|
if (state->lastlist[nfa_ll_index] == l->id) {
|
|
if (!rex.nfa_has_backref || has_state_with_pos(l, state, subs, NULL)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Offset used for "off" by addstate_here().
|
|
#define ADDSTATE_HERE_OFFSET 10
|
|
|
|
/// Add "state" and possibly what follows to state list ".".
|
|
///
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs_arg pointers to subexpressions
|
|
/// @param pim postponed look-behind match
|
|
/// @param off_arg byte offset, when -1 go to next line
|
|
///
|
|
/// @return "subs_arg", possibly copied into temp_subs.
|
|
/// NULL when recursiveness is too deep.
|
|
static regsubs_T *addstate(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs_arg, nfa_pim_T *pim,
|
|
int off_arg)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2) FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
int subidx;
|
|
int off = off_arg;
|
|
int add_here = false;
|
|
int listindex = 0;
|
|
int k;
|
|
int found = false;
|
|
nfa_thread_T *thread;
|
|
struct multipos save_multipos;
|
|
int save_in_use;
|
|
uint8_t *save_ptr;
|
|
int i;
|
|
regsub_T *sub;
|
|
regsubs_T *subs = subs_arg;
|
|
static regsubs_T temp_subs;
|
|
#ifdef REGEXP_DEBUG
|
|
int did_print = false;
|
|
#endif
|
|
static int depth = 0;
|
|
|
|
// This function is called recursively. When the depth is too much we run
|
|
// out of stack and crash, limit recursiveness here.
|
|
if (++depth >= 5000 || subs == NULL) {
|
|
depth--;
|
|
return NULL;
|
|
}
|
|
|
|
if (off_arg <= -ADDSTATE_HERE_OFFSET) {
|
|
add_here = true;
|
|
off = 0;
|
|
listindex = -(off_arg + ADDSTATE_HERE_OFFSET);
|
|
}
|
|
|
|
switch (state->c) {
|
|
case NFA_NCLOSE:
|
|
case NFA_MCLOSE:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_MOPEN:
|
|
case NFA_ZEND:
|
|
case NFA_SPLIT:
|
|
case NFA_EMPTY:
|
|
// These nodes are not added themselves but their "out" and/or
|
|
// "out1" may be added below.
|
|
break;
|
|
|
|
case NFA_BOL:
|
|
case NFA_BOF:
|
|
// "^" won't match past end-of-line, don't bother trying.
|
|
// Except when at the end of the line, or when we are going to the
|
|
// next line for a look-behind match.
|
|
if (rex.input > rex.line
|
|
&& *rex.input != NUL
|
|
&& (nfa_endp == NULL
|
|
|| !REG_MULTI
|
|
|| rex.lnum == nfa_endp->se_u.pos.lnum)) {
|
|
goto skip_add;
|
|
}
|
|
FALLTHROUGH;
|
|
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZSTART:
|
|
// These nodes need to be added so that we can bail out when it
|
|
// was added to this list before at the same position to avoid an
|
|
// endless loop for "\(\)*"
|
|
|
|
default:
|
|
if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) {
|
|
// This state is already in the list, don't add it again,
|
|
// unless it is an MOPEN that is used for a backreference or
|
|
// when there is a PIM. For NFA_MATCH check the position,
|
|
// lower position is preferred.
|
|
if (!rex.nfa_has_backref && pim == NULL && !l->has_pim
|
|
&& state->c != NFA_MATCH) {
|
|
// When called from addstate_here() do insert before
|
|
// existing states.
|
|
if (add_here) {
|
|
for (k = 0; k < l->n && k < listindex; k++) {
|
|
if (l->t[k].state->id == state->id) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!add_here || found) {
|
|
skip_add:
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_set_code(state->c);
|
|
fprintf(log_fd,
|
|
"> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n",
|
|
abs(state->id), l->id, state->c, code,
|
|
pim == NULL ? "NULL" : "yes", l->has_pim, found);
|
|
#endif
|
|
depth--;
|
|
return subs;
|
|
}
|
|
}
|
|
|
|
// Do not add the state again when it exists with the same
|
|
// positions.
|
|
if (has_state_with_pos(l, state, subs, pim)) {
|
|
goto skip_add;
|
|
}
|
|
}
|
|
|
|
// When there are backreferences or PIMs the number of states may
|
|
// be (a lot) bigger than anticipated.
|
|
if (l->n == l->len) {
|
|
const int newlen = l->len * 3 / 2 + 50;
|
|
const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T);
|
|
|
|
if ((long)(newsize >> 10) >= p_mmp) {
|
|
emsg(_(e_maxmempat));
|
|
depth--;
|
|
return NULL;
|
|
}
|
|
if (subs != &temp_subs) {
|
|
// "subs" may point into the current array, need to make a
|
|
// copy before it becomes invalid.
|
|
copy_sub(&temp_subs.norm, &subs->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&temp_subs.synt, &subs->synt);
|
|
}
|
|
subs = &temp_subs;
|
|
}
|
|
|
|
nfa_thread_T *const newt = xrealloc(l->t, newsize);
|
|
l->t = newt;
|
|
l->len = newlen;
|
|
}
|
|
|
|
// add the state to the list
|
|
state->lastlist[nfa_ll_index] = l->id;
|
|
thread = &l->t[l->n++];
|
|
thread->state = state;
|
|
if (pim == NULL) {
|
|
thread->pim.result = NFA_PIM_UNUSED;
|
|
} else {
|
|
copy_pim(&thread->pim, pim);
|
|
l->has_pim = true;
|
|
}
|
|
copy_sub(&thread->subs.norm, &subs->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&thread->subs.synt, &subs->synt);
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
report_state("Adding", &thread->subs.norm, state, l->id, pim);
|
|
did_print = true;
|
|
#endif
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (!did_print) {
|
|
report_state("Processing", &subs->norm, state, l->id, pim);
|
|
}
|
|
#endif
|
|
switch (state->c) {
|
|
case NFA_MATCH:
|
|
break;
|
|
|
|
case NFA_SPLIT:
|
|
// order matters here
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
subs = addstate(l, state->out1, subs, pim, off_arg);
|
|
break;
|
|
|
|
case NFA_EMPTY:
|
|
case NFA_NOPEN:
|
|
case NFA_NCLOSE:
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
break;
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_ZSTART:
|
|
if (state->c == NFA_ZSTART) {
|
|
subidx = 0;
|
|
sub = &subs->norm;
|
|
} else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { // -V560
|
|
subidx = state->c - NFA_ZOPEN;
|
|
sub = &subs->synt;
|
|
} else {
|
|
subidx = state->c - NFA_MOPEN;
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
// avoid compiler warnings
|
|
save_ptr = NULL;
|
|
CLEAR_FIELD(save_multipos);
|
|
|
|
// Set the position (with "off" added) in the subexpression. Save
|
|
// and restore it when it was in use. Otherwise fill any gap.
|
|
if (REG_MULTI) {
|
|
if (subidx < sub->in_use) {
|
|
save_multipos = sub->list.multi[subidx];
|
|
save_in_use = -1;
|
|
} else {
|
|
save_in_use = sub->in_use;
|
|
for (i = sub->in_use; i < subidx; i++) {
|
|
sub->list.multi[i].start_lnum = -1;
|
|
sub->list.multi[i].end_lnum = -1;
|
|
}
|
|
sub->in_use = subidx + 1;
|
|
}
|
|
if (off == -1) {
|
|
sub->list.multi[subidx].start_lnum = rex.lnum + 1;
|
|
sub->list.multi[subidx].start_col = 0;
|
|
} else {
|
|
sub->list.multi[subidx].start_lnum = rex.lnum;
|
|
sub->list.multi[subidx].start_col =
|
|
(colnr_T)(rex.input - rex.line + off);
|
|
}
|
|
sub->list.multi[subidx].end_lnum = -1;
|
|
} else {
|
|
if (subidx < sub->in_use) {
|
|
save_ptr = sub->list.line[subidx].start;
|
|
save_in_use = -1;
|
|
} else {
|
|
save_in_use = sub->in_use;
|
|
for (i = sub->in_use; i < subidx; i++) {
|
|
sub->list.line[i].start = NULL;
|
|
sub->list.line[i].end = NULL;
|
|
}
|
|
sub->in_use = subidx + 1;
|
|
}
|
|
sub->list.line[subidx].start = rex.input + off;
|
|
}
|
|
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
if (subs == NULL) {
|
|
break;
|
|
}
|
|
// "subs" may have changed, need to set "sub" again.
|
|
if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { // -V560
|
|
sub = &subs->synt;
|
|
} else {
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
if (save_in_use == -1) {
|
|
if (REG_MULTI) {
|
|
sub->list.multi[subidx] = save_multipos;
|
|
} else {
|
|
sub->list.line[subidx].start = save_ptr;
|
|
}
|
|
} else {
|
|
sub->in_use = save_in_use;
|
|
}
|
|
break;
|
|
|
|
case NFA_MCLOSE:
|
|
if (rex.nfa_has_zend
|
|
&& (REG_MULTI
|
|
? subs->norm.list.multi[0].end_lnum >= 0
|
|
: subs->norm.list.line[0].end != NULL)) {
|
|
// Do not overwrite the position set by \ze.
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
break;
|
|
}
|
|
FALLTHROUGH;
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_ZEND:
|
|
if (state->c == NFA_ZEND) {
|
|
subidx = 0;
|
|
sub = &subs->norm;
|
|
} else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { // -V560
|
|
subidx = state->c - NFA_ZCLOSE;
|
|
sub = &subs->synt;
|
|
} else {
|
|
subidx = state->c - NFA_MCLOSE;
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
// We don't fill in gaps here, there must have been an MOPEN that
|
|
// has done that.
|
|
save_in_use = sub->in_use;
|
|
if (sub->in_use <= subidx) {
|
|
sub->in_use = subidx + 1;
|
|
}
|
|
if (REG_MULTI) {
|
|
save_multipos = sub->list.multi[subidx];
|
|
if (off == -1) {
|
|
sub->list.multi[subidx].end_lnum = rex.lnum + 1;
|
|
sub->list.multi[subidx].end_col = 0;
|
|
} else {
|
|
sub->list.multi[subidx].end_lnum = rex.lnum;
|
|
sub->list.multi[subidx].end_col =
|
|
(colnr_T)(rex.input - rex.line + off);
|
|
}
|
|
// avoid compiler warnings
|
|
save_ptr = NULL;
|
|
} else {
|
|
save_ptr = sub->list.line[subidx].end;
|
|
sub->list.line[subidx].end = rex.input + off;
|
|
// avoid compiler warnings
|
|
CLEAR_FIELD(save_multipos);
|
|
}
|
|
|
|
subs = addstate(l, state->out, subs, pim, off_arg);
|
|
if (subs == NULL) {
|
|
break;
|
|
}
|
|
// "subs" may have changed, need to set "sub" again.
|
|
if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { // -V560
|
|
sub = &subs->synt;
|
|
} else {
|
|
sub = &subs->norm;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
sub->list.multi[subidx] = save_multipos;
|
|
} else {
|
|
sub->list.line[subidx].end = save_ptr;
|
|
}
|
|
sub->in_use = save_in_use;
|
|
break;
|
|
}
|
|
depth--;
|
|
return subs;
|
|
}
|
|
|
|
/// Like addstate(), but the new state(s) are put at position "*ip".
|
|
/// Used for zero-width matches, next state to use is the added one.
|
|
/// This makes sure the order of states to be tried does not change, which
|
|
/// matters for alternatives.
|
|
///
|
|
/// @param l runtime state list
|
|
/// @param state state to update
|
|
/// @param subs pointers to subexpressions
|
|
/// @param pim postponed look-behind match
|
|
static regsubs_T *addstate_here(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim,
|
|
int *ip)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2, 5) FUNC_ATTR_WARN_UNUSED_RESULT
|
|
{
|
|
int tlen = l->n;
|
|
int count;
|
|
int listidx = *ip;
|
|
|
|
// First add the state(s) at the end, so that we know how many there are.
|
|
// Pass the listidx as offset (avoids adding another argument to
|
|
// addstate()).
|
|
regsubs_T *r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET);
|
|
if (r == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
// when "*ip" was at the end of the list, nothing to do
|
|
if (listidx + 1 == tlen) {
|
|
return r;
|
|
}
|
|
|
|
// re-order to put the new state at the current position
|
|
count = l->n - tlen;
|
|
if (count == 0) {
|
|
return r; // no state got added
|
|
}
|
|
if (count == 1) {
|
|
// overwrite the current state
|
|
l->t[listidx] = l->t[l->n - 1];
|
|
} else if (count > 1) {
|
|
if (l->n + count - 1 >= l->len) {
|
|
// not enough space to move the new states, reallocate the list
|
|
// and move the states to the right position
|
|
const int newlen = l->len * 3 / 2 + 50;
|
|
const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T);
|
|
|
|
if ((long)(newsize >> 10) >= p_mmp) {
|
|
emsg(_(e_maxmempat));
|
|
return NULL;
|
|
}
|
|
nfa_thread_T *const newl = xmalloc(newsize);
|
|
l->len = newlen;
|
|
memmove(&(newl[0]),
|
|
&(l->t[0]),
|
|
sizeof(nfa_thread_T) * (size_t)listidx);
|
|
memmove(&(newl[listidx]),
|
|
&(l->t[l->n - count]),
|
|
sizeof(nfa_thread_T) * (size_t)count);
|
|
memmove(&(newl[listidx + count]),
|
|
&(l->t[listidx + 1]),
|
|
sizeof(nfa_thread_T) * (size_t)(l->n - count - listidx - 1));
|
|
xfree(l->t);
|
|
l->t = newl;
|
|
} else {
|
|
// make space for new states, then move them from the
|
|
// end to the current position
|
|
memmove(&(l->t[listidx + count]),
|
|
&(l->t[listidx + 1]),
|
|
sizeof(nfa_thread_T) * (size_t)(l->n - listidx - 1));
|
|
memmove(&(l->t[listidx]),
|
|
&(l->t[l->n - 1]),
|
|
sizeof(nfa_thread_T) * (size_t)count);
|
|
}
|
|
}
|
|
l->n--;
|
|
*ip = listidx - 1;
|
|
|
|
return r;
|
|
}
|
|
|
|
// Check character class "class" against current character c.
|
|
static int check_char_class(int class, int c)
|
|
{
|
|
switch (class) {
|
|
case NFA_CLASS_ALNUM:
|
|
if (c >= 1 && c < 128 && isalnum(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_ALPHA:
|
|
if (c >= 1 && c < 128 && isalpha(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_BLANK:
|
|
if (c == ' ' || c == '\t') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_CNTRL:
|
|
if (c >= 1 && c <= 127 && iscntrl(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_DIGIT:
|
|
if (ascii_isdigit(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_GRAPH:
|
|
if (c >= 1 && c <= 127 && isgraph(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_LOWER:
|
|
if (mb_islower(c) && c != 170 && c != 186) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_PRINT:
|
|
if (vim_isprintc(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_PUNCT:
|
|
if (c >= 1 && c < 128 && ispunct(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_SPACE:
|
|
if ((c >= 9 && c <= 13) || (c == ' ')) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_UPPER:
|
|
if (mb_isupper(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_XDIGIT:
|
|
if (ascii_isxdigit(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_TAB:
|
|
if (c == '\t') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_RETURN:
|
|
if (c == '\r') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_BACKSPACE:
|
|
if (c == '\b') {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_ESCAPE:
|
|
if (c == ESC) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_IDENT:
|
|
if (vim_isIDc(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_KEYWORD:
|
|
if (reg_iswordc(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
case NFA_CLASS_FNAME:
|
|
if (vim_isfilec(c)) {
|
|
return OK;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// should not be here :P
|
|
siemsg(_(e_ill_char_class), (int64_t)class);
|
|
return FAIL;
|
|
}
|
|
return FAIL;
|
|
}
|
|
|
|
/// Check for a match with subexpression "subidx".
|
|
///
|
|
/// @param sub pointers to subexpressions
|
|
/// @param bytelen out: length of match in bytes
|
|
///
|
|
/// @return true if it matches.
|
|
static int match_backref(regsub_T *sub, int subidx, int *bytelen)
|
|
{
|
|
int len;
|
|
|
|
if (sub->in_use <= subidx) {
|
|
retempty:
|
|
// backref was not set, match an empty string
|
|
*bytelen = 0;
|
|
return true;
|
|
}
|
|
|
|
if (REG_MULTI) {
|
|
if (sub->list.multi[subidx].start_lnum < 0
|
|
|| sub->list.multi[subidx].end_lnum < 0) {
|
|
goto retempty;
|
|
}
|
|
if (sub->list.multi[subidx].start_lnum == rex.lnum
|
|
&& sub->list.multi[subidx].end_lnum == rex.lnum) {
|
|
len = sub->list.multi[subidx].end_col
|
|
- sub->list.multi[subidx].start_col;
|
|
if (cstrncmp((char *)rex.line + sub->list.multi[subidx].start_col,
|
|
(char *)rex.input, &len) == 0) {
|
|
*bytelen = len;
|
|
return true;
|
|
}
|
|
} else {
|
|
if (match_with_backref(sub->list.multi[subidx].start_lnum,
|
|
sub->list.multi[subidx].start_col,
|
|
sub->list.multi[subidx].end_lnum,
|
|
sub->list.multi[subidx].end_col,
|
|
bytelen) == RA_MATCH) {
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
if (sub->list.line[subidx].start == NULL
|
|
|| sub->list.line[subidx].end == NULL) {
|
|
goto retempty;
|
|
}
|
|
len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start);
|
|
if (cstrncmp((char *)sub->list.line[subidx].start, (char *)rex.input, &len) == 0) {
|
|
*bytelen = len;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Check for a match with \z subexpression "subidx".
|
|
///
|
|
/// @param bytelen out: length of match in bytes
|
|
///
|
|
/// @return true if it matches.
|
|
static int match_zref(int subidx, int *bytelen)
|
|
{
|
|
int len;
|
|
|
|
cleanup_zsubexpr();
|
|
if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) {
|
|
// backref was not set, match an empty string
|
|
*bytelen = 0;
|
|
return true;
|
|
}
|
|
|
|
len = (int)strlen((char *)re_extmatch_in->matches[subidx]);
|
|
if (cstrncmp((char *)re_extmatch_in->matches[subidx], (char *)rex.input, &len) == 0) {
|
|
*bytelen = len;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Save list IDs for all NFA states of "prog" into "list".
|
|
// Also reset the IDs to zero.
|
|
// Only used for the recursive value lastlist[1].
|
|
static void nfa_save_listids(nfa_regprog_T *prog, int *list)
|
|
{
|
|
int i;
|
|
nfa_state_T *p;
|
|
|
|
// Order in the list is reverse, it's a bit faster that way.
|
|
p = &prog->state[0];
|
|
for (i = prog->nstate; --i >= 0;) {
|
|
list[i] = p->lastlist[1];
|
|
p->lastlist[1] = 0;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
// Restore list IDs from "list" to all NFA states.
|
|
static void nfa_restore_listids(nfa_regprog_T *prog, int *list)
|
|
{
|
|
int i;
|
|
nfa_state_T *p;
|
|
|
|
p = &prog->state[0];
|
|
for (i = prog->nstate; --i >= 0;) {
|
|
p->lastlist[1] = list[i];
|
|
p++;
|
|
}
|
|
}
|
|
|
|
static bool nfa_re_num_cmp(uintmax_t val, int op, uintmax_t pos)
|
|
{
|
|
if (op == 1) {
|
|
return pos > val;
|
|
}
|
|
if (op == 2) {
|
|
return pos < val;
|
|
}
|
|
return val == pos;
|
|
}
|
|
|
|
// Recursively call nfa_regmatch()
|
|
// "pim" is NULL or contains info about a Postponed Invisible Match (start
|
|
// position).
|
|
static int recursive_regmatch(nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog,
|
|
regsubs_T *submatch, regsubs_T *m, int **listids, int *listids_len)
|
|
FUNC_ATTR_NONNULL_ARG(1, 3, 5, 6, 7)
|
|
{
|
|
const int save_reginput_col = (int)(rex.input - rex.line);
|
|
const int save_reglnum = rex.lnum;
|
|
const int save_nfa_match = nfa_match;
|
|
const int save_nfa_listid = rex.nfa_listid;
|
|
save_se_T *const save_nfa_endp = nfa_endp;
|
|
save_se_T endpos;
|
|
save_se_T *endposp = NULL;
|
|
int need_restore = false;
|
|
|
|
if (pim != NULL) {
|
|
// start at the position where the postponed match was
|
|
if (REG_MULTI) {
|
|
rex.input = rex.line + pim->end.pos.col;
|
|
} else {
|
|
rex.input = pim->end.ptr;
|
|
}
|
|
}
|
|
|
|
if (state->c == NFA_START_INVISIBLE_BEFORE
|
|
|| state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|
|
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
|
|
// The recursive match must end at the current position. When "pim" is
|
|
// not NULL it specifies the current position.
|
|
endposp = &endpos;
|
|
if (REG_MULTI) {
|
|
if (pim == NULL) {
|
|
endpos.se_u.pos.col = (int)(rex.input - rex.line);
|
|
endpos.se_u.pos.lnum = rex.lnum;
|
|
} else {
|
|
endpos.se_u.pos = pim->end.pos;
|
|
}
|
|
} else {
|
|
if (pim == NULL) {
|
|
endpos.se_u.ptr = rex.input;
|
|
} else {
|
|
endpos.se_u.ptr = pim->end.ptr;
|
|
}
|
|
}
|
|
|
|
// Go back the specified number of bytes, or as far as the
|
|
// start of the previous line, to try matching "\@<=" or
|
|
// not matching "\@<!". This is very inefficient, limit the number of
|
|
// bytes if possible.
|
|
if (state->val <= 0) {
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(--rex.lnum);
|
|
if (rex.line == NULL) {
|
|
// can't go before the first line
|
|
rex.line = (uint8_t *)reg_getline(++rex.lnum);
|
|
}
|
|
}
|
|
rex.input = rex.line;
|
|
} else {
|
|
if (REG_MULTI && (int)(rex.input - rex.line) < state->val) {
|
|
// Not enough bytes in this line, go to end of
|
|
// previous line.
|
|
rex.line = (uint8_t *)reg_getline(--rex.lnum);
|
|
if (rex.line == NULL) {
|
|
// can't go before the first line
|
|
rex.line = (uint8_t *)reg_getline(++rex.lnum);
|
|
rex.input = rex.line;
|
|
} else {
|
|
rex.input = rex.line + strlen((char *)rex.line);
|
|
}
|
|
}
|
|
if ((int)(rex.input - rex.line) >= state->val) {
|
|
rex.input -= state->val;
|
|
rex.input -= utf_head_off((char *)rex.line, (char *)rex.input);
|
|
} else {
|
|
rex.input = rex.line;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (log_fd != stderr) {
|
|
fclose(log_fd);
|
|
}
|
|
log_fd = NULL;
|
|
#endif
|
|
// Have to clear the lastlist field of the NFA nodes, so that
|
|
// nfa_regmatch() and addstate() can run properly after recursion.
|
|
if (nfa_ll_index == 1) {
|
|
// Already calling nfa_regmatch() recursively. Save the lastlist[1]
|
|
// values and clear them.
|
|
if (*listids == NULL || *listids_len < prog->nstate) {
|
|
xfree(*listids);
|
|
*listids = xmalloc(sizeof(**listids) * (size_t)prog->nstate);
|
|
*listids_len = prog->nstate;
|
|
}
|
|
nfa_save_listids(prog, *listids);
|
|
need_restore = true;
|
|
// any value of rex.nfa_listid will do
|
|
} else {
|
|
// First recursive nfa_regmatch() call, switch to the second lastlist
|
|
// entry. Make sure rex.nfa_listid is different from a previous
|
|
// recursive call, because some states may still have this ID.
|
|
nfa_ll_index++;
|
|
if (rex.nfa_listid <= rex.nfa_alt_listid) {
|
|
rex.nfa_listid = rex.nfa_alt_listid;
|
|
}
|
|
}
|
|
|
|
// Call nfa_regmatch() to check if the current concat matches at this
|
|
// position. The concat ends with the node NFA_END_INVISIBLE
|
|
nfa_endp = endposp;
|
|
const int result = nfa_regmatch(prog, state->out, submatch, m);
|
|
|
|
if (need_restore) {
|
|
nfa_restore_listids(prog, *listids);
|
|
} else {
|
|
nfa_ll_index--;
|
|
rex.nfa_alt_listid = rex.nfa_listid;
|
|
}
|
|
|
|
// restore position in input text
|
|
rex.lnum = save_reglnum;
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
}
|
|
rex.input = rex.line + save_reginput_col;
|
|
if (result != NFA_TOO_EXPENSIVE) {
|
|
nfa_match = save_nfa_match;
|
|
rex.nfa_listid = save_nfa_listid;
|
|
}
|
|
nfa_endp = save_nfa_endp;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
open_debug_log(result);
|
|
#endif
|
|
|
|
return result;
|
|
}
|
|
|
|
// Estimate the chance of a match with "state" failing.
|
|
// empty match: 0
|
|
// NFA_ANY: 1
|
|
// specific character: 99
|
|
static int failure_chance(nfa_state_T *state, int depth)
|
|
{
|
|
int c = state->c;
|
|
int l, r;
|
|
|
|
// detect looping
|
|
if (depth > 4) {
|
|
return 1;
|
|
}
|
|
|
|
switch (c) {
|
|
case NFA_SPLIT:
|
|
if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT) {
|
|
// avoid recursive stuff
|
|
return 1;
|
|
}
|
|
// two alternatives, use the lowest failure chance
|
|
l = failure_chance(state->out, depth + 1);
|
|
r = failure_chance(state->out1, depth + 1);
|
|
return l < r ? l : r;
|
|
|
|
case NFA_ANY:
|
|
// matches anything, unlikely to fail
|
|
return 1;
|
|
|
|
case NFA_MATCH:
|
|
case NFA_MCLOSE:
|
|
case NFA_ANY_COMPOSING:
|
|
// empty match works always
|
|
return 0;
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
case NFA_START_PATTERN:
|
|
// recursive regmatch is expensive, use low failure chance
|
|
return 5;
|
|
|
|
case NFA_BOL:
|
|
case NFA_EOL:
|
|
case NFA_BOF:
|
|
case NFA_EOF:
|
|
case NFA_NEWL:
|
|
return 99;
|
|
|
|
case NFA_BOW:
|
|
case NFA_EOW:
|
|
return 90;
|
|
|
|
case NFA_MOPEN:
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_ZCLOSE:
|
|
case NFA_ZCLOSE1:
|
|
case NFA_ZCLOSE2:
|
|
case NFA_ZCLOSE3:
|
|
case NFA_ZCLOSE4:
|
|
case NFA_ZCLOSE5:
|
|
case NFA_ZCLOSE6:
|
|
case NFA_ZCLOSE7:
|
|
case NFA_ZCLOSE8:
|
|
case NFA_ZCLOSE9:
|
|
case NFA_NOPEN:
|
|
case NFA_MCLOSE1:
|
|
case NFA_MCLOSE2:
|
|
case NFA_MCLOSE3:
|
|
case NFA_MCLOSE4:
|
|
case NFA_MCLOSE5:
|
|
case NFA_MCLOSE6:
|
|
case NFA_MCLOSE7:
|
|
case NFA_MCLOSE8:
|
|
case NFA_MCLOSE9:
|
|
case NFA_NCLOSE:
|
|
return failure_chance(state->out, depth + 1);
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
// backreferences don't match in many places
|
|
return 94;
|
|
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT:
|
|
case NFA_VISUAL:
|
|
// before/after positions don't match very often
|
|
return 85;
|
|
|
|
case NFA_LNUM:
|
|
return 90;
|
|
|
|
case NFA_CURSOR:
|
|
case NFA_COL:
|
|
case NFA_VCOL:
|
|
case NFA_MARK:
|
|
// specific positions rarely match
|
|
return 98;
|
|
|
|
case NFA_COMPOSING:
|
|
return 95;
|
|
|
|
default:
|
|
if (c > 0) {
|
|
// character match fails often
|
|
return 95;
|
|
}
|
|
}
|
|
|
|
// something else, includes character classes
|
|
return 50;
|
|
}
|
|
|
|
// Skip until the char "c" we know a match must start with.
|
|
static int skip_to_start(int c, colnr_T *colp)
|
|
{
|
|
const uint8_t *const s = (uint8_t *)cstrchr((char *)rex.line + *colp, c);
|
|
if (s == NULL) {
|
|
return FAIL;
|
|
}
|
|
*colp = (int)(s - rex.line);
|
|
return OK;
|
|
}
|
|
|
|
// Check for a match with match_text.
|
|
// Called after skip_to_start() has found regstart.
|
|
// Returns zero for no match, 1 for a match.
|
|
static long find_match_text(colnr_T *startcol, int regstart, uint8_t *match_text)
|
|
{
|
|
#define PTR2LEN(x) utf_ptr2len(x)
|
|
|
|
colnr_T col = *startcol;
|
|
int regstart_len = PTR2LEN((char *)rex.line + col);
|
|
|
|
for (;;) {
|
|
bool match = true;
|
|
uint8_t *s1 = match_text;
|
|
uint8_t *s2 = rex.line + col + regstart_len; // skip regstart
|
|
while (*s1) {
|
|
int c1_len = PTR2LEN((char *)s1);
|
|
int c1 = utf_ptr2char((char *)s1);
|
|
int c2_len = PTR2LEN((char *)s2);
|
|
int c2 = utf_ptr2char((char *)s2);
|
|
|
|
if ((c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2)))
|
|
|| c1_len != c2_len) {
|
|
match = false;
|
|
break;
|
|
}
|
|
s1 += c1_len;
|
|
s2 += c2_len;
|
|
}
|
|
if (match
|
|
// check that no composing char follows
|
|
&& !utf_iscomposing(utf_ptr2char((char *)s2))) {
|
|
cleanup_subexpr();
|
|
if (REG_MULTI) {
|
|
rex.reg_startpos[0].lnum = rex.lnum;
|
|
rex.reg_startpos[0].col = col;
|
|
rex.reg_endpos[0].lnum = rex.lnum;
|
|
rex.reg_endpos[0].col = (colnr_T)(s2 - rex.line);
|
|
} else {
|
|
rex.reg_startp[0] = rex.line + col;
|
|
rex.reg_endp[0] = s2;
|
|
}
|
|
*startcol = col;
|
|
return 1L;
|
|
}
|
|
|
|
// Try finding regstart after the current match.
|
|
col += regstart_len; // skip regstart
|
|
if (skip_to_start(regstart, &col) == FAIL) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
*startcol = col;
|
|
return 0L;
|
|
|
|
#undef PTR2LEN
|
|
}
|
|
|
|
static int nfa_did_time_out(void)
|
|
{
|
|
if (nfa_time_limit != NULL && profile_passed_limit(*nfa_time_limit)) {
|
|
if (nfa_timed_out != NULL) {
|
|
*nfa_timed_out = true;
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Main matching routine.
|
|
///
|
|
/// Run NFA to determine whether it matches rex.input.
|
|
///
|
|
/// When "nfa_endp" is not NULL it is a required end-of-match position.
|
|
///
|
|
/// Return true if there is a match, false if there is no match,
|
|
/// NFA_TOO_EXPENSIVE if we end up with too many states.
|
|
/// When there is a match "submatch" contains the positions.
|
|
///
|
|
/// Note: Caller must ensure that: start != NULL.
|
|
static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m)
|
|
FUNC_ATTR_NONNULL_ARG(1, 2, 4)
|
|
{
|
|
int result = false;
|
|
int flag = 0;
|
|
bool go_to_nextline = false;
|
|
nfa_thread_T *t;
|
|
nfa_list_T list[2];
|
|
int listidx;
|
|
nfa_list_T *thislist;
|
|
nfa_list_T *nextlist;
|
|
int *listids = NULL;
|
|
int listids_len = 0;
|
|
nfa_state_T *add_state;
|
|
bool add_here;
|
|
int add_count;
|
|
int add_off = 0;
|
|
int toplevel = start->c == NFA_MOPEN;
|
|
regsubs_T *r;
|
|
// Some patterns may take a long time to match, especially when using
|
|
// recursive_regmatch(). Allow interrupting them with CTRL-C.
|
|
fast_breakcheck();
|
|
if (got_int) {
|
|
return false;
|
|
}
|
|
if (nfa_did_time_out()) {
|
|
return false;
|
|
}
|
|
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a");
|
|
|
|
if (debug == NULL) {
|
|
semsg("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG);
|
|
return false;
|
|
}
|
|
#endif
|
|
nfa_match = false;
|
|
|
|
// Allocate memory for the lists of nodes.
|
|
size_t size = (size_t)(prog->nstate + 1) * sizeof(nfa_thread_T);
|
|
list[0].t = xmalloc(size);
|
|
list[0].len = prog->nstate + 1;
|
|
list[1].t = xmalloc(size);
|
|
list[1].len = prog->nstate + 1;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
if (log_fd == NULL) {
|
|
emsg(_(e_log_open_failed));
|
|
log_fd = stderr;
|
|
}
|
|
fprintf(log_fd, "**********************************\n");
|
|
nfa_set_code(start->c);
|
|
fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n",
|
|
abs(start->id), code);
|
|
fprintf(log_fd, "**********************************\n");
|
|
#endif
|
|
|
|
thislist = &list[0];
|
|
thislist->n = 0;
|
|
thislist->has_pim = false;
|
|
nextlist = &list[1];
|
|
nextlist->n = 0;
|
|
nextlist->has_pim = false;
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "(---) STARTSTATE first\n");
|
|
#endif
|
|
thislist->id = rex.nfa_listid + 1;
|
|
|
|
// Inline optimized code for addstate(thislist, start, m, 0) if we know
|
|
// it's the first MOPEN.
|
|
if (toplevel) {
|
|
if (REG_MULTI) {
|
|
m->norm.list.multi[0].start_lnum = rex.lnum;
|
|
m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line);
|
|
m->norm.orig_start_col = m->norm.list.multi[0].start_col;
|
|
} else {
|
|
m->norm.list.line[0].start = rex.input;
|
|
}
|
|
m->norm.in_use = 1;
|
|
r = addstate(thislist, start->out, m, NULL, 0);
|
|
} else {
|
|
r = addstate(thislist, start, m, NULL, 0);
|
|
}
|
|
if (r == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
|
|
#define ADD_STATE_IF_MATCH(state) \
|
|
if (result) { \
|
|
add_state = (state)->out; \
|
|
add_off = clen; \
|
|
}
|
|
|
|
// Run for each character.
|
|
for (;;) {
|
|
int curc = utf_ptr2char((char *)rex.input);
|
|
int clen = utfc_ptr2len((char *)rex.input);
|
|
if (curc == NUL) {
|
|
clen = 0;
|
|
go_to_nextline = false;
|
|
}
|
|
|
|
// swap lists
|
|
thislist = &list[flag];
|
|
nextlist = &list[flag ^= 1];
|
|
nextlist->n = 0; // clear nextlist
|
|
nextlist->has_pim = false;
|
|
rex.nfa_listid++;
|
|
if (prog->re_engine == AUTOMATIC_ENGINE
|
|
&& (rex.nfa_listid >= NFA_MAX_STATES)) {
|
|
// Too many states, retry with old engine.
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
|
|
thislist->id = rex.nfa_listid;
|
|
nextlist->id = rex.nfa_listid + 1;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "------------------------------------------\n");
|
|
fprintf(log_fd, ">>> Reginput is \"%s\"\n", rex.input);
|
|
fprintf(log_fd,
|
|
">>> Advanced one character... Current char is %c (code %d) \n",
|
|
curc,
|
|
(int)curc);
|
|
fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n);
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < thislist->n; i++) {
|
|
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
|
|
}
|
|
}
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
fprintf(debug, "\n-------------------\n");
|
|
#endif
|
|
// If the state lists are empty we can stop.
|
|
if (thislist->n == 0) {
|
|
break;
|
|
}
|
|
|
|
// compute nextlist
|
|
for (listidx = 0; listidx < thislist->n; listidx++) {
|
|
// If the list gets very long there probably is something wrong.
|
|
// At least allow interrupting with CTRL-C.
|
|
fast_breakcheck();
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
|
|
nfa_time_count = 0;
|
|
if (nfa_did_time_out()) {
|
|
break;
|
|
}
|
|
}
|
|
t = &thislist->t[listidx];
|
|
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
nfa_set_code(t->state->c);
|
|
fprintf(debug, "%s, ", code);
|
|
#endif
|
|
#ifdef REGEXP_DEBUG
|
|
{
|
|
int col;
|
|
|
|
if (t->subs.norm.in_use <= 0) {
|
|
col = -1;
|
|
} else if (REG_MULTI) {
|
|
col = t->subs.norm.list.multi[0].start_col;
|
|
} else {
|
|
col = (int)(t->subs.norm.list.line[0].start - rex.line);
|
|
}
|
|
nfa_set_code(t->state->c);
|
|
fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n",
|
|
abs(t->state->id), (int)t->state->c, code, col,
|
|
pim_info(&t->pim));
|
|
}
|
|
#endif
|
|
|
|
// Handle the possible codes of the current state.
|
|
// The most important is NFA_MATCH.
|
|
add_state = NULL;
|
|
add_here = false;
|
|
add_count = 0;
|
|
switch (t->state->c) {
|
|
case NFA_MATCH:
|
|
// If the match is not at the start of the line, ends before a
|
|
// composing characters and rex.reg_icombine is not set, that
|
|
// is not really a match.
|
|
if (!rex.reg_icombine
|
|
&& rex.input != rex.line
|
|
&& utf_iscomposing(curc)) {
|
|
break;
|
|
}
|
|
nfa_match = true;
|
|
copy_sub(&submatch->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&submatch->synt, &t->subs.synt);
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
log_subsexpr(&t->subs);
|
|
#endif
|
|
// Found the left-most longest match, do not look at any other
|
|
// states at this position. When the list of states is going
|
|
// to be empty quit without advancing, so that "rex.input" is
|
|
// correct.
|
|
if (nextlist->n == 0) {
|
|
clen = 0;
|
|
}
|
|
goto nextchar;
|
|
|
|
case NFA_END_INVISIBLE:
|
|
case NFA_END_INVISIBLE_NEG:
|
|
case NFA_END_PATTERN:
|
|
// This is only encountered after a NFA_START_INVISIBLE or
|
|
// NFA_START_INVISIBLE_BEFORE node.
|
|
// They surround a zero-width group, used with "\@=", "\&",
|
|
// "\@!", "\@<=" and "\@<!".
|
|
// If we got here, it means that the current "invisible" group
|
|
// finished successfully, so return control to the parent
|
|
// nfa_regmatch(). For a look-behind match only when it ends
|
|
// in the position in "nfa_endp".
|
|
// Submatches are stored in *m, and used in the parent call.
|
|
#ifdef REGEXP_DEBUG
|
|
if (nfa_endp != NULL) {
|
|
if (REG_MULTI) {
|
|
fprintf(log_fd,
|
|
"Current lnum: %d, endp lnum: %d;"
|
|
" current col: %d, endp col: %d\n",
|
|
(int)rex.lnum,
|
|
(int)nfa_endp->se_u.pos.lnum,
|
|
(int)(rex.input - rex.line),
|
|
nfa_endp->se_u.pos.col);
|
|
} else {
|
|
fprintf(log_fd, "Current col: %d, endp col: %d\n",
|
|
(int)(rex.input - rex.line),
|
|
(int)(nfa_endp->se_u.ptr - rex.input));
|
|
}
|
|
}
|
|
#endif
|
|
// If "nfa_endp" is set it's only a match if it ends at
|
|
// "nfa_endp"
|
|
if (nfa_endp != NULL
|
|
&& (REG_MULTI
|
|
? (rex.lnum != nfa_endp->se_u.pos.lnum
|
|
|| (int)(rex.input - rex.line) != nfa_endp->se_u.pos.col)
|
|
: rex.input != nfa_endp->se_u.ptr)) {
|
|
break;
|
|
}
|
|
// do not set submatches for \@!
|
|
if (t->state->c != NFA_END_INVISIBLE_NEG) {
|
|
copy_sub(&m->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub(&m->synt, &t->subs.synt);
|
|
}
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "Match found:\n");
|
|
log_subsexpr(m);
|
|
#endif
|
|
nfa_match = true;
|
|
// See comment above at "goto nextchar".
|
|
if (nextlist->n == 0) {
|
|
clen = 0;
|
|
}
|
|
goto nextchar;
|
|
|
|
case NFA_START_INVISIBLE:
|
|
case NFA_START_INVISIBLE_FIRST:
|
|
case NFA_START_INVISIBLE_NEG:
|
|
case NFA_START_INVISIBLE_NEG_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE:
|
|
case NFA_START_INVISIBLE_BEFORE_FIRST:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG:
|
|
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n",
|
|
failure_chance(t->state->out, 0),
|
|
failure_chance(t->state->out1->out, 0));
|
|
#endif
|
|
// Do it directly if there already is a PIM or when
|
|
// nfa_postprocess() detected it will work better.
|
|
if (t->pim.result != NFA_PIM_UNUSED
|
|
|| t->state->c == NFA_START_INVISIBLE_FIRST
|
|
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|
|
|| t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
|
|
int in_use = m->norm.in_use;
|
|
|
|
// Copy submatch info for the recursive call, opposite
|
|
// of what happens on success below.
|
|
copy_sub_off(&m->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&m->synt, &t->subs.synt);
|
|
}
|
|
// First try matching the invisible match, then what
|
|
// follows.
|
|
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
|
|
&listids, &listids_len);
|
|
if (result == NFA_TOO_EXPENSIVE) {
|
|
nfa_match = result;
|
|
goto theend;
|
|
}
|
|
|
|
// for \@! and \@<! it is a match when the result is
|
|
// false
|
|
if (result != (t->state->c == NFA_START_INVISIBLE_NEG
|
|
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| t->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| t->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&t->subs.norm, &m->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&t->subs.synt, &m->synt);
|
|
}
|
|
// If the pattern has \ze and it matched in the
|
|
// sub pattern, use it.
|
|
copy_ze_off(&t->subs.norm, &m->norm);
|
|
|
|
// t->state->out1 is the corresponding
|
|
// END_INVISIBLE node; Add its out to the current
|
|
// list (zero-width match).
|
|
add_here = true;
|
|
add_state = t->state->out1->out;
|
|
}
|
|
m->norm.in_use = in_use;
|
|
} else {
|
|
nfa_pim_T pim;
|
|
|
|
// First try matching what follows. Only if a match
|
|
// is found verify the invisible match matches. Add a
|
|
// nfa_pim_T to the following states, it contains info
|
|
// about the invisible match.
|
|
pim.state = t->state;
|
|
pim.result = NFA_PIM_TODO;
|
|
pim.subs.norm.in_use = 0;
|
|
pim.subs.synt.in_use = 0;
|
|
if (REG_MULTI) {
|
|
pim.end.pos.col = (int)(rex.input - rex.line);
|
|
pim.end.pos.lnum = rex.lnum;
|
|
} else {
|
|
pim.end.ptr = rex.input;
|
|
}
|
|
// t->state->out1 is the corresponding END_INVISIBLE
|
|
// node; Add its out to the current list (zero-width
|
|
// match).
|
|
if (addstate_here(thislist, t->state->out1->out, &t->subs,
|
|
&pim, &listidx) == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case NFA_START_PATTERN: {
|
|
nfa_state_T *skip = NULL;
|
|
#ifdef REGEXP_DEBUG
|
|
int skip_lid = 0;
|
|
#endif
|
|
|
|
// There is no point in trying to match the pattern if the
|
|
// output state is not going to be added to the list.
|
|
if (state_in_list(nextlist, t->state->out1->out, &t->subs)) {
|
|
skip = t->state->out1->out;
|
|
#ifdef REGEXP_DEBUG
|
|
skip_lid = nextlist->id;
|
|
#endif
|
|
} else if (state_in_list(nextlist,
|
|
t->state->out1->out->out, &t->subs)) {
|
|
skip = t->state->out1->out->out;
|
|
#ifdef REGEXP_DEBUG
|
|
skip_lid = nextlist->id;
|
|
#endif
|
|
} else if (state_in_list(thislist,
|
|
t->state->out1->out->out, &t->subs)) {
|
|
skip = t->state->out1->out->out;
|
|
#ifdef REGEXP_DEBUG
|
|
skip_lid = thislist->id;
|
|
#endif
|
|
}
|
|
if (skip != NULL) {
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_set_code(skip->c);
|
|
fprintf(log_fd,
|
|
"> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n", // NOLINT(whitespace/line_length)
|
|
abs(skip->id), skip_lid, skip->c, code);
|
|
#endif
|
|
break;
|
|
}
|
|
// Copy submatch info to the recursive call, opposite of what
|
|
// happens afterwards.
|
|
copy_sub_off(&m->norm, &t->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&m->synt, &t->subs.synt);
|
|
}
|
|
|
|
// First try matching the pattern.
|
|
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
|
|
&listids, &listids_len);
|
|
if (result == NFA_TOO_EXPENSIVE) {
|
|
nfa_match = result;
|
|
goto theend;
|
|
}
|
|
if (result) {
|
|
int bytelen;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "NFA_START_PATTERN matches:\n");
|
|
log_subsexpr(m);
|
|
#endif
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&t->subs.norm, &m->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&t->subs.synt, &m->synt);
|
|
}
|
|
// Now we need to skip over the matched text and then
|
|
// continue with what follows.
|
|
if (REG_MULTI) {
|
|
// TODO(RE): multi-line match
|
|
bytelen = m->norm.list.multi[0].end_col
|
|
- (int)(rex.input - rex.line);
|
|
} else {
|
|
bytelen = (int)(m->norm.list.line[0].end - rex.input);
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen);
|
|
#endif
|
|
if (bytelen == 0) {
|
|
// empty match, output of corresponding
|
|
// NFA_END_PATTERN/NFA_SKIP to be used at current
|
|
// position
|
|
add_here = true;
|
|
add_state = t->state->out1->out->out;
|
|
} else if (bytelen <= clen) {
|
|
// match current character, output of corresponding
|
|
// NFA_END_PATTERN to be used at next position.
|
|
add_state = t->state->out1->out->out;
|
|
add_off = clen;
|
|
} else {
|
|
// skip over the matched characters, set character
|
|
// count in NFA_SKIP
|
|
add_state = t->state->out1->out;
|
|
add_off = bytelen;
|
|
add_count = bytelen - clen;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_BOL:
|
|
if (rex.input == rex.line) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_EOL:
|
|
if (curc == NUL) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_BOW:
|
|
result = true;
|
|
|
|
if (curc == NUL) {
|
|
result = false;
|
|
} else {
|
|
int this_class;
|
|
|
|
// Get class of current and previous char (if it exists).
|
|
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
|
|
if (this_class <= 1) {
|
|
result = false;
|
|
} else if (reg_prev_class() == this_class) {
|
|
result = false;
|
|
}
|
|
}
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_EOW:
|
|
result = true;
|
|
if (rex.input == rex.line) {
|
|
result = false;
|
|
} else {
|
|
int this_class, prev_class;
|
|
|
|
// Get class of current and previous char (if it exists).
|
|
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
|
|
prev_class = reg_prev_class();
|
|
if (this_class == prev_class
|
|
|| prev_class == 0 || prev_class == 1) {
|
|
result = false;
|
|
}
|
|
}
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_BOF:
|
|
if (rex.lnum == 0 && rex.input == rex.line
|
|
&& (!REG_MULTI || rex.reg_firstlnum == 1)) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_EOF:
|
|
if (rex.lnum == rex.reg_maxline && curc == NUL) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_COMPOSING: {
|
|
int mc = curc;
|
|
int len = 0;
|
|
nfa_state_T *end;
|
|
nfa_state_T *sta;
|
|
int cchars[MAX_MCO];
|
|
int ccount = 0;
|
|
int j;
|
|
|
|
sta = t->state->out;
|
|
len = 0;
|
|
if (utf_iscomposing(sta->c)) {
|
|
// Only match composing character(s), ignore base
|
|
// character. Used for ".{composing}" and "{composing}"
|
|
// (no preceding character).
|
|
len += utf_char2len(mc);
|
|
}
|
|
if (rex.reg_icombine && len == 0) {
|
|
// If \Z was present, then ignore composing characters.
|
|
// When ignoring the base character this always matches.
|
|
if (sta->c != curc) {
|
|
result = FAIL;
|
|
} else {
|
|
result = OK;
|
|
}
|
|
while (sta->c != NFA_END_COMPOSING) {
|
|
sta = sta->out;
|
|
}
|
|
} else if (len > 0 || mc == sta->c) {
|
|
// Check base character matches first, unless ignored.
|
|
if (len == 0) {
|
|
len += utf_char2len(mc);
|
|
sta = sta->out;
|
|
}
|
|
|
|
// We don't care about the order of composing characters.
|
|
// Get them into cchars[] first.
|
|
while (len < clen) {
|
|
mc = utf_ptr2char((char *)rex.input + len);
|
|
cchars[ccount++] = mc;
|
|
len += utf_char2len(mc);
|
|
if (ccount == MAX_MCO) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Check that each composing char in the pattern matches a
|
|
// composing char in the text. We do not check if all
|
|
// composing chars are matched.
|
|
result = OK;
|
|
while (sta->c != NFA_END_COMPOSING) {
|
|
for (j = 0; j < ccount; j++) {
|
|
if (cchars[j] == sta->c) {
|
|
break;
|
|
}
|
|
}
|
|
if (j == ccount) {
|
|
result = FAIL;
|
|
break;
|
|
}
|
|
sta = sta->out;
|
|
}
|
|
} else {
|
|
result = FAIL;
|
|
}
|
|
|
|
end = t->state->out1; // NFA_END_COMPOSING
|
|
ADD_STATE_IF_MATCH(end);
|
|
break;
|
|
}
|
|
|
|
case NFA_NEWL:
|
|
if (curc == NUL && !rex.reg_line_lbr && REG_MULTI
|
|
&& rex.lnum <= rex.reg_maxline) {
|
|
go_to_nextline = true;
|
|
// Pass -1 for the offset, which means taking the position
|
|
// at the start of the next line.
|
|
add_state = t->state->out;
|
|
add_off = -1;
|
|
} else if (curc == '\n' && rex.reg_line_lbr) {
|
|
// match \n as if it is an ordinary character
|
|
add_state = t->state->out;
|
|
add_off = 1;
|
|
}
|
|
break;
|
|
|
|
case NFA_START_COLL:
|
|
case NFA_START_NEG_COLL: {
|
|
// What follows is a list of characters, until NFA_END_COLL.
|
|
// One of them must match or none of them must match.
|
|
nfa_state_T *state;
|
|
int result_if_matched;
|
|
int c1, c2;
|
|
|
|
// Never match EOL. If it's part of the collection it is added
|
|
// as a separate state with an OR.
|
|
if (curc == NUL) {
|
|
break;
|
|
}
|
|
|
|
state = t->state->out;
|
|
result_if_matched = (t->state->c == NFA_START_COLL);
|
|
for (;;) {
|
|
if (state->c == NFA_END_COLL) {
|
|
result = !result_if_matched;
|
|
break;
|
|
}
|
|
if (state->c == NFA_RANGE_MIN) {
|
|
c1 = state->val;
|
|
state = state->out; // advance to NFA_RANGE_MAX
|
|
c2 = state->val;
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n",
|
|
curc, c1, c2);
|
|
#endif
|
|
if (curc >= c1 && curc <= c2) {
|
|
result = result_if_matched;
|
|
break;
|
|
}
|
|
if (rex.reg_ic) {
|
|
int curc_low = utf_fold(curc);
|
|
int done = false;
|
|
|
|
for (; c1 <= c2; c1++) {
|
|
if (utf_fold(c1) == curc_low) {
|
|
result = result_if_matched;
|
|
done = true;
|
|
break;
|
|
}
|
|
}
|
|
if (done) {
|
|
break;
|
|
}
|
|
}
|
|
} else if (state->c < 0 ? check_char_class(state->c, curc)
|
|
: (curc == state->c
|
|
|| (rex.reg_ic
|
|
&& utf_fold(curc) == utf_fold(state->c)))) {
|
|
result = result_if_matched;
|
|
break;
|
|
}
|
|
state = state->out;
|
|
}
|
|
if (result) {
|
|
// next state is in out of the NFA_END_COLL, out1 of
|
|
// START points to the END state
|
|
add_state = t->state->out1->out;
|
|
add_off = clen;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_ANY:
|
|
// Any char except '\0', (end of input) does not match.
|
|
if (curc > 0) {
|
|
add_state = t->state->out;
|
|
add_off = clen;
|
|
}
|
|
break;
|
|
|
|
case NFA_ANY_COMPOSING:
|
|
// On a composing character skip over it. Otherwise do
|
|
// nothing. Always matches.
|
|
if (utf_iscomposing(curc)) {
|
|
add_off = clen;
|
|
} else {
|
|
add_here = true;
|
|
add_off = 0;
|
|
}
|
|
add_state = t->state->out;
|
|
break;
|
|
|
|
// Character classes like \a for alpha, \d for digit etc.
|
|
case NFA_IDENT: // \i
|
|
result = vim_isIDc(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SIDENT: // \I
|
|
result = !ascii_isdigit(curc) && vim_isIDc(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_KWORD: // \k
|
|
result = vim_iswordp_buf((char *)rex.input, rex.reg_buf);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SKWORD: // \K
|
|
result = !ascii_isdigit(curc)
|
|
&& vim_iswordp_buf((char *)rex.input, rex.reg_buf);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_FNAME: // \f
|
|
result = vim_isfilec(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SFNAME: // \F
|
|
result = !ascii_isdigit(curc) && vim_isfilec(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_PRINT: // \p
|
|
result = vim_isprintc(utf_ptr2char((char *)rex.input));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_SPRINT: // \P
|
|
result = !ascii_isdigit(curc) && vim_isprintc(utf_ptr2char((char *)rex.input));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_WHITE: // \s
|
|
result = ascii_iswhite(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NWHITE: // \S
|
|
result = curc != NUL && !ascii_iswhite(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_DIGIT: // \d
|
|
result = ri_digit(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NDIGIT: // \D
|
|
result = curc != NUL && !ri_digit(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_HEX: // \x
|
|
result = ri_hex(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NHEX: // \X
|
|
result = curc != NUL && !ri_hex(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_OCTAL: // \o
|
|
result = ri_octal(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NOCTAL: // \O
|
|
result = curc != NUL && !ri_octal(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_WORD: // \w
|
|
result = ri_word(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NWORD: // \W
|
|
result = curc != NUL && !ri_word(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_HEAD: // \h
|
|
result = ri_head(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NHEAD: // \H
|
|
result = curc != NUL && !ri_head(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_ALPHA: // \a
|
|
result = ri_alpha(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NALPHA: // \A
|
|
result = curc != NUL && !ri_alpha(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_LOWER: // \l
|
|
result = ri_lower(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NLOWER: // \L
|
|
result = curc != NUL && !ri_lower(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_UPPER: // \u
|
|
result = ri_upper(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NUPPER: // \U
|
|
result = curc != NUL && !ri_upper(curc);
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_LOWER_IC: // [a-z]
|
|
result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NLOWER_IC: // [^a-z]
|
|
result = curc != NUL
|
|
&& !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc)));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_UPPER_IC: // [A-Z]
|
|
result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_NUPPER_IC: // [^A-Z]
|
|
result = curc != NUL
|
|
&& !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc)));
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
|
|
case NFA_BACKREF1:
|
|
case NFA_BACKREF2:
|
|
case NFA_BACKREF3:
|
|
case NFA_BACKREF4:
|
|
case NFA_BACKREF5:
|
|
case NFA_BACKREF6:
|
|
case NFA_BACKREF7:
|
|
case NFA_BACKREF8:
|
|
case NFA_BACKREF9:
|
|
case NFA_ZREF1:
|
|
case NFA_ZREF2:
|
|
case NFA_ZREF3:
|
|
case NFA_ZREF4:
|
|
case NFA_ZREF5:
|
|
case NFA_ZREF6:
|
|
case NFA_ZREF7:
|
|
case NFA_ZREF8:
|
|
case NFA_ZREF9:
|
|
// \1 .. \9 \z1 .. \z9
|
|
{
|
|
int subidx;
|
|
int bytelen;
|
|
|
|
if (t->state->c <= NFA_BACKREF9) {
|
|
subidx = t->state->c - NFA_BACKREF1 + 1;
|
|
result = match_backref(&t->subs.norm, subidx, &bytelen);
|
|
} else {
|
|
subidx = t->state->c - NFA_ZREF1 + 1;
|
|
result = match_zref(subidx, &bytelen);
|
|
}
|
|
|
|
if (result) {
|
|
if (bytelen == 0) {
|
|
// empty match always works, output of NFA_SKIP to be
|
|
// used next
|
|
add_here = true;
|
|
add_state = t->state->out->out;
|
|
} else if (bytelen <= clen) {
|
|
// match current character, jump ahead to out of
|
|
// NFA_SKIP
|
|
add_state = t->state->out->out;
|
|
add_off = clen;
|
|
} else {
|
|
// skip over the matched characters, set character
|
|
// count in NFA_SKIP
|
|
add_state = t->state->out;
|
|
add_off = bytelen;
|
|
add_count = bytelen - clen;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case NFA_SKIP:
|
|
// character of previous matching \1 .. \9 or \@>
|
|
if (t->count - clen <= 0) {
|
|
// end of match, go to what follows
|
|
add_state = t->state->out;
|
|
add_off = clen;
|
|
} else {
|
|
// add state again with decremented count
|
|
add_state = t->state;
|
|
add_off = 0;
|
|
add_count = t->count - clen;
|
|
}
|
|
break;
|
|
|
|
case NFA_LNUM:
|
|
case NFA_LNUM_GT:
|
|
case NFA_LNUM_LT:
|
|
assert(t->state->val >= 0
|
|
&& !((rex.reg_firstlnum > 0
|
|
&& rex.lnum > LONG_MAX - rex.reg_firstlnum)
|
|
|| (rex.reg_firstlnum < 0
|
|
&& rex.lnum < LONG_MIN + rex.reg_firstlnum))
|
|
&& rex.lnum + rex.reg_firstlnum >= 0);
|
|
result = (REG_MULTI
|
|
&& nfa_re_num_cmp((uintmax_t)t->state->val,
|
|
t->state->c - NFA_LNUM,
|
|
(uintmax_t)(rex.lnum + rex.reg_firstlnum)));
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_COL:
|
|
case NFA_COL_GT:
|
|
case NFA_COL_LT:
|
|
assert(t->state->val >= 0
|
|
&& rex.input >= rex.line
|
|
&& (uintmax_t)(rex.input - rex.line) <= UINTMAX_MAX - 1);
|
|
result = nfa_re_num_cmp((uintmax_t)t->state->val,
|
|
t->state->c - NFA_COL,
|
|
(uintmax_t)(rex.input - rex.line + 1));
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_VCOL:
|
|
case NFA_VCOL_GT:
|
|
case NFA_VCOL_LT: {
|
|
int op = t->state->c - NFA_VCOL;
|
|
colnr_T col = (colnr_T)(rex.input - rex.line);
|
|
|
|
// Bail out quickly when there can't be a match, avoid the overhead of
|
|
// win_linetabsize() on long lines.
|
|
if (op != 1 && col > t->state->val * MB_MAXBYTES) {
|
|
break;
|
|
}
|
|
|
|
result = false;
|
|
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
|
|
if (op == 1 && col - 1 > t->state->val && col > 100) {
|
|
long ts = wp->w_buffer->b_p_ts;
|
|
|
|
// Guess that a character won't use more columns than 'tabstop',
|
|
// with a minimum of 4.
|
|
if (ts < 4) {
|
|
ts = 4;
|
|
}
|
|
result = col > t->state->val * ts;
|
|
}
|
|
if (!result) {
|
|
uintmax_t lts = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col);
|
|
assert(t->state->val >= 0);
|
|
result = nfa_re_num_cmp((uintmax_t)t->state->val, op, lts + 1);
|
|
}
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case NFA_MARK:
|
|
case NFA_MARK_GT:
|
|
case NFA_MARK_LT: {
|
|
size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0;
|
|
fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, t->state->val);
|
|
|
|
// Line may have been freed, get it again.
|
|
if (REG_MULTI) {
|
|
rex.line = (uint8_t *)reg_getline(rex.lnum);
|
|
rex.input = rex.line + col;
|
|
}
|
|
|
|
// Compare the mark position to the match position, if the mark
|
|
// exists and mark is set in reg_buf.
|
|
if (fm != NULL && fm->mark.lnum > 0) {
|
|
pos_T *pos = &fm->mark;
|
|
const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
|
|
&& pos->col == MAXCOL
|
|
? (colnr_T)strlen((char *)reg_getline(pos->lnum - rex.reg_firstlnum))
|
|
: pos->col;
|
|
|
|
result = pos->lnum == rex.lnum + rex.reg_firstlnum
|
|
? (pos_col == (colnr_T)(rex.input - rex.line)
|
|
? t->state->c == NFA_MARK
|
|
: (pos_col < (colnr_T)(rex.input - rex.line)
|
|
? t->state->c == NFA_MARK_GT
|
|
: t->state->c == NFA_MARK_LT))
|
|
: (pos->lnum < rex.lnum + rex.reg_firstlnum
|
|
? t->state->c == NFA_MARK_GT
|
|
: t->state->c == NFA_MARK_LT);
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NFA_CURSOR:
|
|
result = rex.reg_win != NULL
|
|
&& (rex.lnum + rex.reg_firstlnum == rex.reg_win->w_cursor.lnum)
|
|
&& ((colnr_T)(rex.input - rex.line) == rex.reg_win->w_cursor.col);
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_VISUAL:
|
|
result = reg_match_visual();
|
|
if (result) {
|
|
add_here = true;
|
|
add_state = t->state->out;
|
|
}
|
|
break;
|
|
|
|
case NFA_MOPEN1:
|
|
case NFA_MOPEN2:
|
|
case NFA_MOPEN3:
|
|
case NFA_MOPEN4:
|
|
case NFA_MOPEN5:
|
|
case NFA_MOPEN6:
|
|
case NFA_MOPEN7:
|
|
case NFA_MOPEN8:
|
|
case NFA_MOPEN9:
|
|
case NFA_ZOPEN:
|
|
case NFA_ZOPEN1:
|
|
case NFA_ZOPEN2:
|
|
case NFA_ZOPEN3:
|
|
case NFA_ZOPEN4:
|
|
case NFA_ZOPEN5:
|
|
case NFA_ZOPEN6:
|
|
case NFA_ZOPEN7:
|
|
case NFA_ZOPEN8:
|
|
case NFA_ZOPEN9:
|
|
case NFA_NOPEN:
|
|
case NFA_ZSTART:
|
|
// These states are only added to be able to bail out when
|
|
// they are added again, nothing is to be done.
|
|
break;
|
|
|
|
default: // regular character
|
|
{
|
|
int c = t->state->c;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (c < 0) {
|
|
siemsg("INTERNAL: Negative state char: %" PRId64, (int64_t)c);
|
|
}
|
|
#endif
|
|
result = (c == curc);
|
|
|
|
if (!result && rex.reg_ic) {
|
|
result = utf_fold(c) == utf_fold(curc);
|
|
}
|
|
|
|
// If rex.reg_icombine is not set only skip over the character
|
|
// itself. When it is set skip over composing characters.
|
|
if (result && !rex.reg_icombine) {
|
|
clen = utf_ptr2len((char *)rex.input);
|
|
}
|
|
|
|
ADD_STATE_IF_MATCH(t->state);
|
|
break;
|
|
}
|
|
} // switch (t->state->c)
|
|
|
|
if (add_state != NULL) {
|
|
nfa_pim_T *pim;
|
|
nfa_pim_T pim_copy;
|
|
|
|
if (t->pim.result == NFA_PIM_UNUSED) {
|
|
pim = NULL;
|
|
} else {
|
|
pim = &t->pim;
|
|
}
|
|
|
|
// Handle the postponed invisible match if the match might end
|
|
// without advancing and before the end of the line.
|
|
if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) {
|
|
if (pim->result == NFA_PIM_TODO) {
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "\n");
|
|
fprintf(log_fd, "==================================\n");
|
|
fprintf(log_fd, "Postponed recursive nfa_regmatch()\n");
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
result = recursive_regmatch(pim->state, pim, prog, submatch, m,
|
|
&listids, &listids_len);
|
|
pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH;
|
|
// for \@! and \@<! it is a match when the result is
|
|
// false
|
|
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|
|
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&pim->subs.norm, &m->norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&pim->subs.synt, &m->synt);
|
|
}
|
|
}
|
|
} else {
|
|
result = (pim->result == NFA_PIM_MATCH);
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "\n");
|
|
fprintf(log_fd,
|
|
"Using previous recursive nfa_regmatch() result, result == %d\n",
|
|
pim->result);
|
|
fprintf(log_fd, "MATCH = %s\n", result ? "OK" : "false");
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
}
|
|
|
|
// for \@! and \@<! it is a match when result is false
|
|
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|
|
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG
|
|
|| pim->state->c
|
|
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
|
|
// Copy submatch info from the recursive call
|
|
copy_sub_off(&t->subs.norm, &pim->subs.norm);
|
|
if (rex.nfa_has_zsubexpr) {
|
|
copy_sub_off(&t->subs.synt, &pim->subs.synt);
|
|
}
|
|
} else {
|
|
// look-behind match failed, don't add the state
|
|
continue;
|
|
}
|
|
|
|
// Postponed invisible match was handled, don't add it to
|
|
// following states.
|
|
pim = NULL;
|
|
}
|
|
|
|
// If "pim" points into l->t it will become invalid when
|
|
// adding the state causes the list to be reallocated. Make a
|
|
// local copy to avoid that.
|
|
if (pim == &t->pim) {
|
|
copy_pim(&pim_copy, pim);
|
|
pim = &pim_copy;
|
|
}
|
|
|
|
if (add_here) {
|
|
r = addstate_here(thislist, add_state, &t->subs, pim, &listidx);
|
|
} else {
|
|
r = addstate(nextlist, add_state, &t->subs, pim, add_off);
|
|
if (add_count > 0) {
|
|
nextlist->t[nextlist->n - 1].count = add_count;
|
|
}
|
|
}
|
|
if (r == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
} // for (thislist = thislist; thislist->state; thislist++)
|
|
|
|
// Look for the start of a match in the current position by adding the
|
|
// start state to the list of states.
|
|
// The first found match is the leftmost one, thus the order of states
|
|
// matters!
|
|
// Do not add the start state in recursive calls of nfa_regmatch(),
|
|
// because recursive calls should only start in the first position.
|
|
// Unless "nfa_endp" is not NULL, then we match the end position.
|
|
// Also don't start a match past the first line.
|
|
if (!nfa_match
|
|
&& ((toplevel
|
|
&& rex.lnum == 0
|
|
&& clen != 0
|
|
&& (rex.reg_maxcol == 0
|
|
|| (colnr_T)(rex.input - rex.line) < rex.reg_maxcol))
|
|
|| (nfa_endp != NULL
|
|
&& (REG_MULTI
|
|
? (rex.lnum < nfa_endp->se_u.pos.lnum
|
|
|| (rex.lnum == nfa_endp->se_u.pos.lnum
|
|
&& (int)(rex.input - rex.line)
|
|
< nfa_endp->se_u.pos.col))
|
|
: rex.input < nfa_endp->se_u.ptr)))) {
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, "(---) STARTSTATE\n");
|
|
#endif
|
|
// Inline optimized code for addstate() if we know the state is
|
|
// the first MOPEN.
|
|
if (toplevel) {
|
|
int add = true;
|
|
|
|
if (prog->regstart != NUL && clen != 0) {
|
|
if (nextlist->n == 0) {
|
|
colnr_T col = (colnr_T)(rex.input - rex.line) + clen;
|
|
|
|
// Nextlist is empty, we can skip ahead to the
|
|
// character that must appear at the start.
|
|
if (skip_to_start(prog->regstart, &col) == FAIL) {
|
|
break;
|
|
}
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, " Skipping ahead %d bytes to regstart\n",
|
|
col - ((colnr_T)(rex.input - rex.line) + clen));
|
|
#endif
|
|
rex.input = rex.line + col - clen;
|
|
} else {
|
|
// Checking if the required start character matches is
|
|
// cheaper than adding a state that won't match.
|
|
const int c = utf_ptr2char((char *)rex.input + clen);
|
|
if (c != prog->regstart
|
|
&& (!rex.reg_ic
|
|
|| utf_fold(c) != utf_fold(prog->regstart))) {
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd,
|
|
" Skipping start state, regstart does not match\n");
|
|
#endif
|
|
add = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (add) {
|
|
if (REG_MULTI) {
|
|
m->norm.list.multi[0].start_col =
|
|
(colnr_T)(rex.input - rex.line) + clen;
|
|
m->norm.orig_start_col =
|
|
m->norm.list.multi[0].start_col;
|
|
} else {
|
|
m->norm.list.line[0].start = rex.input + clen;
|
|
}
|
|
if (addstate(nextlist, start->out, m, NULL, clen) == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
} else {
|
|
if (addstate(nextlist, start, m, NULL, clen) == NULL) {
|
|
nfa_match = NFA_TOO_EXPENSIVE;
|
|
goto theend;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n);
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < thislist->n; i++) {
|
|
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
|
|
}
|
|
}
|
|
fprintf(log_fd, "\n");
|
|
#endif
|
|
|
|
nextchar:
|
|
// Advance to the next character, or advance to the next line, or
|
|
// finish.
|
|
if (clen != 0) {
|
|
rex.input += clen;
|
|
} else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI
|
|
&& rex.lnum < nfa_endp->se_u.pos.lnum)) {
|
|
reg_nextline();
|
|
} else {
|
|
break;
|
|
}
|
|
|
|
// Allow interrupting with CTRL-C.
|
|
line_breakcheck();
|
|
if (got_int) {
|
|
break;
|
|
}
|
|
// Check for timeout once every twenty times to avoid overhead.
|
|
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
|
|
nfa_time_count = 0;
|
|
if (nfa_did_time_out()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
if (log_fd != stderr) {
|
|
fclose(log_fd);
|
|
}
|
|
log_fd = NULL;
|
|
#endif
|
|
|
|
theend:
|
|
// Free memory
|
|
xfree(list[0].t);
|
|
xfree(list[1].t);
|
|
xfree(listids);
|
|
#undef ADD_STATE_IF_MATCH
|
|
#ifdef NFA_REGEXP_DEBUG_LOG
|
|
fclose(debug);
|
|
#endif
|
|
|
|
return nfa_match;
|
|
}
|
|
|
|
/// Try match of "prog" with at rex.line["col"].
|
|
///
|
|
/// @param tm timeout limit or NULL
|
|
/// @param timed_out flag set on timeout or NULL
|
|
///
|
|
/// @return <= 0 for failure, number of lines contained in the match otherwise.
|
|
static long nfa_regtry(nfa_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out)
|
|
{
|
|
int i;
|
|
regsubs_T subs, m;
|
|
nfa_state_T *start = prog->start;
|
|
#ifdef REGEXP_DEBUG
|
|
FILE *f;
|
|
#endif
|
|
|
|
rex.input = rex.line + col;
|
|
nfa_time_limit = tm;
|
|
nfa_timed_out = timed_out;
|
|
nfa_time_count = 0;
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
f = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
if (f != NULL) {
|
|
fprintf(f,
|
|
"\n\n\t=======================================================\n");
|
|
# ifdef REGEXP_DEBUG
|
|
fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr);
|
|
# endif
|
|
fprintf(f, "\tInput text is \"%s\" \n", rex.input);
|
|
fprintf(f, "\t=======================================================\n\n");
|
|
nfa_print_state(f, start);
|
|
fprintf(f, "\n\n");
|
|
fclose(f);
|
|
} else {
|
|
emsg("Could not open temporary log file for writing");
|
|
}
|
|
#endif
|
|
|
|
clear_sub(&subs.norm);
|
|
clear_sub(&m.norm);
|
|
clear_sub(&subs.synt);
|
|
clear_sub(&m.synt);
|
|
|
|
int result = nfa_regmatch(prog, start, &subs, &m);
|
|
if (!result) {
|
|
return 0;
|
|
} else if (result == NFA_TOO_EXPENSIVE) {
|
|
return result;
|
|
}
|
|
|
|
cleanup_subexpr();
|
|
if (REG_MULTI) {
|
|
for (i = 0; i < subs.norm.in_use; i++) {
|
|
rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum;
|
|
rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col;
|
|
|
|
rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum;
|
|
rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col;
|
|
}
|
|
if (rex.reg_mmatch != NULL) {
|
|
rex.reg_mmatch->rmm_matchcol = subs.norm.orig_start_col;
|
|
}
|
|
|
|
if (rex.reg_startpos[0].lnum < 0) {
|
|
rex.reg_startpos[0].lnum = 0;
|
|
rex.reg_startpos[0].col = col;
|
|
}
|
|
if (rex.reg_endpos[0].lnum < 0) {
|
|
// pattern has a \ze but it didn't match, use current end
|
|
rex.reg_endpos[0].lnum = rex.lnum;
|
|
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
|
|
} else {
|
|
// Use line number of "\ze".
|
|
rex.lnum = rex.reg_endpos[0].lnum;
|
|
}
|
|
} else {
|
|
for (i = 0; i < subs.norm.in_use; i++) {
|
|
rex.reg_startp[i] = subs.norm.list.line[i].start;
|
|
rex.reg_endp[i] = subs.norm.list.line[i].end;
|
|
}
|
|
|
|
if (rex.reg_startp[0] == NULL) {
|
|
rex.reg_startp[0] = rex.line + col;
|
|
}
|
|
if (rex.reg_endp[0] == NULL) {
|
|
rex.reg_endp[0] = rex.input;
|
|
}
|
|
}
|
|
|
|
// Package any found \z(...\) matches for export. Default is none.
|
|
unref_extmatch(re_extmatch_out);
|
|
re_extmatch_out = NULL;
|
|
|
|
if (prog->reghasz == REX_SET) {
|
|
cleanup_zsubexpr();
|
|
re_extmatch_out = make_extmatch();
|
|
// Loop over \z1, \z2, etc. There is no \z0.
|
|
for (i = 1; i < subs.synt.in_use; i++) {
|
|
if (REG_MULTI) {
|
|
struct multipos *mpos = &subs.synt.list.multi[i];
|
|
|
|
// Only accept single line matches that are valid.
|
|
if (mpos->start_lnum >= 0
|
|
&& mpos->start_lnum == mpos->end_lnum
|
|
&& mpos->end_col >= mpos->start_col) {
|
|
re_extmatch_out->matches[i] =
|
|
(uint8_t *)xstrnsave((char *)reg_getline(mpos->start_lnum) + mpos->start_col,
|
|
(size_t)(mpos->end_col - mpos->start_col));
|
|
}
|
|
} else {
|
|
struct linepos *lpos = &subs.synt.list.line[i];
|
|
|
|
if (lpos->start != NULL && lpos->end != NULL) {
|
|
re_extmatch_out->matches[i] =
|
|
(uint8_t *)xstrnsave((char *)lpos->start, (size_t)(lpos->end - lpos->start));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1 + rex.lnum;
|
|
}
|
|
|
|
/// Match a regexp against a string ("line" points to the string) or multiple
|
|
/// lines (if "line" is NULL, use reg_getline()).
|
|
///
|
|
/// @param line String in which to search or NULL
|
|
/// @param startcol Column to start looking for match
|
|
/// @param tm Timeout limit or NULL
|
|
/// @param timed_out Flag set on timeout or NULL
|
|
///
|
|
/// @return <= 0 if there is no match and number of lines contained in the
|
|
/// match otherwise.
|
|
static long nfa_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out)
|
|
{
|
|
nfa_regprog_T *prog;
|
|
long retval = 0L;
|
|
colnr_T col = startcol;
|
|
|
|
if (REG_MULTI) {
|
|
prog = (nfa_regprog_T *)rex.reg_mmatch->regprog;
|
|
line = (uint8_t *)reg_getline((linenr_T)0); // relative to the cursor
|
|
rex.reg_startpos = rex.reg_mmatch->startpos;
|
|
rex.reg_endpos = rex.reg_mmatch->endpos;
|
|
} else {
|
|
prog = (nfa_regprog_T *)rex.reg_match->regprog;
|
|
rex.reg_startp = (uint8_t **)rex.reg_match->startp;
|
|
rex.reg_endp = (uint8_t **)rex.reg_match->endp;
|
|
}
|
|
|
|
// Be paranoid...
|
|
if (prog == NULL || line == NULL) {
|
|
iemsg(_(e_null));
|
|
goto theend;
|
|
}
|
|
|
|
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
|
|
if (prog->regflags & RF_ICASE) {
|
|
rex.reg_ic = true;
|
|
} else if (prog->regflags & RF_NOICASE) {
|
|
rex.reg_ic = false;
|
|
}
|
|
|
|
// If pattern contains "\Z" overrule value of rex.reg_icombine
|
|
if (prog->regflags & RF_ICOMBINE) {
|
|
rex.reg_icombine = true;
|
|
}
|
|
|
|
rex.line = line;
|
|
rex.lnum = 0; // relative to line
|
|
|
|
rex.nfa_has_zend = prog->has_zend;
|
|
rex.nfa_has_backref = prog->has_backref;
|
|
rex.nfa_nsubexpr = prog->nsubexp;
|
|
rex.nfa_listid = 1;
|
|
rex.nfa_alt_listid = 2;
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = prog->pattern;
|
|
#endif
|
|
|
|
if (prog->reganch && col > 0) {
|
|
return 0L;
|
|
}
|
|
|
|
rex.need_clear_subexpr = true;
|
|
// Clear the external match subpointers if necessary.
|
|
if (prog->reghasz == REX_SET) {
|
|
rex.nfa_has_zsubexpr = true;
|
|
rex.need_clear_zsubexpr = true;
|
|
} else {
|
|
rex.nfa_has_zsubexpr = false;
|
|
rex.need_clear_zsubexpr = false;
|
|
}
|
|
|
|
if (prog->regstart != NUL) {
|
|
// Skip ahead until a character we know the match must start with.
|
|
// When there is none there is no match.
|
|
if (skip_to_start(prog->regstart, &col) == FAIL) {
|
|
return 0L;
|
|
}
|
|
|
|
// If match_text is set it contains the full text that must match.
|
|
// Nothing else to try. Doesn't handle combining chars well.
|
|
if (prog->match_text != NULL && !rex.reg_icombine) {
|
|
retval = find_match_text(&col, prog->regstart, prog->match_text);
|
|
if (REG_MULTI) {
|
|
rex.reg_mmatch->rmm_matchcol = col;
|
|
} else {
|
|
rex.reg_match->rm_matchcol = col;
|
|
}
|
|
return retval;
|
|
}
|
|
}
|
|
|
|
// If the start column is past the maximum column: no need to try.
|
|
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
|
|
goto theend;
|
|
}
|
|
|
|
// Set the "nstate" used by nfa_regcomp() to zero to trigger an error when
|
|
// it's accidentally used during execution.
|
|
nstate = 0;
|
|
for (int i = 0; i < prog->nstate; i++) {
|
|
prog->state[i].id = i;
|
|
prog->state[i].lastlist[0] = 0;
|
|
prog->state[i].lastlist[1] = 0;
|
|
}
|
|
|
|
retval = nfa_regtry(prog, col, tm, timed_out);
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = NULL;
|
|
#endif
|
|
|
|
theend:
|
|
if (retval > 0) {
|
|
// Make sure the end is never before the start. Can happen when \zs and
|
|
// \ze are used.
|
|
if (REG_MULTI) {
|
|
const lpos_T *const start = &rex.reg_mmatch->startpos[0];
|
|
const lpos_T *const end = &rex.reg_mmatch->endpos[0];
|
|
|
|
if (end->lnum < start->lnum
|
|
|| (end->lnum == start->lnum && end->col < start->col)) {
|
|
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
|
|
}
|
|
} else {
|
|
if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) {
|
|
rex.reg_match->endp[0] = rex.reg_match->startp[0];
|
|
}
|
|
|
|
// startpos[0] may be set by "\zs", also return the column where
|
|
// the whole pattern matched.
|
|
rex.reg_match->rm_matchcol = col;
|
|
}
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
// Compile a regular expression into internal code for the NFA matcher.
|
|
// Returns the program in allocated space. Returns NULL for an error.
|
|
static regprog_T *nfa_regcomp(uint8_t *expr, int re_flags)
|
|
{
|
|
nfa_regprog_T *prog = NULL;
|
|
int *postfix;
|
|
|
|
if (expr == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = expr;
|
|
#endif
|
|
nfa_re_flags = re_flags;
|
|
|
|
init_class_tab();
|
|
|
|
nfa_regcomp_start(expr, re_flags);
|
|
|
|
// Build postfix form of the regexp. Needed to build the NFA
|
|
// (and count its size).
|
|
postfix = re2post();
|
|
if (postfix == NULL) {
|
|
goto fail; // Cascaded (syntax?) error
|
|
}
|
|
|
|
// In order to build the NFA, we parse the input regexp twice:
|
|
// 1. first pass to count size (so we can allocate space)
|
|
// 2. second to emit code
|
|
#ifdef REGEXP_DEBUG
|
|
{
|
|
FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a");
|
|
|
|
if (f != NULL) {
|
|
fprintf(f,
|
|
"\n*****************************\n\n\n\n\t"
|
|
"Compiling regexp \"%s\"... hold on !\n",
|
|
expr);
|
|
fclose(f);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// PASS 1
|
|
// Count number of NFA states in "nstate". Do not build the NFA.
|
|
post2nfa(postfix, post_ptr, true);
|
|
|
|
// allocate the regprog with space for the compiled regexp
|
|
size_t prog_size = offsetof(nfa_regprog_T, state) + sizeof(nfa_state_T) * (size_t)nstate;
|
|
prog = xmalloc(prog_size);
|
|
state_ptr = prog->state;
|
|
prog->re_in_use = false;
|
|
|
|
// PASS 2
|
|
// Build the NFA
|
|
prog->start = post2nfa(postfix, post_ptr, false);
|
|
if (prog->start == NULL) {
|
|
goto fail;
|
|
}
|
|
prog->regflags = regflags;
|
|
prog->engine = &nfa_regengine;
|
|
prog->nstate = nstate;
|
|
prog->has_zend = rex.nfa_has_zend;
|
|
prog->has_backref = rex.nfa_has_backref;
|
|
prog->nsubexp = regnpar;
|
|
|
|
nfa_postprocess(prog);
|
|
|
|
prog->reganch = nfa_get_reganch(prog->start, 0);
|
|
prog->regstart = nfa_get_regstart(prog->start, 0);
|
|
prog->match_text = nfa_get_match_text(prog->start);
|
|
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_postfix_dump(expr, OK);
|
|
nfa_dump(prog);
|
|
#endif
|
|
// Remember whether this pattern has any \z specials in it.
|
|
prog->reghasz = re_has_z;
|
|
prog->pattern = xstrdup((char *)expr);
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_regengine.expr = NULL;
|
|
#endif
|
|
|
|
out:
|
|
xfree(post_start);
|
|
post_start = post_ptr = post_end = NULL;
|
|
state_ptr = NULL;
|
|
return (regprog_T *)prog;
|
|
|
|
fail:
|
|
XFREE_CLEAR(prog);
|
|
#ifdef REGEXP_DEBUG
|
|
nfa_postfix_dump(expr, FAIL);
|
|
nfa_regengine.expr = NULL;
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
// Free a compiled regexp program, returned by nfa_regcomp().
|
|
static void nfa_regfree(regprog_T *prog)
|
|
{
|
|
if (prog == NULL) {
|
|
return;
|
|
}
|
|
|
|
xfree(((nfa_regprog_T *)prog)->match_text);
|
|
xfree(((nfa_regprog_T *)prog)->pattern);
|
|
xfree(prog);
|
|
}
|
|
|
|
/// Match a regexp against a string.
|
|
/// "rmp->regprog" is a compiled regexp as returned by nfa_regcomp().
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
/// If "line_lbr" is true, consider a "\n" in "line" to be a line break.
|
|
///
|
|
/// @param line string to match against
|
|
/// @param col column to start looking for match
|
|
///
|
|
/// @return <= 0 for failure, number of lines contained in the match otherwise.
|
|
static int nfa_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr)
|
|
{
|
|
rex.reg_match = rmp;
|
|
rex.reg_mmatch = NULL;
|
|
rex.reg_maxline = 0;
|
|
rex.reg_line_lbr = line_lbr;
|
|
rex.reg_buf = curbuf;
|
|
rex.reg_win = NULL;
|
|
rex.reg_ic = rmp->rm_ic;
|
|
rex.reg_icombine = false;
|
|
rex.reg_maxcol = 0;
|
|
return (int)nfa_regexec_both(line, col, NULL, NULL);
|
|
}
|
|
|
|
/// Matches a regexp against multiple lines.
|
|
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
|
|
/// Uses curbuf for line count and 'iskeyword'.
|
|
///
|
|
/// @param win Window in which to search or NULL
|
|
/// @param buf Buffer in which to search
|
|
/// @param lnum Number of line to start looking for match
|
|
/// @param col Column to start looking for match
|
|
/// @param tm Timeout limit or NULL
|
|
/// @param timed_out Flag set on timeout or NULL
|
|
///
|
|
/// @return <= 0 if there is no match and number of lines contained in the match
|
|
/// otherwise.
|
|
///
|
|
/// @note The body is the same as bt_regexec() except for nfa_regexec_both()
|
|
///
|
|
/// @warning
|
|
/// Match may actually be in another line. e.g.:
|
|
/// when r.e. is \nc, cursor is at 'a' and the text buffer looks like
|
|
///
|
|
/// @par
|
|
///
|
|
/// +-------------------------+
|
|
/// |a |
|
|
/// |b |
|
|
/// |c |
|
|
/// | |
|
|
/// +-------------------------+
|
|
///
|
|
/// @par
|
|
/// then nfa_regexec_multi() returns 3. while the original vim_regexec_multi()
|
|
/// returns 0 and a second call at line 2 will return 2.
|
|
///
|
|
/// @par
|
|
/// FIXME if this behavior is not compatible.
|
|
static long nfa_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
|
|
proftime_T *tm, int *timed_out)
|
|
{
|
|
init_regexec_multi(rmp, win, buf, lnum);
|
|
return nfa_regexec_both(NULL, col, tm, timed_out);
|
|
}
|