Files
neovim/src/nvim/regexp_nfa.c
zeertzjq 4cc0d6b854 vim-patch:9.0.1271: using sizeof() and subtract array size is tricky (#22087)
Problem:    Using sizeof() and subtract array size is tricky.
Solution:   Use offsetof() instead. (closes vim/vim#11926)

1b438a8228
2023-02-01 21:53:32 +08:00

7640 lines
201 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// NFA regular expression implementation.
//
// This file is included in "regexp.c".
#include <assert.h>
#include <inttypes.h>
#include <limits.h>
#include <stdbool.h>
#include "nvim/ascii.h"
#include "nvim/garray.h"
#include "nvim/os/input.h"
// Logging of NFA engine.
//
// The NFA engine can write four log files:
// - Error log: Contains NFA engine's fatal errors.
// - Dump log: Contains compiled NFA state machine's information.
// - Run log: Contains information of matching procedure.
// - Debug log: Contains detailed information of matching procedure. Can be
// disabled by undefining NFA_REGEXP_DEBUG_LOG.
// The first one can also be used without debug mode.
// The last three are enabled when compiled as debug mode and individually
// disabled by commenting them out.
// The log files can get quite big!
// To disable all of this when compiling Vim for debugging, undefine REGEXP_DEBUG in
// regexp.c
#ifdef REGEXP_DEBUG
# define NFA_REGEXP_ERROR_LOG "nfa_regexp_error.log"
# define NFA_REGEXP_DUMP_LOG "nfa_regexp_dump.log"
# define NFA_REGEXP_RUN_LOG "nfa_regexp_run.log"
# define NFA_REGEXP_DEBUG_LOG "nfa_regexp_debug.log"
#endif
// Added to NFA_ANY - NFA_NUPPER_IC to include a NL.
#define NFA_ADD_NL 31
enum {
NFA_SPLIT = -1024,
NFA_MATCH,
NFA_EMPTY, // matches 0-length
NFA_START_COLL, // [abc] start
NFA_END_COLL, // [abc] end
NFA_START_NEG_COLL, // [^abc] start
NFA_END_NEG_COLL, // [^abc] end (postfix only)
NFA_RANGE, // range of the two previous items
// (postfix only)
NFA_RANGE_MIN, // low end of a range
NFA_RANGE_MAX, // high end of a range
NFA_CONCAT, // concatenate two previous items (postfix
// only)
NFA_OR, // \| (postfix only)
NFA_STAR, // greedy * (postfix only)
NFA_STAR_NONGREEDY, // non-greedy * (postfix only)
NFA_QUEST, // greedy \? (postfix only)
NFA_QUEST_NONGREEDY, // non-greedy \? (postfix only)
NFA_BOL, // ^ Begin line
NFA_EOL, // $ End line
NFA_BOW, // \< Begin word
NFA_EOW, // \> End word
NFA_BOF, // \%^ Begin file
NFA_EOF, // \%$ End file
NFA_NEWL,
NFA_ZSTART, // Used for \zs
NFA_ZEND, // Used for \ze
NFA_NOPEN, // Start of subexpression marked with \%(
NFA_NCLOSE, // End of subexpr. marked with \%( ... \)
NFA_START_INVISIBLE,
NFA_START_INVISIBLE_FIRST,
NFA_START_INVISIBLE_NEG,
NFA_START_INVISIBLE_NEG_FIRST,
NFA_START_INVISIBLE_BEFORE,
NFA_START_INVISIBLE_BEFORE_FIRST,
NFA_START_INVISIBLE_BEFORE_NEG,
NFA_START_INVISIBLE_BEFORE_NEG_FIRST,
NFA_START_PATTERN,
NFA_END_INVISIBLE,
NFA_END_INVISIBLE_NEG,
NFA_END_PATTERN,
NFA_COMPOSING, // Next nodes in NFA are part of the
// composing multibyte char
NFA_END_COMPOSING, // End of a composing char in the NFA
NFA_ANY_COMPOSING, // \%C: Any composing characters.
NFA_OPT_CHARS, // \%[abc]
// The following are used only in the postfix form, not in the NFA
NFA_PREV_ATOM_NO_WIDTH, // Used for \@=
NFA_PREV_ATOM_NO_WIDTH_NEG, // Used for \@!
NFA_PREV_ATOM_JUST_BEFORE, // Used for \@<=
NFA_PREV_ATOM_JUST_BEFORE_NEG, // Used for \@<!
NFA_PREV_ATOM_LIKE_PATTERN, // Used for \@>
NFA_BACKREF1, // \1
NFA_BACKREF2, // \2
NFA_BACKREF3, // \3
NFA_BACKREF4, // \4
NFA_BACKREF5, // \5
NFA_BACKREF6, // \6
NFA_BACKREF7, // \7
NFA_BACKREF8, // \8
NFA_BACKREF9, // \9
NFA_ZREF1, // \z1
NFA_ZREF2, // \z2
NFA_ZREF3, // \z3
NFA_ZREF4, // \z4
NFA_ZREF5, // \z5
NFA_ZREF6, // \z6
NFA_ZREF7, // \z7
NFA_ZREF8, // \z8
NFA_ZREF9, // \z9
NFA_SKIP, // Skip characters
NFA_MOPEN,
NFA_MOPEN1,
NFA_MOPEN2,
NFA_MOPEN3,
NFA_MOPEN4,
NFA_MOPEN5,
NFA_MOPEN6,
NFA_MOPEN7,
NFA_MOPEN8,
NFA_MOPEN9,
NFA_MCLOSE,
NFA_MCLOSE1,
NFA_MCLOSE2,
NFA_MCLOSE3,
NFA_MCLOSE4,
NFA_MCLOSE5,
NFA_MCLOSE6,
NFA_MCLOSE7,
NFA_MCLOSE8,
NFA_MCLOSE9,
NFA_ZOPEN,
NFA_ZOPEN1,
NFA_ZOPEN2,
NFA_ZOPEN3,
NFA_ZOPEN4,
NFA_ZOPEN5,
NFA_ZOPEN6,
NFA_ZOPEN7,
NFA_ZOPEN8,
NFA_ZOPEN9,
NFA_ZCLOSE,
NFA_ZCLOSE1,
NFA_ZCLOSE2,
NFA_ZCLOSE3,
NFA_ZCLOSE4,
NFA_ZCLOSE5,
NFA_ZCLOSE6,
NFA_ZCLOSE7,
NFA_ZCLOSE8,
NFA_ZCLOSE9,
// NFA_FIRST_NL
NFA_ANY, // Match any one character.
NFA_IDENT, // Match identifier char
NFA_SIDENT, // Match identifier char but no digit
NFA_KWORD, // Match keyword char
NFA_SKWORD, // Match word char but no digit
NFA_FNAME, // Match file name char
NFA_SFNAME, // Match file name char but no digit
NFA_PRINT, // Match printable char
NFA_SPRINT, // Match printable char but no digit
NFA_WHITE, // Match whitespace char
NFA_NWHITE, // Match non-whitespace char
NFA_DIGIT, // Match digit char
NFA_NDIGIT, // Match non-digit char
NFA_HEX, // Match hex char
NFA_NHEX, // Match non-hex char
NFA_OCTAL, // Match octal char
NFA_NOCTAL, // Match non-octal char
NFA_WORD, // Match word char
NFA_NWORD, // Match non-word char
NFA_HEAD, // Match head char
NFA_NHEAD, // Match non-head char
NFA_ALPHA, // Match alpha char
NFA_NALPHA, // Match non-alpha char
NFA_LOWER, // Match lowercase char
NFA_NLOWER, // Match non-lowercase char
NFA_UPPER, // Match uppercase char
NFA_NUPPER, // Match non-uppercase char
NFA_LOWER_IC, // Match [a-z]
NFA_NLOWER_IC, // Match [^a-z]
NFA_UPPER_IC, // Match [A-Z]
NFA_NUPPER_IC, // Match [^A-Z]
NFA_FIRST_NL = NFA_ANY + NFA_ADD_NL,
NFA_LAST_NL = NFA_NUPPER_IC + NFA_ADD_NL,
NFA_CURSOR, // Match cursor pos
NFA_LNUM, // Match line number
NFA_LNUM_GT, // Match > line number
NFA_LNUM_LT, // Match < line number
NFA_COL, // Match cursor column
NFA_COL_GT, // Match > cursor column
NFA_COL_LT, // Match < cursor column
NFA_VCOL, // Match cursor virtual column
NFA_VCOL_GT, // Match > cursor virtual column
NFA_VCOL_LT, // Match < cursor virtual column
NFA_MARK, // Match mark
NFA_MARK_GT, // Match > mark
NFA_MARK_LT, // Match < mark
NFA_VISUAL, // Match Visual area
// Character classes [:alnum:] etc
NFA_CLASS_ALNUM,
NFA_CLASS_ALPHA,
NFA_CLASS_BLANK,
NFA_CLASS_CNTRL,
NFA_CLASS_DIGIT,
NFA_CLASS_GRAPH,
NFA_CLASS_LOWER,
NFA_CLASS_PRINT,
NFA_CLASS_PUNCT,
NFA_CLASS_SPACE,
NFA_CLASS_UPPER,
NFA_CLASS_XDIGIT,
NFA_CLASS_TAB,
NFA_CLASS_RETURN,
NFA_CLASS_BACKSPACE,
NFA_CLASS_ESCAPE,
NFA_CLASS_IDENT,
NFA_CLASS_KEYWORD,
NFA_CLASS_FNAME,
};
// Keep in sync with classchars.
static int nfa_classcodes[] = {
NFA_ANY, NFA_IDENT, NFA_SIDENT, NFA_KWORD, NFA_SKWORD,
NFA_FNAME, NFA_SFNAME, NFA_PRINT, NFA_SPRINT,
NFA_WHITE, NFA_NWHITE, NFA_DIGIT, NFA_NDIGIT,
NFA_HEX, NFA_NHEX, NFA_OCTAL, NFA_NOCTAL,
NFA_WORD, NFA_NWORD, NFA_HEAD, NFA_NHEAD,
NFA_ALPHA, NFA_NALPHA, NFA_LOWER, NFA_NLOWER,
NFA_UPPER, NFA_NUPPER
};
static char e_nul_found[] = N_("E865: (NFA) Regexp end encountered prematurely");
static char e_misplaced[] = N_("E866: (NFA regexp) Misplaced %c");
static char e_ill_char_class[] = N_("E877: (NFA regexp) Invalid character class: %" PRId64);
static char e_value_too_large[] = N_("E951: \\% value too large");
// Since the out pointers in the list are always
// uninitialized, we use the pointers themselves
// as storage for the Ptrlists.
typedef union Ptrlist Ptrlist;
union Ptrlist {
Ptrlist *next;
nfa_state_T *s;
};
struct Frag {
nfa_state_T *start;
Ptrlist *out;
};
typedef struct Frag Frag_T;
typedef struct {
int in_use; ///< number of subexpr with useful info
// When REG_MULTI is true list.multi is used, otherwise list.line.
union {
struct multipos {
linenr_T start_lnum;
linenr_T end_lnum;
colnr_T start_col;
colnr_T end_col;
} multi[NSUBEXP];
struct linepos {
uint8_t *start;
uint8_t *end;
} line[NSUBEXP];
} list;
colnr_T orig_start_col; // list.multi[0].start_col without \zs
} regsub_T;
typedef struct {
regsub_T norm; // \( .. \) matches
regsub_T synt; // \z( .. \) matches
} regsubs_T;
// nfa_pim_T stores a Postponed Invisible Match.
typedef struct nfa_pim_S nfa_pim_T;
struct nfa_pim_S {
int result; // NFA_PIM_*, see below
nfa_state_T *state; // the invisible match start state
regsubs_T subs; // submatch info, only party used
union {
lpos_T pos;
uint8_t *ptr;
} end; // where the match must end
};
// nfa_thread_T contains execution information of a NFA state
typedef struct {
nfa_state_T *state;
int count;
nfa_pim_T pim; // if pim.result != NFA_PIM_UNUSED: postponed
// invisible match
regsubs_T subs; // submatch info, only party used
} nfa_thread_T;
// nfa_list_T contains the alternative NFA execution states.
typedef struct {
nfa_thread_T *t; ///< allocated array of states
int n; ///< nr of states currently in "t"
int len; ///< max nr of states in "t"
int id; ///< ID of the list
int has_pim; ///< true when any state has a PIM
} nfa_list_T;
// Variables only used in nfa_regcomp() and descendants.
static int nfa_re_flags; ///< re_flags passed to nfa_regcomp().
static int *post_start; ///< holds the postfix form of r.e.
static int *post_end;
static int *post_ptr;
// Set when the pattern should use the NFA engine.
// E.g. [[:upper:]] only allows 8bit characters for BT engine,
// while NFA engine handles multibyte characters correctly.
static bool wants_nfa;
static int nstate; ///< Number of states in the NFA. Also used when executing.
static int istate; ///< Index in the state vector, used in alloc_state()
// If not NULL match must end at this position
static save_se_T *nfa_endp = NULL;
// 0 for first call to nfa_regmatch(), 1 for recursive call.
static int nfa_ll_index = 0;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "regexp_nfa.c.generated.h"
#endif
// Helper functions used when doing re2post() ... regatom() parsing
#define EMIT(c) \
do { \
if (post_ptr >= post_end) { \
realloc_post_list(); \
} \
*post_ptr++ = c; \
} while (0)
/// Initialize internal variables before NFA compilation.
///
/// @param re_flags @see vim_regcomp()
static void nfa_regcomp_start(uint8_t *expr, int re_flags)
{
size_t postfix_size;
size_t nstate_max;
nstate = 0;
istate = 0;
// A reasonable estimation for maximum size
nstate_max = (strlen((char *)expr) + 1) * 25;
// Some items blow up in size, such as [A-z]. Add more space for that.
// When it is still not enough realloc_post_list() will be used.
nstate_max += 1000;
// Size for postfix representation of expr.
postfix_size = sizeof(int) * nstate_max;
post_start = (int *)xmalloc(postfix_size);
post_ptr = post_start;
post_end = post_start + nstate_max;
wants_nfa = false;
rex.nfa_has_zend = false;
rex.nfa_has_backref = false;
// shared with BT engine
regcomp_start(expr, re_flags);
}
// Figure out if the NFA state list starts with an anchor, must match at start
// of the line.
static int nfa_get_reganch(nfa_state_T *start, int depth)
{
nfa_state_T *p = start;
if (depth > 4) {
return 0;
}
while (p != NULL) {
switch (p->c) {
case NFA_BOL:
case NFA_BOF:
return 1; // yes!
case NFA_ZSTART:
case NFA_ZEND:
case NFA_CURSOR:
case NFA_VISUAL:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_NOPEN:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
p = p->out;
break;
case NFA_SPLIT:
return nfa_get_reganch(p->out, depth + 1)
&& nfa_get_reganch(p->out1, depth + 1);
default:
return 0; // noooo
}
}
return 0;
}
// Figure out if the NFA state list starts with a character which must match
// at start of the match.
static int nfa_get_regstart(nfa_state_T *start, int depth)
{
nfa_state_T *p = start;
if (depth > 4) {
return 0;
}
while (p != NULL) {
switch (p->c) {
// all kinds of zero-width matches
case NFA_BOL:
case NFA_BOF:
case NFA_BOW:
case NFA_EOW:
case NFA_ZSTART:
case NFA_ZEND:
case NFA_CURSOR:
case NFA_VISUAL:
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_NOPEN:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
p = p->out;
break;
case NFA_SPLIT: {
int c1 = nfa_get_regstart(p->out, depth + 1);
int c2 = nfa_get_regstart(p->out1, depth + 1);
if (c1 == c2) {
return c1; // yes!
}
return 0;
}
default:
if (p->c > 0) {
return p->c; // yes!
}
return 0;
}
}
return 0;
}
// Figure out if the NFA state list contains just literal text and nothing
// else. If so return a string in allocated memory with what must match after
// regstart. Otherwise return NULL.
static uint8_t *nfa_get_match_text(nfa_state_T *start)
{
nfa_state_T *p = start;
int len = 0;
uint8_t *ret;
uint8_t *s;
if (p->c != NFA_MOPEN) {
return NULL; // just in case
}
p = p->out;
while (p->c > 0) {
len += utf_char2len(p->c);
p = p->out;
}
if (p->c != NFA_MCLOSE || p->out->c != NFA_MATCH) {
return NULL;
}
ret = xmalloc((size_t)len);
p = start->out->out; // skip first char, it goes into regstart
s = ret;
while (p->c > 0) {
s += utf_char2bytes(p->c, (char *)s);
p = p->out;
}
*s = NUL;
return ret;
}
// Allocate more space for post_start. Called when
// running above the estimated number of states.
static void realloc_post_list(void)
{
// For weird patterns the number of states can be very high. Increasing by
// 50% seems a reasonable compromise between memory use and speed.
const size_t new_max = (size_t)(post_end - post_start) * 3 / 2;
int *new_start = xrealloc(post_start, new_max * sizeof(int));
post_ptr = new_start + (post_ptr - post_start);
post_end = new_start + new_max;
post_start = new_start;
}
// Search between "start" and "end" and try to recognize a
// character class in expanded form. For example [0-9].
// On success, return the id the character class to be emitted.
// On failure, return 0 (=FAIL)
// Start points to the first char of the range, while end should point
// to the closing brace.
// Keep in mind that 'ignorecase' applies at execution time, thus [a-z] may
// need to be interpreted as [a-zA-Z].
static int nfa_recognize_char_class(uint8_t *start, uint8_t *end, int extra_newl)
{
#define CLASS_not 0x80
#define CLASS_af 0x40
#define CLASS_AF 0x20
#define CLASS_az 0x10
#define CLASS_AZ 0x08
#define CLASS_o7 0x04
#define CLASS_o9 0x02
#define CLASS_underscore 0x01
uint8_t *p;
int config = 0;
bool newl = extra_newl == true;
if (*end != ']') {
return FAIL;
}
p = start;
if (*p == '^') {
config |= CLASS_not;
p++;
}
while (p < end) {
if (p + 2 < end && *(p + 1) == '-') {
switch (*p) {
case '0':
if (*(p + 2) == '9') {
config |= CLASS_o9;
break;
} else if (*(p + 2) == '7') {
config |= CLASS_o7;
break;
}
return FAIL;
case 'a':
if (*(p + 2) == 'z') {
config |= CLASS_az;
break;
} else if (*(p + 2) == 'f') {
config |= CLASS_af;
break;
}
return FAIL;
case 'A':
if (*(p + 2) == 'Z') {
config |= CLASS_AZ;
break;
} else if (*(p + 2) == 'F') {
config |= CLASS_AF;
break;
}
return FAIL;
default:
return FAIL;
}
p += 3;
} else if (p + 1 < end && *p == '\\' && *(p + 1) == 'n') {
newl = true;
p += 2;
} else if (*p == '_') {
config |= CLASS_underscore;
p++;
} else if (*p == '\n') {
newl = true;
p++;
} else {
return FAIL;
}
} // while (p < end)
if (p != end) {
return FAIL;
}
if (newl == true) {
extra_newl = NFA_ADD_NL;
}
switch (config) {
case CLASS_o9:
return extra_newl + NFA_DIGIT;
case CLASS_not | CLASS_o9:
return extra_newl + NFA_NDIGIT;
case CLASS_af | CLASS_AF | CLASS_o9:
return extra_newl + NFA_HEX;
case CLASS_not | CLASS_af | CLASS_AF | CLASS_o9:
return extra_newl + NFA_NHEX;
case CLASS_o7:
return extra_newl + NFA_OCTAL;
case CLASS_not | CLASS_o7:
return extra_newl + NFA_NOCTAL;
case CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
return extra_newl + NFA_WORD;
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_o9 | CLASS_underscore:
return extra_newl + NFA_NWORD;
case CLASS_az | CLASS_AZ | CLASS_underscore:
return extra_newl + NFA_HEAD;
case CLASS_not | CLASS_az | CLASS_AZ | CLASS_underscore:
return extra_newl + NFA_NHEAD;
case CLASS_az | CLASS_AZ:
return extra_newl + NFA_ALPHA;
case CLASS_not | CLASS_az | CLASS_AZ:
return extra_newl + NFA_NALPHA;
case CLASS_az:
return extra_newl + NFA_LOWER_IC;
case CLASS_not | CLASS_az:
return extra_newl + NFA_NLOWER_IC;
case CLASS_AZ:
return extra_newl + NFA_UPPER_IC;
case CLASS_not | CLASS_AZ:
return extra_newl + NFA_NUPPER_IC;
}
return FAIL;
}
// Produce the bytes for equivalence class "c".
// Currently only handles latin1, latin9 and utf-8.
// Emits bytes in postfix notation: 'a,b,NFA_OR,c,NFA_OR' is
// equivalent to 'a OR b OR c'
//
// NOTE! When changing this function, also update reg_equi_class()
static void nfa_emit_equi_class(int c)
{
#define EMIT2(c) EMIT(c); EMIT(NFA_CONCAT);
{
#define A_grave 0xc0
#define A_acute 0xc1
#define A_circumflex 0xc2
#define A_virguilla 0xc3
#define A_diaeresis 0xc4
#define A_ring 0xc5
#define C_cedilla 0xc7
#define E_grave 0xc8
#define E_acute 0xc9
#define E_circumflex 0xca
#define E_diaeresis 0xcb
#define I_grave 0xcc
#define I_acute 0xcd
#define I_circumflex 0xce
#define I_diaeresis 0xcf
#define N_virguilla 0xd1
#define O_grave 0xd2
#define O_acute 0xd3
#define O_circumflex 0xd4
#define O_virguilla 0xd5
#define O_diaeresis 0xd6
#define O_slash 0xd8
#define U_grave 0xd9
#define U_acute 0xda
#define U_circumflex 0xdb
#define U_diaeresis 0xdc
#define Y_acute 0xdd
#define a_grave 0xe0
#define a_acute 0xe1
#define a_circumflex 0xe2
#define a_virguilla 0xe3
#define a_diaeresis 0xe4
#define a_ring 0xe5
#define c_cedilla 0xe7
#define e_grave 0xe8
#define e_acute 0xe9
#define e_circumflex 0xea
#define e_diaeresis 0xeb
#define i_grave 0xec
#define i_acute 0xed
#define i_circumflex 0xee
#define i_diaeresis 0xef
#define n_virguilla 0xf1
#define o_grave 0xf2
#define o_acute 0xf3
#define o_circumflex 0xf4
#define o_virguilla 0xf5
#define o_diaeresis 0xf6
#define o_slash 0xf8
#define u_grave 0xf9
#define u_acute 0xfa
#define u_circumflex 0xfb
#define u_diaeresis 0xfc
#define y_acute 0xfd
#define y_diaeresis 0xff
switch (c) {
case 'A':
case A_grave:
case A_acute:
case A_circumflex:
case A_virguilla:
case A_diaeresis:
case A_ring:
case 0x100:
case 0x102:
case 0x104:
case 0x1cd:
case 0x1de:
case 0x1e0:
case 0x1fa:
case 0x200:
case 0x202:
case 0x226:
case 0x23a:
case 0x1e00:
case 0x1ea0:
case 0x1ea2:
case 0x1ea4:
case 0x1ea6:
case 0x1ea8:
case 0x1eaa:
case 0x1eac:
case 0x1eae:
case 0x1eb0:
case 0x1eb2:
case 0x1eb4:
case 0x1eb6:
EMIT2('A') EMIT2(A_grave) EMIT2(A_acute) // NOLINT(whitespace/cast)
EMIT2(A_circumflex) EMIT2(A_virguilla) // NOLINT(whitespace/cast)
EMIT2(A_diaeresis) EMIT2(A_ring) // NOLINT(whitespace/cast)
EMIT2(0x100) EMIT2(0x102) EMIT2(0x104)
EMIT2(0x1cd) EMIT2(0x1de) EMIT2(0x1e0)
EMIT2(0x1fa) EMIT2(0x200) EMIT2(0x202)
EMIT2(0x226) EMIT2(0x23a) EMIT2(0x1e00)
EMIT2(0x1ea0) EMIT2(0x1ea2) EMIT2(0x1ea4)
EMIT2(0x1ea6) EMIT2(0x1ea8) EMIT2(0x1eaa)
EMIT2(0x1eac) EMIT2(0x1eae) EMIT2(0x1eb0)
EMIT2(0x1eb2) EMIT2(0x1eb6) EMIT2(0x1eb4)
return;
case 'B':
case 0x181:
case 0x243:
case 0x1e02:
case 0x1e04:
case 0x1e06:
EMIT2('B')
EMIT2(0x181) EMIT2(0x243) EMIT2(0x1e02)
EMIT2(0x1e04) EMIT2(0x1e06)
return;
case 'C':
case C_cedilla:
case 0x106:
case 0x108:
case 0x10a:
case 0x10c:
case 0x187:
case 0x23b:
case 0x1e08:
case 0xa792:
EMIT2('C') EMIT2(C_cedilla)
EMIT2(0x106) EMIT2(0x108) EMIT2(0x10a)
EMIT2(0x10c) EMIT2(0x187) EMIT2(0x23b)
EMIT2(0x1e08) EMIT2(0xa792)
return;
case 'D':
case 0x10e:
case 0x110:
case 0x18a:
case 0x1e0a:
case 0x1e0c:
case 0x1e0e:
case 0x1e10:
case 0x1e12:
EMIT2('D') EMIT2(0x10e) EMIT2(0x110) EMIT2(0x18a)
EMIT2(0x1e0a) EMIT2(0x1e0c) EMIT2(0x1e0e)
EMIT2(0x1e10) EMIT2(0x1e12)
return;
case 'E':
case E_grave:
case E_acute:
case E_circumflex:
case E_diaeresis:
case 0x112:
case 0x114:
case 0x116:
case 0x118:
case 0x11a:
case 0x204:
case 0x206:
case 0x228:
case 0x246:
case 0x1e14:
case 0x1e16:
case 0x1e18:
case 0x1e1a:
case 0x1e1c:
case 0x1eb8:
case 0x1eba:
case 0x1ebc:
case 0x1ebe:
case 0x1ec0:
case 0x1ec2:
case 0x1ec4:
case 0x1ec6:
EMIT2('E') EMIT2(E_grave) EMIT2(E_acute) // NOLINT(whitespace/cast)
EMIT2(E_circumflex) EMIT2(E_diaeresis) // NOLINT(whitespace/cast)
EMIT2(0x112) EMIT2(0x114) EMIT2(0x116)
EMIT2(0x118) EMIT2(0x11a) EMIT2(0x204)
EMIT2(0x206) EMIT2(0x228) EMIT2(0x246)
EMIT2(0x1e14) EMIT2(0x1e16) EMIT2(0x1e18)
EMIT2(0x1e1a) EMIT2(0x1e1c) EMIT2(0x1eb8)
EMIT2(0x1eba) EMIT2(0x1ebc) EMIT2(0x1ebe)
EMIT2(0x1ec0) EMIT2(0x1ec2) EMIT2(0x1ec4)
EMIT2(0x1ec6)
return;
case 'F':
case 0x191:
case 0x1e1e:
case 0xa798:
EMIT2('F') EMIT2(0x191) EMIT2(0x1e1e) EMIT2(0xa798)
return;
case 'G':
case 0x11c:
case 0x11e:
case 0x120:
case 0x122:
case 0x193:
case 0x1e4:
case 0x1e6:
case 0x1f4:
case 0x1e20:
case 0xa7a0:
EMIT2('G') EMIT2(0x11c) EMIT2(0x11e) EMIT2(0x120)
EMIT2(0x122) EMIT2(0x193) EMIT2(0x1e4)
EMIT2(0x1e6) EMIT2(0x1f4) EMIT2(0x1e20)
EMIT2(0xa7a0)
return;
case 'H':
case 0x124:
case 0x126:
case 0x21e:
case 0x1e22:
case 0x1e24:
case 0x1e26:
case 0x1e28:
case 0x1e2a:
case 0x2c67:
EMIT2('H') EMIT2(0x124) EMIT2(0x126) EMIT2(0x21e)
EMIT2(0x1e22) EMIT2(0x1e24) EMIT2(0x1e26)
EMIT2(0x1e28) EMIT2(0x1e2a) EMIT2(0x2c67)
return;
case 'I':
case I_grave:
case I_acute:
case I_circumflex:
case I_diaeresis:
case 0x128:
case 0x12a:
case 0x12c:
case 0x12e:
case 0x130:
case 0x197:
case 0x1cf:
case 0x208:
case 0x20a:
case 0x1e2c:
case 0x1e2e:
case 0x1ec8:
case 0x1eca:
EMIT2('I') EMIT2(I_grave) EMIT2(I_acute) // NOLINT(whitespace/cast)
EMIT2(I_circumflex) EMIT2(I_diaeresis) // NOLINT(whitespace/cast)
EMIT2(0x128) EMIT2(0x12a) EMIT2(0x12c)
EMIT2(0x12e) EMIT2(0x130) EMIT2(0x197)
EMIT2(0x1cf) EMIT2(0x208) EMIT2(0x20a)
EMIT2(0x1e2c) EMIT2(0x1e2e) EMIT2(0x1ec8)
EMIT2(0x1eca)
return;
case 'J':
case 0x134:
case 0x248:
EMIT2('J') EMIT2(0x134) EMIT2(0x248)
return;
case 'K':
case 0x136:
case 0x198:
case 0x1e8:
case 0x1e30:
case 0x1e32:
case 0x1e34:
case 0x2c69:
case 0xa740:
EMIT2('K') EMIT2(0x136) EMIT2(0x198) EMIT2(0x1e8)
EMIT2(0x1e30) EMIT2(0x1e32) EMIT2(0x1e34)
EMIT2(0x2c69) EMIT2(0xa740)
return;
case 'L':
case 0x139:
case 0x13b:
case 0x13d:
case 0x13f:
case 0x141:
case 0x23d:
case 0x1e36:
case 0x1e38:
case 0x1e3a:
case 0x1e3c:
case 0x2c60:
EMIT2('L') EMIT2(0x139) EMIT2(0x13b)
EMIT2(0x13d) EMIT2(0x13f) EMIT2(0x141)
EMIT2(0x23d) EMIT2(0x1e36) EMIT2(0x1e38)
EMIT2(0x1e3a) EMIT2(0x1e3c) EMIT2(0x2c60)
return;
case 'M':
case 0x1e3e:
case 0x1e40:
case 0x1e42:
EMIT2('M') EMIT2(0x1e3e) EMIT2(0x1e40)
EMIT2(0x1e42)
return;
case 'N':
case N_virguilla:
case 0x143:
case 0x145:
case 0x147:
case 0x1f8:
case 0x1e44:
case 0x1e46:
case 0x1e48:
case 0x1e4a:
case 0xa7a4:
EMIT2('N') EMIT2(N_virguilla)
EMIT2(0x143) EMIT2(0x145) EMIT2(0x147)
EMIT2(0x1f8) EMIT2(0x1e44) EMIT2(0x1e46)
EMIT2(0x1e48) EMIT2(0x1e4a) EMIT2(0xa7a4)
return;
case 'O':
case O_grave:
case O_acute:
case O_circumflex:
case O_virguilla:
case O_diaeresis:
case O_slash:
case 0x14c:
case 0x14e:
case 0x150:
case 0x19f:
case 0x1a0:
case 0x1d1:
case 0x1ea:
case 0x1ec:
case 0x1fe:
case 0x20c:
case 0x20e:
case 0x22a:
case 0x22c:
case 0x22e:
case 0x230:
case 0x1e4c:
case 0x1e4e:
case 0x1e50:
case 0x1e52:
case 0x1ecc:
case 0x1ece:
case 0x1ed0:
case 0x1ed2:
case 0x1ed4:
case 0x1ed6:
case 0x1ed8:
case 0x1eda:
case 0x1edc:
case 0x1ede:
case 0x1ee0:
case 0x1ee2:
EMIT2('O') EMIT2(O_grave) EMIT2(O_acute) // NOLINT(whitespace/cast)
EMIT2(O_circumflex) EMIT2(O_virguilla) // NOLINT(whitespace/cast)
EMIT2(O_diaeresis) EMIT2(O_slash) // NOLINT(whitespace/cast)
EMIT2(0x14c) EMIT2(0x14e) EMIT2(0x150)
EMIT2(0x19f) EMIT2(0x1a0) EMIT2(0x1d1)
EMIT2(0x1ea) EMIT2(0x1ec) EMIT2(0x1fe)
EMIT2(0x20c) EMIT2(0x20e) EMIT2(0x22a)
EMIT2(0x22c) EMIT2(0x22e) EMIT2(0x230)
EMIT2(0x1e4c) EMIT2(0x1e4e) EMIT2(0x1e50)
EMIT2(0x1e52) EMIT2(0x1ecc) EMIT2(0x1ece)
EMIT2(0x1ed0) EMIT2(0x1ed2) EMIT2(0x1ed4)
EMIT2(0x1ed6) EMIT2(0x1ed8) EMIT2(0x1eda)
EMIT2(0x1edc) EMIT2(0x1ede) EMIT2(0x1ee0)
EMIT2(0x1ee2)
return;
case 'P':
case 0x1a4:
case 0x1e54:
case 0x1e56:
case 0x2c63:
EMIT2('P') EMIT2(0x1a4) EMIT2(0x1e54) EMIT2(0x1e56)
EMIT2(0x2c63)
return;
case 'Q':
case 0x24a:
EMIT2('Q') EMIT2(0x24a)
return;
case 'R':
case 0x154:
case 0x156:
case 0x158:
case 0x210:
case 0x212:
case 0x24c:
case 0x1e58:
case 0x1e5a:
case 0x1e5c:
case 0x1e5e:
case 0x2c64:
case 0xa7a6:
EMIT2('R') EMIT2(0x154) EMIT2(0x156) EMIT2(0x158)
EMIT2(0x210) EMIT2(0x212) EMIT2(0x24c) EMIT2(0x1e58)
EMIT2(0x1e5a) EMIT2(0x1e5c) EMIT2(0x1e5e) EMIT2(0x2c64)
EMIT2(0xa7a6)
return;
case 'S':
case 0x15a:
case 0x15c:
case 0x15e:
case 0x160:
case 0x218:
case 0x1e60:
case 0x1e62:
case 0x1e64:
case 0x1e66:
case 0x1e68:
case 0x2c7e:
case 0xa7a8:
EMIT2('S') EMIT2(0x15a) EMIT2(0x15c) EMIT2(0x15e)
EMIT2(0x160) EMIT2(0x218) EMIT2(0x1e60) EMIT2(0x1e62)
EMIT2(0x1e64) EMIT2(0x1e66) EMIT2(0x1e68) EMIT2(0x2c7e)
EMIT2(0xa7a8)
return;
case 'T':
case 0x162:
case 0x164:
case 0x166:
case 0x1ac:
case 0x1ae:
case 0x21a:
case 0x23e:
case 0x1e6a:
case 0x1e6c:
case 0x1e6e:
case 0x1e70:
EMIT2('T') EMIT2(0x162) EMIT2(0x164) EMIT2(0x166)
EMIT2(0x1ac) EMIT2(0x1ae) EMIT2(0x23e) EMIT2(0x21a)
EMIT2(0x1e6a) EMIT2(0x1e6c) EMIT2(0x1e6e) EMIT2(0x1e70)
return;
case 'U':
case U_grave:
case U_acute:
case U_diaeresis:
case U_circumflex:
case 0x168:
case 0x16a:
case 0x16c:
case 0x16e:
case 0x170:
case 0x172:
case 0x1af:
case 0x1d3:
case 0x1d5:
case 0x1d7:
case 0x1d9:
case 0x1db:
case 0x214:
case 0x216:
case 0x244:
case 0x1e72:
case 0x1e74:
case 0x1e76:
case 0x1e78:
case 0x1e7a:
case 0x1ee4:
case 0x1ee6:
case 0x1ee8:
case 0x1eea:
case 0x1eec:
case 0x1eee:
case 0x1ef0:
EMIT2('U') EMIT2(U_grave) EMIT2(U_acute) // NOLINT(whitespace/cast)
EMIT2(U_diaeresis) EMIT2(U_circumflex) // NOLINT(whitespace/cast)
EMIT2(0x168) EMIT2(0x16a)
EMIT2(0x16c) EMIT2(0x16e) EMIT2(0x170)
EMIT2(0x172) EMIT2(0x1af) EMIT2(0x1d3)
EMIT2(0x1d5) EMIT2(0x1d7) EMIT2(0x1d9)
EMIT2(0x1db) EMIT2(0x214) EMIT2(0x216)
EMIT2(0x244) EMIT2(0x1e72) EMIT2(0x1e74)
EMIT2(0x1e76) EMIT2(0x1e78) EMIT2(0x1e7a)
EMIT2(0x1ee4) EMIT2(0x1ee6) EMIT2(0x1ee8)
EMIT2(0x1eea) EMIT2(0x1eec) EMIT2(0x1eee)
EMIT2(0x1ef0)
return;
case 'V':
case 0x1b2:
case 0x1e7c:
case 0x1e7e:
EMIT2('V') EMIT2(0x1b2) EMIT2(0x1e7c) EMIT2(0x1e7e)
return;
case 'W':
case 0x174:
case 0x1e80:
case 0x1e82:
case 0x1e84:
case 0x1e86:
case 0x1e88:
EMIT2('W') EMIT2(0x174) EMIT2(0x1e80) EMIT2(0x1e82)
EMIT2(0x1e84) EMIT2(0x1e86) EMIT2(0x1e88)
return;
case 'X':
case 0x1e8a:
case 0x1e8c:
EMIT2('X') EMIT2(0x1e8a) EMIT2(0x1e8c)
return;
case 'Y':
case Y_acute:
case 0x176:
case 0x178:
case 0x1b3:
case 0x232:
case 0x24e:
case 0x1e8e:
case 0x1ef2:
case 0x1ef4:
case 0x1ef6:
case 0x1ef8:
EMIT2('Y') EMIT2(Y_acute)
EMIT2(0x176) EMIT2(0x178) EMIT2(0x1b3)
EMIT2(0x232) EMIT2(0x24e) EMIT2(0x1e8e)
EMIT2(0x1ef2) EMIT2(0x1ef4) EMIT2(0x1ef6)
EMIT2(0x1ef8)
return;
case 'Z':
case 0x179:
case 0x17b:
case 0x17d:
case 0x1b5:
case 0x1e90:
case 0x1e92:
case 0x1e94:
case 0x2c6b:
EMIT2('Z') EMIT2(0x179) EMIT2(0x17b) EMIT2(0x17d)
EMIT2(0x1b5) EMIT2(0x1e90) EMIT2(0x1e92)
EMIT2(0x1e94) EMIT2(0x2c6b)
return;
case 'a':
case a_grave:
case a_acute:
case a_circumflex:
case a_virguilla:
case a_diaeresis:
case a_ring:
case 0x101:
case 0x103:
case 0x105:
case 0x1ce:
case 0x1df:
case 0x1e1:
case 0x1fb:
case 0x201:
case 0x203:
case 0x227:
case 0x1d8f:
case 0x1e01:
case 0x1e9a:
case 0x1ea1:
case 0x1ea3:
case 0x1ea5:
case 0x1ea7:
case 0x1ea9:
case 0x1eab:
case 0x1ead:
case 0x1eaf:
case 0x1eb1:
case 0x1eb3:
case 0x1eb5:
case 0x1eb7:
case 0x2c65:
EMIT2('a') EMIT2(a_grave) EMIT2(a_acute) // NOLINT(whitespace/cast)
EMIT2(a_circumflex) EMIT2(a_virguilla) // NOLINT(whitespace/cast)
EMIT2(a_diaeresis) EMIT2(a_ring) // NOLINT(whitespace/cast)
EMIT2(0x101) EMIT2(0x103) EMIT2(0x105)
EMIT2(0x1ce) EMIT2(0x1df) EMIT2(0x1e1)
EMIT2(0x1fb) EMIT2(0x201) EMIT2(0x203)
EMIT2(0x227) EMIT2(0x1d8f) EMIT2(0x1e01)
EMIT2(0x1e9a) EMIT2(0x1ea1) EMIT2(0x1ea3)
EMIT2(0x1ea5) EMIT2(0x1ea7) EMIT2(0x1ea9)
EMIT2(0x1eab) EMIT2(0x1ead) EMIT2(0x1eaf)
EMIT2(0x1eb1) EMIT2(0x1eb3) EMIT2(0x1eb5)
EMIT2(0x1eb7) EMIT2(0x2c65)
return;
case 'b':
case 0x180:
case 0x253:
case 0x1d6c:
case 0x1d80:
case 0x1e03:
case 0x1e05:
case 0x1e07:
EMIT2('b') EMIT2(0x180) EMIT2(0x253) EMIT2(0x1d6c)
EMIT2(0x1d80) EMIT2(0x1e03) EMIT2(0x1e05) EMIT2(0x1e07)
return;
case 'c':
case c_cedilla:
case 0x107:
case 0x109:
case 0x10b:
case 0x10d:
case 0x188:
case 0x23c:
case 0x1e09:
case 0xa793:
case 0xa794:
EMIT2('c') EMIT2(c_cedilla)
EMIT2(0x107) EMIT2(0x109) EMIT2(0x10b)
EMIT2(0x10d) EMIT2(0x188) EMIT2(0x23c)
EMIT2(0x1e09) EMIT2(0xa793) EMIT2(0xa794)
return;
case 'd':
case 0x10f:
case 0x111:
case 0x257:
case 0x1d6d:
case 0x1d81:
case 0x1d91:
case 0x1e0b:
case 0x1e0d:
case 0x1e0f:
case 0x1e11:
case 0x1e13:
EMIT2('d') EMIT2(0x10f) EMIT2(0x111)
EMIT2(0x257) EMIT2(0x1d6d) EMIT2(0x1d81)
EMIT2(0x1d91) EMIT2(0x1e0b) EMIT2(0x1e0d)
EMIT2(0x1e0f) EMIT2(0x1e11) EMIT2(0x1e13)
return;
case 'e':
case e_grave:
case e_acute:
case e_circumflex:
case e_diaeresis:
case 0x113:
case 0x115:
case 0x117:
case 0x119:
case 0x11b:
case 0x205:
case 0x207:
case 0x229:
case 0x247:
case 0x1d92:
case 0x1e15:
case 0x1e17:
case 0x1e19:
case 0x1e1b:
case 0x1e1d:
case 0x1eb9:
case 0x1ebb:
case 0x1ebd:
case 0x1ebf:
case 0x1ec1:
case 0x1ec3:
case 0x1ec5:
case 0x1ec7:
EMIT2('e') EMIT2(e_grave) EMIT2(e_acute) // NOLINT(whitespace/cast)
EMIT2(e_circumflex) EMIT2(e_diaeresis) // NOLINT(whitespace/cast)
EMIT2(0x113) EMIT2(0x115)
EMIT2(0x117) EMIT2(0x119) EMIT2(0x11b)
EMIT2(0x205) EMIT2(0x207) EMIT2(0x229)
EMIT2(0x247) EMIT2(0x1d92) EMIT2(0x1e15)
EMIT2(0x1e17) EMIT2(0x1e19) EMIT2(0x1e1b)
EMIT2(0x1e1d) EMIT2(0x1eb9) EMIT2(0x1ebb)
EMIT2(0x1ebd) EMIT2(0x1ebf) EMIT2(0x1ec1)
EMIT2(0x1ec3) EMIT2(0x1ec5) EMIT2(0x1ec7)
return;
case 'f':
case 0x192:
case 0x1d6e:
case 0x1d82:
case 0x1e1f:
case 0xa799:
EMIT2('f') EMIT2(0x192) EMIT2(0x1d6e) EMIT2(0x1d82)
EMIT2(0x1e1f) EMIT2(0xa799)
return;
case 'g':
case 0x11d:
case 0x11f:
case 0x121:
case 0x123:
case 0x1e5:
case 0x1e7:
case 0x1f5:
case 0x260:
case 0x1d83:
case 0x1e21:
case 0xa7a1:
EMIT2('g') EMIT2(0x11d) EMIT2(0x11f) EMIT2(0x121)
EMIT2(0x123) EMIT2(0x1e5) EMIT2(0x1e7)
EMIT2(0x1f5) EMIT2(0x260) EMIT2(0x1d83)
EMIT2(0x1e21) EMIT2(0xa7a1)
return;
case 'h':
case 0x125:
case 0x127:
case 0x21f:
case 0x1e23:
case 0x1e25:
case 0x1e27:
case 0x1e29:
case 0x1e2b:
case 0x1e96:
case 0x2c68:
case 0xa795:
EMIT2('h') EMIT2(0x125) EMIT2(0x127) EMIT2(0x21f)
EMIT2(0x1e23) EMIT2(0x1e25) EMIT2(0x1e27)
EMIT2(0x1e29) EMIT2(0x1e2b) EMIT2(0x1e96)
EMIT2(0x2c68) EMIT2(0xa795)
return;
case 'i':
case i_grave:
case i_acute:
case i_circumflex:
case i_diaeresis:
case 0x129:
case 0x12b:
case 0x12d:
case 0x12f:
case 0x1d0:
case 0x209:
case 0x20b:
case 0x268:
case 0x1d96:
case 0x1e2d:
case 0x1e2f:
case 0x1ec9:
case 0x1ecb:
EMIT2('i') EMIT2(i_grave) EMIT2(i_acute) // NOLINT(whitespace/cast)
EMIT2(i_circumflex) EMIT2(i_diaeresis) // NOLINT(whitespace/cast)
EMIT2(0x129) EMIT2(0x12b) EMIT2(0x12d)
EMIT2(0x12f) EMIT2(0x1d0) EMIT2(0x209)
EMIT2(0x20b) EMIT2(0x268) EMIT2(0x1d96)
EMIT2(0x1e2d) EMIT2(0x1e2f) EMIT2(0x1ec9)
EMIT2(0x1ecb) EMIT2(0x1ecb)
return;
case 'j':
case 0x135:
case 0x1f0:
case 0x249:
EMIT2('j') EMIT2(0x135) EMIT2(0x1f0) EMIT2(0x249)
return;
case 'k':
case 0x137:
case 0x199:
case 0x1e9:
case 0x1d84:
case 0x1e31:
case 0x1e33:
case 0x1e35:
case 0x2c6a:
case 0xa741:
EMIT2('k') EMIT2(0x137) EMIT2(0x199) EMIT2(0x1e9)
EMIT2(0x1d84) EMIT2(0x1e31) EMIT2(0x1e33)
EMIT2(0x1e35) EMIT2(0x2c6a) EMIT2(0xa741)
return;
case 'l':
case 0x13a:
case 0x13c:
case 0x13e:
case 0x140:
case 0x142:
case 0x19a:
case 0x1e37:
case 0x1e39:
case 0x1e3b:
case 0x1e3d:
case 0x2c61:
EMIT2('l') EMIT2(0x13a) EMIT2(0x13c)
EMIT2(0x13e) EMIT2(0x140) EMIT2(0x142)
EMIT2(0x19a) EMIT2(0x1e37) EMIT2(0x1e39)
EMIT2(0x1e3b) EMIT2(0x1e3d) EMIT2(0x2c61)
return;
case 'm':
case 0x1d6f:
case 0x1e3f:
case 0x1e41:
case 0x1e43:
EMIT2('m') EMIT2(0x1d6f) EMIT2(0x1e3f)
EMIT2(0x1e41) EMIT2(0x1e43)
return;
case 'n':
case n_virguilla:
case 0x144:
case 0x146:
case 0x148:
case 0x149:
case 0x1f9:
case 0x1d70:
case 0x1d87:
case 0x1e45:
case 0x1e47:
case 0x1e49:
case 0x1e4b:
case 0xa7a5:
EMIT2('n') EMIT2(n_virguilla)
EMIT2(0x144) EMIT2(0x146) EMIT2(0x148)
EMIT2(0x149) EMIT2(0x1f9) EMIT2(0x1d70)
EMIT2(0x1d87) EMIT2(0x1e45) EMIT2(0x1e47)
EMIT2(0x1e49) EMIT2(0x1e4b) EMIT2(0xa7a5)
return;
case 'o':
case o_grave:
case o_acute:
case o_circumflex:
case o_virguilla:
case o_diaeresis:
case o_slash:
case 0x14d:
case 0x14f:
case 0x151:
case 0x1a1:
case 0x1d2:
case 0x1eb:
case 0x1ed:
case 0x1ff:
case 0x20d:
case 0x20f:
case 0x22b:
case 0x22d:
case 0x22f:
case 0x231:
case 0x275:
case 0x1e4d:
case 0x1e4f:
case 0x1e51:
case 0x1e53:
case 0x1ecd:
case 0x1ecf:
case 0x1ed1:
case 0x1ed3:
case 0x1ed5:
case 0x1ed7:
case 0x1ed9:
case 0x1edb:
case 0x1edd:
case 0x1edf:
case 0x1ee1:
case 0x1ee3:
EMIT2('o') EMIT2(o_grave) EMIT2(o_acute) // NOLINT(whitespace/cast)
EMIT2(o_circumflex) EMIT2(o_virguilla) // NOLINT(whitespace/cast)
EMIT2(o_diaeresis) EMIT2(o_slash) // NOLINT(whitespace/cast)
EMIT2(0x14d) EMIT2(0x14f) EMIT2(0x151)
EMIT2(0x1a1) EMIT2(0x1d2) EMIT2(0x1eb)
EMIT2(0x1ed) EMIT2(0x1ff) EMIT2(0x20d)
EMIT2(0x20f) EMIT2(0x22b) EMIT2(0x22d)
EMIT2(0x22f) EMIT2(0x231) EMIT2(0x275)
EMIT2(0x1e4d) EMIT2(0x1e4f) EMIT2(0x1e51)
EMIT2(0x1e53) EMIT2(0x1ecd) EMIT2(0x1ecf)
EMIT2(0x1ed1) EMIT2(0x1ed3) EMIT2(0x1ed5)
EMIT2(0x1ed7) EMIT2(0x1ed9) EMIT2(0x1edb)
EMIT2(0x1edd) EMIT2(0x1edf) EMIT2(0x1ee1)
EMIT2(0x1ee3)
return;
case 'p':
case 0x1a5:
case 0x1d71:
case 0x1d7d:
case 0x1d88:
case 0x1e55:
case 0x1e57:
EMIT2('p') EMIT2(0x1a5) EMIT2(0x1d71) EMIT2(0x1d7d)
EMIT2(0x1d88) EMIT2(0x1e55) EMIT2(0x1e57)
return;
case 'q':
case 0x24b:
case 0x2a0:
EMIT2('q') EMIT2(0x24b) EMIT2(0x2a0)
return;
case 'r':
case 0x155:
case 0x157:
case 0x159:
case 0x211:
case 0x213:
case 0x24d:
case 0x27d:
case 0x1d72:
case 0x1d73:
case 0x1d89:
case 0x1e59:
case 0x1e5b:
case 0x1e5d:
case 0x1e5f:
case 0xa7a7:
EMIT2('r') EMIT2(0x155) EMIT2(0x157) EMIT2(0x159)
EMIT2(0x211) EMIT2(0x213) EMIT2(0x24d) EMIT2(0x27d)
EMIT2(0x1d72) EMIT2(0x1d73) EMIT2(0x1d89) EMIT2(0x1e59)
EMIT2(0x1e5b) EMIT2(0x1e5d) EMIT2(0x1e5f) EMIT2(0xa7a7)
return;
case 's':
case 0x15b:
case 0x15d:
case 0x15f:
case 0x161:
case 0x219:
case 0x23f:
case 0x1d74:
case 0x1d8a:
case 0x1e61:
case 0x1e63:
case 0x1e65:
case 0x1e67:
case 0x1e69:
case 0xa7a9:
EMIT2('s') EMIT2(0x15b) EMIT2(0x15d) EMIT2(0x15f)
EMIT2(0x161) EMIT2(0x219) EMIT2(0x23f) EMIT2(0x1d74)
EMIT2(0x1d8a) EMIT2(0x1e61) EMIT2(0x1e63) EMIT2(0x1e65)
EMIT2(0x1e67) EMIT2(0x1e69) EMIT2(0xa7a9)
return;
case 't':
case 0x163:
case 0x165:
case 0x167:
case 0x1ab:
case 0x1ad:
case 0x21b:
case 0x288:
case 0x1d75:
case 0x1e6b:
case 0x1e6d:
case 0x1e6f:
case 0x1e71:
case 0x1e97:
case 0x2c66:
EMIT2('t') EMIT2(0x163) EMIT2(0x165) EMIT2(0x167)
EMIT2(0x1ab) EMIT2(0x1ad) EMIT2(0x21b) EMIT2(0x288)
EMIT2(0x1d75) EMIT2(0x1e6b) EMIT2(0x1e6d) EMIT2(0x1e6f)
EMIT2(0x1e71) EMIT2(0x1e97) EMIT2(0x2c66)
return;
case 'u':
case u_grave:
case u_acute:
case u_circumflex:
case u_diaeresis:
case 0x169:
case 0x16b:
case 0x16d:
case 0x16f:
case 0x171:
case 0x173:
case 0x1b0:
case 0x1d4:
case 0x1d6:
case 0x1d8:
case 0x1da:
case 0x1dc:
case 0x215:
case 0x217:
case 0x289:
case 0x1d7e:
case 0x1d99:
case 0x1e73:
case 0x1e75:
case 0x1e77:
case 0x1e79:
case 0x1e7b:
case 0x1ee5:
case 0x1ee7:
case 0x1ee9:
case 0x1eeb:
case 0x1eed:
case 0x1eef:
case 0x1ef1:
EMIT2('u') EMIT2(u_grave) EMIT2(u_acute) // NOLINT(whitespace/cast)
EMIT2(u_circumflex) EMIT2(u_diaeresis) // NOLINT(whitespace/cast)
EMIT2(0x169) EMIT2(0x16b)
EMIT2(0x16d) EMIT2(0x16f) EMIT2(0x171)
EMIT2(0x173) EMIT2(0x1d6) EMIT2(0x1d8)
EMIT2(0x215) EMIT2(0x217) EMIT2(0x1b0)
EMIT2(0x1d4) EMIT2(0x1da) EMIT2(0x1dc)
EMIT2(0x289) EMIT2(0x1e73) EMIT2(0x1d7e)
EMIT2(0x1d99) EMIT2(0x1e75) EMIT2(0x1e77)
EMIT2(0x1e79) EMIT2(0x1e7b) EMIT2(0x1ee5)
EMIT2(0x1ee7) EMIT2(0x1ee9) EMIT2(0x1eeb)
EMIT2(0x1eed) EMIT2(0x1eef) EMIT2(0x1ef1)
return;
case 'v':
case 0x28b:
case 0x1d8c:
case 0x1e7d:
case 0x1e7f:
EMIT2('v') EMIT2(0x28b) EMIT2(0x1d8c) EMIT2(0x1e7d)
EMIT2(0x1e7f)
return;
case 'w':
case 0x175:
case 0x1e81:
case 0x1e83:
case 0x1e85:
case 0x1e87:
case 0x1e89:
case 0x1e98:
EMIT2('w') EMIT2(0x175) EMIT2(0x1e81) EMIT2(0x1e83)
EMIT2(0x1e85) EMIT2(0x1e87) EMIT2(0x1e89) EMIT2(0x1e98)
return;
case 'x':
case 0x1e8b:
case 0x1e8d:
EMIT2('x') EMIT2(0x1e8b) EMIT2(0x1e8d)
return;
case 'y':
case y_acute:
case y_diaeresis:
case 0x177:
case 0x1b4:
case 0x233:
case 0x24f:
case 0x1e8f:
case 0x1e99:
case 0x1ef3:
case 0x1ef5:
case 0x1ef7:
case 0x1ef9:
EMIT2('y') EMIT2(y_acute) EMIT2(y_diaeresis) // NOLINT(whitespace/cast)
EMIT2(0x177) EMIT2(0x1b4) EMIT2(0x233) EMIT2(0x24f)
EMIT2(0x1e8f) EMIT2(0x1e99) EMIT2(0x1ef3)
EMIT2(0x1ef5) EMIT2(0x1ef7) EMIT2(0x1ef9)
return;
case 'z':
case 0x17a:
case 0x17c:
case 0x17e:
case 0x1b6:
case 0x1d76:
case 0x1d8e:
case 0x1e91:
case 0x1e93:
case 0x1e95:
case 0x2c6c:
EMIT2('z') EMIT2(0x17a) EMIT2(0x17c) EMIT2(0x17e)
EMIT2(0x1b6) EMIT2(0x1d76) EMIT2(0x1d8e) EMIT2(0x1e91)
EMIT2(0x1e93) EMIT2(0x1e95) EMIT2(0x2c6c)
return;
// default: character itself
}
}
EMIT2(c);
#undef EMIT2
}
// Code to parse regular expression.
//
// We try to reuse parsing functions in regexp.c to
// minimize surprise and keep the syntax consistent.
// Parse the lowest level.
//
// An atom can be one of a long list of items. Many atoms match one character
// in the text. It is often an ordinary character or a character class.
// Braces can be used to make a pattern into an atom. The "\z(\)" construct
// is only for syntax highlighting.
//
// atom ::= ordinary-atom
// or \( pattern \)
// or \%( pattern \)
// or \z( pattern \)
static int nfa_regatom(void)
{
int c;
int charclass;
int equiclass;
int collclass;
int got_coll_char;
uint8_t *p;
uint8_t *endp;
uint8_t *old_regparse = (uint8_t *)regparse;
int extra = 0;
int emit_range;
int negated;
int startc = -1;
int save_prev_at_start = prev_at_start;
c = getchr();
switch (c) {
case NUL:
EMSG_RET_FAIL(_(e_nul_found));
case Magic('^'):
EMIT(NFA_BOL);
break;
case Magic('$'):
EMIT(NFA_EOL);
had_eol = true;
break;
case Magic('<'):
EMIT(NFA_BOW);
break;
case Magic('>'):
EMIT(NFA_EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == NUL) {
EMSG_RET_FAIL(_(e_nul_found));
}
if (c == '^') { // "\_^" is start-of-line
EMIT(NFA_BOL);
break;
}
if (c == '$') { // "\_$" is end-of-line
EMIT(NFA_EOL);
had_eol = true;
break;
}
extra = NFA_ADD_NL;
// "\_[" is collection plus newline
if (c == '[') {
goto collection;
}
// "\_x" is character class plus newline
FALLTHROUGH;
// Character classes.
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = (uint8_t *)vim_strchr((char *)classchars, no_Magic(c));
if (p == NULL) {
if (extra == NFA_ADD_NL) {
semsg(_(e_ill_char_class), (int64_t)c);
rc_did_emsg = true;
return FAIL;
}
siemsg("INTERNAL: Unknown character class char: %" PRId64, (int64_t)c);
return FAIL;
}
// When '.' is followed by a composing char ignore the dot, so that
// the composing char is matched here.
if (c == Magic('.') && utf_iscomposing(peekchr())) {
old_regparse = (uint8_t *)regparse;
c = getchr();
goto nfa_do_multibyte;
}
EMIT(nfa_classcodes[p - classchars]);
if (extra == NFA_ADD_NL) {
EMIT(NFA_NEWL);
EMIT(NFA_OR);
regflags |= RF_HASNL;
}
break;
case Magic('n'):
if (reg_string) {
// In a string "\n" matches a newline character.
EMIT(NL);
} else {
// In buffer text "\n" matches the end of a line.
EMIT(NFA_NEWL);
regflags |= RF_HASNL;
}
break;
case Magic('('):
if (nfa_reg(REG_PAREN) == FAIL) {
return FAIL; // cascaded error
}
break;
case Magic('|'):
case Magic('&'):
case Magic(')'):
semsg(_(e_misplaced), (int64_t)no_Magic(c)); // -V1037
return FAIL;
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('*'):
case Magic('{'):
// these should follow an atom, not form an atom
semsg(_(e_misplaced), (int64_t)no_Magic(c));
return FAIL;
case Magic('~'): {
uint8_t *lp;
// Previous substitute pattern.
// Generated as "\%(pattern\)".
if (reg_prev_sub == NULL) {
emsg(_(e_nopresub));
return FAIL;
}
for (lp = (uint8_t *)reg_prev_sub; *lp != NUL; MB_CPTR_ADV(lp)) {
EMIT(utf_ptr2char((char *)lp));
if (lp != (uint8_t *)reg_prev_sub) {
EMIT(NFA_CONCAT);
}
}
EMIT(NFA_NOPEN);
break;
}
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'): {
int refnum = no_Magic(c) - '1';
if (!seen_endbrace(refnum + 1)) {
return FAIL;
}
EMIT(NFA_BACKREF1 + refnum);
rex.nfa_has_backref = true;
}
break;
case Magic('z'):
c = no_Magic(getchr());
switch (c) {
case 's':
EMIT(NFA_ZSTART);
if (!re_mult_next("\\zs")) {
return false;
}
break;
case 'e':
EMIT(NFA_ZEND);
rex.nfa_has_zend = true;
if (!re_mult_next("\\zs")) {
return false;
}
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
// \z1...\z9
if ((reg_do_extmatch & REX_USE) == 0) {
EMSG_RET_FAIL(_(e_z1_not_allowed));
}
EMIT(NFA_ZREF1 + (no_Magic(c) - '1'));
// No need to set rex.nfa_has_backref, the sub-matches don't
// change when \z1 .. \z9 matches or not.
re_has_z = REX_USE;
break;
case '(':
// \z(
if (reg_do_extmatch != REX_SET) {
EMSG_RET_FAIL(_(e_z_not_allowed));
}
if (nfa_reg(REG_ZPAREN) == FAIL) {
return FAIL; // cascaded error
}
re_has_z = REX_SET;
break;
default:
semsg(_("E867: (NFA) Unknown operator '\\z%c'"),
no_Magic(c));
return FAIL;
}
break;
case Magic('%'):
c = no_Magic(getchr());
switch (c) {
// () without a back reference
case '(':
if (nfa_reg(REG_NPAREN) == FAIL) {
return FAIL;
}
EMIT(NFA_NOPEN);
break;
case 'd': // %d123 decimal
case 'o': // %o123 octal
case 'x': // %xab hex 2
case 'u': // %uabcd hex 4
case 'U': // %U1234abcd hex 8
{
int64_t nr;
switch (c) {
case 'd':
nr = getdecchrs(); break;
case 'o':
nr = getoctchrs(); break;
case 'x':
nr = gethexchrs(2); break;
case 'u':
nr = gethexchrs(4); break;
case 'U':
nr = gethexchrs(8); break;
default:
nr = -1; break;
}
if (nr < 0 || nr > INT_MAX) {
EMSG2_RET_FAIL(_("E678: Invalid character after %s%%[dxouU]"),
reg_magic == MAGIC_ALL);
}
// A NUL is stored in the text as NL
// TODO(vim): what if a composing character follows?
EMIT(nr == 0 ? 0x0a : (int)nr);
}
break;
// Catch \%^ and \%$ regardless of where they appear in the
// pattern -- regardless of whether or not it makes sense.
case '^':
EMIT(NFA_BOF);
break;
case '$':
EMIT(NFA_EOF);
break;
case '#':
if (regparse[0] == '=' && regparse[1] >= 48
&& regparse[1] <= 50) {
// misplaced \%#=1
semsg(_(e_atom_engine_must_be_at_start_of_pattern), regparse[1]);
return FAIL;
}
EMIT(NFA_CURSOR);
break;
case 'V':
EMIT(NFA_VISUAL);
break;
case 'C':
EMIT(NFA_ANY_COMPOSING);
break;
case '[': {
int n;
// \%[abc]
for (n = 0; (c = peekchr()) != ']'; n++) {
if (c == NUL) {
EMSG2_RET_FAIL(_(e_missing_sb),
reg_magic == MAGIC_ALL);
}
// recursive call!
if (nfa_regatom() == FAIL) {
return FAIL;
}
}
(void)getchr(); // get the ]
if (n == 0) {
EMSG2_RET_FAIL(_(e_empty_sb), reg_magic == MAGIC_ALL);
}
EMIT(NFA_OPT_CHARS);
EMIT(n);
// Emit as "\%(\%[abc]\)" to be able to handle
// "\%[abc]*" which would cause the empty string to be
// matched an unlimited number of times. NFA_NOPEN is
// added only once at a position, while NFA_SPLIT is
// added multiple times. This is more efficient than
// not allowing NFA_SPLIT multiple times, it is used
// a lot.
EMIT(NFA_NOPEN);
break;
}
default: {
int64_t n = 0;
const int cmp = c;
bool cur = false;
bool got_digit = false;
if (c == '<' || c == '>') {
c = getchr();
}
if (no_Magic(c) == '.') {
cur = true;
c = getchr();
}
while (ascii_isdigit(c)) {
if (cur) {
semsg(_(e_regexp_number_after_dot_pos_search_chr), no_Magic(c));
return FAIL;
}
if (n > (INT32_MAX - (c - '0')) / 10) {
// overflow.
emsg(_(e_value_too_large));
return FAIL;
}
n = n * 10 + (c - '0');
c = getchr();
got_digit = true;
}
if (c == 'l' || c == 'c' || c == 'v') {
int32_t limit = INT32_MAX;
if (!cur && !got_digit) {
semsg(_(e_nfa_regexp_missing_value_in_chr), no_Magic(c));
return FAIL;
}
if (c == 'l') {
if (cur) {
n = curwin->w_cursor.lnum;
}
// \%{n}l \%{n}<l \%{n}>l
EMIT(cmp == '<' ? NFA_LNUM_LT :
cmp == '>' ? NFA_LNUM_GT : NFA_LNUM);
if (save_prev_at_start) {
at_start = true;
}
} else if (c == 'c') {
if (cur) {
n = curwin->w_cursor.col;
n++;
}
// \%{n}c \%{n}<c \%{n}>c
EMIT(cmp == '<' ? NFA_COL_LT :
cmp == '>' ? NFA_COL_GT : NFA_COL);
} else {
if (cur) {
colnr_T vcol = 0;
getvvcol(curwin, &curwin->w_cursor, NULL, NULL, &vcol);
n = ++vcol;
}
// \%{n}v \%{n}<v \%{n}>v
EMIT(cmp == '<' ? NFA_VCOL_LT :
cmp == '>' ? NFA_VCOL_GT : NFA_VCOL);
limit = INT32_MAX / MB_MAXBYTES;
}
if (n >= limit) {
emsg(_(e_value_too_large));
return FAIL;
}
EMIT((int)n);
break;
} else if (c == '\'' && n == 0) {
// \%'m \%<'m \%>'m
EMIT(cmp == '<' ? NFA_MARK_LT :
cmp == '>' ? NFA_MARK_GT : NFA_MARK);
EMIT(getchr());
break;
}
}
semsg(_("E867: (NFA) Unknown operator '\\%%%c'"),
no_Magic(c));
return FAIL;
}
break;
case Magic('['):
collection:
// [abc] uses NFA_START_COLL - NFA_END_COLL
// [^abc] uses NFA_START_NEG_COLL - NFA_END_NEG_COLL
// Each character is produced as a regular state, using
// NFA_CONCAT to bind them together.
// Besides normal characters there can be:
// - character classes NFA_CLASS_*
// - ranges, two characters followed by NFA_RANGE.
p = (uint8_t *)regparse;
endp = (uint8_t *)skip_anyof((char *)p);
if (*endp == ']') {
// Try to reverse engineer character classes. For example,
// recognize that [0-9] stands for \d and [A-Za-z_] for \h,
// and perform the necessary substitutions in the NFA.
int result = nfa_recognize_char_class((uint8_t *)regparse, endp, extra == NFA_ADD_NL);
if (result != FAIL) {
if (result >= NFA_FIRST_NL && result <= NFA_LAST_NL) {
EMIT(result - NFA_ADD_NL);
EMIT(NFA_NEWL);
EMIT(NFA_OR);
} else {
EMIT(result);
}
regparse = (char *)endp;
MB_PTR_ADV(regparse);
return OK;
}
// Failed to recognize a character class. Use the simple
// version that turns [abc] into 'a' OR 'b' OR 'c'
startc = -1;
negated = false;
if (*regparse == '^') { // negated range
negated = true;
MB_PTR_ADV(regparse);
EMIT(NFA_START_NEG_COLL);
} else {
EMIT(NFA_START_COLL);
}
if (*regparse == '-') {
startc = '-';
EMIT(startc);
EMIT(NFA_CONCAT);
MB_PTR_ADV(regparse);
}
// Emit the OR branches for each character in the []
emit_range = false;
while ((uint8_t *)regparse < endp) {
int oldstartc = startc;
startc = -1;
got_coll_char = false;
if (*regparse == '[') {
// Check for [: :], [= =], [. .]
equiclass = collclass = 0;
charclass = get_char_class(&regparse);
if (charclass == CLASS_NONE) {
equiclass = get_equi_class(&regparse);
if (equiclass == 0) {
collclass = get_coll_element(&regparse);
}
}
// Character class like [:alpha:]
if (charclass != CLASS_NONE) {
switch (charclass) {
case CLASS_ALNUM:
EMIT(NFA_CLASS_ALNUM);
break;
case CLASS_ALPHA:
EMIT(NFA_CLASS_ALPHA);
break;
case CLASS_BLANK:
EMIT(NFA_CLASS_BLANK);
break;
case CLASS_CNTRL:
EMIT(NFA_CLASS_CNTRL);
break;
case CLASS_DIGIT:
EMIT(NFA_CLASS_DIGIT);
break;
case CLASS_GRAPH:
EMIT(NFA_CLASS_GRAPH);
break;
case CLASS_LOWER:
wants_nfa = true;
EMIT(NFA_CLASS_LOWER);
break;
case CLASS_PRINT:
EMIT(NFA_CLASS_PRINT);
break;
case CLASS_PUNCT:
EMIT(NFA_CLASS_PUNCT);
break;
case CLASS_SPACE:
EMIT(NFA_CLASS_SPACE);
break;
case CLASS_UPPER:
wants_nfa = true;
EMIT(NFA_CLASS_UPPER);
break;
case CLASS_XDIGIT:
EMIT(NFA_CLASS_XDIGIT);
break;
case CLASS_TAB:
EMIT(NFA_CLASS_TAB);
break;
case CLASS_RETURN:
EMIT(NFA_CLASS_RETURN);
break;
case CLASS_BACKSPACE:
EMIT(NFA_CLASS_BACKSPACE);
break;
case CLASS_ESCAPE:
EMIT(NFA_CLASS_ESCAPE);
break;
case CLASS_IDENT:
EMIT(NFA_CLASS_IDENT);
break;
case CLASS_KEYWORD:
EMIT(NFA_CLASS_KEYWORD);
break;
case CLASS_FNAME:
EMIT(NFA_CLASS_FNAME);
break;
}
EMIT(NFA_CONCAT);
continue;
}
// Try equivalence class [=a=] and the like
if (equiclass != 0) {
nfa_emit_equi_class(equiclass);
continue;
}
// Try collating class like [. .]
if (collclass != 0) {
startc = collclass; // allow [.a.]-x as a range
// Will emit the proper atom at the end of the
// while loop.
}
}
// Try a range like 'a-x' or '\t-z'. Also allows '-' as a
// start character.
if (*regparse == '-' && oldstartc != -1) {
emit_range = true;
startc = oldstartc;
MB_PTR_ADV(regparse);
continue; // reading the end of the range
}
// Now handle simple and escaped characters.
// Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
// accepts "\t", "\e", etc., but only when the 'l' flag in
// 'cpoptions' is not included.
if (*regparse == '\\'
&& (uint8_t *)regparse + 1 <= endp
&& (vim_strchr(REGEXP_INRANGE, (uint8_t)regparse[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR, (uint8_t)regparse[1])
!= NULL))) {
MB_PTR_ADV(regparse);
if (*regparse == 'n') {
startc = (reg_string || emit_range || regparse[1] == '-')
? NL : NFA_NEWL;
} else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U') {
// TODO(RE): This needs more testing
startc = coll_get_char();
got_coll_char = true;
MB_PTR_BACK(old_regparse, regparse);
} else {
// \r,\t,\e,\b
startc = backslash_trans(*regparse);
}
}
// Normal printable char
if (startc == -1) {
startc = utf_ptr2char((char *)regparse);
}
// Previous char was '-', so this char is end of range.
if (emit_range) {
int endc = startc;
startc = oldstartc;
if (startc > endc) {
EMSG_RET_FAIL(_(e_reverse_range));
}
if (endc > startc + 2) {
// Emit a range instead of the sequence of
// individual characters.
if (startc == 0) {
// \x00 is translated to \x0a, start at \x01.
EMIT(1);
} else {
post_ptr--; // remove NFA_CONCAT
}
EMIT(endc);
EMIT(NFA_RANGE);
EMIT(NFA_CONCAT);
} else if (utf_char2len(startc) > 1
|| utf_char2len(endc) > 1) {
// Emit the characters in the range.
// "startc" was already emitted, so skip it.
for (c = startc + 1; c <= endc; c++) {
EMIT(c);
EMIT(NFA_CONCAT);
}
} else {
// Emit the range. "startc" was already emitted, so
// skip it.
for (c = startc + 1; c <= endc; c++) {
EMIT(c);
EMIT(NFA_CONCAT);
}
}
emit_range = false;
startc = -1;
} else {
// This char (startc) is not part of a range. Just
// emit it.
// Normally, simply emit startc. But if we get char
// code=0 from a collating char, then replace it with
// 0x0a.
// This is needed to completely mimic the behaviour of
// the backtracking engine.
if (startc == NFA_NEWL) {
// Line break can't be matched as part of the
// collection, add an OR below. But not for negated
// range.
if (!negated) {
extra = NFA_ADD_NL;
}
} else {
if (got_coll_char == true && startc == 0) {
EMIT(0x0a);
} else {
EMIT(startc);
}
EMIT(NFA_CONCAT);
}
}
MB_PTR_ADV(regparse);
} // while (p < endp)
MB_PTR_BACK(old_regparse, regparse);
if (*regparse == '-') { // if last, '-' is just a char
EMIT('-');
EMIT(NFA_CONCAT);
}
// skip the trailing ]
regparse = (char *)endp;
MB_PTR_ADV(regparse);
// Mark end of the collection.
if (negated == true) {
EMIT(NFA_END_NEG_COLL);
} else {
EMIT(NFA_END_COLL);
}
// \_[] also matches \n but it's not negated
if (extra == NFA_ADD_NL) {
EMIT(reg_string ? NL : NFA_NEWL);
EMIT(NFA_OR);
}
return OK;
} // if exists closing ]
if (reg_strict) {
EMSG_RET_FAIL(_(e_missingbracket));
}
FALLTHROUGH;
default: {
int plen;
nfa_do_multibyte:
// plen is length of current char with composing chars
if (utf_char2len(c) != (plen = utfc_ptr2len((char *)old_regparse))
|| utf_iscomposing(c)) {
int i = 0;
// A base character plus composing characters, or just one
// or more composing characters.
// This requires creating a separate atom as if enclosing
// the characters in (), where NFA_COMPOSING is the ( and
// NFA_END_COMPOSING is the ). Note that right now we are
// building the postfix form, not the NFA itself;
// a composing char could be: a, b, c, NFA_COMPOSING
// where 'b' and 'c' are chars with codes > 256. */
for (;;) {
EMIT(c);
if (i > 0) {
EMIT(NFA_CONCAT);
}
if ((i += utf_char2len(c)) >= plen) {
break;
}
c = utf_ptr2char((char *)old_regparse + i);
}
EMIT(NFA_COMPOSING);
regparse = (char *)old_regparse + plen;
} else {
c = no_Magic(c);
EMIT(c);
}
return OK;
}
}
return OK;
}
// Parse something followed by possible [*+=].
//
// A piece is an atom, possibly followed by a multi, an indication of how many
// times the atom can be matched. Example: "a*" matches any sequence of "a"
// characters: "", "a", "aa", etc.
//
// piece ::= atom
// or atom multi
static int nfa_regpiece(void)
{
int i;
int op;
int ret;
long minval, maxval;
bool greedy = true; // Braces are prefixed with '-' ?
parse_state_T old_state;
parse_state_T new_state;
int64_t c2;
int old_post_pos;
int my_post_start;
int quest;
// Save the current parse state, so that we can use it if <atom>{m,n} is
// next.
save_parse_state(&old_state);
// store current pos in the postfix form, for \{m,n} involving 0s
my_post_start = (int)(post_ptr - post_start);
ret = nfa_regatom();
if (ret == FAIL) {
return FAIL; // cascaded error
}
op = peekchr();
if (re_multi_type(op) == NOT_MULTI) {
return OK;
}
skipchr();
switch (op) {
case Magic('*'):
EMIT(NFA_STAR);
break;
case Magic('+'):
// Trick: Normally, (a*)\+ would match the whole input "aaa". The
// first and only submatch would be "aaa". But the backtracking
// engine interprets the plus as "try matching one more time", and
// a* matches a second time at the end of the input, the empty
// string.
// The submatch will be the empty string.
//
// In order to be consistent with the old engine, we replace
// <atom>+ with <atom><atom>*
restore_parse_state(&old_state);
curchr = -1;
if (nfa_regatom() == FAIL) {
return FAIL;
}
EMIT(NFA_STAR);
EMIT(NFA_CONCAT);
skipchr(); // skip the \+
break;
case Magic('@'):
c2 = getdecchrs();
op = no_Magic(getchr());
i = 0;
switch (op) {
case '=':
// \@=
i = NFA_PREV_ATOM_NO_WIDTH;
break;
case '!':
// \@!
i = NFA_PREV_ATOM_NO_WIDTH_NEG;
break;
case '<':
op = no_Magic(getchr());
if (op == '=') {
// \@<=
i = NFA_PREV_ATOM_JUST_BEFORE;
} else if (op == '!') {
// \@<!
i = NFA_PREV_ATOM_JUST_BEFORE_NEG;
}
break;
case '>':
// \@>
i = NFA_PREV_ATOM_LIKE_PATTERN;
break;
}
if (i == 0) {
semsg(_("E869: (NFA) Unknown operator '\\@%c'"), op);
return FAIL;
}
EMIT(i);
if (i == NFA_PREV_ATOM_JUST_BEFORE
|| i == NFA_PREV_ATOM_JUST_BEFORE_NEG) {
EMIT((int)c2);
}
break;
case Magic('?'):
case Magic('='):
EMIT(NFA_QUEST);
break;
case Magic('{'):
// a{2,5} will expand to 'aaa?a?a?'
// a{-1,3} will expand to 'aa??a??', where ?? is the nongreedy
// version of '?'
// \v(ab){2,3} will expand to '(ab)(ab)(ab)?', where all the
// parenthesis have the same id
greedy = true;
c2 = peekchr();
if (c2 == '-' || c2 == Magic('-')) {
skipchr();
greedy = false;
}
if (!read_limits(&minval, &maxval)) {
EMSG_RET_FAIL(_("E870: (NFA regexp) Error reading repetition limits"));
}
// <atom>{0,inf}, <atom>{0,} and <atom>{} are equivalent to
// <atom>*
if (minval == 0 && maxval == MAX_LIMIT) {
if (greedy) {
// \{}, \{0,}
EMIT(NFA_STAR);
} else {
// \{-}, \{-0,}
EMIT(NFA_STAR_NONGREEDY);
}
break;
}
// Special case: x{0} or x{-0}
if (maxval == 0) {
// Ignore result of previous call to nfa_regatom()
post_ptr = post_start + my_post_start;
// NFA_EMPTY is 0-length and works everywhere
EMIT(NFA_EMPTY);
return OK;
}
// The engine is very inefficient (uses too many states) when the
// maximum is much larger than the minimum and when the maximum is
// large. However, when maxval is MAX_LIMIT, it is okay, as this
// will emit NFA_STAR.
// Bail out if we can use the other engine, but only, when the
// pattern does not need the NFA engine like (e.g. [[:upper:]]\{2,\}
// does not work with characters > 8 bit with the BT engine)
if ((nfa_re_flags & RE_AUTO)
&& (maxval > 500 || maxval > minval + 200)
&& (maxval != MAX_LIMIT && minval < 200)
&& !wants_nfa) {
return FAIL;
}
// Ignore previous call to nfa_regatom()
post_ptr = post_start + my_post_start;
// Save parse state after the repeated atom and the \{}
save_parse_state(&new_state);
quest = (greedy == true ? NFA_QUEST : NFA_QUEST_NONGREEDY);
for (i = 0; i < maxval; i++) {
// Goto beginning of the repeated atom
restore_parse_state(&old_state);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regatom() == FAIL) {
return FAIL;
}
// after "minval" times, atoms are optional
if (i + 1 > minval) {
if (maxval == MAX_LIMIT) {
if (greedy) {
EMIT(NFA_STAR);
} else {
EMIT(NFA_STAR_NONGREEDY);
}
} else {
EMIT(quest);
}
}
if (old_post_pos != my_post_start) {
EMIT(NFA_CONCAT);
}
if (i + 1 > minval && maxval == MAX_LIMIT) {
break;
}
}
// Go to just after the repeated atom and the \{}
restore_parse_state(&new_state);
curchr = -1;
break;
default:
break;
} // end switch
if (re_multi_type(peekchr()) != NOT_MULTI) {
// Can't have a multi follow a multi.
EMSG_RET_FAIL(_("E871: (NFA regexp) Can't have a multi follow a multi"));
}
return OK;
}
// Parse one or more pieces, concatenated. It matches a match for the
// first piece, followed by a match for the second piece, etc. Example:
// "f[0-9]b", first matches "f", then a digit and then "b".
//
// concat ::= piece
// or piece piece
// or piece piece piece
// etc.
static int nfa_regconcat(void)
{
bool cont = true;
bool first = true;
while (cont) {
switch (peekchr()) {
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = false;
break;
case Magic('Z'):
regflags |= RF_ICOMBINE;
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
if (nfa_regpiece() == FAIL) {
return FAIL;
}
if (first == false) {
EMIT(NFA_CONCAT);
} else {
first = false;
}
break;
}
}
return OK;
}
// Parse a branch, one or more concats, separated by "\&". It matches the
// last concat, but only if all the preceding concats also match at the same
// position. Examples:
// "foobeep\&..." matches "foo" in "foobeep".
// ".*Peter\&.*Bob" matches in a line containing both "Peter" and "Bob"
//
// branch ::= concat
// or concat \& concat
// or concat \& concat \& concat
// etc.
static int nfa_regbranch(void)
{
int old_post_pos;
old_post_pos = (int)(post_ptr - post_start);
// First branch, possibly the only one
if (nfa_regconcat() == FAIL) {
return FAIL;
}
// Try next concats
while (peekchr() == Magic('&')) {
skipchr();
// if concat is empty do emit a node
if (old_post_pos == (int)(post_ptr - post_start)) {
EMIT(NFA_EMPTY);
}
EMIT(NFA_NOPEN);
EMIT(NFA_PREV_ATOM_NO_WIDTH);
old_post_pos = (int)(post_ptr - post_start);
if (nfa_regconcat() == FAIL) {
return FAIL;
}
// if concat is empty do emit a node
if (old_post_pos == (int)(post_ptr - post_start)) {
EMIT(NFA_EMPTY);
}
EMIT(NFA_CONCAT);
}
// if a branch is empty, emit one node for it
if (old_post_pos == (int)(post_ptr - post_start)) {
EMIT(NFA_EMPTY);
}
return OK;
}
/// Parse a pattern, one or more branches, separated by "\|". It matches
/// anything that matches one of the branches. Example: "foo\|beep" matches
/// "foo" and matches "beep". If more than one branch matches, the first one
/// is used.
///
/// pattern ::= branch
/// or branch \| branch
/// or branch \| branch \| branch
/// etc.
///
/// @param paren REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN
static int nfa_reg(int paren)
{
int parno = 0;
if (paren == REG_PAREN) {
if (regnpar >= NSUBEXP) { // Too many `('
EMSG_RET_FAIL(_("E872: (NFA regexp) Too many '('"));
}
parno = regnpar++;
} else if (paren == REG_ZPAREN) {
// Make a ZOPEN node.
if (regnzpar >= NSUBEXP) {
EMSG_RET_FAIL(_("E879: (NFA regexp) Too many \\z("));
}
parno = regnzpar++;
}
if (nfa_regbranch() == FAIL) {
return FAIL; // cascaded error
}
while (peekchr() == Magic('|')) {
skipchr();
if (nfa_regbranch() == FAIL) {
return FAIL; // cascaded error
}
EMIT(NFA_OR);
}
// Check for proper termination.
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
if (paren == REG_NPAREN) {
EMSG2_RET_FAIL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
} else {
EMSG2_RET_FAIL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
}
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
if (peekchr() == Magic(')')) {
EMSG2_RET_FAIL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
} else {
EMSG_RET_FAIL(_("E873: (NFA regexp) proper termination error"));
}
}
// Here we set the flag allowing back references to this set of
// parentheses.
if (paren == REG_PAREN) {
had_endbrace[parno] = true; // have seen the close paren
EMIT(NFA_MOPEN + parno);
} else if (paren == REG_ZPAREN) {
EMIT(NFA_ZOPEN + parno);
}
return OK;
}
#ifdef REGEXP_DEBUG
static uint8_t code[50];
static void nfa_set_code(int c)
{
int addnl = false;
if (c >= NFA_FIRST_NL && c <= NFA_LAST_NL) {
addnl = true;
c -= NFA_ADD_NL;
}
STRCPY(code, "");
switch (c) {
case NFA_MATCH:
STRCPY(code, "NFA_MATCH "); break;
case NFA_SPLIT:
STRCPY(code, "NFA_SPLIT "); break;
case NFA_CONCAT:
STRCPY(code, "NFA_CONCAT "); break;
case NFA_NEWL:
STRCPY(code, "NFA_NEWL "); break;
case NFA_ZSTART:
STRCPY(code, "NFA_ZSTART"); break;
case NFA_ZEND:
STRCPY(code, "NFA_ZEND"); break;
case NFA_BACKREF1:
STRCPY(code, "NFA_BACKREF1"); break;
case NFA_BACKREF2:
STRCPY(code, "NFA_BACKREF2"); break;
case NFA_BACKREF3:
STRCPY(code, "NFA_BACKREF3"); break;
case NFA_BACKREF4:
STRCPY(code, "NFA_BACKREF4"); break;
case NFA_BACKREF5:
STRCPY(code, "NFA_BACKREF5"); break;
case NFA_BACKREF6:
STRCPY(code, "NFA_BACKREF6"); break;
case NFA_BACKREF7:
STRCPY(code, "NFA_BACKREF7"); break;
case NFA_BACKREF8:
STRCPY(code, "NFA_BACKREF8"); break;
case NFA_BACKREF9:
STRCPY(code, "NFA_BACKREF9"); break;
case NFA_ZREF1:
STRCPY(code, "NFA_ZREF1"); break;
case NFA_ZREF2:
STRCPY(code, "NFA_ZREF2"); break;
case NFA_ZREF3:
STRCPY(code, "NFA_ZREF3"); break;
case NFA_ZREF4:
STRCPY(code, "NFA_ZREF4"); break;
case NFA_ZREF5:
STRCPY(code, "NFA_ZREF5"); break;
case NFA_ZREF6:
STRCPY(code, "NFA_ZREF6"); break;
case NFA_ZREF7:
STRCPY(code, "NFA_ZREF7"); break;
case NFA_ZREF8:
STRCPY(code, "NFA_ZREF8"); break;
case NFA_ZREF9:
STRCPY(code, "NFA_ZREF9"); break;
case NFA_SKIP:
STRCPY(code, "NFA_SKIP"); break;
case NFA_PREV_ATOM_NO_WIDTH:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH"); break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
STRCPY(code, "NFA_PREV_ATOM_NO_WIDTH_NEG"); break;
case NFA_PREV_ATOM_JUST_BEFORE:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE"); break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
STRCPY(code, "NFA_PREV_ATOM_JUST_BEFORE_NEG"); break;
case NFA_PREV_ATOM_LIKE_PATTERN:
STRCPY(code, "NFA_PREV_ATOM_LIKE_PATTERN"); break;
case NFA_NOPEN:
STRCPY(code, "NFA_NOPEN"); break;
case NFA_NCLOSE:
STRCPY(code, "NFA_NCLOSE"); break;
case NFA_START_INVISIBLE:
STRCPY(code, "NFA_START_INVISIBLE"); break;
case NFA_START_INVISIBLE_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_FIRST"); break;
case NFA_START_INVISIBLE_NEG:
STRCPY(code, "NFA_START_INVISIBLE_NEG"); break;
case NFA_START_INVISIBLE_NEG_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_NEG_FIRST"); break;
case NFA_START_INVISIBLE_BEFORE:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE"); break;
case NFA_START_INVISIBLE_BEFORE_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_FIRST"); break;
case NFA_START_INVISIBLE_BEFORE_NEG:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG"); break;
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
STRCPY(code, "NFA_START_INVISIBLE_BEFORE_NEG_FIRST"); break;
case NFA_START_PATTERN:
STRCPY(code, "NFA_START_PATTERN"); break;
case NFA_END_INVISIBLE:
STRCPY(code, "NFA_END_INVISIBLE"); break;
case NFA_END_INVISIBLE_NEG:
STRCPY(code, "NFA_END_INVISIBLE_NEG"); break;
case NFA_END_PATTERN:
STRCPY(code, "NFA_END_PATTERN"); break;
case NFA_COMPOSING:
STRCPY(code, "NFA_COMPOSING"); break;
case NFA_END_COMPOSING:
STRCPY(code, "NFA_END_COMPOSING"); break;
case NFA_OPT_CHARS:
STRCPY(code, "NFA_OPT_CHARS"); break;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
STRCPY(code, "NFA_MOPEN(x)");
code[10] = c - NFA_MOPEN + '0';
break;
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
STRCPY(code, "NFA_MCLOSE(x)");
code[11] = c - NFA_MCLOSE + '0';
break;
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
STRCPY(code, "NFA_ZOPEN(x)");
code[10] = c - NFA_ZOPEN + '0';
break;
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
STRCPY(code, "NFA_ZCLOSE(x)");
code[11] = c - NFA_ZCLOSE + '0';
break;
case NFA_EOL:
STRCPY(code, "NFA_EOL "); break;
case NFA_BOL:
STRCPY(code, "NFA_BOL "); break;
case NFA_EOW:
STRCPY(code, "NFA_EOW "); break;
case NFA_BOW:
STRCPY(code, "NFA_BOW "); break;
case NFA_EOF:
STRCPY(code, "NFA_EOF "); break;
case NFA_BOF:
STRCPY(code, "NFA_BOF "); break;
case NFA_LNUM:
STRCPY(code, "NFA_LNUM "); break;
case NFA_LNUM_GT:
STRCPY(code, "NFA_LNUM_GT "); break;
case NFA_LNUM_LT:
STRCPY(code, "NFA_LNUM_LT "); break;
case NFA_COL:
STRCPY(code, "NFA_COL "); break;
case NFA_COL_GT:
STRCPY(code, "NFA_COL_GT "); break;
case NFA_COL_LT:
STRCPY(code, "NFA_COL_LT "); break;
case NFA_VCOL:
STRCPY(code, "NFA_VCOL "); break;
case NFA_VCOL_GT:
STRCPY(code, "NFA_VCOL_GT "); break;
case NFA_VCOL_LT:
STRCPY(code, "NFA_VCOL_LT "); break;
case NFA_MARK:
STRCPY(code, "NFA_MARK "); break;
case NFA_MARK_GT:
STRCPY(code, "NFA_MARK_GT "); break;
case NFA_MARK_LT:
STRCPY(code, "NFA_MARK_LT "); break;
case NFA_CURSOR:
STRCPY(code, "NFA_CURSOR "); break;
case NFA_VISUAL:
STRCPY(code, "NFA_VISUAL "); break;
case NFA_ANY_COMPOSING:
STRCPY(code, "NFA_ANY_COMPOSING "); break;
case NFA_STAR:
STRCPY(code, "NFA_STAR "); break;
case NFA_STAR_NONGREEDY:
STRCPY(code, "NFA_STAR_NONGREEDY "); break;
case NFA_QUEST:
STRCPY(code, "NFA_QUEST"); break;
case NFA_QUEST_NONGREEDY:
STRCPY(code, "NFA_QUEST_NON_GREEDY"); break;
case NFA_EMPTY:
STRCPY(code, "NFA_EMPTY"); break;
case NFA_OR:
STRCPY(code, "NFA_OR"); break;
case NFA_START_COLL:
STRCPY(code, "NFA_START_COLL"); break;
case NFA_END_COLL:
STRCPY(code, "NFA_END_COLL"); break;
case NFA_START_NEG_COLL:
STRCPY(code, "NFA_START_NEG_COLL"); break;
case NFA_END_NEG_COLL:
STRCPY(code, "NFA_END_NEG_COLL"); break;
case NFA_RANGE:
STRCPY(code, "NFA_RANGE"); break;
case NFA_RANGE_MIN:
STRCPY(code, "NFA_RANGE_MIN"); break;
case NFA_RANGE_MAX:
STRCPY(code, "NFA_RANGE_MAX"); break;
case NFA_CLASS_ALNUM:
STRCPY(code, "NFA_CLASS_ALNUM"); break;
case NFA_CLASS_ALPHA:
STRCPY(code, "NFA_CLASS_ALPHA"); break;
case NFA_CLASS_BLANK:
STRCPY(code, "NFA_CLASS_BLANK"); break;
case NFA_CLASS_CNTRL:
STRCPY(code, "NFA_CLASS_CNTRL"); break;
case NFA_CLASS_DIGIT:
STRCPY(code, "NFA_CLASS_DIGIT"); break;
case NFA_CLASS_GRAPH:
STRCPY(code, "NFA_CLASS_GRAPH"); break;
case NFA_CLASS_LOWER:
STRCPY(code, "NFA_CLASS_LOWER"); break;
case NFA_CLASS_PRINT:
STRCPY(code, "NFA_CLASS_PRINT"); break;
case NFA_CLASS_PUNCT:
STRCPY(code, "NFA_CLASS_PUNCT"); break;
case NFA_CLASS_SPACE:
STRCPY(code, "NFA_CLASS_SPACE"); break;
case NFA_CLASS_UPPER:
STRCPY(code, "NFA_CLASS_UPPER"); break;
case NFA_CLASS_XDIGIT:
STRCPY(code, "NFA_CLASS_XDIGIT"); break;
case NFA_CLASS_TAB:
STRCPY(code, "NFA_CLASS_TAB"); break;
case NFA_CLASS_RETURN:
STRCPY(code, "NFA_CLASS_RETURN"); break;
case NFA_CLASS_BACKSPACE:
STRCPY(code, "NFA_CLASS_BACKSPACE"); break;
case NFA_CLASS_ESCAPE:
STRCPY(code, "NFA_CLASS_ESCAPE"); break;
case NFA_CLASS_IDENT:
STRCPY(code, "NFA_CLASS_IDENT"); break;
case NFA_CLASS_KEYWORD:
STRCPY(code, "NFA_CLASS_KEYWORD"); break;
case NFA_CLASS_FNAME:
STRCPY(code, "NFA_CLASS_FNAME"); break;
case NFA_ANY:
STRCPY(code, "NFA_ANY"); break;
case NFA_IDENT:
STRCPY(code, "NFA_IDENT"); break;
case NFA_SIDENT:
STRCPY(code, "NFA_SIDENT"); break;
case NFA_KWORD:
STRCPY(code, "NFA_KWORD"); break;
case NFA_SKWORD:
STRCPY(code, "NFA_SKWORD"); break;
case NFA_FNAME:
STRCPY(code, "NFA_FNAME"); break;
case NFA_SFNAME:
STRCPY(code, "NFA_SFNAME"); break;
case NFA_PRINT:
STRCPY(code, "NFA_PRINT"); break;
case NFA_SPRINT:
STRCPY(code, "NFA_SPRINT"); break;
case NFA_WHITE:
STRCPY(code, "NFA_WHITE"); break;
case NFA_NWHITE:
STRCPY(code, "NFA_NWHITE"); break;
case NFA_DIGIT:
STRCPY(code, "NFA_DIGIT"); break;
case NFA_NDIGIT:
STRCPY(code, "NFA_NDIGIT"); break;
case NFA_HEX:
STRCPY(code, "NFA_HEX"); break;
case NFA_NHEX:
STRCPY(code, "NFA_NHEX"); break;
case NFA_OCTAL:
STRCPY(code, "NFA_OCTAL"); break;
case NFA_NOCTAL:
STRCPY(code, "NFA_NOCTAL"); break;
case NFA_WORD:
STRCPY(code, "NFA_WORD"); break;
case NFA_NWORD:
STRCPY(code, "NFA_NWORD"); break;
case NFA_HEAD:
STRCPY(code, "NFA_HEAD"); break;
case NFA_NHEAD:
STRCPY(code, "NFA_NHEAD"); break;
case NFA_ALPHA:
STRCPY(code, "NFA_ALPHA"); break;
case NFA_NALPHA:
STRCPY(code, "NFA_NALPHA"); break;
case NFA_LOWER:
STRCPY(code, "NFA_LOWER"); break;
case NFA_NLOWER:
STRCPY(code, "NFA_NLOWER"); break;
case NFA_UPPER:
STRCPY(code, "NFA_UPPER"); break;
case NFA_NUPPER:
STRCPY(code, "NFA_NUPPER"); break;
case NFA_LOWER_IC:
STRCPY(code, "NFA_LOWER_IC"); break;
case NFA_NLOWER_IC:
STRCPY(code, "NFA_NLOWER_IC"); break;
case NFA_UPPER_IC:
STRCPY(code, "NFA_UPPER_IC"); break;
case NFA_NUPPER_IC:
STRCPY(code, "NFA_NUPPER_IC"); break;
default:
STRCPY(code, "CHAR(x)");
code[5] = c;
}
if (addnl == true) {
STRCAT(code, " + NEWLINE ");
}
}
static FILE *log_fd;
static uint8_t e_log_open_failed[] =
N_("Could not open temporary log file for writing, displaying on stderr... ");
// Print the postfix notation of the current regexp.
static void nfa_postfix_dump(uint8_t *expr, int retval)
{
int *p;
FILE *f;
f = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (f == NULL) {
return;
}
fprintf(f, "\n-------------------------\n");
if (retval == FAIL) {
fprintf(f, ">>> NFA engine failed... \n");
} else if (retval == OK) {
fprintf(f, ">>> NFA engine succeeded !\n");
}
fprintf(f, "Regexp: \"%s\"\nPostfix notation (char): \"", expr);
for (p = post_start; *p && p < post_ptr; p++) {
nfa_set_code(*p);
fprintf(f, "%s, ", code);
}
fprintf(f, "\"\nPostfix notation (int): ");
for (p = post_start; *p && p < post_ptr; p++) {
fprintf(f, "%d ", *p);
}
fprintf(f, "\n\n");
fclose(f);
}
// Print the NFA starting with a root node "state".
static void nfa_print_state(FILE *debugf, nfa_state_T *state)
{
garray_T indent;
ga_init(&indent, 1, 64);
ga_append(&indent, '\0');
nfa_print_state2(debugf, state, &indent);
ga_clear(&indent);
}
static void nfa_print_state2(FILE *debugf, nfa_state_T *state, garray_T *indent)
{
uint8_t *p;
if (state == NULL) {
return;
}
fprintf(debugf, "(%2d)", abs(state->id));
// Output indent
p = (uint8_t *)indent->ga_data;
if (indent->ga_len >= 3) {
int last = indent->ga_len - 3;
uint8_t save[2];
strncpy(save, &p[last], 2); // NOLINT(runtime/printf)
memcpy(&p[last], "+-", 2);
fprintf(debugf, " %s", p);
strncpy(&p[last], save, 2); // NOLINT(runtime/printf)
} else {
fprintf(debugf, " %s", p);
}
nfa_set_code(state->c);
fprintf(debugf, "%s (%d) (id=%d) val=%d\n",
code,
state->c,
abs(state->id),
state->val);
if (state->id < 0) {
return;
}
state->id = abs(state->id) * -1;
// grow indent for state->out
indent->ga_len -= 1;
if (state->out1) {
ga_concat(indent, (uint8_t *)"| ");
} else {
ga_concat(indent, (uint8_t *)" ");
}
ga_append(indent, NUL);
nfa_print_state2(debugf, state->out, indent);
// replace last part of indent for state->out1
indent->ga_len -= 3;
ga_concat(indent, (uint8_t *)" ");
ga_append(indent, NUL);
nfa_print_state2(debugf, state->out1, indent);
// shrink indent
indent->ga_len -= 3;
ga_append(indent, NUL);
}
// Print the NFA state machine.
static void nfa_dump(nfa_regprog_T *prog)
{
FILE *debugf = fopen(NFA_REGEXP_DUMP_LOG, "a");
if (debugf == NULL) {
return;
}
nfa_print_state(debugf, prog->start);
if (prog->reganch) {
fprintf(debugf, "reganch: %d\n", prog->reganch);
}
if (prog->regstart != NUL) {
fprintf(debugf, "regstart: %c (decimal: %d)\n",
prog->regstart, prog->regstart);
}
if (prog->match_text != NULL) {
fprintf(debugf, "match_text: \"%s\"\n", prog->match_text);
}
fclose(debugf);
}
#endif // REGEXP_DEBUG
// Parse r.e. @expr and convert it into postfix form.
// Return the postfix string on success, NULL otherwise.
static int *re2post(void)
{
if (nfa_reg(REG_NOPAREN) == FAIL) {
return NULL;
}
EMIT(NFA_MOPEN);
return post_start;
}
// NB. Some of the code below is inspired by Russ's.
// Represents an NFA state plus zero or one or two arrows exiting.
// if c == MATCH, no arrows out; matching state.
// If c == SPLIT, unlabeled arrows to out and out1 (if != NULL).
// If c < 256, labeled arrow with character c to out.
static nfa_state_T *state_ptr; // points to nfa_prog->state
// Allocate and initialize nfa_state_T.
static nfa_state_T *alloc_state(int c, nfa_state_T *out, nfa_state_T *out1)
{
nfa_state_T *s;
if (istate >= nstate) {
return NULL;
}
s = &state_ptr[istate++];
s->c = c;
s->out = out;
s->out1 = out1;
s->val = 0;
s->id = istate;
s->lastlist[0] = 0;
s->lastlist[1] = 0;
return s;
}
// A partially built NFA without the matching state filled in.
// Frag_T.start points at the start state.
// Frag_T.out is a list of places that need to be set to the
// next state for this fragment.
// Initialize a Frag_T struct and return it.
static Frag_T frag(nfa_state_T *start, Ptrlist *out)
{
Frag_T n;
n.start = start;
n.out = out;
return n;
}
// Create singleton list containing just outp.
static Ptrlist *list1(nfa_state_T **outp)
{
Ptrlist *l;
l = (Ptrlist *)outp;
l->next = NULL;
return l;
}
// Patch the list of states at out to point to start.
static void patch(Ptrlist *l, nfa_state_T *s)
{
Ptrlist *next;
for (; l; l = next) {
next = l->next;
l->s = s;
}
}
// Join the two lists l1 and l2, returning the combination.
static Ptrlist *append(Ptrlist *l1, Ptrlist *l2)
{
Ptrlist *oldl1;
oldl1 = l1;
while (l1->next) {
l1 = l1->next;
}
l1->next = l2;
return oldl1;
}
// Stack used for transforming postfix form into NFA.
static Frag_T empty;
static void st_error(int *postfix, int *end, int *p)
{
#ifdef NFA_REGEXP_ERROR_LOG
FILE *df;
int *p2;
df = fopen(NFA_REGEXP_ERROR_LOG, "a");
if (df) {
fprintf(df, "Error popping the stack!\n");
# ifdef REGEXP_DEBUG
fprintf(df, "Current regexp is \"%s\"\n", nfa_regengine.expr);
# endif
fprintf(df, "Postfix form is: ");
# ifdef REGEXP_DEBUG
for (p2 = postfix; p2 < end; p2++) {
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
nfa_set_code(*p);
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2++) {
nfa_set_code(*p2);
fprintf(df, "%s, ", code);
}
# else
for (p2 = postfix; p2 < end; p2++) {
fprintf(df, "%d, ", *p2);
}
fprintf(df, "\nCurrent position is: ");
for (p2 = postfix; p2 <= p; p2++) {
fprintf(df, "%d, ", *p2);
}
# endif
fprintf(df, "\n--------------------------\n");
fclose(df);
}
#endif
emsg(_("E874: (NFA) Could not pop the stack!"));
}
// Push an item onto the stack.
static void st_push(Frag_T s, Frag_T **p, Frag_T *stack_end)
{
Frag_T *stackp = *p;
if (stackp >= stack_end) {
return;
}
*stackp = s;
*p = *p + 1;
}
// Pop an item from the stack.
static Frag_T st_pop(Frag_T **p, Frag_T *stack)
{
Frag_T *stackp;
*p = *p - 1;
stackp = *p;
if (stackp < stack) {
return empty;
}
return **p;
}
// Estimate the maximum byte length of anything matching "state".
// When unknown or unlimited return -1.
static int nfa_max_width(nfa_state_T *startstate, int depth)
{
int l, r;
nfa_state_T *state = startstate;
int len = 0;
// detect looping in a NFA_SPLIT
if (depth > 4) {
return -1;
}
while (state != NULL) {
switch (state->c) {
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
// the end, return what we have
return len;
case NFA_SPLIT:
// two alternatives, use the maximum
l = nfa_max_width(state->out, depth + 1);
r = nfa_max_width(state->out1, depth + 1);
if (l < 0 || r < 0) {
return -1;
}
return len + (l > r ? l : r);
case NFA_ANY:
case NFA_START_COLL:
case NFA_START_NEG_COLL:
// Matches some character, including composing chars.
len += MB_MAXBYTES;
if (state->c != NFA_ANY) {
// Skip over the characters.
state = state->out1->out;
continue;
}
break;
case NFA_DIGIT:
case NFA_WHITE:
case NFA_HEX:
case NFA_OCTAL:
// ascii
len++;
break;
case NFA_IDENT:
case NFA_SIDENT:
case NFA_KWORD:
case NFA_SKWORD:
case NFA_FNAME:
case NFA_SFNAME:
case NFA_PRINT:
case NFA_SPRINT:
case NFA_NWHITE:
case NFA_NDIGIT:
case NFA_NHEX:
case NFA_NOCTAL:
case NFA_WORD:
case NFA_NWORD:
case NFA_HEAD:
case NFA_NHEAD:
case NFA_ALPHA:
case NFA_NALPHA:
case NFA_LOWER:
case NFA_NLOWER:
case NFA_UPPER:
case NFA_NUPPER:
case NFA_LOWER_IC:
case NFA_NLOWER_IC:
case NFA_UPPER_IC:
case NFA_NUPPER_IC:
case NFA_ANY_COMPOSING:
// possibly non-ascii
len += 3;
break;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_NEG:
// zero-width, out1 points to the END state
state = state->out1->out;
continue;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
case NFA_NEWL:
case NFA_SKIP:
// unknown width
return -1;
case NFA_BOL:
case NFA_EOL:
case NFA_BOF:
case NFA_EOF:
case NFA_BOW:
case NFA_EOW:
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_NOPEN:
case NFA_NCLOSE:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_VISUAL:
case NFA_LNUM:
case NFA_CURSOR:
case NFA_COL:
case NFA_VCOL:
case NFA_MARK:
case NFA_ZSTART:
case NFA_ZEND:
case NFA_OPT_CHARS:
case NFA_EMPTY:
case NFA_START_PATTERN:
case NFA_END_PATTERN:
case NFA_COMPOSING:
case NFA_END_COMPOSING:
// zero-width
break;
default:
if (state->c < 0) {
// don't know what this is
return -1;
}
// normal character
len += utf_char2len(state->c);
break;
}
// normal way to continue
state = state->out;
}
// unrecognized, "cannot happen"
return -1;
}
// Convert a postfix form into its equivalent NFA.
// Return the NFA start state on success, NULL otherwise.
static nfa_state_T *post2nfa(int *postfix, int *end, int nfa_calc_size)
{
int *p;
int mopen;
int mclose;
Frag_T *stack = NULL;
Frag_T *stackp = NULL;
Frag_T *stack_end = NULL;
Frag_T e1;
Frag_T e2;
Frag_T e;
nfa_state_T *s;
nfa_state_T *s1;
nfa_state_T *matchstate;
nfa_state_T *ret = NULL;
if (postfix == NULL) {
return NULL;
}
#define PUSH(s) st_push((s), &stackp, stack_end)
#define POP() st_pop(&stackp, stack); \
if (stackp < stack) { \
st_error(postfix, end, p); \
xfree(stack); \
return NULL; \
}
if (nfa_calc_size == false) {
// Allocate space for the stack. Max states on the stack: "nstate".
stack = xmalloc((size_t)(nstate + 1) * sizeof(Frag_T));
stackp = stack;
stack_end = stack + (nstate + 1);
}
for (p = postfix; p < end; p++) {
switch (*p) {
case NFA_CONCAT:
// Concatenation.
// Pay attention: this operator does not exist in the r.e. itself
// (it is implicit, really). It is added when r.e. is translated
// to postfix form in re2post().
if (nfa_calc_size == true) {
// nstate += 0;
break;
}
e2 = POP();
e1 = POP();
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_OR:
// Alternation
if (nfa_calc_size == true) {
nstate++;
break;
}
e2 = POP();
e1 = POP();
s = alloc_state(NFA_SPLIT, e1.start, e2.start);
if (s == NULL) {
goto theend;
}
PUSH(frag(s, append(e1.out, e2.out)));
break;
case NFA_STAR:
// Zero or more, prefer more
if (nfa_calc_size == true) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL) {
goto theend;
}
patch(e.out, s);
PUSH(frag(s, list1(&s->out1)));
break;
case NFA_STAR_NONGREEDY:
// Zero or more, prefer zero
if (nfa_calc_size == true) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, NULL, e.start);
if (s == NULL) {
goto theend;
}
patch(e.out, s);
PUSH(frag(s, list1(&s->out)));
break;
case NFA_QUEST:
// one or zero atoms=> greedy match
if (nfa_calc_size == true) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL) {
goto theend;
}
PUSH(frag(s, append(e.out, list1(&s->out1))));
break;
case NFA_QUEST_NONGREEDY:
// zero or one atoms => non-greedy match
if (nfa_calc_size == true) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_SPLIT, NULL, e.start);
if (s == NULL) {
goto theend;
}
PUSH(frag(s, append(e.out, list1(&s->out))));
break;
case NFA_END_COLL:
case NFA_END_NEG_COLL:
// On the stack is the sequence starting with NFA_START_COLL or
// NFA_START_NEG_COLL and all possible characters. Patch it to
// add the output to the start.
if (nfa_calc_size == true) {
nstate++;
break;
}
e = POP();
s = alloc_state(NFA_END_COLL, NULL, NULL);
if (s == NULL) {
goto theend;
}
patch(e.out, s);
e.start->out1 = s;
PUSH(frag(e.start, list1(&s->out)));
break;
case NFA_RANGE:
// Before this are two characters, the low and high end of a
// range. Turn them into two states with MIN and MAX.
if (nfa_calc_size == true) {
// nstate += 0;
break;
}
e2 = POP();
e1 = POP();
e2.start->val = e2.start->c;
e2.start->c = NFA_RANGE_MAX;
e1.start->val = e1.start->c;
e1.start->c = NFA_RANGE_MIN;
patch(e1.out, e2.start);
PUSH(frag(e1.start, e2.out));
break;
case NFA_EMPTY:
// 0-length, used in a repetition with max/min count of 0
if (nfa_calc_size == true) {
nstate++;
break;
}
s = alloc_state(NFA_EMPTY, NULL, NULL);
if (s == NULL) {
goto theend;
}
PUSH(frag(s, list1(&s->out)));
break;
case NFA_OPT_CHARS: {
int n;
// \%[abc] implemented as:
// NFA_SPLIT
// +-CHAR(a)
// | +-NFA_SPLIT
// | +-CHAR(b)
// | | +-NFA_SPLIT
// | | +-CHAR(c)
// | | | +-next
// | | +- next
// | +- next
// +- next
n = *++p; // get number of characters
if (nfa_calc_size == true) {
nstate += n;
break;
}
s = NULL; // avoid compiler warning
e1.out = NULL; // stores list with out1's
s1 = NULL; // previous NFA_SPLIT to connect to
while (n-- > 0) {
e = POP(); // get character
s = alloc_state(NFA_SPLIT, e.start, NULL);
if (s == NULL) {
goto theend;
}
if (e1.out == NULL) {
e1 = e;
}
patch(e.out, s1);
append(e1.out, list1(&s->out1));
s1 = s;
}
PUSH(frag(s, e1.out));
break;
}
case NFA_PREV_ATOM_NO_WIDTH:
case NFA_PREV_ATOM_NO_WIDTH_NEG:
case NFA_PREV_ATOM_JUST_BEFORE:
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
case NFA_PREV_ATOM_LIKE_PATTERN: {
int before = (*p == NFA_PREV_ATOM_JUST_BEFORE
|| *p == NFA_PREV_ATOM_JUST_BEFORE_NEG);
int pattern = (*p == NFA_PREV_ATOM_LIKE_PATTERN);
int start_state;
int end_state;
int n = 0;
nfa_state_T *zend;
nfa_state_T *skip;
switch (*p) {
case NFA_PREV_ATOM_NO_WIDTH:
start_state = NFA_START_INVISIBLE;
end_state = NFA_END_INVISIBLE;
break;
case NFA_PREV_ATOM_NO_WIDTH_NEG:
start_state = NFA_START_INVISIBLE_NEG;
end_state = NFA_END_INVISIBLE_NEG;
break;
case NFA_PREV_ATOM_JUST_BEFORE:
start_state = NFA_START_INVISIBLE_BEFORE;
end_state = NFA_END_INVISIBLE;
break;
case NFA_PREV_ATOM_JUST_BEFORE_NEG:
start_state = NFA_START_INVISIBLE_BEFORE_NEG;
end_state = NFA_END_INVISIBLE_NEG;
break;
default: // NFA_PREV_ATOM_LIKE_PATTERN:
start_state = NFA_START_PATTERN;
end_state = NFA_END_PATTERN;
break;
}
if (before) {
n = *++p; // get the count
}
// The \@= operator: match the preceding atom with zero width.
// The \@! operator: no match for the preceding atom.
// The \@<= operator: match for the preceding atom.
// The \@<! operator: no match for the preceding atom.
// Surrounds the preceding atom with START_INVISIBLE and
// END_INVISIBLE, similarly to MOPEN.
if (nfa_calc_size == true) {
nstate += pattern ? 4 : 2;
break;
}
e = POP();
s1 = alloc_state(end_state, NULL, NULL);
if (s1 == NULL) {
goto theend;
}
s = alloc_state(start_state, e.start, s1);
if (s == NULL) {
goto theend;
}
if (pattern) {
// NFA_ZEND -> NFA_END_PATTERN -> NFA_SKIP -> what follows.
skip = alloc_state(NFA_SKIP, NULL, NULL);
if (skip == NULL) {
goto theend;
}
zend = alloc_state(NFA_ZEND, s1, NULL);
if (zend == NULL) {
goto theend;
}
s1->out= skip;
patch(e.out, zend);
PUSH(frag(s, list1(&skip->out)));
} else {
patch(e.out, s1);
PUSH(frag(s, list1(&s1->out)));
if (before) {
if (n <= 0) {
// See if we can guess the maximum width, it avoids a
// lot of pointless tries.
n = nfa_max_width(e.start, 0);
}
s->val = n; // store the count
}
}
break;
}
case NFA_COMPOSING: // char with composing char
FALLTHROUGH;
case NFA_MOPEN: // \( \) Submatch
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN: // \z( \) Submatch
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_NOPEN: // \%( \) "Invisible Submatch"
if (nfa_calc_size == true) {
nstate += 2;
break;
}
mopen = *p;
switch (*p) {
case NFA_NOPEN:
mclose = NFA_NCLOSE; break;
case NFA_ZOPEN:
mclose = NFA_ZCLOSE; break;
case NFA_ZOPEN1:
mclose = NFA_ZCLOSE1; break;
case NFA_ZOPEN2:
mclose = NFA_ZCLOSE2; break;
case NFA_ZOPEN3:
mclose = NFA_ZCLOSE3; break;
case NFA_ZOPEN4:
mclose = NFA_ZCLOSE4; break;
case NFA_ZOPEN5:
mclose = NFA_ZCLOSE5; break;
case NFA_ZOPEN6:
mclose = NFA_ZCLOSE6; break;
case NFA_ZOPEN7:
mclose = NFA_ZCLOSE7; break;
case NFA_ZOPEN8:
mclose = NFA_ZCLOSE8; break;
case NFA_ZOPEN9:
mclose = NFA_ZCLOSE9; break;
case NFA_COMPOSING:
mclose = NFA_END_COMPOSING; break;
default:
// NFA_MOPEN, NFA_MOPEN1 .. NFA_MOPEN9
mclose = *p + NSUBEXP;
break;
}
// Allow "NFA_MOPEN" as a valid postfix representation for
// the empty regexp "". In this case, the NFA will be
// NFA_MOPEN -> NFA_MCLOSE. Note that this also allows
// empty groups of parenthesis, and empty mbyte chars
if (stackp == stack) {
s = alloc_state(mopen, NULL, NULL);
if (s == NULL) {
goto theend;
}
s1 = alloc_state(mclose, NULL, NULL);
if (s1 == NULL) {
goto theend;
}
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
}
// At least one node was emitted before NFA_MOPEN, so
// at least one node will be between NFA_MOPEN and NFA_MCLOSE
e = POP();
s = alloc_state(mopen, e.start, NULL); // `('
if (s == NULL) {
goto theend;
}
s1 = alloc_state(mclose, NULL, NULL); // `)'
if (s1 == NULL) {
goto theend;
}
patch(e.out, s1);
if (mopen == NFA_COMPOSING) {
// COMPOSING->out1 = END_COMPOSING
patch(list1(&s->out1), s1);
}
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
if (nfa_calc_size == true) {
nstate += 2;
break;
}
s = alloc_state(*p, NULL, NULL);
if (s == NULL) {
goto theend;
}
s1 = alloc_state(NFA_SKIP, NULL, NULL);
if (s1 == NULL) {
goto theend;
}
patch(list1(&s->out), s1);
PUSH(frag(s, list1(&s1->out)));
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT: {
int n = *++p; // lnum, col or mark name
if (nfa_calc_size == true) {
nstate += 1;
break;
}
s = alloc_state(p[-1], NULL, NULL);
if (s == NULL) {
goto theend;
}
s->val = n;
PUSH(frag(s, list1(&s->out)));
break;
}
case NFA_ZSTART:
case NFA_ZEND:
default:
// Operands
if (nfa_calc_size == true) {
nstate++;
break;
}
s = alloc_state(*p, NULL, NULL);
if (s == NULL) {
goto theend;
}
PUSH(frag(s, list1(&s->out)));
break;
} // switch(*p)
} // for(p = postfix; *p; ++p)
if (nfa_calc_size == true) {
nstate++;
goto theend; // Return value when counting size is ignored anyway
}
e = POP();
if (stackp != stack) {
xfree(stack);
EMSG_RET_NULL(_("E875: (NFA regexp) (While converting from postfix to NFA),"
"too many states left on stack"));
}
if (istate >= nstate) {
xfree(stack);
EMSG_RET_NULL(_("E876: (NFA regexp) "
"Not enough space to store the whole NFA "));
}
matchstate = &state_ptr[istate++]; // the match state
matchstate->c = NFA_MATCH;
matchstate->out = matchstate->out1 = NULL;
matchstate->id = 0;
patch(e.out, matchstate);
ret = e.start;
theend:
xfree(stack);
return ret;
#undef POP1
#undef PUSH1
#undef POP2
#undef PUSH2
#undef POP
#undef PUSH
}
// After building the NFA program, inspect it to add optimization hints.
static void nfa_postprocess(nfa_regprog_T *prog)
{
int i;
int c;
for (i = 0; i < prog->nstate; i++) {
c = prog->state[i].c;
if (c == NFA_START_INVISIBLE
|| c == NFA_START_INVISIBLE_NEG
|| c == NFA_START_INVISIBLE_BEFORE
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
int directly;
// Do it directly when what follows is possibly the end of the
// match.
if (match_follows(prog->state[i].out1->out, 0)) {
directly = true;
} else {
int ch_invisible = failure_chance(prog->state[i].out, 0);
int ch_follows = failure_chance(prog->state[i].out1->out, 0);
// Postpone when the invisible match is expensive or has a
// lower chance of failing.
if (c == NFA_START_INVISIBLE_BEFORE
|| c == NFA_START_INVISIBLE_BEFORE_NEG) {
// "before" matches are very expensive when
// unbounded, always prefer what follows then,
// unless what follows will always match.
// Otherwise strongly prefer what follows.
if (prog->state[i].val <= 0 && ch_follows > 0) {
directly = false;
} else {
directly = ch_follows * 10 < ch_invisible;
}
} else {
// normal invisible, first do the one with the
// highest failure chance
directly = ch_follows < ch_invisible;
}
}
if (directly) {
// switch to the _FIRST state
prog->state[i].c++;
}
}
}
}
/////////////////////////////////////////////////////////////////
// NFA execution code.
/////////////////////////////////////////////////////////////////
// Values for done in nfa_pim_T.
#define NFA_PIM_UNUSED 0 // pim not used
#define NFA_PIM_TODO 1 // pim not done yet
#define NFA_PIM_MATCH 2 // pim executed, matches
#define NFA_PIM_NOMATCH 3 // pim executed, no match
#ifdef REGEXP_DEBUG
static void log_subsexpr(regsubs_T *subs)
{
log_subexpr(&subs->norm);
if (rex.nfa_has_zsubexpr) {
log_subexpr(&subs->synt);
}
}
static void log_subexpr(regsub_T *sub)
{
int j;
for (j = 0; j < sub->in_use; j++) {
if (REG_MULTI) {
fprintf(log_fd, "*** group %d, start: c=%d, l=%d, end: c=%d, l=%d\n",
j,
sub->list.multi[j].start_col,
(int)sub->list.multi[j].start_lnum,
sub->list.multi[j].end_col,
(int)sub->list.multi[j].end_lnum);
} else {
char *s = (char *)sub->list.line[j].start;
char *e = (char *)sub->list.line[j].end;
fprintf(log_fd, "*** group %d, start: \"%s\", end: \"%s\"\n",
j,
s == NULL ? "NULL" : s,
e == NULL ? "NULL" : e);
}
}
}
static char *pim_info(const nfa_pim_T *pim)
{
static char buf[30];
if (pim == NULL || pim->result == NFA_PIM_UNUSED) {
buf[0] = NUL;
} else {
snprintf(buf, sizeof(buf), " PIM col %d",
REG_MULTI
? (int)pim->end.pos.col
: (int)(pim->end.ptr - rex.input));
}
return buf;
}
#endif
// Used during execution: whether a match has been found.
static int nfa_match;
static proftime_T *nfa_time_limit;
static int *nfa_timed_out;
static int nfa_time_count;
// Copy postponed invisible match info from "from" to "to".
static void copy_pim(nfa_pim_T *to, nfa_pim_T *from)
{
to->result = from->result;
to->state = from->state;
copy_sub(&to->subs.norm, &from->subs.norm);
if (rex.nfa_has_zsubexpr) {
copy_sub(&to->subs.synt, &from->subs.synt);
}
to->end = from->end;
}
static void clear_sub(regsub_T *sub)
{
if (REG_MULTI) {
// Use 0xff to set lnum to -1
memset(sub->list.multi, 0xff, sizeof(struct multipos) * (size_t)rex.nfa_nsubexpr);
} else {
memset(sub->list.line, 0, sizeof(struct linepos) * (size_t)rex.nfa_nsubexpr);
}
sub->in_use = 0;
}
// Copy the submatches from "from" to "to".
static void copy_sub(regsub_T *to, regsub_T *from)
{
to->in_use = from->in_use;
if (from->in_use <= 0) {
return;
}
// Copy the match start and end positions.
if (REG_MULTI) {
memmove(&to->list.multi[0], &from->list.multi[0],
sizeof(struct multipos) * (size_t)from->in_use);
to->orig_start_col = from->orig_start_col;
} else {
memmove(&to->list.line[0], &from->list.line[0],
sizeof(struct linepos) * (size_t)from->in_use);
}
}
// Like copy_sub() but exclude the main match.
static void copy_sub_off(regsub_T *to, regsub_T *from)
{
if (to->in_use < from->in_use) {
to->in_use = from->in_use;
}
if (from->in_use <= 1) {
return;
}
// Copy the match start and end positions.
if (REG_MULTI) {
memmove(&to->list.multi[1], &from->list.multi[1],
sizeof(struct multipos) * (size_t)(from->in_use - 1));
} else {
memmove(&to->list.line[1], &from->list.line[1],
sizeof(struct linepos) * (size_t)(from->in_use - 1));
}
}
// Like copy_sub() but only do the end of the main match if \ze is present.
static void copy_ze_off(regsub_T *to, regsub_T *from)
{
if (!rex.nfa_has_zend) {
return;
}
if (REG_MULTI) {
if (from->list.multi[0].end_lnum >= 0) {
to->list.multi[0].end_lnum = from->list.multi[0].end_lnum;
to->list.multi[0].end_col = from->list.multi[0].end_col;
}
} else {
if (from->list.line[0].end != NULL) {
to->list.line[0].end = from->list.line[0].end;
}
}
}
// Return true if "sub1" and "sub2" have the same start positions.
// When using back-references also check the end position.
static bool sub_equal(regsub_T *sub1, regsub_T *sub2)
{
int i;
int todo;
linenr_T s1;
linenr_T s2;
uint8_t *sp1;
uint8_t *sp2;
todo = sub1->in_use > sub2->in_use ? sub1->in_use : sub2->in_use;
if (REG_MULTI) {
for (i = 0; i < todo; i++) {
if (i < sub1->in_use) {
s1 = sub1->list.multi[i].start_lnum;
} else {
s1 = -1;
}
if (i < sub2->in_use) {
s2 = sub2->list.multi[i].start_lnum;
} else {
s2 = -1;
}
if (s1 != s2) {
return false;
}
if (s1 != -1 && sub1->list.multi[i].start_col
!= sub2->list.multi[i].start_col) {
return false;
}
if (rex.nfa_has_backref) {
if (i < sub1->in_use) {
s1 = sub1->list.multi[i].end_lnum;
} else {
s1 = -1;
}
if (i < sub2->in_use) {
s2 = sub2->list.multi[i].end_lnum;
} else {
s2 = -1;
}
if (s1 != s2) {
return false;
}
if (s1 != -1
&& sub1->list.multi[i].end_col != sub2->list.multi[i].end_col) {
return false;
}
}
}
} else {
for (i = 0; i < todo; i++) {
if (i < sub1->in_use) {
sp1 = sub1->list.line[i].start;
} else {
sp1 = NULL;
}
if (i < sub2->in_use) {
sp2 = sub2->list.line[i].start;
} else {
sp2 = NULL;
}
if (sp1 != sp2) {
return false;
}
if (rex.nfa_has_backref) {
if (i < sub1->in_use) {
sp1 = sub1->list.line[i].end;
} else {
sp1 = NULL;
}
if (i < sub2->in_use) {
sp2 = sub2->list.line[i].end;
} else {
sp2 = NULL;
}
if (sp1 != sp2) {
return false;
}
}
}
}
return true;
}
#ifdef REGEXP_DEBUG
static void open_debug_log(TriState result)
{
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd == NULL) {
emsg(_(e_log_open_failed));
log_fd = stderr;
}
fprintf(log_fd, "****************************\n");
fprintf(log_fd, "FINISHED RUNNING nfa_regmatch() recursively\n");
fprintf(log_fd, "MATCH = %s\n", result == kTrue ? "OK" : result == kNone ? "MAYBE" : "FALSE");
fprintf(log_fd, "****************************\n");
}
static void report_state(char *action, regsub_T *sub, nfa_state_T *state, int lid, nfa_pim_T *pim)
{
int col;
if (sub->in_use <= 0) {
col = -1;
} else if (REG_MULTI) {
col = sub->list.multi[0].start_col;
} else {
col = (int)(sub->list.line[0].start - rex.line);
}
nfa_set_code(state->c);
if (log_fd == NULL) {
open_debug_log(kNone);
}
fprintf(log_fd, "> %s state %d to list %d. char %d: %s (start col %d)%s\n",
action, abs(state->id), lid, state->c, code, col,
pim_info(pim));
}
#endif
/// @param l runtime state list
/// @param state state to update
/// @param subs pointers to subexpressions
/// @param pim postponed match or NULL
///
/// @return true if the same state is already in list "l" with the same
/// positions as "subs".
static bool has_state_with_pos(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim)
FUNC_ATTR_NONNULL_ARG(1, 2, 3)
{
for (int i = 0; i < l->n; i++) {
nfa_thread_T *thread = &l->t[i];
if (thread->state->id == state->id
&& sub_equal(&thread->subs.norm, &subs->norm)
&& (!rex.nfa_has_zsubexpr
|| sub_equal(&thread->subs.synt, &subs->synt))
&& pim_equal(&thread->pim, pim)) {
return true;
}
}
return false;
}
// Return true if "one" and "two" are equal. That includes when both are not
// set.
static bool pim_equal(const nfa_pim_T *one, const nfa_pim_T *two)
{
const bool one_unused = (one == NULL || one->result == NFA_PIM_UNUSED);
const bool two_unused = (two == NULL || two->result == NFA_PIM_UNUSED);
if (one_unused) {
// one is unused: equal when two is also unused
return two_unused;
}
if (two_unused) {
// one is used and two is not: not equal
return false;
}
// compare the state id
if (one->state->id != two->state->id) {
return false;
}
// compare the position
if (REG_MULTI) {
return one->end.pos.lnum == two->end.pos.lnum
&& one->end.pos.col == two->end.pos.col;
}
return one->end.ptr == two->end.ptr;
}
// Return true if "state" leads to a NFA_MATCH without advancing the input.
static bool match_follows(const nfa_state_T *startstate, int depth)
FUNC_ATTR_NONNULL_ALL
{
const nfa_state_T *state = startstate;
// avoid too much recursion
if (depth > 10) {
return false;
}
while (state != NULL) {
switch (state->c) {
case NFA_MATCH:
case NFA_MCLOSE:
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
case NFA_END_PATTERN:
return true;
case NFA_SPLIT:
return match_follows(state->out, depth + 1)
|| match_follows(state->out1, depth + 1);
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
case NFA_COMPOSING:
// skip ahead to next state
state = state->out1->out;
continue;
case NFA_ANY:
case NFA_ANY_COMPOSING:
case NFA_IDENT:
case NFA_SIDENT:
case NFA_KWORD:
case NFA_SKWORD:
case NFA_FNAME:
case NFA_SFNAME:
case NFA_PRINT:
case NFA_SPRINT:
case NFA_WHITE:
case NFA_NWHITE:
case NFA_DIGIT:
case NFA_NDIGIT:
case NFA_HEX:
case NFA_NHEX:
case NFA_OCTAL:
case NFA_NOCTAL:
case NFA_WORD:
case NFA_NWORD:
case NFA_HEAD:
case NFA_NHEAD:
case NFA_ALPHA:
case NFA_NALPHA:
case NFA_LOWER:
case NFA_NLOWER:
case NFA_UPPER:
case NFA_NUPPER:
case NFA_LOWER_IC:
case NFA_NLOWER_IC:
case NFA_UPPER_IC:
case NFA_NUPPER_IC:
case NFA_START_COLL:
case NFA_START_NEG_COLL:
case NFA_NEWL:
// state will advance input
return false;
default:
if (state->c > 0) {
// state will advance input
return false;
}
// Others: zero-width or possibly zero-width, might still find
// a match at the same position, keep looking.
break;
}
state = state->out;
}
return false;
}
/// @param l runtime state list
/// @param state state to update
/// @param subs pointers to subexpressions
///
/// @return true if "state" is already in list "l".
static bool state_in_list(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs)
FUNC_ATTR_NONNULL_ALL
{
if (state->lastlist[nfa_ll_index] == l->id) {
if (!rex.nfa_has_backref || has_state_with_pos(l, state, subs, NULL)) {
return true;
}
}
return false;
}
// Offset used for "off" by addstate_here().
#define ADDSTATE_HERE_OFFSET 10
/// Add "state" and possibly what follows to state list ".".
///
/// @param l runtime state list
/// @param state state to update
/// @param subs_arg pointers to subexpressions
/// @param pim postponed look-behind match
/// @param off_arg byte offset, when -1 go to next line
///
/// @return "subs_arg", possibly copied into temp_subs.
/// NULL when recursiveness is too deep.
static regsubs_T *addstate(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs_arg, nfa_pim_T *pim,
int off_arg)
FUNC_ATTR_NONNULL_ARG(1, 2) FUNC_ATTR_WARN_UNUSED_RESULT
{
int subidx;
int off = off_arg;
int add_here = false;
int listindex = 0;
int k;
int found = false;
nfa_thread_T *thread;
struct multipos save_multipos;
int save_in_use;
uint8_t *save_ptr;
int i;
regsub_T *sub;
regsubs_T *subs = subs_arg;
static regsubs_T temp_subs;
#ifdef REGEXP_DEBUG
int did_print = false;
#endif
static int depth = 0;
// This function is called recursively. When the depth is too much we run
// out of stack and crash, limit recursiveness here.
if (++depth >= 5000 || subs == NULL) {
depth--;
return NULL;
}
if (off_arg <= -ADDSTATE_HERE_OFFSET) {
add_here = true;
off = 0;
listindex = -(off_arg + ADDSTATE_HERE_OFFSET);
}
switch (state->c) {
case NFA_NCLOSE:
case NFA_MCLOSE:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_MOPEN:
case NFA_ZEND:
case NFA_SPLIT:
case NFA_EMPTY:
// These nodes are not added themselves but their "out" and/or
// "out1" may be added below.
break;
case NFA_BOL:
case NFA_BOF:
// "^" won't match past end-of-line, don't bother trying.
// Except when at the end of the line, or when we are going to the
// next line for a look-behind match.
if (rex.input > rex.line
&& *rex.input != NUL
&& (nfa_endp == NULL
|| !REG_MULTI
|| rex.lnum == nfa_endp->se_u.pos.lnum)) {
goto skip_add;
}
FALLTHROUGH;
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_NOPEN:
case NFA_ZSTART:
// These nodes need to be added so that we can bail out when it
// was added to this list before at the same position to avoid an
// endless loop for "\(\)*"
default:
if (state->lastlist[nfa_ll_index] == l->id && state->c != NFA_SKIP) {
// This state is already in the list, don't add it again,
// unless it is an MOPEN that is used for a backreference or
// when there is a PIM. For NFA_MATCH check the position,
// lower position is preferred.
if (!rex.nfa_has_backref && pim == NULL && !l->has_pim
&& state->c != NFA_MATCH) {
// When called from addstate_here() do insert before
// existing states.
if (add_here) {
for (k = 0; k < l->n && k < listindex; k++) {
if (l->t[k].state->id == state->id) {
found = true;
break;
}
}
}
if (!add_here || found) {
skip_add:
#ifdef REGEXP_DEBUG
nfa_set_code(state->c);
fprintf(log_fd,
"> Not adding state %d to list %d. char %d: %s pim: %s has_pim: %d found: %d\n",
abs(state->id), l->id, state->c, code,
pim == NULL ? "NULL" : "yes", l->has_pim, found);
#endif
depth--;
return subs;
}
}
// Do not add the state again when it exists with the same
// positions.
if (has_state_with_pos(l, state, subs, pim)) {
goto skip_add;
}
}
// When there are backreferences or PIMs the number of states may
// be (a lot) bigger than anticipated.
if (l->n == l->len) {
const int newlen = l->len * 3 / 2 + 50;
const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T);
if ((long)(newsize >> 10) >= p_mmp) {
emsg(_(e_maxmempat));
depth--;
return NULL;
}
if (subs != &temp_subs) {
// "subs" may point into the current array, need to make a
// copy before it becomes invalid.
copy_sub(&temp_subs.norm, &subs->norm);
if (rex.nfa_has_zsubexpr) {
copy_sub(&temp_subs.synt, &subs->synt);
}
subs = &temp_subs;
}
nfa_thread_T *const newt = xrealloc(l->t, newsize);
l->t = newt;
l->len = newlen;
}
// add the state to the list
state->lastlist[nfa_ll_index] = l->id;
thread = &l->t[l->n++];
thread->state = state;
if (pim == NULL) {
thread->pim.result = NFA_PIM_UNUSED;
} else {
copy_pim(&thread->pim, pim);
l->has_pim = true;
}
copy_sub(&thread->subs.norm, &subs->norm);
if (rex.nfa_has_zsubexpr) {
copy_sub(&thread->subs.synt, &subs->synt);
}
#ifdef REGEXP_DEBUG
report_state("Adding", &thread->subs.norm, state, l->id, pim);
did_print = true;
#endif
}
#ifdef REGEXP_DEBUG
if (!did_print) {
report_state("Processing", &subs->norm, state, l->id, pim);
}
#endif
switch (state->c) {
case NFA_MATCH:
break;
case NFA_SPLIT:
// order matters here
subs = addstate(l, state->out, subs, pim, off_arg);
subs = addstate(l, state->out1, subs, pim, off_arg);
break;
case NFA_EMPTY:
case NFA_NOPEN:
case NFA_NCLOSE:
subs = addstate(l, state->out, subs, pim, off_arg);
break;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZSTART:
if (state->c == NFA_ZSTART) {
subidx = 0;
sub = &subs->norm;
} else if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { // -V560
subidx = state->c - NFA_ZOPEN;
sub = &subs->synt;
} else {
subidx = state->c - NFA_MOPEN;
sub = &subs->norm;
}
// avoid compiler warnings
save_ptr = NULL;
CLEAR_FIELD(save_multipos);
// Set the position (with "off" added) in the subexpression. Save
// and restore it when it was in use. Otherwise fill any gap.
if (REG_MULTI) {
if (subidx < sub->in_use) {
save_multipos = sub->list.multi[subidx];
save_in_use = -1;
} else {
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; i++) {
sub->list.multi[i].start_lnum = -1;
sub->list.multi[i].end_lnum = -1;
}
sub->in_use = subidx + 1;
}
if (off == -1) {
sub->list.multi[subidx].start_lnum = rex.lnum + 1;
sub->list.multi[subidx].start_col = 0;
} else {
sub->list.multi[subidx].start_lnum = rex.lnum;
sub->list.multi[subidx].start_col =
(colnr_T)(rex.input - rex.line + off);
}
sub->list.multi[subidx].end_lnum = -1;
} else {
if (subidx < sub->in_use) {
save_ptr = sub->list.line[subidx].start;
save_in_use = -1;
} else {
save_in_use = sub->in_use;
for (i = sub->in_use; i < subidx; i++) {
sub->list.line[i].start = NULL;
sub->list.line[i].end = NULL;
}
sub->in_use = subidx + 1;
}
sub->list.line[subidx].start = rex.input + off;
}
subs = addstate(l, state->out, subs, pim, off_arg);
if (subs == NULL) {
break;
}
// "subs" may have changed, need to set "sub" again.
if (state->c >= NFA_ZOPEN && state->c <= NFA_ZOPEN9) { // -V560
sub = &subs->synt;
} else {
sub = &subs->norm;
}
if (save_in_use == -1) {
if (REG_MULTI) {
sub->list.multi[subidx] = save_multipos;
} else {
sub->list.line[subidx].start = save_ptr;
}
} else {
sub->in_use = save_in_use;
}
break;
case NFA_MCLOSE:
if (rex.nfa_has_zend
&& (REG_MULTI
? subs->norm.list.multi[0].end_lnum >= 0
: subs->norm.list.line[0].end != NULL)) {
// Do not overwrite the position set by \ze.
subs = addstate(l, state->out, subs, pim, off_arg);
break;
}
FALLTHROUGH;
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_ZEND:
if (state->c == NFA_ZEND) {
subidx = 0;
sub = &subs->norm;
} else if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { // -V560
subidx = state->c - NFA_ZCLOSE;
sub = &subs->synt;
} else {
subidx = state->c - NFA_MCLOSE;
sub = &subs->norm;
}
// We don't fill in gaps here, there must have been an MOPEN that
// has done that.
save_in_use = sub->in_use;
if (sub->in_use <= subidx) {
sub->in_use = subidx + 1;
}
if (REG_MULTI) {
save_multipos = sub->list.multi[subidx];
if (off == -1) {
sub->list.multi[subidx].end_lnum = rex.lnum + 1;
sub->list.multi[subidx].end_col = 0;
} else {
sub->list.multi[subidx].end_lnum = rex.lnum;
sub->list.multi[subidx].end_col =
(colnr_T)(rex.input - rex.line + off);
}
// avoid compiler warnings
save_ptr = NULL;
} else {
save_ptr = sub->list.line[subidx].end;
sub->list.line[subidx].end = rex.input + off;
// avoid compiler warnings
CLEAR_FIELD(save_multipos);
}
subs = addstate(l, state->out, subs, pim, off_arg);
if (subs == NULL) {
break;
}
// "subs" may have changed, need to set "sub" again.
if (state->c >= NFA_ZCLOSE && state->c <= NFA_ZCLOSE9) { // -V560
sub = &subs->synt;
} else {
sub = &subs->norm;
}
if (REG_MULTI) {
sub->list.multi[subidx] = save_multipos;
} else {
sub->list.line[subidx].end = save_ptr;
}
sub->in_use = save_in_use;
break;
}
depth--;
return subs;
}
/// Like addstate(), but the new state(s) are put at position "*ip".
/// Used for zero-width matches, next state to use is the added one.
/// This makes sure the order of states to be tried does not change, which
/// matters for alternatives.
///
/// @param l runtime state list
/// @param state state to update
/// @param subs pointers to subexpressions
/// @param pim postponed look-behind match
static regsubs_T *addstate_here(nfa_list_T *l, nfa_state_T *state, regsubs_T *subs, nfa_pim_T *pim,
int *ip)
FUNC_ATTR_NONNULL_ARG(1, 2, 5) FUNC_ATTR_WARN_UNUSED_RESULT
{
int tlen = l->n;
int count;
int listidx = *ip;
// First add the state(s) at the end, so that we know how many there are.
// Pass the listidx as offset (avoids adding another argument to
// addstate()).
regsubs_T *r = addstate(l, state, subs, pim, -listidx - ADDSTATE_HERE_OFFSET);
if (r == NULL) {
return NULL;
}
// when "*ip" was at the end of the list, nothing to do
if (listidx + 1 == tlen) {
return r;
}
// re-order to put the new state at the current position
count = l->n - tlen;
if (count == 0) {
return r; // no state got added
}
if (count == 1) {
// overwrite the current state
l->t[listidx] = l->t[l->n - 1];
} else if (count > 1) {
if (l->n + count - 1 >= l->len) {
// not enough space to move the new states, reallocate the list
// and move the states to the right position
const int newlen = l->len * 3 / 2 + 50;
const size_t newsize = (size_t)newlen * sizeof(nfa_thread_T);
if ((long)(newsize >> 10) >= p_mmp) {
emsg(_(e_maxmempat));
return NULL;
}
nfa_thread_T *const newl = xmalloc(newsize);
l->len = newlen;
memmove(&(newl[0]),
&(l->t[0]),
sizeof(nfa_thread_T) * (size_t)listidx);
memmove(&(newl[listidx]),
&(l->t[l->n - count]),
sizeof(nfa_thread_T) * (size_t)count);
memmove(&(newl[listidx + count]),
&(l->t[listidx + 1]),
sizeof(nfa_thread_T) * (size_t)(l->n - count - listidx - 1));
xfree(l->t);
l->t = newl;
} else {
// make space for new states, then move them from the
// end to the current position
memmove(&(l->t[listidx + count]),
&(l->t[listidx + 1]),
sizeof(nfa_thread_T) * (size_t)(l->n - listidx - 1));
memmove(&(l->t[listidx]),
&(l->t[l->n - 1]),
sizeof(nfa_thread_T) * (size_t)count);
}
}
l->n--;
*ip = listidx - 1;
return r;
}
// Check character class "class" against current character c.
static int check_char_class(int class, int c)
{
switch (class) {
case NFA_CLASS_ALNUM:
if (c >= 1 && c < 128 && isalnum(c)) {
return OK;
}
break;
case NFA_CLASS_ALPHA:
if (c >= 1 && c < 128 && isalpha(c)) {
return OK;
}
break;
case NFA_CLASS_BLANK:
if (c == ' ' || c == '\t') {
return OK;
}
break;
case NFA_CLASS_CNTRL:
if (c >= 1 && c <= 127 && iscntrl(c)) {
return OK;
}
break;
case NFA_CLASS_DIGIT:
if (ascii_isdigit(c)) {
return OK;
}
break;
case NFA_CLASS_GRAPH:
if (c >= 1 && c <= 127 && isgraph(c)) {
return OK;
}
break;
case NFA_CLASS_LOWER:
if (mb_islower(c) && c != 170 && c != 186) {
return OK;
}
break;
case NFA_CLASS_PRINT:
if (vim_isprintc(c)) {
return OK;
}
break;
case NFA_CLASS_PUNCT:
if (c >= 1 && c < 128 && ispunct(c)) {
return OK;
}
break;
case NFA_CLASS_SPACE:
if ((c >= 9 && c <= 13) || (c == ' ')) {
return OK;
}
break;
case NFA_CLASS_UPPER:
if (mb_isupper(c)) {
return OK;
}
break;
case NFA_CLASS_XDIGIT:
if (ascii_isxdigit(c)) {
return OK;
}
break;
case NFA_CLASS_TAB:
if (c == '\t') {
return OK;
}
break;
case NFA_CLASS_RETURN:
if (c == '\r') {
return OK;
}
break;
case NFA_CLASS_BACKSPACE:
if (c == '\b') {
return OK;
}
break;
case NFA_CLASS_ESCAPE:
if (c == ESC) {
return OK;
}
break;
case NFA_CLASS_IDENT:
if (vim_isIDc(c)) {
return OK;
}
break;
case NFA_CLASS_KEYWORD:
if (reg_iswordc(c)) {
return OK;
}
break;
case NFA_CLASS_FNAME:
if (vim_isfilec(c)) {
return OK;
}
break;
default:
// should not be here :P
siemsg(_(e_ill_char_class), (int64_t)class);
return FAIL;
}
return FAIL;
}
/// Check for a match with subexpression "subidx".
///
/// @param sub pointers to subexpressions
/// @param bytelen out: length of match in bytes
///
/// @return true if it matches.
static int match_backref(regsub_T *sub, int subidx, int *bytelen)
{
int len;
if (sub->in_use <= subidx) {
retempty:
// backref was not set, match an empty string
*bytelen = 0;
return true;
}
if (REG_MULTI) {
if (sub->list.multi[subidx].start_lnum < 0
|| sub->list.multi[subidx].end_lnum < 0) {
goto retempty;
}
if (sub->list.multi[subidx].start_lnum == rex.lnum
&& sub->list.multi[subidx].end_lnum == rex.lnum) {
len = sub->list.multi[subidx].end_col
- sub->list.multi[subidx].start_col;
if (cstrncmp((char *)rex.line + sub->list.multi[subidx].start_col,
(char *)rex.input, &len) == 0) {
*bytelen = len;
return true;
}
} else {
if (match_with_backref(sub->list.multi[subidx].start_lnum,
sub->list.multi[subidx].start_col,
sub->list.multi[subidx].end_lnum,
sub->list.multi[subidx].end_col,
bytelen) == RA_MATCH) {
return true;
}
}
} else {
if (sub->list.line[subidx].start == NULL
|| sub->list.line[subidx].end == NULL) {
goto retempty;
}
len = (int)(sub->list.line[subidx].end - sub->list.line[subidx].start);
if (cstrncmp((char *)sub->list.line[subidx].start, (char *)rex.input, &len) == 0) {
*bytelen = len;
return true;
}
}
return false;
}
/// Check for a match with \z subexpression "subidx".
///
/// @param bytelen out: length of match in bytes
///
/// @return true if it matches.
static int match_zref(int subidx, int *bytelen)
{
int len;
cleanup_zsubexpr();
if (re_extmatch_in == NULL || re_extmatch_in->matches[subidx] == NULL) {
// backref was not set, match an empty string
*bytelen = 0;
return true;
}
len = (int)strlen((char *)re_extmatch_in->matches[subidx]);
if (cstrncmp((char *)re_extmatch_in->matches[subidx], (char *)rex.input, &len) == 0) {
*bytelen = len;
return true;
}
return false;
}
// Save list IDs for all NFA states of "prog" into "list".
// Also reset the IDs to zero.
// Only used for the recursive value lastlist[1].
static void nfa_save_listids(nfa_regprog_T *prog, int *list)
{
int i;
nfa_state_T *p;
// Order in the list is reverse, it's a bit faster that way.
p = &prog->state[0];
for (i = prog->nstate; --i >= 0;) {
list[i] = p->lastlist[1];
p->lastlist[1] = 0;
p++;
}
}
// Restore list IDs from "list" to all NFA states.
static void nfa_restore_listids(nfa_regprog_T *prog, int *list)
{
int i;
nfa_state_T *p;
p = &prog->state[0];
for (i = prog->nstate; --i >= 0;) {
p->lastlist[1] = list[i];
p++;
}
}
static bool nfa_re_num_cmp(uintmax_t val, int op, uintmax_t pos)
{
if (op == 1) {
return pos > val;
}
if (op == 2) {
return pos < val;
}
return val == pos;
}
// Recursively call nfa_regmatch()
// "pim" is NULL or contains info about a Postponed Invisible Match (start
// position).
static int recursive_regmatch(nfa_state_T *state, nfa_pim_T *pim, nfa_regprog_T *prog,
regsubs_T *submatch, regsubs_T *m, int **listids, int *listids_len)
FUNC_ATTR_NONNULL_ARG(1, 3, 5, 6, 7)
{
const int save_reginput_col = (int)(rex.input - rex.line);
const int save_reglnum = rex.lnum;
const int save_nfa_match = nfa_match;
const int save_nfa_listid = rex.nfa_listid;
save_se_T *const save_nfa_endp = nfa_endp;
save_se_T endpos;
save_se_T *endposp = NULL;
int need_restore = false;
if (pim != NULL) {
// start at the position where the postponed match was
if (REG_MULTI) {
rex.input = rex.line + pim->end.pos.col;
} else {
rex.input = pim->end.ptr;
}
}
if (state->c == NFA_START_INVISIBLE_BEFORE
|| state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG
|| state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
// The recursive match must end at the current position. When "pim" is
// not NULL it specifies the current position.
endposp = &endpos;
if (REG_MULTI) {
if (pim == NULL) {
endpos.se_u.pos.col = (int)(rex.input - rex.line);
endpos.se_u.pos.lnum = rex.lnum;
} else {
endpos.se_u.pos = pim->end.pos;
}
} else {
if (pim == NULL) {
endpos.se_u.ptr = rex.input;
} else {
endpos.se_u.ptr = pim->end.ptr;
}
}
// Go back the specified number of bytes, or as far as the
// start of the previous line, to try matching "\@<=" or
// not matching "\@<!". This is very inefficient, limit the number of
// bytes if possible.
if (state->val <= 0) {
if (REG_MULTI) {
rex.line = (uint8_t *)reg_getline(--rex.lnum);
if (rex.line == NULL) {
// can't go before the first line
rex.line = (uint8_t *)reg_getline(++rex.lnum);
}
}
rex.input = rex.line;
} else {
if (REG_MULTI && (int)(rex.input - rex.line) < state->val) {
// Not enough bytes in this line, go to end of
// previous line.
rex.line = (uint8_t *)reg_getline(--rex.lnum);
if (rex.line == NULL) {
// can't go before the first line
rex.line = (uint8_t *)reg_getline(++rex.lnum);
rex.input = rex.line;
} else {
rex.input = rex.line + strlen((char *)rex.line);
}
}
if ((int)(rex.input - rex.line) >= state->val) {
rex.input -= state->val;
rex.input -= utf_head_off((char *)rex.line, (char *)rex.input);
} else {
rex.input = rex.line;
}
}
}
#ifdef REGEXP_DEBUG
if (log_fd != stderr) {
fclose(log_fd);
}
log_fd = NULL;
#endif
// Have to clear the lastlist field of the NFA nodes, so that
// nfa_regmatch() and addstate() can run properly after recursion.
if (nfa_ll_index == 1) {
// Already calling nfa_regmatch() recursively. Save the lastlist[1]
// values and clear them.
if (*listids == NULL || *listids_len < prog->nstate) {
xfree(*listids);
*listids = xmalloc(sizeof(**listids) * (size_t)prog->nstate);
*listids_len = prog->nstate;
}
nfa_save_listids(prog, *listids);
need_restore = true;
// any value of rex.nfa_listid will do
} else {
// First recursive nfa_regmatch() call, switch to the second lastlist
// entry. Make sure rex.nfa_listid is different from a previous
// recursive call, because some states may still have this ID.
nfa_ll_index++;
if (rex.nfa_listid <= rex.nfa_alt_listid) {
rex.nfa_listid = rex.nfa_alt_listid;
}
}
// Call nfa_regmatch() to check if the current concat matches at this
// position. The concat ends with the node NFA_END_INVISIBLE
nfa_endp = endposp;
const int result = nfa_regmatch(prog, state->out, submatch, m);
if (need_restore) {
nfa_restore_listids(prog, *listids);
} else {
nfa_ll_index--;
rex.nfa_alt_listid = rex.nfa_listid;
}
// restore position in input text
rex.lnum = save_reglnum;
if (REG_MULTI) {
rex.line = (uint8_t *)reg_getline(rex.lnum);
}
rex.input = rex.line + save_reginput_col;
if (result != NFA_TOO_EXPENSIVE) {
nfa_match = save_nfa_match;
rex.nfa_listid = save_nfa_listid;
}
nfa_endp = save_nfa_endp;
#ifdef REGEXP_DEBUG
open_debug_log(result);
#endif
return result;
}
// Estimate the chance of a match with "state" failing.
// empty match: 0
// NFA_ANY: 1
// specific character: 99
static int failure_chance(nfa_state_T *state, int depth)
{
int c = state->c;
int l, r;
// detect looping
if (depth > 4) {
return 1;
}
switch (c) {
case NFA_SPLIT:
if (state->out->c == NFA_SPLIT || state->out1->c == NFA_SPLIT) {
// avoid recursive stuff
return 1;
}
// two alternatives, use the lowest failure chance
l = failure_chance(state->out, depth + 1);
r = failure_chance(state->out1, depth + 1);
return l < r ? l : r;
case NFA_ANY:
// matches anything, unlikely to fail
return 1;
case NFA_MATCH:
case NFA_MCLOSE:
case NFA_ANY_COMPOSING:
// empty match works always
return 0;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
case NFA_START_PATTERN:
// recursive regmatch is expensive, use low failure chance
return 5;
case NFA_BOL:
case NFA_EOL:
case NFA_BOF:
case NFA_EOF:
case NFA_NEWL:
return 99;
case NFA_BOW:
case NFA_EOW:
return 90;
case NFA_MOPEN:
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_ZCLOSE:
case NFA_ZCLOSE1:
case NFA_ZCLOSE2:
case NFA_ZCLOSE3:
case NFA_ZCLOSE4:
case NFA_ZCLOSE5:
case NFA_ZCLOSE6:
case NFA_ZCLOSE7:
case NFA_ZCLOSE8:
case NFA_ZCLOSE9:
case NFA_NOPEN:
case NFA_MCLOSE1:
case NFA_MCLOSE2:
case NFA_MCLOSE3:
case NFA_MCLOSE4:
case NFA_MCLOSE5:
case NFA_MCLOSE6:
case NFA_MCLOSE7:
case NFA_MCLOSE8:
case NFA_MCLOSE9:
case NFA_NCLOSE:
return failure_chance(state->out, depth + 1);
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
// backreferences don't match in many places
return 94;
case NFA_LNUM_GT:
case NFA_LNUM_LT:
case NFA_COL_GT:
case NFA_COL_LT:
case NFA_VCOL_GT:
case NFA_VCOL_LT:
case NFA_MARK_GT:
case NFA_MARK_LT:
case NFA_VISUAL:
// before/after positions don't match very often
return 85;
case NFA_LNUM:
return 90;
case NFA_CURSOR:
case NFA_COL:
case NFA_VCOL:
case NFA_MARK:
// specific positions rarely match
return 98;
case NFA_COMPOSING:
return 95;
default:
if (c > 0) {
// character match fails often
return 95;
}
}
// something else, includes character classes
return 50;
}
// Skip until the char "c" we know a match must start with.
static int skip_to_start(int c, colnr_T *colp)
{
const uint8_t *const s = (uint8_t *)cstrchr((char *)rex.line + *colp, c);
if (s == NULL) {
return FAIL;
}
*colp = (int)(s - rex.line);
return OK;
}
// Check for a match with match_text.
// Called after skip_to_start() has found regstart.
// Returns zero for no match, 1 for a match.
static long find_match_text(colnr_T *startcol, int regstart, uint8_t *match_text)
{
#define PTR2LEN(x) utf_ptr2len(x)
colnr_T col = *startcol;
int regstart_len = PTR2LEN((char *)rex.line + col);
for (;;) {
bool match = true;
uint8_t *s1 = match_text;
uint8_t *s2 = rex.line + col + regstart_len; // skip regstart
while (*s1) {
int c1_len = PTR2LEN((char *)s1);
int c1 = utf_ptr2char((char *)s1);
int c2_len = PTR2LEN((char *)s2);
int c2 = utf_ptr2char((char *)s2);
if ((c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2)))
|| c1_len != c2_len) {
match = false;
break;
}
s1 += c1_len;
s2 += c2_len;
}
if (match
// check that no composing char follows
&& !utf_iscomposing(utf_ptr2char((char *)s2))) {
cleanup_subexpr();
if (REG_MULTI) {
rex.reg_startpos[0].lnum = rex.lnum;
rex.reg_startpos[0].col = col;
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = (colnr_T)(s2 - rex.line);
} else {
rex.reg_startp[0] = rex.line + col;
rex.reg_endp[0] = s2;
}
*startcol = col;
return 1L;
}
// Try finding regstart after the current match.
col += regstart_len; // skip regstart
if (skip_to_start(regstart, &col) == FAIL) {
break;
}
}
*startcol = col;
return 0L;
#undef PTR2LEN
}
static int nfa_did_time_out(void)
{
if (nfa_time_limit != NULL && profile_passed_limit(*nfa_time_limit)) {
if (nfa_timed_out != NULL) {
*nfa_timed_out = true;
}
return true;
}
return false;
}
/// Main matching routine.
///
/// Run NFA to determine whether it matches rex.input.
///
/// When "nfa_endp" is not NULL it is a required end-of-match position.
///
/// Return true if there is a match, false if there is no match,
/// NFA_TOO_EXPENSIVE if we end up with too many states.
/// When there is a match "submatch" contains the positions.
///
/// Note: Caller must ensure that: start != NULL.
static int nfa_regmatch(nfa_regprog_T *prog, nfa_state_T *start, regsubs_T *submatch, regsubs_T *m)
FUNC_ATTR_NONNULL_ARG(1, 2, 4)
{
int result = false;
int flag = 0;
bool go_to_nextline = false;
nfa_thread_T *t;
nfa_list_T list[2];
int listidx;
nfa_list_T *thislist;
nfa_list_T *nextlist;
int *listids = NULL;
int listids_len = 0;
nfa_state_T *add_state;
bool add_here;
int add_count;
int add_off = 0;
int toplevel = start->c == NFA_MOPEN;
regsubs_T *r;
// Some patterns may take a long time to match, especially when using
// recursive_regmatch(). Allow interrupting them with CTRL-C.
fast_breakcheck();
if (got_int) {
return false;
}
if (nfa_did_time_out()) {
return false;
}
#ifdef NFA_REGEXP_DEBUG_LOG
FILE *debug = fopen(NFA_REGEXP_DEBUG_LOG, "a");
if (debug == NULL) {
semsg("(NFA) COULD NOT OPEN %s!", NFA_REGEXP_DEBUG_LOG);
return false;
}
#endif
nfa_match = false;
// Allocate memory for the lists of nodes.
size_t size = (size_t)(prog->nstate + 1) * sizeof(nfa_thread_T);
list[0].t = xmalloc(size);
list[0].len = prog->nstate + 1;
list[1].t = xmalloc(size);
list[1].len = prog->nstate + 1;
#ifdef REGEXP_DEBUG
log_fd = fopen(NFA_REGEXP_RUN_LOG, "a");
if (log_fd == NULL) {
emsg(_(e_log_open_failed));
log_fd = stderr;
}
fprintf(log_fd, "**********************************\n");
nfa_set_code(start->c);
fprintf(log_fd, " RUNNING nfa_regmatch() starting with state %d, code %s\n",
abs(start->id), code);
fprintf(log_fd, "**********************************\n");
#endif
thislist = &list[0];
thislist->n = 0;
thislist->has_pim = false;
nextlist = &list[1];
nextlist->n = 0;
nextlist->has_pim = false;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "(---) STARTSTATE first\n");
#endif
thislist->id = rex.nfa_listid + 1;
// Inline optimized code for addstate(thislist, start, m, 0) if we know
// it's the first MOPEN.
if (toplevel) {
if (REG_MULTI) {
m->norm.list.multi[0].start_lnum = rex.lnum;
m->norm.list.multi[0].start_col = (colnr_T)(rex.input - rex.line);
m->norm.orig_start_col = m->norm.list.multi[0].start_col;
} else {
m->norm.list.line[0].start = rex.input;
}
m->norm.in_use = 1;
r = addstate(thislist, start->out, m, NULL, 0);
} else {
r = addstate(thislist, start, m, NULL, 0);
}
if (r == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
#define ADD_STATE_IF_MATCH(state) \
if (result) { \
add_state = (state)->out; \
add_off = clen; \
}
// Run for each character.
for (;;) {
int curc = utf_ptr2char((char *)rex.input);
int clen = utfc_ptr2len((char *)rex.input);
if (curc == NUL) {
clen = 0;
go_to_nextline = false;
}
// swap lists
thislist = &list[flag];
nextlist = &list[flag ^= 1];
nextlist->n = 0; // clear nextlist
nextlist->has_pim = false;
rex.nfa_listid++;
if (prog->re_engine == AUTOMATIC_ENGINE
&& (rex.nfa_listid >= NFA_MAX_STATES)) {
// Too many states, retry with old engine.
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
thislist->id = rex.nfa_listid;
nextlist->id = rex.nfa_listid + 1;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "------------------------------------------\n");
fprintf(log_fd, ">>> Reginput is \"%s\"\n", rex.input);
fprintf(log_fd,
">>> Advanced one character... Current char is %c (code %d) \n",
curc,
(int)curc);
fprintf(log_fd, ">>> Thislist has %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++) {
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
}
fprintf(log_fd, "\n");
#endif
#ifdef NFA_REGEXP_DEBUG_LOG
fprintf(debug, "\n-------------------\n");
#endif
// If the state lists are empty we can stop.
if (thislist->n == 0) {
break;
}
// compute nextlist
for (listidx = 0; listidx < thislist->n; listidx++) {
// If the list gets very long there probably is something wrong.
// At least allow interrupting with CTRL-C.
fast_breakcheck();
if (got_int) {
break;
}
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
nfa_time_count = 0;
if (nfa_did_time_out()) {
break;
}
}
t = &thislist->t[listidx];
#ifdef NFA_REGEXP_DEBUG_LOG
nfa_set_code(t->state->c);
fprintf(debug, "%s, ", code);
#endif
#ifdef REGEXP_DEBUG
{
int col;
if (t->subs.norm.in_use <= 0) {
col = -1;
} else if (REG_MULTI) {
col = t->subs.norm.list.multi[0].start_col;
} else {
col = (int)(t->subs.norm.list.line[0].start - rex.line);
}
nfa_set_code(t->state->c);
fprintf(log_fd, "(%d) char %d %s (start col %d)%s... \n",
abs(t->state->id), (int)t->state->c, code, col,
pim_info(&t->pim));
}
#endif
// Handle the possible codes of the current state.
// The most important is NFA_MATCH.
add_state = NULL;
add_here = false;
add_count = 0;
switch (t->state->c) {
case NFA_MATCH:
// If the match is not at the start of the line, ends before a
// composing characters and rex.reg_icombine is not set, that
// is not really a match.
if (!rex.reg_icombine
&& rex.input != rex.line
&& utf_iscomposing(curc)) {
break;
}
nfa_match = true;
copy_sub(&submatch->norm, &t->subs.norm);
if (rex.nfa_has_zsubexpr) {
copy_sub(&submatch->synt, &t->subs.synt);
}
#ifdef REGEXP_DEBUG
log_subsexpr(&t->subs);
#endif
// Found the left-most longest match, do not look at any other
// states at this position. When the list of states is going
// to be empty quit without advancing, so that "rex.input" is
// correct.
if (nextlist->n == 0) {
clen = 0;
}
goto nextchar;
case NFA_END_INVISIBLE:
case NFA_END_INVISIBLE_NEG:
case NFA_END_PATTERN:
// This is only encountered after a NFA_START_INVISIBLE or
// NFA_START_INVISIBLE_BEFORE node.
// They surround a zero-width group, used with "\@=", "\&",
// "\@!", "\@<=" and "\@<!".
// If we got here, it means that the current "invisible" group
// finished successfully, so return control to the parent
// nfa_regmatch(). For a look-behind match only when it ends
// in the position in "nfa_endp".
// Submatches are stored in *m, and used in the parent call.
#ifdef REGEXP_DEBUG
if (nfa_endp != NULL) {
if (REG_MULTI) {
fprintf(log_fd,
"Current lnum: %d, endp lnum: %d;"
" current col: %d, endp col: %d\n",
(int)rex.lnum,
(int)nfa_endp->se_u.pos.lnum,
(int)(rex.input - rex.line),
nfa_endp->se_u.pos.col);
} else {
fprintf(log_fd, "Current col: %d, endp col: %d\n",
(int)(rex.input - rex.line),
(int)(nfa_endp->se_u.ptr - rex.input));
}
}
#endif
// If "nfa_endp" is set it's only a match if it ends at
// "nfa_endp"
if (nfa_endp != NULL
&& (REG_MULTI
? (rex.lnum != nfa_endp->se_u.pos.lnum
|| (int)(rex.input - rex.line) != nfa_endp->se_u.pos.col)
: rex.input != nfa_endp->se_u.ptr)) {
break;
}
// do not set submatches for \@!
if (t->state->c != NFA_END_INVISIBLE_NEG) {
copy_sub(&m->norm, &t->subs.norm);
if (rex.nfa_has_zsubexpr) {
copy_sub(&m->synt, &t->subs.synt);
}
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, "Match found:\n");
log_subsexpr(m);
#endif
nfa_match = true;
// See comment above at "goto nextchar".
if (nextlist->n == 0) {
clen = 0;
}
goto nextchar;
case NFA_START_INVISIBLE:
case NFA_START_INVISIBLE_FIRST:
case NFA_START_INVISIBLE_NEG:
case NFA_START_INVISIBLE_NEG_FIRST:
case NFA_START_INVISIBLE_BEFORE:
case NFA_START_INVISIBLE_BEFORE_FIRST:
case NFA_START_INVISIBLE_BEFORE_NEG:
case NFA_START_INVISIBLE_BEFORE_NEG_FIRST:
#ifdef REGEXP_DEBUG
fprintf(log_fd, "Failure chance invisible: %d, what follows: %d\n",
failure_chance(t->state->out, 0),
failure_chance(t->state->out1->out, 0));
#endif
// Do it directly if there already is a PIM or when
// nfa_postprocess() detected it will work better.
if (t->pim.result != NFA_PIM_UNUSED
|| t->state->c == NFA_START_INVISIBLE_FIRST
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| t->state->c == NFA_START_INVISIBLE_BEFORE_FIRST
|| t->state->c == NFA_START_INVISIBLE_BEFORE_NEG_FIRST) {
int in_use = m->norm.in_use;
// Copy submatch info for the recursive call, opposite
// of what happens on success below.
copy_sub_off(&m->norm, &t->subs.norm);
if (rex.nfa_has_zsubexpr) {
copy_sub_off(&m->synt, &t->subs.synt);
}
// First try matching the invisible match, then what
// follows.
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
&listids, &listids_len);
if (result == NFA_TOO_EXPENSIVE) {
nfa_match = result;
goto theend;
}
// for \@! and \@<! it is a match when the result is
// false
if (result != (t->state->c == NFA_START_INVISIBLE_NEG
|| t->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| t->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| t->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &m->norm);
if (rex.nfa_has_zsubexpr) {
copy_sub_off(&t->subs.synt, &m->synt);
}
// If the pattern has \ze and it matched in the
// sub pattern, use it.
copy_ze_off(&t->subs.norm, &m->norm);
// t->state->out1 is the corresponding
// END_INVISIBLE node; Add its out to the current
// list (zero-width match).
add_here = true;
add_state = t->state->out1->out;
}
m->norm.in_use = in_use;
} else {
nfa_pim_T pim;
// First try matching what follows. Only if a match
// is found verify the invisible match matches. Add a
// nfa_pim_T to the following states, it contains info
// about the invisible match.
pim.state = t->state;
pim.result = NFA_PIM_TODO;
pim.subs.norm.in_use = 0;
pim.subs.synt.in_use = 0;
if (REG_MULTI) {
pim.end.pos.col = (int)(rex.input - rex.line);
pim.end.pos.lnum = rex.lnum;
} else {
pim.end.ptr = rex.input;
}
// t->state->out1 is the corresponding END_INVISIBLE
// node; Add its out to the current list (zero-width
// match).
if (addstate_here(thislist, t->state->out1->out, &t->subs,
&pim, &listidx) == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
break;
case NFA_START_PATTERN: {
nfa_state_T *skip = NULL;
#ifdef REGEXP_DEBUG
int skip_lid = 0;
#endif
// There is no point in trying to match the pattern if the
// output state is not going to be added to the list.
if (state_in_list(nextlist, t->state->out1->out, &t->subs)) {
skip = t->state->out1->out;
#ifdef REGEXP_DEBUG
skip_lid = nextlist->id;
#endif
} else if (state_in_list(nextlist,
t->state->out1->out->out, &t->subs)) {
skip = t->state->out1->out->out;
#ifdef REGEXP_DEBUG
skip_lid = nextlist->id;
#endif
} else if (state_in_list(thislist,
t->state->out1->out->out, &t->subs)) {
skip = t->state->out1->out->out;
#ifdef REGEXP_DEBUG
skip_lid = thislist->id;
#endif
}
if (skip != NULL) {
#ifdef REGEXP_DEBUG
nfa_set_code(skip->c);
fprintf(log_fd,
"> Not trying to match pattern, output state %d is already in list %d. char %d: %s\n", // NOLINT(whitespace/line_length)
abs(skip->id), skip_lid, skip->c, code);
#endif
break;
}
// Copy submatch info to the recursive call, opposite of what
// happens afterwards.
copy_sub_off(&m->norm, &t->subs.norm);
if (rex.nfa_has_zsubexpr) {
copy_sub_off(&m->synt, &t->subs.synt);
}
// First try matching the pattern.
result = recursive_regmatch(t->state, NULL, prog, submatch, m,
&listids, &listids_len);
if (result == NFA_TOO_EXPENSIVE) {
nfa_match = result;
goto theend;
}
if (result) {
int bytelen;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "NFA_START_PATTERN matches:\n");
log_subsexpr(m);
#endif
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &m->norm);
if (rex.nfa_has_zsubexpr) {
copy_sub_off(&t->subs.synt, &m->synt);
}
// Now we need to skip over the matched text and then
// continue with what follows.
if (REG_MULTI) {
// TODO(RE): multi-line match
bytelen = m->norm.list.multi[0].end_col
- (int)(rex.input - rex.line);
} else {
bytelen = (int)(m->norm.list.line[0].end - rex.input);
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, "NFA_START_PATTERN length: %d\n", bytelen);
#endif
if (bytelen == 0) {
// empty match, output of corresponding
// NFA_END_PATTERN/NFA_SKIP to be used at current
// position
add_here = true;
add_state = t->state->out1->out->out;
} else if (bytelen <= clen) {
// match current character, output of corresponding
// NFA_END_PATTERN to be used at next position.
add_state = t->state->out1->out->out;
add_off = clen;
} else {
// skip over the matched characters, set character
// count in NFA_SKIP
add_state = t->state->out1->out;
add_off = bytelen;
add_count = bytelen - clen;
}
}
break;
}
case NFA_BOL:
if (rex.input == rex.line) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_EOL:
if (curc == NUL) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_BOW:
result = true;
if (curc == NUL) {
result = false;
} else {
int this_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
if (this_class <= 1) {
result = false;
} else if (reg_prev_class() == this_class) {
result = false;
}
}
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_EOW:
result = true;
if (rex.input == rex.line) {
result = false;
} else {
int this_class, prev_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_tab((char *)rex.input, rex.reg_buf->b_chartab);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1) {
result = false;
}
}
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_BOF:
if (rex.lnum == 0 && rex.input == rex.line
&& (!REG_MULTI || rex.reg_firstlnum == 1)) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_EOF:
if (rex.lnum == rex.reg_maxline && curc == NUL) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_COMPOSING: {
int mc = curc;
int len = 0;
nfa_state_T *end;
nfa_state_T *sta;
int cchars[MAX_MCO];
int ccount = 0;
int j;
sta = t->state->out;
len = 0;
if (utf_iscomposing(sta->c)) {
// Only match composing character(s), ignore base
// character. Used for ".{composing}" and "{composing}"
// (no preceding character).
len += utf_char2len(mc);
}
if (rex.reg_icombine && len == 0) {
// If \Z was present, then ignore composing characters.
// When ignoring the base character this always matches.
if (sta->c != curc) {
result = FAIL;
} else {
result = OK;
}
while (sta->c != NFA_END_COMPOSING) {
sta = sta->out;
}
} else if (len > 0 || mc == sta->c) {
// Check base character matches first, unless ignored.
if (len == 0) {
len += utf_char2len(mc);
sta = sta->out;
}
// We don't care about the order of composing characters.
// Get them into cchars[] first.
while (len < clen) {
mc = utf_ptr2char((char *)rex.input + len);
cchars[ccount++] = mc;
len += utf_char2len(mc);
if (ccount == MAX_MCO) {
break;
}
}
// Check that each composing char in the pattern matches a
// composing char in the text. We do not check if all
// composing chars are matched.
result = OK;
while (sta->c != NFA_END_COMPOSING) {
for (j = 0; j < ccount; j++) {
if (cchars[j] == sta->c) {
break;
}
}
if (j == ccount) {
result = FAIL;
break;
}
sta = sta->out;
}
} else {
result = FAIL;
}
end = t->state->out1; // NFA_END_COMPOSING
ADD_STATE_IF_MATCH(end);
break;
}
case NFA_NEWL:
if (curc == NUL && !rex.reg_line_lbr && REG_MULTI
&& rex.lnum <= rex.reg_maxline) {
go_to_nextline = true;
// Pass -1 for the offset, which means taking the position
// at the start of the next line.
add_state = t->state->out;
add_off = -1;
} else if (curc == '\n' && rex.reg_line_lbr) {
// match \n as if it is an ordinary character
add_state = t->state->out;
add_off = 1;
}
break;
case NFA_START_COLL:
case NFA_START_NEG_COLL: {
// What follows is a list of characters, until NFA_END_COLL.
// One of them must match or none of them must match.
nfa_state_T *state;
int result_if_matched;
int c1, c2;
// Never match EOL. If it's part of the collection it is added
// as a separate state with an OR.
if (curc == NUL) {
break;
}
state = t->state->out;
result_if_matched = (t->state->c == NFA_START_COLL);
for (;;) {
if (state->c == NFA_END_COLL) {
result = !result_if_matched;
break;
}
if (state->c == NFA_RANGE_MIN) {
c1 = state->val;
state = state->out; // advance to NFA_RANGE_MAX
c2 = state->val;
#ifdef REGEXP_DEBUG
fprintf(log_fd, "NFA_RANGE_MIN curc=%d c1=%d c2=%d\n",
curc, c1, c2);
#endif
if (curc >= c1 && curc <= c2) {
result = result_if_matched;
break;
}
if (rex.reg_ic) {
int curc_low = utf_fold(curc);
int done = false;
for (; c1 <= c2; c1++) {
if (utf_fold(c1) == curc_low) {
result = result_if_matched;
done = true;
break;
}
}
if (done) {
break;
}
}
} else if (state->c < 0 ? check_char_class(state->c, curc)
: (curc == state->c
|| (rex.reg_ic
&& utf_fold(curc) == utf_fold(state->c)))) {
result = result_if_matched;
break;
}
state = state->out;
}
if (result) {
// next state is in out of the NFA_END_COLL, out1 of
// START points to the END state
add_state = t->state->out1->out;
add_off = clen;
}
break;
}
case NFA_ANY:
// Any char except '\0', (end of input) does not match.
if (curc > 0) {
add_state = t->state->out;
add_off = clen;
}
break;
case NFA_ANY_COMPOSING:
// On a composing character skip over it. Otherwise do
// nothing. Always matches.
if (utf_iscomposing(curc)) {
add_off = clen;
} else {
add_here = true;
add_off = 0;
}
add_state = t->state->out;
break;
// Character classes like \a for alpha, \d for digit etc.
case NFA_IDENT: // \i
result = vim_isIDc(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SIDENT: // \I
result = !ascii_isdigit(curc) && vim_isIDc(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_KWORD: // \k
result = vim_iswordp_buf((char *)rex.input, rex.reg_buf);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SKWORD: // \K
result = !ascii_isdigit(curc)
&& vim_iswordp_buf((char *)rex.input, rex.reg_buf);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_FNAME: // \f
result = vim_isfilec(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SFNAME: // \F
result = !ascii_isdigit(curc) && vim_isfilec(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_PRINT: // \p
result = vim_isprintc(utf_ptr2char((char *)rex.input));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_SPRINT: // \P
result = !ascii_isdigit(curc) && vim_isprintc(utf_ptr2char((char *)rex.input));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_WHITE: // \s
result = ascii_iswhite(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NWHITE: // \S
result = curc != NUL && !ascii_iswhite(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_DIGIT: // \d
result = ri_digit(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NDIGIT: // \D
result = curc != NUL && !ri_digit(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_HEX: // \x
result = ri_hex(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NHEX: // \X
result = curc != NUL && !ri_hex(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_OCTAL: // \o
result = ri_octal(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NOCTAL: // \O
result = curc != NUL && !ri_octal(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_WORD: // \w
result = ri_word(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NWORD: // \W
result = curc != NUL && !ri_word(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_HEAD: // \h
result = ri_head(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NHEAD: // \H
result = curc != NUL && !ri_head(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_ALPHA: // \a
result = ri_alpha(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NALPHA: // \A
result = curc != NUL && !ri_alpha(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_LOWER: // \l
result = ri_lower(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NLOWER: // \L
result = curc != NUL && !ri_lower(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_UPPER: // \u
result = ri_upper(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NUPPER: // \U
result = curc != NUL && !ri_upper(curc);
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_LOWER_IC: // [a-z]
result = ri_lower(curc) || (rex.reg_ic && ri_upper(curc));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NLOWER_IC: // [^a-z]
result = curc != NUL
&& !(ri_lower(curc) || (rex.reg_ic && ri_upper(curc)));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_UPPER_IC: // [A-Z]
result = ri_upper(curc) || (rex.reg_ic && ri_lower(curc));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_NUPPER_IC: // [^A-Z]
result = curc != NUL
&& !(ri_upper(curc) || (rex.reg_ic && ri_lower(curc)));
ADD_STATE_IF_MATCH(t->state);
break;
case NFA_BACKREF1:
case NFA_BACKREF2:
case NFA_BACKREF3:
case NFA_BACKREF4:
case NFA_BACKREF5:
case NFA_BACKREF6:
case NFA_BACKREF7:
case NFA_BACKREF8:
case NFA_BACKREF9:
case NFA_ZREF1:
case NFA_ZREF2:
case NFA_ZREF3:
case NFA_ZREF4:
case NFA_ZREF5:
case NFA_ZREF6:
case NFA_ZREF7:
case NFA_ZREF8:
case NFA_ZREF9:
// \1 .. \9 \z1 .. \z9
{
int subidx;
int bytelen;
if (t->state->c <= NFA_BACKREF9) {
subidx = t->state->c - NFA_BACKREF1 + 1;
result = match_backref(&t->subs.norm, subidx, &bytelen);
} else {
subidx = t->state->c - NFA_ZREF1 + 1;
result = match_zref(subidx, &bytelen);
}
if (result) {
if (bytelen == 0) {
// empty match always works, output of NFA_SKIP to be
// used next
add_here = true;
add_state = t->state->out->out;
} else if (bytelen <= clen) {
// match current character, jump ahead to out of
// NFA_SKIP
add_state = t->state->out->out;
add_off = clen;
} else {
// skip over the matched characters, set character
// count in NFA_SKIP
add_state = t->state->out;
add_off = bytelen;
add_count = bytelen - clen;
}
}
break;
}
case NFA_SKIP:
// character of previous matching \1 .. \9 or \@>
if (t->count - clen <= 0) {
// end of match, go to what follows
add_state = t->state->out;
add_off = clen;
} else {
// add state again with decremented count
add_state = t->state;
add_off = 0;
add_count = t->count - clen;
}
break;
case NFA_LNUM:
case NFA_LNUM_GT:
case NFA_LNUM_LT:
assert(t->state->val >= 0
&& !((rex.reg_firstlnum > 0
&& rex.lnum > LONG_MAX - rex.reg_firstlnum)
|| (rex.reg_firstlnum < 0
&& rex.lnum < LONG_MIN + rex.reg_firstlnum))
&& rex.lnum + rex.reg_firstlnum >= 0);
result = (REG_MULTI
&& nfa_re_num_cmp((uintmax_t)t->state->val,
t->state->c - NFA_LNUM,
(uintmax_t)(rex.lnum + rex.reg_firstlnum)));
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_COL:
case NFA_COL_GT:
case NFA_COL_LT:
assert(t->state->val >= 0
&& rex.input >= rex.line
&& (uintmax_t)(rex.input - rex.line) <= UINTMAX_MAX - 1);
result = nfa_re_num_cmp((uintmax_t)t->state->val,
t->state->c - NFA_COL,
(uintmax_t)(rex.input - rex.line + 1));
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_VCOL:
case NFA_VCOL_GT:
case NFA_VCOL_LT: {
int op = t->state->c - NFA_VCOL;
colnr_T col = (colnr_T)(rex.input - rex.line);
// Bail out quickly when there can't be a match, avoid the overhead of
// win_linetabsize() on long lines.
if (op != 1 && col > t->state->val * MB_MAXBYTES) {
break;
}
result = false;
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
if (op == 1 && col - 1 > t->state->val && col > 100) {
long ts = wp->w_buffer->b_p_ts;
// Guess that a character won't use more columns than 'tabstop',
// with a minimum of 4.
if (ts < 4) {
ts = 4;
}
result = col > t->state->val * ts;
}
if (!result) {
uintmax_t lts = win_linetabsize(wp, rex.reg_firstlnum + rex.lnum, (char *)rex.line, col);
assert(t->state->val >= 0);
result = nfa_re_num_cmp((uintmax_t)t->state->val, op, lts + 1);
}
if (result) {
add_here = true;
add_state = t->state->out;
}
}
break;
case NFA_MARK:
case NFA_MARK_GT:
case NFA_MARK_LT: {
size_t col = REG_MULTI ? (size_t)(rex.input - rex.line) : 0;
fmark_T *fm = mark_get(rex.reg_buf, curwin, NULL, kMarkBufLocal, t->state->val);
// Line may have been freed, get it again.
if (REG_MULTI) {
rex.line = (uint8_t *)reg_getline(rex.lnum);
rex.input = rex.line + col;
}
// Compare the mark position to the match position, if the mark
// exists and mark is set in reg_buf.
if (fm != NULL && fm->mark.lnum > 0) {
pos_T *pos = &fm->mark;
const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
&& pos->col == MAXCOL
? (colnr_T)strlen((char *)reg_getline(pos->lnum - rex.reg_firstlnum))
: pos->col;
result = pos->lnum == rex.lnum + rex.reg_firstlnum
? (pos_col == (colnr_T)(rex.input - rex.line)
? t->state->c == NFA_MARK
: (pos_col < (colnr_T)(rex.input - rex.line)
? t->state->c == NFA_MARK_GT
: t->state->c == NFA_MARK_LT))
: (pos->lnum < rex.lnum + rex.reg_firstlnum
? t->state->c == NFA_MARK_GT
: t->state->c == NFA_MARK_LT);
if (result) {
add_here = true;
add_state = t->state->out;
}
}
break;
}
case NFA_CURSOR:
result = rex.reg_win != NULL
&& (rex.lnum + rex.reg_firstlnum == rex.reg_win->w_cursor.lnum)
&& ((colnr_T)(rex.input - rex.line) == rex.reg_win->w_cursor.col);
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_VISUAL:
result = reg_match_visual();
if (result) {
add_here = true;
add_state = t->state->out;
}
break;
case NFA_MOPEN1:
case NFA_MOPEN2:
case NFA_MOPEN3:
case NFA_MOPEN4:
case NFA_MOPEN5:
case NFA_MOPEN6:
case NFA_MOPEN7:
case NFA_MOPEN8:
case NFA_MOPEN9:
case NFA_ZOPEN:
case NFA_ZOPEN1:
case NFA_ZOPEN2:
case NFA_ZOPEN3:
case NFA_ZOPEN4:
case NFA_ZOPEN5:
case NFA_ZOPEN6:
case NFA_ZOPEN7:
case NFA_ZOPEN8:
case NFA_ZOPEN9:
case NFA_NOPEN:
case NFA_ZSTART:
// These states are only added to be able to bail out when
// they are added again, nothing is to be done.
break;
default: // regular character
{
int c = t->state->c;
#ifdef REGEXP_DEBUG
if (c < 0) {
siemsg("INTERNAL: Negative state char: %" PRId64, (int64_t)c);
}
#endif
result = (c == curc);
if (!result && rex.reg_ic) {
result = utf_fold(c) == utf_fold(curc);
}
// If rex.reg_icombine is not set only skip over the character
// itself. When it is set skip over composing characters.
if (result && !rex.reg_icombine) {
clen = utf_ptr2len((char *)rex.input);
}
ADD_STATE_IF_MATCH(t->state);
break;
}
} // switch (t->state->c)
if (add_state != NULL) {
nfa_pim_T *pim;
nfa_pim_T pim_copy;
if (t->pim.result == NFA_PIM_UNUSED) {
pim = NULL;
} else {
pim = &t->pim;
}
// Handle the postponed invisible match if the match might end
// without advancing and before the end of the line.
if (pim != NULL && (clen == 0 || match_follows(add_state, 0))) {
if (pim->result == NFA_PIM_TODO) {
#ifdef REGEXP_DEBUG
fprintf(log_fd, "\n");
fprintf(log_fd, "==================================\n");
fprintf(log_fd, "Postponed recursive nfa_regmatch()\n");
fprintf(log_fd, "\n");
#endif
result = recursive_regmatch(pim->state, pim, prog, submatch, m,
&listids, &listids_len);
pim->result = result ? NFA_PIM_MATCH : NFA_PIM_NOMATCH;
// for \@! and \@<! it is a match when the result is
// false
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
// Copy submatch info from the recursive call
copy_sub_off(&pim->subs.norm, &m->norm);
if (rex.nfa_has_zsubexpr) {
copy_sub_off(&pim->subs.synt, &m->synt);
}
}
} else {
result = (pim->result == NFA_PIM_MATCH);
#ifdef REGEXP_DEBUG
fprintf(log_fd, "\n");
fprintf(log_fd,
"Using previous recursive nfa_regmatch() result, result == %d\n",
pim->result);
fprintf(log_fd, "MATCH = %s\n", result ? "OK" : "false");
fprintf(log_fd, "\n");
#endif
}
// for \@! and \@<! it is a match when result is false
if (result != (pim->state->c == NFA_START_INVISIBLE_NEG
|| pim->state->c == NFA_START_INVISIBLE_NEG_FIRST
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG
|| pim->state->c
== NFA_START_INVISIBLE_BEFORE_NEG_FIRST)) {
// Copy submatch info from the recursive call
copy_sub_off(&t->subs.norm, &pim->subs.norm);
if (rex.nfa_has_zsubexpr) {
copy_sub_off(&t->subs.synt, &pim->subs.synt);
}
} else {
// look-behind match failed, don't add the state
continue;
}
// Postponed invisible match was handled, don't add it to
// following states.
pim = NULL;
}
// If "pim" points into l->t it will become invalid when
// adding the state causes the list to be reallocated. Make a
// local copy to avoid that.
if (pim == &t->pim) {
copy_pim(&pim_copy, pim);
pim = &pim_copy;
}
if (add_here) {
r = addstate_here(thislist, add_state, &t->subs, pim, &listidx);
} else {
r = addstate(nextlist, add_state, &t->subs, pim, add_off);
if (add_count > 0) {
nextlist->t[nextlist->n - 1].count = add_count;
}
}
if (r == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
} // for (thislist = thislist; thislist->state; thislist++)
// Look for the start of a match in the current position by adding the
// start state to the list of states.
// The first found match is the leftmost one, thus the order of states
// matters!
// Do not add the start state in recursive calls of nfa_regmatch(),
// because recursive calls should only start in the first position.
// Unless "nfa_endp" is not NULL, then we match the end position.
// Also don't start a match past the first line.
if (!nfa_match
&& ((toplevel
&& rex.lnum == 0
&& clen != 0
&& (rex.reg_maxcol == 0
|| (colnr_T)(rex.input - rex.line) < rex.reg_maxcol))
|| (nfa_endp != NULL
&& (REG_MULTI
? (rex.lnum < nfa_endp->se_u.pos.lnum
|| (rex.lnum == nfa_endp->se_u.pos.lnum
&& (int)(rex.input - rex.line)
< nfa_endp->se_u.pos.col))
: rex.input < nfa_endp->se_u.ptr)))) {
#ifdef REGEXP_DEBUG
fprintf(log_fd, "(---) STARTSTATE\n");
#endif
// Inline optimized code for addstate() if we know the state is
// the first MOPEN.
if (toplevel) {
int add = true;
if (prog->regstart != NUL && clen != 0) {
if (nextlist->n == 0) {
colnr_T col = (colnr_T)(rex.input - rex.line) + clen;
// Nextlist is empty, we can skip ahead to the
// character that must appear at the start.
if (skip_to_start(prog->regstart, &col) == FAIL) {
break;
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, " Skipping ahead %d bytes to regstart\n",
col - ((colnr_T)(rex.input - rex.line) + clen));
#endif
rex.input = rex.line + col - clen;
} else {
// Checking if the required start character matches is
// cheaper than adding a state that won't match.
const int c = utf_ptr2char((char *)rex.input + clen);
if (c != prog->regstart
&& (!rex.reg_ic
|| utf_fold(c) != utf_fold(prog->regstart))) {
#ifdef REGEXP_DEBUG
fprintf(log_fd,
" Skipping start state, regstart does not match\n");
#endif
add = false;
}
}
}
if (add) {
if (REG_MULTI) {
m->norm.list.multi[0].start_col =
(colnr_T)(rex.input - rex.line) + clen;
m->norm.orig_start_col =
m->norm.list.multi[0].start_col;
} else {
m->norm.list.line[0].start = rex.input + clen;
}
if (addstate(nextlist, start->out, m, NULL, clen) == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
} else {
if (addstate(nextlist, start, m, NULL, clen) == NULL) {
nfa_match = NFA_TOO_EXPENSIVE;
goto theend;
}
}
}
#ifdef REGEXP_DEBUG
fprintf(log_fd, ">>> Thislist had %d states available: ", thislist->n);
{
int i;
for (i = 0; i < thislist->n; i++) {
fprintf(log_fd, "%d ", abs(thislist->t[i].state->id));
}
}
fprintf(log_fd, "\n");
#endif
nextchar:
// Advance to the next character, or advance to the next line, or
// finish.
if (clen != 0) {
rex.input += clen;
} else if (go_to_nextline || (nfa_endp != NULL && REG_MULTI
&& rex.lnum < nfa_endp->se_u.pos.lnum)) {
reg_nextline();
} else {
break;
}
// Allow interrupting with CTRL-C.
line_breakcheck();
if (got_int) {
break;
}
// Check for timeout once every twenty times to avoid overhead.
if (nfa_time_limit != NULL && ++nfa_time_count == 20) {
nfa_time_count = 0;
if (nfa_did_time_out()) {
break;
}
}
}
#ifdef REGEXP_DEBUG
if (log_fd != stderr) {
fclose(log_fd);
}
log_fd = NULL;
#endif
theend:
// Free memory
xfree(list[0].t);
xfree(list[1].t);
xfree(listids);
#undef ADD_STATE_IF_MATCH
#ifdef NFA_REGEXP_DEBUG_LOG
fclose(debug);
#endif
return nfa_match;
}
/// Try match of "prog" with at rex.line["col"].
///
/// @param tm timeout limit or NULL
/// @param timed_out flag set on timeout or NULL
///
/// @return <= 0 for failure, number of lines contained in the match otherwise.
static long nfa_regtry(nfa_regprog_T *prog, colnr_T col, proftime_T *tm, int *timed_out)
{
int i;
regsubs_T subs, m;
nfa_state_T *start = prog->start;
#ifdef REGEXP_DEBUG
FILE *f;
#endif
rex.input = rex.line + col;
nfa_time_limit = tm;
nfa_timed_out = timed_out;
nfa_time_count = 0;
#ifdef REGEXP_DEBUG
f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL) {
fprintf(f,
"\n\n\t=======================================================\n");
# ifdef REGEXP_DEBUG
fprintf(f, "\tRegexp is \"%s\"\n", nfa_regengine.expr);
# endif
fprintf(f, "\tInput text is \"%s\" \n", rex.input);
fprintf(f, "\t=======================================================\n\n");
nfa_print_state(f, start);
fprintf(f, "\n\n");
fclose(f);
} else {
emsg("Could not open temporary log file for writing");
}
#endif
clear_sub(&subs.norm);
clear_sub(&m.norm);
clear_sub(&subs.synt);
clear_sub(&m.synt);
int result = nfa_regmatch(prog, start, &subs, &m);
if (!result) {
return 0;
} else if (result == NFA_TOO_EXPENSIVE) {
return result;
}
cleanup_subexpr();
if (REG_MULTI) {
for (i = 0; i < subs.norm.in_use; i++) {
rex.reg_startpos[i].lnum = subs.norm.list.multi[i].start_lnum;
rex.reg_startpos[i].col = subs.norm.list.multi[i].start_col;
rex.reg_endpos[i].lnum = subs.norm.list.multi[i].end_lnum;
rex.reg_endpos[i].col = subs.norm.list.multi[i].end_col;
}
if (rex.reg_mmatch != NULL) {
rex.reg_mmatch->rmm_matchcol = subs.norm.orig_start_col;
}
if (rex.reg_startpos[0].lnum < 0) {
rex.reg_startpos[0].lnum = 0;
rex.reg_startpos[0].col = col;
}
if (rex.reg_endpos[0].lnum < 0) {
// pattern has a \ze but it didn't match, use current end
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
} else {
// Use line number of "\ze".
rex.lnum = rex.reg_endpos[0].lnum;
}
} else {
for (i = 0; i < subs.norm.in_use; i++) {
rex.reg_startp[i] = subs.norm.list.line[i].start;
rex.reg_endp[i] = subs.norm.list.line[i].end;
}
if (rex.reg_startp[0] == NULL) {
rex.reg_startp[0] = rex.line + col;
}
if (rex.reg_endp[0] == NULL) {
rex.reg_endp[0] = rex.input;
}
}
// Package any found \z(...\) matches for export. Default is none.
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET) {
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
// Loop over \z1, \z2, etc. There is no \z0.
for (i = 1; i < subs.synt.in_use; i++) {
if (REG_MULTI) {
struct multipos *mpos = &subs.synt.list.multi[i];
// Only accept single line matches that are valid.
if (mpos->start_lnum >= 0
&& mpos->start_lnum == mpos->end_lnum
&& mpos->end_col >= mpos->start_col) {
re_extmatch_out->matches[i] =
(uint8_t *)xstrnsave((char *)reg_getline(mpos->start_lnum) + mpos->start_col,
(size_t)(mpos->end_col - mpos->start_col));
}
} else {
struct linepos *lpos = &subs.synt.list.line[i];
if (lpos->start != NULL && lpos->end != NULL) {
re_extmatch_out->matches[i] =
(uint8_t *)xstrnsave((char *)lpos->start, (size_t)(lpos->end - lpos->start));
}
}
}
}
return 1 + rex.lnum;
}
/// Match a regexp against a string ("line" points to the string) or multiple
/// lines (if "line" is NULL, use reg_getline()).
///
/// @param line String in which to search or NULL
/// @param startcol Column to start looking for match
/// @param tm Timeout limit or NULL
/// @param timed_out Flag set on timeout or NULL
///
/// @return <= 0 if there is no match and number of lines contained in the
/// match otherwise.
static long nfa_regexec_both(uint8_t *line, colnr_T startcol, proftime_T *tm, int *timed_out)
{
nfa_regprog_T *prog;
long retval = 0L;
colnr_T col = startcol;
if (REG_MULTI) {
prog = (nfa_regprog_T *)rex.reg_mmatch->regprog;
line = (uint8_t *)reg_getline((linenr_T)0); // relative to the cursor
rex.reg_startpos = rex.reg_mmatch->startpos;
rex.reg_endpos = rex.reg_mmatch->endpos;
} else {
prog = (nfa_regprog_T *)rex.reg_match->regprog;
rex.reg_startp = (uint8_t **)rex.reg_match->startp;
rex.reg_endp = (uint8_t **)rex.reg_match->endp;
}
// Be paranoid...
if (prog == NULL || line == NULL) {
iemsg(_(e_null));
goto theend;
}
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
if (prog->regflags & RF_ICASE) {
rex.reg_ic = true;
} else if (prog->regflags & RF_NOICASE) {
rex.reg_ic = false;
}
// If pattern contains "\Z" overrule value of rex.reg_icombine
if (prog->regflags & RF_ICOMBINE) {
rex.reg_icombine = true;
}
rex.line = line;
rex.lnum = 0; // relative to line
rex.nfa_has_zend = prog->has_zend;
rex.nfa_has_backref = prog->has_backref;
rex.nfa_nsubexpr = prog->nsubexp;
rex.nfa_listid = 1;
rex.nfa_alt_listid = 2;
#ifdef REGEXP_DEBUG
nfa_regengine.expr = prog->pattern;
#endif
if (prog->reganch && col > 0) {
return 0L;
}
rex.need_clear_subexpr = true;
// Clear the external match subpointers if necessary.
if (prog->reghasz == REX_SET) {
rex.nfa_has_zsubexpr = true;
rex.need_clear_zsubexpr = true;
} else {
rex.nfa_has_zsubexpr = false;
rex.need_clear_zsubexpr = false;
}
if (prog->regstart != NUL) {
// Skip ahead until a character we know the match must start with.
// When there is none there is no match.
if (skip_to_start(prog->regstart, &col) == FAIL) {
return 0L;
}
// If match_text is set it contains the full text that must match.
// Nothing else to try. Doesn't handle combining chars well.
if (prog->match_text != NULL && !rex.reg_icombine) {
retval = find_match_text(&col, prog->regstart, prog->match_text);
if (REG_MULTI) {
rex.reg_mmatch->rmm_matchcol = col;
} else {
rex.reg_match->rm_matchcol = col;
}
return retval;
}
}
// If the start column is past the maximum column: no need to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
goto theend;
}
// Set the "nstate" used by nfa_regcomp() to zero to trigger an error when
// it's accidentally used during execution.
nstate = 0;
for (int i = 0; i < prog->nstate; i++) {
prog->state[i].id = i;
prog->state[i].lastlist[0] = 0;
prog->state[i].lastlist[1] = 0;
}
retval = nfa_regtry(prog, col, tm, timed_out);
#ifdef REGEXP_DEBUG
nfa_regengine.expr = NULL;
#endif
theend:
if (retval > 0) {
// Make sure the end is never before the start. Can happen when \zs and
// \ze are used.
if (REG_MULTI) {
const lpos_T *const start = &rex.reg_mmatch->startpos[0];
const lpos_T *const end = &rex.reg_mmatch->endpos[0];
if (end->lnum < start->lnum
|| (end->lnum == start->lnum && end->col < start->col)) {
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
}
} else {
if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) {
rex.reg_match->endp[0] = rex.reg_match->startp[0];
}
// startpos[0] may be set by "\zs", also return the column where
// the whole pattern matched.
rex.reg_match->rm_matchcol = col;
}
}
return retval;
}
// Compile a regular expression into internal code for the NFA matcher.
// Returns the program in allocated space. Returns NULL for an error.
static regprog_T *nfa_regcomp(uint8_t *expr, int re_flags)
{
nfa_regprog_T *prog = NULL;
int *postfix;
if (expr == NULL) {
return NULL;
}
#ifdef REGEXP_DEBUG
nfa_regengine.expr = expr;
#endif
nfa_re_flags = re_flags;
init_class_tab();
nfa_regcomp_start(expr, re_flags);
// Build postfix form of the regexp. Needed to build the NFA
// (and count its size).
postfix = re2post();
if (postfix == NULL) {
goto fail; // Cascaded (syntax?) error
}
// In order to build the NFA, we parse the input regexp twice:
// 1. first pass to count size (so we can allocate space)
// 2. second to emit code
#ifdef REGEXP_DEBUG
{
FILE *f = fopen(NFA_REGEXP_RUN_LOG, "a");
if (f != NULL) {
fprintf(f,
"\n*****************************\n\n\n\n\t"
"Compiling regexp \"%s\"... hold on !\n",
expr);
fclose(f);
}
}
#endif
// PASS 1
// Count number of NFA states in "nstate". Do not build the NFA.
post2nfa(postfix, post_ptr, true);
// allocate the regprog with space for the compiled regexp
size_t prog_size = offsetof(nfa_regprog_T, state) + sizeof(nfa_state_T) * (size_t)nstate;
prog = xmalloc(prog_size);
state_ptr = prog->state;
prog->re_in_use = false;
// PASS 2
// Build the NFA
prog->start = post2nfa(postfix, post_ptr, false);
if (prog->start == NULL) {
goto fail;
}
prog->regflags = regflags;
prog->engine = &nfa_regengine;
prog->nstate = nstate;
prog->has_zend = rex.nfa_has_zend;
prog->has_backref = rex.nfa_has_backref;
prog->nsubexp = regnpar;
nfa_postprocess(prog);
prog->reganch = nfa_get_reganch(prog->start, 0);
prog->regstart = nfa_get_regstart(prog->start, 0);
prog->match_text = nfa_get_match_text(prog->start);
#ifdef REGEXP_DEBUG
nfa_postfix_dump(expr, OK);
nfa_dump(prog);
#endif
// Remember whether this pattern has any \z specials in it.
prog->reghasz = re_has_z;
prog->pattern = xstrdup((char *)expr);
#ifdef REGEXP_DEBUG
nfa_regengine.expr = NULL;
#endif
out:
xfree(post_start);
post_start = post_ptr = post_end = NULL;
state_ptr = NULL;
return (regprog_T *)prog;
fail:
XFREE_CLEAR(prog);
#ifdef REGEXP_DEBUG
nfa_postfix_dump(expr, FAIL);
nfa_regengine.expr = NULL;
#endif
goto out;
}
// Free a compiled regexp program, returned by nfa_regcomp().
static void nfa_regfree(regprog_T *prog)
{
if (prog == NULL) {
return;
}
xfree(((nfa_regprog_T *)prog)->match_text);
xfree(((nfa_regprog_T *)prog)->pattern);
xfree(prog);
}
/// Match a regexp against a string.
/// "rmp->regprog" is a compiled regexp as returned by nfa_regcomp().
/// Uses curbuf for line count and 'iskeyword'.
/// If "line_lbr" is true, consider a "\n" in "line" to be a line break.
///
/// @param line string to match against
/// @param col column to start looking for match
///
/// @return <= 0 for failure, number of lines contained in the match otherwise.
static int nfa_regexec_nl(regmatch_T *rmp, uint8_t *line, colnr_T col, bool line_lbr)
{
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_line_lbr = line_lbr;
rex.reg_buf = curbuf;
rex.reg_win = NULL;
rex.reg_ic = rmp->rm_ic;
rex.reg_icombine = false;
rex.reg_maxcol = 0;
return (int)nfa_regexec_both(line, col, NULL, NULL);
}
/// Matches a regexp against multiple lines.
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
/// Uses curbuf for line count and 'iskeyword'.
///
/// @param win Window in which to search or NULL
/// @param buf Buffer in which to search
/// @param lnum Number of line to start looking for match
/// @param col Column to start looking for match
/// @param tm Timeout limit or NULL
/// @param timed_out Flag set on timeout or NULL
///
/// @return <= 0 if there is no match and number of lines contained in the match
/// otherwise.
///
/// @note The body is the same as bt_regexec() except for nfa_regexec_both()
///
/// @warning
/// Match may actually be in another line. e.g.:
/// when r.e. is \nc, cursor is at 'a' and the text buffer looks like
///
/// @par
///
/// +-------------------------+
/// |a |
/// |b |
/// |c |
/// | |
/// +-------------------------+
///
/// @par
/// then nfa_regexec_multi() returns 3. while the original vim_regexec_multi()
/// returns 0 and a second call at line 2 will return 2.
///
/// @par
/// FIXME if this behavior is not compatible.
static long nfa_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf, linenr_T lnum, colnr_T col,
proftime_T *tm, int *timed_out)
{
init_regexec_multi(rmp, win, buf, lnum);
return nfa_regexec_both(NULL, col, tm, timed_out);
}