Files
neovim/src/nvim/regexp.c
Jan Edmund Lazo a7061359b7 vim-patch:8.2.2278: falling back to old regexp engine can some patterns
Problem:    Falling back to old regexp engine can some patterns.
Solution:   Do not fall back once [[:lower:]] or [[:upper:]] is used.
            (Christian Brabandt, closes vim/vim#7572)
66c50c5653
2021-05-26 00:39:55 -04:00

7470 lines
212 KiB
C

// This is an open source non-commercial project. Dear PVS-Studio, please check
// it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
/*
* Handling of regular expressions: vim_regcomp(), vim_regexec(), vim_regsub()
*
* NOTICE:
*
* This is NOT the original regular expression code as written by Henry
* Spencer. This code has been modified specifically for use with the VIM
* editor, and should not be used separately from Vim. If you want a good
* regular expression library, get the original code. The copyright notice
* that follows is from the original.
*
* END NOTICE
*
* Copyright (c) 1986 by University of Toronto.
* Written by Henry Spencer. Not derived from licensed software.
*
* Permission is granted to anyone to use this software for any
* purpose on any computer system, and to redistribute it freely,
* subject to the following restrictions:
*
* 1. The author is not responsible for the consequences of use of
* this software, no matter how awful, even if they arise
* from defects in it.
*
* 2. The origin of this software must not be misrepresented, either
* by explicit claim or by omission.
*
* 3. Altered versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
*
* Beware that some of this code is subtly aware of the way operator
* precedence is structured in regular expressions. Serious changes in
* regular-expression syntax might require a total rethink.
*
* Changes have been made by Tony Andrews, Olaf 'Rhialto' Seibert, Robert
* Webb, Ciaran McCreesh and Bram Moolenaar.
* Named character class support added by Walter Briscoe (1998 Jul 01)
*/
// By default: do not create debugging logs or files related to regular
// expressions, even when compiling with -DDEBUG.
// Uncomment the second line to get the regexp debugging.
// #undef REGEXP_DEBUG
// #define REGEXP_DEBUG
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include "nvim/vim.h"
#include "nvim/ascii.h"
#include "nvim/regexp.h"
#include "nvim/charset.h"
#include "nvim/eval.h"
#include "nvim/eval/userfunc.h"
#include "nvim/ex_cmds2.h"
#include "nvim/mark.h"
#include "nvim/memline.h"
#include "nvim/memory.h"
#include "nvim/message.h"
#include "nvim/misc1.h"
#include "nvim/garray.h"
#include "nvim/strings.h"
#ifdef REGEXP_DEBUG
/* show/save debugging data when BT engine is used */
# define BT_REGEXP_DUMP
/* save the debugging data to a file instead of displaying it */
# define BT_REGEXP_LOG
# define BT_REGEXP_DEBUG_LOG
# define BT_REGEXP_DEBUG_LOG_NAME "bt_regexp_debug.log"
#endif
/*
* The "internal use only" fields in regexp_defs.h are present to pass info from
* compile to execute that permits the execute phase to run lots faster on
* simple cases. They are:
*
* regstart char that must begin a match; NUL if none obvious; Can be a
* multi-byte character.
* reganch is the match anchored (at beginning-of-line only)?
* regmust string (pointer into program) that match must include, or NULL
* regmlen length of regmust string
* regflags RF_ values or'ed together
*
* Regstart and reganch permit very fast decisions on suitable starting points
* for a match, cutting down the work a lot. Regmust permits fast rejection
* of lines that cannot possibly match. The regmust tests are costly enough
* that vim_regcomp() supplies a regmust only if the r.e. contains something
* potentially expensive (at present, the only such thing detected is * or +
* at the start of the r.e., which can involve a lot of backup). Regmlen is
* supplied because the test in vim_regexec() needs it and vim_regcomp() is
* computing it anyway.
*/
/*
* Structure for regexp "program". This is essentially a linear encoding
* of a nondeterministic finite-state machine (aka syntax charts or
* "railroad normal form" in parsing technology). Each node is an opcode
* plus a "next" pointer, possibly plus an operand. "Next" pointers of
* all nodes except BRANCH and BRACES_COMPLEX implement concatenation; a "next"
* pointer with a BRANCH on both ends of it is connecting two alternatives.
* (Here we have one of the subtle syntax dependencies: an individual BRANCH
* (as opposed to a collection of them) is never concatenated with anything
* because of operator precedence). The "next" pointer of a BRACES_COMPLEX
* node points to the node after the stuff to be repeated.
* The operand of some types of node is a literal string; for others, it is a
* node leading into a sub-FSM. In particular, the operand of a BRANCH node
* is the first node of the branch.
* (NB this is *not* a tree structure: the tail of the branch connects to the
* thing following the set of BRANCHes.)
*
* pattern is coded like:
*
* +-----------------+
* | V
* <aa>\|<bb> BRANCH <aa> BRANCH <bb> --> END
* | ^ | ^
* +------+ +----------+
*
*
* +------------------+
* V |
* <aa>* BRANCH BRANCH <aa> --> BACK BRANCH --> NOTHING --> END
* | | ^ ^
* | +---------------+ |
* +---------------------------------------------+
*
*
* +----------------------+
* V |
* <aa>\+ BRANCH <aa> --> BRANCH --> BACK BRANCH --> NOTHING --> END
* | | ^ ^
* | +-----------+ |
* +--------------------------------------------------+
*
*
* +-------------------------+
* V |
* <aa>\{} BRANCH BRACE_LIMITS --> BRACE_COMPLEX <aa> --> BACK END
* | | ^
* | +----------------+
* +-----------------------------------------------+
*
*
* <aa>\@!<bb> BRANCH NOMATCH <aa> --> END <bb> --> END
* | | ^ ^
* | +----------------+ |
* +--------------------------------+
*
* +---------+
* | V
* \z[abc] BRANCH BRANCH a BRANCH b BRANCH c BRANCH NOTHING --> END
* | | | | ^ ^
* | | | +-----+ |
* | | +----------------+ |
* | +---------------------------+ |
* +------------------------------------------------------+
*
* They all start with a BRANCH for "\|" alternatives, even when there is only
* one alternative.
*/
/*
* The opcodes are:
*/
/* definition number opnd? meaning */
#define END 0 /* End of program or NOMATCH operand. */
#define BOL 1 /* Match "" at beginning of line. */
#define EOL 2 /* Match "" at end of line. */
#define BRANCH 3 /* node Match this alternative, or the
* next... */
#define BACK 4 /* Match "", "next" ptr points backward. */
#define EXACTLY 5 /* str Match this string. */
#define NOTHING 6 /* Match empty string. */
#define STAR 7 /* node Match this (simple) thing 0 or more
* times. */
#define PLUS 8 /* node Match this (simple) thing 1 or more
* times. */
#define MATCH 9 /* node match the operand zero-width */
#define NOMATCH 10 /* node check for no match with operand */
#define BEHIND 11 /* node look behind for a match with operand */
#define NOBEHIND 12 /* node look behind for no match with operand */
#define SUBPAT 13 /* node match the operand here */
#define BRACE_SIMPLE 14 /* node Match this (simple) thing between m and
* n times (\{m,n\}). */
#define BOW 15 /* Match "" after [^a-zA-Z0-9_] */
#define EOW 16 /* Match "" at [^a-zA-Z0-9_] */
#define BRACE_LIMITS 17 /* nr nr define the min & max for BRACE_SIMPLE
* and BRACE_COMPLEX. */
#define NEWL 18 /* Match line-break */
#define BHPOS 19 /* End position for BEHIND or NOBEHIND */
/* character classes: 20-48 normal, 50-78 include a line-break */
#define ADD_NL 30
#define FIRST_NL ANY + ADD_NL
#define ANY 20 /* Match any one character. */
#define ANYOF 21 /* str Match any character in this string. */
#define ANYBUT 22 /* str Match any character not in this
* string. */
#define IDENT 23 /* Match identifier char */
#define SIDENT 24 /* Match identifier char but no digit */
#define KWORD 25 /* Match keyword char */
#define SKWORD 26 /* Match word char but no digit */
#define FNAME 27 /* Match file name char */
#define SFNAME 28 /* Match file name char but no digit */
#define PRINT 29 /* Match printable char */
#define SPRINT 30 /* Match printable char but no digit */
#define WHITE 31 /* Match whitespace char */
#define NWHITE 32 /* Match non-whitespace char */
#define DIGIT 33 /* Match digit char */
#define NDIGIT 34 /* Match non-digit char */
#define HEX 35 /* Match hex char */
#define NHEX 36 /* Match non-hex char */
#define OCTAL 37 /* Match octal char */
#define NOCTAL 38 /* Match non-octal char */
#define WORD 39 /* Match word char */
#define NWORD 40 /* Match non-word char */
#define HEAD 41 /* Match head char */
#define NHEAD 42 /* Match non-head char */
#define ALPHA 43 /* Match alpha char */
#define NALPHA 44 /* Match non-alpha char */
#define LOWER 45 /* Match lowercase char */
#define NLOWER 46 /* Match non-lowercase char */
#define UPPER 47 /* Match uppercase char */
#define NUPPER 48 /* Match non-uppercase char */
#define LAST_NL NUPPER + ADD_NL
// -V:WITH_NL:560
#define WITH_NL(op) ((op) >= FIRST_NL && (op) <= LAST_NL)
#define MOPEN 80 // -89 Mark this point in input as start of
// \( … \) subexpr. MOPEN + 0 marks start of
// match.
#define MCLOSE 90 // -99 Analogous to MOPEN. MCLOSE + 0 marks
// end of match.
#define BACKREF 100 // -109 node Match same string again \1-\9.
# define ZOPEN 110 // -119 Mark this point in input as start of
// \z( … \) subexpr.
# define ZCLOSE 120 // -129 Analogous to ZOPEN.
# define ZREF 130 // -139 node Match external submatch \z1-\z9
#define BRACE_COMPLEX 140 /* -149 node Match nodes between m & n times */
#define NOPEN 150 // Mark this point in input as start of
// \%( subexpr.
#define NCLOSE 151 // Analogous to NOPEN.
#define MULTIBYTECODE 200 /* mbc Match one multi-byte character */
#define RE_BOF 201 /* Match "" at beginning of file. */
#define RE_EOF 202 /* Match "" at end of file. */
#define CURSOR 203 /* Match location of cursor. */
#define RE_LNUM 204 /* nr cmp Match line number */
#define RE_COL 205 /* nr cmp Match column number */
#define RE_VCOL 206 /* nr cmp Match virtual column number */
#define RE_MARK 207 /* mark cmp Match mark position */
#define RE_VISUAL 208 /* Match Visual area */
#define RE_COMPOSING 209 // any composing characters
/*
* Magic characters have a special meaning, they don't match literally.
* Magic characters are negative. This separates them from literal characters
* (possibly multi-byte). Only ASCII characters can be Magic.
*/
#define Magic(x) ((int)(x) - 256)
#define un_Magic(x) ((x) + 256)
#define is_Magic(x) ((x) < 0)
/*
* We should define ftpr as a pointer to a function returning a pointer to
* a function returning a pointer to a function ...
* This is impossible, so we declare a pointer to a function returning a
* pointer to a function returning void. This should work for all compilers.
*/
typedef void (*(*fptr_T)(int *, int))(void);
typedef struct {
char_u *regparse;
int prevchr_len;
int curchr;
int prevchr;
int prevprevchr;
int nextchr;
int at_start;
int prev_at_start;
int regnpar;
} parse_state_T;
/*
* Structure used to save the current input state, when it needs to be
* restored after trying a match. Used by reg_save() and reg_restore().
* Also stores the length of "backpos".
*/
typedef struct {
union {
char_u *ptr; ///< rex.input pointer, for single-line regexp
lpos_T pos; ///< rex.input pos, for multi-line regexp
} rs_u;
int rs_len;
} regsave_T;
/* struct to save start/end pointer/position in for \(\) */
typedef struct {
union {
char_u *ptr;
lpos_T pos;
} se_u;
} save_se_T;
/* used for BEHIND and NOBEHIND matching */
typedef struct regbehind_S {
regsave_T save_after;
regsave_T save_behind;
int save_need_clear_subexpr;
save_se_T save_start[NSUBEXP];
save_se_T save_end[NSUBEXP];
} regbehind_T;
/* Values for rs_state in regitem_T. */
typedef enum regstate_E {
RS_NOPEN = 0 /* NOPEN and NCLOSE */
, RS_MOPEN /* MOPEN + [0-9] */
, RS_MCLOSE /* MCLOSE + [0-9] */
, RS_ZOPEN /* ZOPEN + [0-9] */
, RS_ZCLOSE /* ZCLOSE + [0-9] */
, RS_BRANCH /* BRANCH */
, RS_BRCPLX_MORE /* BRACE_COMPLEX and trying one more match */
, RS_BRCPLX_LONG /* BRACE_COMPLEX and trying longest match */
, RS_BRCPLX_SHORT /* BRACE_COMPLEX and trying shortest match */
, RS_NOMATCH /* NOMATCH */
, RS_BEHIND1 /* BEHIND / NOBEHIND matching rest */
, RS_BEHIND2 /* BEHIND / NOBEHIND matching behind part */
, RS_STAR_LONG /* STAR/PLUS/BRACE_SIMPLE longest match */
, RS_STAR_SHORT /* STAR/PLUS/BRACE_SIMPLE shortest match */
} regstate_T;
/*
* When there are alternatives a regstate_T is put on the regstack to remember
* what we are doing.
* Before it may be another type of item, depending on rs_state, to remember
* more things.
*/
typedef struct regitem_S {
regstate_T rs_state; // what we are doing, one of RS_ above
uint16_t rs_no; // submatch nr or BEHIND/NOBEHIND
char_u *rs_scan; // current node in program
union {
save_se_T sesave;
regsave_T regsave;
} rs_un; ///< room for saving rex.input
} regitem_T;
/* used for STAR, PLUS and BRACE_SIMPLE matching */
typedef struct regstar_S {
int nextb; /* next byte */
int nextb_ic; /* next byte reverse case */
long count;
long minval;
long maxval;
} regstar_T;
/* used to store input position when a BACK was encountered, so that we now if
* we made any progress since the last time. */
typedef struct backpos_S {
char_u *bp_scan; /* "scan" where BACK was encountered */
regsave_T bp_pos; /* last input position */
} backpos_T;
typedef struct {
int a, b, c;
} decomp_T;
#ifdef INCLUDE_GENERATED_DECLARATIONS
# include "regexp.c.generated.h"
#endif
static int no_Magic(int x)
{
if (is_Magic(x))
return un_Magic(x);
return x;
}
static int toggle_Magic(int x)
{
if (is_Magic(x))
return un_Magic(x);
return Magic(x);
}
/*
* The first byte of the regexp internal "program" is actually this magic
* number; the start node begins in the second byte. It's used to catch the
* most severe mutilation of the program by the caller.
*/
#define REGMAGIC 0234
/*
* Opcode notes:
*
* BRANCH The set of branches constituting a single choice are hooked
* together with their "next" pointers, since precedence prevents
* anything being concatenated to any individual branch. The
* "next" pointer of the last BRANCH in a choice points to the
* thing following the whole choice. This is also where the
* final "next" pointer of each individual branch points; each
* branch starts with the operand node of a BRANCH node.
*
* BACK Normal "next" pointers all implicitly point forward; BACK
* exists to make loop structures possible.
*
* STAR,PLUS '=', and complex '*' and '+', are implemented as circular
* BRANCH structures using BACK. Simple cases (one character
* per match) are implemented with STAR and PLUS for speed
* and to minimize recursive plunges.
*
* BRACE_LIMITS This is always followed by a BRACE_SIMPLE or BRACE_COMPLEX
* node, and defines the min and max limits to be used for that
* node.
*
* MOPEN,MCLOSE ...are numbered at compile time.
* ZOPEN,ZCLOSE ...ditto
*/
/*
* A node is one char of opcode followed by two chars of "next" pointer.
* "Next" pointers are stored as two 8-bit bytes, high order first. The
* value is a positive offset from the opcode of the node containing it.
* An operand, if any, simply follows the node. (Note that much of the
* code generation knows about this implicit relationship.)
*
* Using two bytes for the "next" pointer is vast overkill for most things,
* but allows patterns to get big without disasters.
*/
#define OP(p) ((int)*(p))
#define NEXT(p) (((*((p) + 1) & 0377) << 8) + (*((p) + 2) & 0377))
#define OPERAND(p) ((p) + 3)
/* Obtain an operand that was stored as four bytes, MSB first. */
#define OPERAND_MIN(p) (((long)(p)[3] << 24) + ((long)(p)[4] << 16) \
+ ((long)(p)[5] << 8) + (long)(p)[6])
/* Obtain a second operand stored as four bytes. */
#define OPERAND_MAX(p) OPERAND_MIN((p) + 4)
/* Obtain a second single-byte operand stored after a four bytes operand. */
#define OPERAND_CMP(p) (p)[7]
/*
* Utility definitions.
*/
#define UCHARAT(p) ((int)*(char_u *)(p))
/* Used for an error (down from) vim_regcomp(): give the error message, set
* rc_did_emsg and return NULL */
#define EMSG_RET_NULL(m) return (EMSG(m), rc_did_emsg = true, (void *)NULL)
#define IEMSG_RET_NULL(m) return (IEMSG(m), rc_did_emsg = true, (void *)NULL)
#define EMSG_RET_FAIL(m) return (EMSG(m), rc_did_emsg = true, FAIL)
#define EMSG2_RET_NULL(m, c) \
return (EMSG2((m), (c) ? "" : "\\"), rc_did_emsg = true, (void *)NULL)
#define EMSG2_RET_FAIL(m, c) \
return (EMSG2((m), (c) ? "" : "\\"), rc_did_emsg = true, FAIL)
#define EMSG_ONE_RET_NULL EMSG2_RET_NULL(_( \
"E369: invalid item in %s%%[]"), reg_magic == MAGIC_ALL)
#define MAX_LIMIT (32767L << 16L)
#ifdef BT_REGEXP_DUMP
static void regdump(char_u *, bt_regprog_T *);
#endif
#ifdef REGEXP_DEBUG
static char_u *regprop(char_u *);
#endif
static char_u e_missingbracket[] = N_("E769: Missing ] after %s[");
static char_u e_reverse_range[] = N_("E944: Reverse range in character class");
static char_u e_large_class[] = N_("E945: Range too large in character class");
static char_u e_unmatchedpp[] = N_("E53: Unmatched %s%%(");
static char_u e_unmatchedp[] = N_("E54: Unmatched %s(");
static char_u e_unmatchedpar[] = N_("E55: Unmatched %s)");
static char_u e_z_not_allowed[] = N_("E66: \\z( not allowed here");
static char_u e_z1_not_allowed[] = N_("E67: \\z1 - \\z9 not allowed here");
static char_u e_missing_sb[] = N_("E69: Missing ] after %s%%[");
static char_u e_empty_sb[] = N_("E70: Empty %s%%[]");
static char_u e_recursive[] = N_("E956: Cannot use pattern recursively");
#define NOT_MULTI 0
#define MULTI_ONE 1
#define MULTI_MULT 2
/*
* Return NOT_MULTI if c is not a "multi" operator.
* Return MULTI_ONE if c is a single "multi" operator.
* Return MULTI_MULT if c is a multi "multi" operator.
*/
static int re_multi_type(int c)
{
if (c == Magic('@') || c == Magic('=') || c == Magic('?'))
return MULTI_ONE;
if (c == Magic('*') || c == Magic('+') || c == Magic('{'))
return MULTI_MULT;
return NOT_MULTI;
}
/*
* Flags to be passed up and down.
*/
#define HASWIDTH 0x1 /* Known never to match null string. */
#define SIMPLE 0x2 /* Simple enough to be STAR/PLUS operand. */
#define SPSTART 0x4 /* Starts with * or +. */
#define HASNL 0x8 /* Contains some \n. */
#define HASLOOKBH 0x10 /* Contains "\@<=" or "\@<!". */
#define WORST 0 /* Worst case. */
/*
* When regcode is set to this value, code is not emitted and size is computed
* instead.
*/
#define JUST_CALC_SIZE ((char_u *) -1)
static char_u *reg_prev_sub = NULL;
/*
* REGEXP_INRANGE contains all characters which are always special in a []
* range after '\'.
* REGEXP_ABBR contains all characters which act as abbreviations after '\'.
* These are:
* \n - New line (NL).
* \r - Carriage Return (CR).
* \t - Tab (TAB).
* \e - Escape (ESC).
* \b - Backspace (Ctrl_H).
* \d - Character code in decimal, eg \d123
* \o - Character code in octal, eg \o80
* \x - Character code in hex, eg \x4a
* \u - Multibyte character code, eg \u20ac
* \U - Long multibyte character code, eg \U12345678
*/
static char_u REGEXP_INRANGE[] = "]^-n\\";
static char_u REGEXP_ABBR[] = "nrtebdoxuU";
/*
* Translate '\x' to its control character, except "\n", which is Magic.
*/
static int backslash_trans(int c)
{
switch (c) {
case 'r': return CAR;
case 't': return TAB;
case 'e': return ESC;
case 'b': return BS;
}
return c;
}
/*
* Check for a character class name "[:name:]". "pp" points to the '['.
* Returns one of the CLASS_ items. CLASS_NONE means that no item was
* recognized. Otherwise "pp" is advanced to after the item.
*/
static int get_char_class(char_u **pp)
{
static const char *(class_names[]) =
{
"alnum:]",
#define CLASS_ALNUM 0
"alpha:]",
#define CLASS_ALPHA 1
"blank:]",
#define CLASS_BLANK 2
"cntrl:]",
#define CLASS_CNTRL 3
"digit:]",
#define CLASS_DIGIT 4
"graph:]",
#define CLASS_GRAPH 5
"lower:]",
#define CLASS_LOWER 6
"print:]",
#define CLASS_PRINT 7
"punct:]",
#define CLASS_PUNCT 8
"space:]",
#define CLASS_SPACE 9
"upper:]",
#define CLASS_UPPER 10
"xdigit:]",
#define CLASS_XDIGIT 11
"tab:]",
#define CLASS_TAB 12
"return:]",
#define CLASS_RETURN 13
"backspace:]",
#define CLASS_BACKSPACE 14
"escape:]",
#define CLASS_ESCAPE 15
"ident:]",
#define CLASS_IDENT 16
"keyword:]",
#define CLASS_KEYWORD 17
"fname:]",
#define CLASS_FNAME 18
};
#define CLASS_NONE 99
int i;
if ((*pp)[1] == ':') {
for (i = 0; i < (int)ARRAY_SIZE(class_names); ++i)
if (STRNCMP(*pp + 2, class_names[i], STRLEN(class_names[i])) == 0) {
*pp += STRLEN(class_names[i]) + 2;
return i;
}
}
return CLASS_NONE;
}
/*
* Specific version of character class functions.
* Using a table to keep this fast.
*/
static short class_tab[256];
#define RI_DIGIT 0x01
#define RI_HEX 0x02
#define RI_OCTAL 0x04
#define RI_WORD 0x08
#define RI_HEAD 0x10
#define RI_ALPHA 0x20
#define RI_LOWER 0x40
#define RI_UPPER 0x80
#define RI_WHITE 0x100
static void init_class_tab(void)
{
int i;
static int done = false;
if (done)
return;
for (i = 0; i < 256; ++i) {
if (i >= '0' && i <= '7')
class_tab[i] = RI_DIGIT + RI_HEX + RI_OCTAL + RI_WORD;
else if (i >= '8' && i <= '9')
class_tab[i] = RI_DIGIT + RI_HEX + RI_WORD;
else if (i >= 'a' && i <= 'f')
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
else if (i >= 'g' && i <= 'z')
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_LOWER;
else if (i >= 'A' && i <= 'F')
class_tab[i] = RI_HEX + RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
else if (i >= 'G' && i <= 'Z')
class_tab[i] = RI_WORD + RI_HEAD + RI_ALPHA + RI_UPPER;
else if (i == '_')
class_tab[i] = RI_WORD + RI_HEAD;
else
class_tab[i] = 0;
}
class_tab[' '] |= RI_WHITE;
class_tab['\t'] |= RI_WHITE;
done = true;
}
# define ri_digit(c) (c < 0x100 && (class_tab[c] & RI_DIGIT))
# define ri_hex(c) (c < 0x100 && (class_tab[c] & RI_HEX))
# define ri_octal(c) (c < 0x100 && (class_tab[c] & RI_OCTAL))
# define ri_word(c) (c < 0x100 && (class_tab[c] & RI_WORD))
# define ri_head(c) (c < 0x100 && (class_tab[c] & RI_HEAD))
# define ri_alpha(c) (c < 0x100 && (class_tab[c] & RI_ALPHA))
# define ri_lower(c) (c < 0x100 && (class_tab[c] & RI_LOWER))
# define ri_upper(c) (c < 0x100 && (class_tab[c] & RI_UPPER))
# define ri_white(c) (c < 0x100 && (class_tab[c] & RI_WHITE))
/* flags for regflags */
#define RF_ICASE 1 /* ignore case */
#define RF_NOICASE 2 /* don't ignore case */
#define RF_HASNL 4 /* can match a NL */
#define RF_ICOMBINE 8 /* ignore combining characters */
#define RF_LOOKBH 16 /* uses "\@<=" or "\@<!" */
// Global work variables for vim_regcomp().
static char_u *regparse; ///< Input-scan pointer.
static int prevchr_len; ///< byte length of previous char
static int num_complex_braces; ///< Complex \{...} count
static int regnpar; ///< () count.
static bool wants_nfa; ///< regex should use NFA engine
static int regnzpar; ///< \z() count.
static int re_has_z; ///< \z item detected
static char_u *regcode; ///< Code-emit pointer, or JUST_CALC_SIZE
static long regsize; ///< Code size.
static int reg_toolong; ///< true when offset out of range
static char_u had_endbrace[NSUBEXP]; ///< flags, true if end of () found
static unsigned regflags; ///< RF_ flags for prog
static long brace_min[10]; ///< Minimums for complex brace repeats
static long brace_max[10]; ///< Maximums for complex brace repeats
static int brace_count[10]; ///< Current counts for complex brace repeats
static int had_eol; ///< true when EOL found by vim_regcomp()
static int one_exactly = false; ///< only do one char for EXACTLY
static int reg_magic; /* magicness of the pattern: */
#define MAGIC_NONE 1 /* "\V" very unmagic */
#define MAGIC_OFF 2 /* "\M" or 'magic' off */
#define MAGIC_ON 3 /* "\m" or 'magic' */
#define MAGIC_ALL 4 /* "\v" very magic */
static int reg_string; /* matching with a string instead of a buffer
line */
static int reg_strict; /* "[abc" is illegal */
/*
* META contains all characters that may be magic, except '^' and '$'.
*/
/* META[] is used often enough to justify turning it into a table. */
static char_u META_flags[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* % & ( ) * + . */
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0,
/* 1 2 3 4 5 6 7 8 9 < = > ? */
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1,
/* @ A C D F H I K L M O */
1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1,
/* P S U V W X Z [ _ */
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1,
/* a c d f h i k l m n o */
0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1,
/* p s u v w x z { | ~ */
1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1
};
static int curchr; /* currently parsed character */
/* Previous character. Note: prevchr is sometimes -1 when we are not at the
* start, eg in /[ ^I]^ the pattern was never found even if it existed,
* because ^ was taken to be magic -- webb */
static int prevchr;
static int prevprevchr; /* previous-previous character */
static int nextchr; /* used for ungetchr() */
/* arguments for reg() */
#define REG_NOPAREN 0 /* toplevel reg() */
#define REG_PAREN 1 /* \(\) */
#define REG_ZPAREN 2 /* \z(\) */
#define REG_NPAREN 3 /* \%(\) */
/*
* Forward declarations for vim_regcomp()'s friends.
*/
# define REGMBC(x) regmbc(x);
# define CASEMBC(x) case x:
static regengine_T bt_regengine;
static regengine_T nfa_regengine;
// Return true if compiled regular expression "prog" can match a line break.
int re_multiline(const regprog_T *prog)
FUNC_ATTR_NONNULL_ALL
{
return prog->regflags & RF_HASNL;
}
/*
* Check for an equivalence class name "[=a=]". "pp" points to the '['.
* Returns a character representing the class. Zero means that no item was
* recognized. Otherwise "pp" is advanced to after the item.
*/
static int get_equi_class(char_u **pp)
{
int c;
int l = 1;
char_u *p = *pp;
if (p[1] == '=' && p[2] != NUL) {
l = (*mb_ptr2len)(p + 2);
if (p[l + 2] == '=' && p[l + 3] == ']') {
c = utf_ptr2char(p + 2);
*pp += l + 4;
return c;
}
}
return 0;
}
/*
* Produce the bytes for equivalence class "c".
* Currently only handles latin1, latin9 and utf-8.
* NOTE: When changing this function, also change nfa_emit_equi_class()
*/
static void reg_equi_class(int c)
{
{
switch (c) {
// Do not use '\300' style, it results in a negative number.
case 'A': case 0xc0: case 0xc1: case 0xc2:
case 0xc3: case 0xc4: case 0xc5:
CASEMBC(0x100) CASEMBC(0x102) CASEMBC(0x104) CASEMBC(0x1cd)
CASEMBC(0x1de) CASEMBC(0x1e0) CASEMBC(0x1ea2)
regmbc('A'); regmbc(0xc0); regmbc(0xc1);
regmbc(0xc2); regmbc(0xc3); regmbc(0xc4);
regmbc(0xc5);
REGMBC(0x100) REGMBC(0x102) REGMBC(0x104)
REGMBC(0x1cd) REGMBC(0x1de) REGMBC(0x1e0)
REGMBC(0x1ea2)
return;
case 'B': CASEMBC(0x1e02) CASEMBC(0x1e06)
regmbc('B'); REGMBC(0x1e02) REGMBC(0x1e06)
return;
case 'C': case 0xc7:
CASEMBC(0x106) CASEMBC(0x108) CASEMBC(0x10a) CASEMBC(0x10c)
regmbc('C'); regmbc(0xc7);
REGMBC(0x106) REGMBC(0x108) REGMBC(0x10a)
REGMBC(0x10c)
return;
case 'D': CASEMBC(0x10e) CASEMBC(0x110) CASEMBC(0x1e0a)
CASEMBC(0x1e0e) CASEMBC(0x1e10)
regmbc('D'); REGMBC(0x10e) REGMBC(0x110)
REGMBC(0x1e0a) REGMBC(0x1e0e) REGMBC(0x1e10)
return;
case 'E': case 0xc8: case 0xc9: case 0xca: case 0xcb:
CASEMBC(0x112) CASEMBC(0x114) CASEMBC(0x116) CASEMBC(0x118)
CASEMBC(0x11a) CASEMBC(0x1eba) CASEMBC(0x1ebc)
regmbc('E'); regmbc(0xc8); regmbc(0xc9);
regmbc(0xca); regmbc(0xcb);
REGMBC(0x112) REGMBC(0x114) REGMBC(0x116)
REGMBC(0x118) REGMBC(0x11a) REGMBC(0x1eba)
REGMBC(0x1ebc)
return;
case 'F': CASEMBC(0x1e1e)
regmbc('F'); REGMBC(0x1e1e)
return;
case 'G': CASEMBC(0x11c) CASEMBC(0x11e) CASEMBC(0x120)
CASEMBC(0x122) CASEMBC(0x1e4) CASEMBC(0x1e6) CASEMBC(0x1f4)
CASEMBC(0x1e20)
regmbc('G'); REGMBC(0x11c) REGMBC(0x11e)
REGMBC(0x120) REGMBC(0x122) REGMBC(0x1e4)
REGMBC(0x1e6) REGMBC(0x1f4) REGMBC(0x1e20)
return;
case 'H': CASEMBC(0x124) CASEMBC(0x126) CASEMBC(0x1e22)
CASEMBC(0x1e26) CASEMBC(0x1e28)
regmbc('H'); REGMBC(0x124) REGMBC(0x126)
REGMBC(0x1e22) REGMBC(0x1e26) REGMBC(0x1e28)
return;
case 'I': case 0xcc: case 0xcd: case 0xce: case 0xcf:
CASEMBC(0x128) CASEMBC(0x12a) CASEMBC(0x12c) CASEMBC(0x12e)
CASEMBC(0x130) CASEMBC(0x1cf) CASEMBC(0x1ec8)
regmbc('I'); regmbc(0xcc); regmbc(0xcd);
regmbc(0xce); regmbc(0xcf);
REGMBC(0x128) REGMBC(0x12a) REGMBC(0x12c)
REGMBC(0x12e) REGMBC(0x130) REGMBC(0x1cf)
REGMBC(0x1ec8)
return;
case 'J': CASEMBC(0x134)
regmbc('J'); REGMBC(0x134)
return;
case 'K': CASEMBC(0x136) CASEMBC(0x1e8) CASEMBC(0x1e30)
CASEMBC(0x1e34)
regmbc('K'); REGMBC(0x136) REGMBC(0x1e8)
REGMBC(0x1e30) REGMBC(0x1e34)
return;
case 'L': CASEMBC(0x139) CASEMBC(0x13b) CASEMBC(0x13d)
CASEMBC(0x13f) CASEMBC(0x141) CASEMBC(0x1e3a)
regmbc('L'); REGMBC(0x139) REGMBC(0x13b)
REGMBC(0x13d) REGMBC(0x13f) REGMBC(0x141)
REGMBC(0x1e3a)
return;
case 'M': CASEMBC(0x1e3e) CASEMBC(0x1e40)
regmbc('M'); REGMBC(0x1e3e) REGMBC(0x1e40)
return;
case 'N': case 0xd1:
CASEMBC(0x143) CASEMBC(0x145) CASEMBC(0x147) CASEMBC(0x1e44)
CASEMBC(0x1e48)
regmbc('N'); regmbc(0xd1);
REGMBC(0x143) REGMBC(0x145) REGMBC(0x147)
REGMBC(0x1e44) REGMBC(0x1e48)
return;
case 'O': case 0xd2: case 0xd3: case 0xd4: case 0xd5:
case 0xd6: case 0xd8:
CASEMBC(0x14c) CASEMBC(0x14e) CASEMBC(0x150) CASEMBC(0x1a0)
CASEMBC(0x1d1) CASEMBC(0x1ea) CASEMBC(0x1ec) CASEMBC(0x1ece)
regmbc('O'); regmbc(0xd2); regmbc(0xd3);
regmbc(0xd4); regmbc(0xd5); regmbc(0xd6);
regmbc(0xd8);
REGMBC(0x14c) REGMBC(0x14e) REGMBC(0x150)
REGMBC(0x1a0) REGMBC(0x1d1) REGMBC(0x1ea)
REGMBC(0x1ec) REGMBC(0x1ece)
return;
case 'P': case 0x1e54: case 0x1e56:
regmbc('P'); REGMBC(0x1e54) REGMBC(0x1e56)
return;
case 'R': CASEMBC(0x154) CASEMBC(0x156) CASEMBC(0x158)
CASEMBC(0x1e58) CASEMBC(0x1e5e)
regmbc('R'); REGMBC(0x154) REGMBC(0x156) REGMBC(0x158)
REGMBC(0x1e58) REGMBC(0x1e5e)
return;
case 'S': CASEMBC(0x15a) CASEMBC(0x15c) CASEMBC(0x15e)
CASEMBC(0x160) CASEMBC(0x1e60)
regmbc('S'); REGMBC(0x15a) REGMBC(0x15c)
REGMBC(0x15e) REGMBC(0x160) REGMBC(0x1e60)
return;
case 'T': CASEMBC(0x162) CASEMBC(0x164) CASEMBC(0x166)
CASEMBC(0x1e6a) CASEMBC(0x1e6e)
regmbc('T'); REGMBC(0x162) REGMBC(0x164)
REGMBC(0x166) REGMBC(0x1e6a) REGMBC(0x1e6e)
return;
case 'U': case 0xd9: case 0xda: case 0xdb: case 0xdc:
CASEMBC(0x168) CASEMBC(0x16a) CASEMBC(0x16c) CASEMBC(0x16e)
CASEMBC(0x170) CASEMBC(0x172) CASEMBC(0x1af) CASEMBC(0x1d3)
CASEMBC(0x1ee6)
regmbc('U'); regmbc(0xd9); regmbc(0xda);
regmbc(0xdb); regmbc(0xdc);
REGMBC(0x168) REGMBC(0x16a) REGMBC(0x16c)
REGMBC(0x16e) REGMBC(0x170) REGMBC(0x172)
REGMBC(0x1af) REGMBC(0x1d3) REGMBC(0x1ee6)
return;
case 'V': CASEMBC(0x1e7c)
regmbc('V'); REGMBC(0x1e7c)
return;
case 'W': CASEMBC(0x174) CASEMBC(0x1e80) CASEMBC(0x1e82)
CASEMBC(0x1e84) CASEMBC(0x1e86)
regmbc('W'); REGMBC(0x174) REGMBC(0x1e80)
REGMBC(0x1e82) REGMBC(0x1e84) REGMBC(0x1e86)
return;
case 'X': CASEMBC(0x1e8a) CASEMBC(0x1e8c)
regmbc('X'); REGMBC(0x1e8a) REGMBC(0x1e8c)
return;
case 'Y': case 0xdd:
CASEMBC(0x176) CASEMBC(0x178) CASEMBC(0x1e8e) CASEMBC(0x1ef2)
CASEMBC(0x1ef6) CASEMBC(0x1ef8)
regmbc('Y'); regmbc(0xdd);
REGMBC(0x176) REGMBC(0x178) REGMBC(0x1e8e)
REGMBC(0x1ef2) REGMBC(0x1ef6) REGMBC(0x1ef8)
return;
case 'Z': CASEMBC(0x179) CASEMBC(0x17b) CASEMBC(0x17d)
CASEMBC(0x1b5) CASEMBC(0x1e90) CASEMBC(0x1e94)
regmbc('Z'); REGMBC(0x179) REGMBC(0x17b)
REGMBC(0x17d) REGMBC(0x1b5) REGMBC(0x1e90)
REGMBC(0x1e94)
return;
case 'a': case 0xe0: case 0xe1: case 0xe2:
case 0xe3: case 0xe4: case 0xe5:
CASEMBC(0x101) CASEMBC(0x103) CASEMBC(0x105) CASEMBC(0x1ce)
CASEMBC(0x1df) CASEMBC(0x1e1) CASEMBC(0x1ea3)
regmbc('a'); regmbc(0xe0); regmbc(0xe1);
regmbc(0xe2); regmbc(0xe3); regmbc(0xe4);
regmbc(0xe5);
REGMBC(0x101) REGMBC(0x103) REGMBC(0x105)
REGMBC(0x1ce) REGMBC(0x1df) REGMBC(0x1e1)
REGMBC(0x1ea3)
return;
case 'b': CASEMBC(0x1e03) CASEMBC(0x1e07)
regmbc('b'); REGMBC(0x1e03) REGMBC(0x1e07)
return;
case 'c': case 0xe7:
CASEMBC(0x107) CASEMBC(0x109) CASEMBC(0x10b) CASEMBC(0x10d)
regmbc('c'); regmbc(0xe7);
REGMBC(0x107) REGMBC(0x109) REGMBC(0x10b)
REGMBC(0x10d)
return;
case 'd': CASEMBC(0x10f) CASEMBC(0x111) CASEMBC(0x1e0b)
CASEMBC(0x1e0f) CASEMBC(0x1e11)
regmbc('d'); REGMBC(0x10f) REGMBC(0x111)
REGMBC(0x1e0b) REGMBC(0x1e0f) REGMBC(0x1e11)
return;
case 'e': case 0xe8: case 0xe9: case 0xea: case 0xeb:
CASEMBC(0x113) CASEMBC(0x115) CASEMBC(0x117) CASEMBC(0x119)
CASEMBC(0x11b) CASEMBC(0x1ebb) CASEMBC(0x1ebd)
regmbc('e'); regmbc(0xe8); regmbc(0xe9);
regmbc(0xea); regmbc(0xeb);
REGMBC(0x113) REGMBC(0x115) REGMBC(0x117)
REGMBC(0x119) REGMBC(0x11b) REGMBC(0x1ebb)
REGMBC(0x1ebd)
return;
case 'f': CASEMBC(0x1e1f)
regmbc('f'); REGMBC(0x1e1f)
return;
case 'g': CASEMBC(0x11d) CASEMBC(0x11f) CASEMBC(0x121)
CASEMBC(0x123) CASEMBC(0x1e5) CASEMBC(0x1e7) CASEMBC(0x1f5)
CASEMBC(0x1e21)
regmbc('g'); REGMBC(0x11d) REGMBC(0x11f)
REGMBC(0x121) REGMBC(0x123) REGMBC(0x1e5)
REGMBC(0x1e7) REGMBC(0x1f5) REGMBC(0x1e21)
return;
case 'h': CASEMBC(0x125) CASEMBC(0x127) CASEMBC(0x1e23)
CASEMBC(0x1e27) CASEMBC(0x1e29) CASEMBC(0x1e96)
regmbc('h'); REGMBC(0x125) REGMBC(0x127)
REGMBC(0x1e23) REGMBC(0x1e27) REGMBC(0x1e29)
REGMBC(0x1e96)
return;
case 'i': case 0xec: case 0xed: case 0xee: case 0xef:
CASEMBC(0x129) CASEMBC(0x12b) CASEMBC(0x12d) CASEMBC(0x12f)
CASEMBC(0x1d0) CASEMBC(0x1ec9)
regmbc('i'); regmbc(0xec); regmbc(0xed);
regmbc(0xee); regmbc(0xef);
REGMBC(0x129) REGMBC(0x12b) REGMBC(0x12d)
REGMBC(0x12f) REGMBC(0x1d0) REGMBC(0x1ec9)
return;
case 'j': CASEMBC(0x135) CASEMBC(0x1f0)
regmbc('j'); REGMBC(0x135) REGMBC(0x1f0)
return;
case 'k': CASEMBC(0x137) CASEMBC(0x1e9) CASEMBC(0x1e31)
CASEMBC(0x1e35)
regmbc('k'); REGMBC(0x137) REGMBC(0x1e9)
REGMBC(0x1e31) REGMBC(0x1e35)
return;
case 'l': CASEMBC(0x13a) CASEMBC(0x13c) CASEMBC(0x13e)
CASEMBC(0x140) CASEMBC(0x142) CASEMBC(0x1e3b)
regmbc('l'); REGMBC(0x13a) REGMBC(0x13c)
REGMBC(0x13e) REGMBC(0x140) REGMBC(0x142)
REGMBC(0x1e3b)
return;
case 'm': CASEMBC(0x1e3f) CASEMBC(0x1e41)
regmbc('m'); REGMBC(0x1e3f) REGMBC(0x1e41)
return;
case 'n': case 0xf1:
CASEMBC(0x144) CASEMBC(0x146) CASEMBC(0x148) CASEMBC(0x149)
CASEMBC(0x1e45) CASEMBC(0x1e49)
regmbc('n'); regmbc(0xf1);
REGMBC(0x144) REGMBC(0x146) REGMBC(0x148)
REGMBC(0x149) REGMBC(0x1e45) REGMBC(0x1e49)
return;
case 'o': case 0xf2: case 0xf3: case 0xf4: case 0xf5:
case 0xf6: case 0xf8:
CASEMBC(0x14d) CASEMBC(0x14f) CASEMBC(0x151) CASEMBC(0x1a1)
CASEMBC(0x1d2) CASEMBC(0x1eb) CASEMBC(0x1ed) CASEMBC(0x1ecf)
regmbc('o'); regmbc(0xf2); regmbc(0xf3);
regmbc(0xf4); regmbc(0xf5); regmbc(0xf6);
regmbc(0xf8);
REGMBC(0x14d) REGMBC(0x14f) REGMBC(0x151)
REGMBC(0x1a1) REGMBC(0x1d2) REGMBC(0x1eb)
REGMBC(0x1ed) REGMBC(0x1ecf)
return;
case 'p': CASEMBC(0x1e55) CASEMBC(0x1e57)
regmbc('p'); REGMBC(0x1e55) REGMBC(0x1e57)
return;
case 'r': CASEMBC(0x155) CASEMBC(0x157) CASEMBC(0x159)
CASEMBC(0x1e59) CASEMBC(0x1e5f)
regmbc('r'); REGMBC(0x155) REGMBC(0x157) REGMBC(0x159)
REGMBC(0x1e59) REGMBC(0x1e5f)
return;
case 's': CASEMBC(0x15b) CASEMBC(0x15d) CASEMBC(0x15f)
CASEMBC(0x161) CASEMBC(0x1e61)
regmbc('s'); REGMBC(0x15b) REGMBC(0x15d)
REGMBC(0x15f) REGMBC(0x161) REGMBC(0x1e61)
return;
case 't': CASEMBC(0x163) CASEMBC(0x165) CASEMBC(0x167)
CASEMBC(0x1e6b) CASEMBC(0x1e6f) CASEMBC(0x1e97)
regmbc('t'); REGMBC(0x163) REGMBC(0x165) REGMBC(0x167)
REGMBC(0x1e6b) REGMBC(0x1e6f) REGMBC(0x1e97)
return;
case 'u': case 0xf9: case 0xfa: case 0xfb: case 0xfc:
CASEMBC(0x169) CASEMBC(0x16b) CASEMBC(0x16d) CASEMBC(0x16f)
CASEMBC(0x171) CASEMBC(0x173) CASEMBC(0x1b0) CASEMBC(0x1d4)
CASEMBC(0x1ee7)
regmbc('u'); regmbc(0xf9); regmbc(0xfa);
regmbc(0xfb); regmbc(0xfc);
REGMBC(0x169) REGMBC(0x16b) REGMBC(0x16d)
REGMBC(0x16f) REGMBC(0x171) REGMBC(0x173)
REGMBC(0x1b0) REGMBC(0x1d4) REGMBC(0x1ee7)
return;
case 'v': CASEMBC(0x1e7d)
regmbc('v'); REGMBC(0x1e7d)
return;
case 'w': CASEMBC(0x175) CASEMBC(0x1e81) CASEMBC(0x1e83)
CASEMBC(0x1e85) CASEMBC(0x1e87) CASEMBC(0x1e98)
regmbc('w'); REGMBC(0x175) REGMBC(0x1e81)
REGMBC(0x1e83) REGMBC(0x1e85) REGMBC(0x1e87)
REGMBC(0x1e98)
return;
case 'x': CASEMBC(0x1e8b) CASEMBC(0x1e8d)
regmbc('x'); REGMBC(0x1e8b) REGMBC(0x1e8d)
return;
case 'y': case 0xfd: case 0xff:
CASEMBC(0x177) CASEMBC(0x1e8f) CASEMBC(0x1e99)
CASEMBC(0x1ef3) CASEMBC(0x1ef7) CASEMBC(0x1ef9)
regmbc('y'); regmbc(0xfd); regmbc(0xff);
REGMBC(0x177) REGMBC(0x1e8f) REGMBC(0x1e99)
REGMBC(0x1ef3) REGMBC(0x1ef7) REGMBC(0x1ef9)
return;
case 'z': CASEMBC(0x17a) CASEMBC(0x17c) CASEMBC(0x17e)
CASEMBC(0x1b6) CASEMBC(0x1e91) CASEMBC(0x1e95)
regmbc('z'); REGMBC(0x17a) REGMBC(0x17c)
REGMBC(0x17e) REGMBC(0x1b6) REGMBC(0x1e91)
REGMBC(0x1e95)
return;
}
}
regmbc(c);
}
/*
* Check for a collating element "[.a.]". "pp" points to the '['.
* Returns a character. Zero means that no item was recognized. Otherwise
* "pp" is advanced to after the item.
* Currently only single characters are recognized!
*/
static int get_coll_element(char_u **pp)
{
int c;
int l = 1;
char_u *p = *pp;
if (p[0] != NUL && p[1] == '.' && p[2] != NUL) {
l = utfc_ptr2len(p + 2);
if (p[l + 2] == '.' && p[l + 3] == ']') {
c = utf_ptr2char(p + 2);
*pp += l + 4;
return c;
}
}
return 0;
}
static int reg_cpo_lit; /* 'cpoptions' contains 'l' flag */
static void get_cpo_flags(void)
{
reg_cpo_lit = vim_strchr(p_cpo, CPO_LITERAL) != NULL;
}
/*
* Skip over a "[]" range.
* "p" must point to the character after the '['.
* The returned pointer is on the matching ']', or the terminating NUL.
*/
static char_u *skip_anyof(char_u *p)
{
int l;
if (*p == '^') /* Complement of range. */
++p;
if (*p == ']' || *p == '-')
++p;
while (*p != NUL && *p != ']') {
if ((l = (*mb_ptr2len)(p)) > 1) {
p += l;
} else if (*p == '-') {
p++;
if (*p != ']' && *p != NUL) {
MB_PTR_ADV(p);
}
} else if (*p == '\\'
&& (vim_strchr(REGEXP_INRANGE, p[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR, p[1]) != NULL))) {
p += 2;
} else if (*p == '[') {
if (get_char_class(&p) == CLASS_NONE
&& get_equi_class(&p) == 0
&& get_coll_element(&p) == 0
&& *p != NUL) {
p++; // It is not a class name and not NUL
}
} else {
p++;
}
}
return p;
}
/*
* Skip past regular expression.
* Stop at end of "startp" or where "dirc" is found ('/', '?', etc).
* Take care of characters with a backslash in front of it.
* Skip strings inside [ and ].
* When "newp" is not NULL and "dirc" is '?', make an allocated copy of the
* expression and change "\?" to "?". If "*newp" is not NULL the expression
* is changed in-place.
*/
char_u *skip_regexp(char_u *startp, int dirc, int magic, char_u **newp)
{
int mymagic;
char_u *p = startp;
if (magic)
mymagic = MAGIC_ON;
else
mymagic = MAGIC_OFF;
get_cpo_flags();
for (; p[0] != NUL; MB_PTR_ADV(p)) {
if (p[0] == dirc) { // found end of regexp
break;
}
if ((p[0] == '[' && mymagic >= MAGIC_ON)
|| (p[0] == '\\' && p[1] == '[' && mymagic <= MAGIC_OFF)) {
p = skip_anyof(p + 1);
if (p[0] == NUL)
break;
} else if (p[0] == '\\' && p[1] != NUL) {
if (dirc == '?' && newp != NULL && p[1] == '?') {
/* change "\?" to "?", make a copy first. */
if (*newp == NULL) {
*newp = vim_strsave(startp);
p = *newp + (p - startp);
}
STRMOVE(p, p + 1);
} else
++p; /* skip next character */
if (*p == 'v')
mymagic = MAGIC_ALL;
else if (*p == 'V')
mymagic = MAGIC_NONE;
}
}
return p;
}
/// Return true if the back reference is legal. We must have seen the close
/// brace.
/// TODO(vim): Should also check that we don't refer to something repeated
/// (+*=): what instance of the repetition should we match?
static int seen_endbrace(int refnum)
{
if (!had_endbrace[refnum]) {
char_u *p;
// Trick: check if "@<=" or "@<!" follows, in which case
// the \1 can appear before the referenced match.
for (p = regparse; *p != NUL; p++) {
if (p[0] == '@' && p[1] == '<' && (p[2] == '!' || p[2] == '=')) {
break;
}
}
if (*p == NUL) {
EMSG(_("E65: Illegal back reference"));
rc_did_emsg = true;
return false;
}
}
return true;
}
/*
* bt_regcomp() - compile a regular expression into internal code for the
* traditional back track matcher.
* Returns the program in allocated space. Returns NULL for an error.
*
* We can't allocate space until we know how big the compiled form will be,
* but we can't compile it (and thus know how big it is) until we've got a
* place to put the code. So we cheat: we compile it twice, once with code
* generation turned off and size counting turned on, and once "for real".
* This also means that we don't allocate space until we are sure that the
* thing really will compile successfully, and we never have to move the
* code and thus invalidate pointers into it. (Note that it has to be in
* one piece because free() must be able to free it all.)
*
* Whether upper/lower case is to be ignored is decided when executing the
* program, it does not matter here.
*
* Beware that the optimization-preparation code in here knows about some
* of the structure of the compiled regexp.
* "re_flags": RE_MAGIC and/or RE_STRING.
*/
static regprog_T *bt_regcomp(char_u *expr, int re_flags)
{
char_u *scan;
char_u *longest;
int len;
int flags;
if (expr == NULL) {
IEMSG_RET_NULL(_(e_null));
}
init_class_tab();
/*
* First pass: determine size, legality.
*/
regcomp_start(expr, re_flags);
regcode = JUST_CALC_SIZE;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL)
return NULL;
/* Allocate space. */
bt_regprog_T *r = xmalloc(sizeof(bt_regprog_T) + regsize);
r->re_in_use = false;
/*
* Second pass: emit code.
*/
regcomp_start(expr, re_flags);
regcode = r->program;
regc(REGMAGIC);
if (reg(REG_NOPAREN, &flags) == NULL || reg_toolong) {
xfree(r);
if (reg_toolong)
EMSG_RET_NULL(_("E339: Pattern too long"));
return NULL;
}
/* Dig out information for optimizations. */
r->regstart = NUL; /* Worst-case defaults. */
r->reganch = 0;
r->regmust = NULL;
r->regmlen = 0;
r->regflags = regflags;
if (flags & HASNL)
r->regflags |= RF_HASNL;
if (flags & HASLOOKBH)
r->regflags |= RF_LOOKBH;
/* Remember whether this pattern has any \z specials in it. */
r->reghasz = re_has_z;
scan = r->program + 1; /* First BRANCH. */
if (OP(regnext(scan)) == END) { /* Only one top-level choice. */
scan = OPERAND(scan);
/* Starting-point info. */
if (OP(scan) == BOL || OP(scan) == RE_BOF) {
r->reganch++;
scan = regnext(scan);
}
if (OP(scan) == EXACTLY) {
r->regstart = utf_ptr2char(OPERAND(scan));
} else if (OP(scan) == BOW
|| OP(scan) == EOW
|| OP(scan) == NOTHING
|| OP(scan) == MOPEN + 0 || OP(scan) == NOPEN
|| OP(scan) == MCLOSE + 0 || OP(scan) == NCLOSE) {
char_u *regnext_scan = regnext(scan);
if (OP(regnext_scan) == EXACTLY) {
r->regstart = utf_ptr2char(OPERAND(regnext_scan));
}
}
/*
* If there's something expensive in the r.e., find the longest
* literal string that must appear and make it the regmust. Resolve
* ties in favor of later strings, since the regstart check works
* with the beginning of the r.e. and avoiding duplication
* strengthens checking. Not a strong reason, but sufficient in the
* absence of others.
*/
/*
* When the r.e. starts with BOW, it is faster to look for a regmust
* first. Used a lot for "#" and "*" commands. (Added by mool).
*/
if ((flags & SPSTART || OP(scan) == BOW || OP(scan) == EOW)
&& !(flags & HASNL)) {
longest = NULL;
len = 0;
for (; scan != NULL; scan = regnext(scan))
if (OP(scan) == EXACTLY && STRLEN(OPERAND(scan)) >= (size_t)len) {
longest = OPERAND(scan);
len = (int)STRLEN(OPERAND(scan));
}
r->regmust = longest;
r->regmlen = len;
}
}
#ifdef BT_REGEXP_DUMP
regdump(expr, r);
#endif
r->engine = &bt_regengine;
return (regprog_T *)r;
}
/*
* Free a compiled regexp program, returned by bt_regcomp().
*/
static void bt_regfree(regprog_T *prog)
{
xfree(prog);
}
/*
* Setup to parse the regexp. Used once to get the length and once to do it.
*/
static void
regcomp_start (
char_u *expr,
int re_flags /* see vim_regcomp() */
)
{
initchr(expr);
if (re_flags & RE_MAGIC)
reg_magic = MAGIC_ON;
else
reg_magic = MAGIC_OFF;
reg_string = (re_flags & RE_STRING);
reg_strict = (re_flags & RE_STRICT);
get_cpo_flags();
num_complex_braces = 0;
regnpar = 1;
memset(had_endbrace, 0, sizeof(had_endbrace));
regnzpar = 1;
re_has_z = 0;
regsize = 0L;
reg_toolong = false;
regflags = 0;
had_eol = false;
}
/*
* Check if during the previous call to vim_regcomp the EOL item "$" has been
* found. This is messy, but it works fine.
*/
int vim_regcomp_had_eol(void)
{
return had_eol;
}
// variables used for parsing
static int at_start; // True when on the first character
static int prev_at_start; // True when on the second character
/*
* Parse regular expression, i.e. main body or parenthesized thing.
*
* Caller must absorb opening parenthesis.
*
* Combining parenthesis handling with the base level of regular expression
* is a trifle forced, but the need to tie the tails of the branches to what
* follows makes it hard to avoid.
*/
static char_u *
reg (
int paren, /* REG_NOPAREN, REG_PAREN, REG_NPAREN or REG_ZPAREN */
int *flagp
)
{
char_u *ret;
char_u *br;
char_u *ender;
int parno = 0;
int flags;
*flagp = HASWIDTH; /* Tentatively. */
if (paren == REG_ZPAREN) {
/* Make a ZOPEN node. */
if (regnzpar >= NSUBEXP)
EMSG_RET_NULL(_("E50: Too many \\z("));
parno = regnzpar;
regnzpar++;
ret = regnode(ZOPEN + parno);
} else if (paren == REG_PAREN) {
/* Make a MOPEN node. */
if (regnpar >= NSUBEXP)
EMSG2_RET_NULL(_("E51: Too many %s("), reg_magic == MAGIC_ALL);
parno = regnpar;
++regnpar;
ret = regnode(MOPEN + parno);
} else if (paren == REG_NPAREN) {
/* Make a NOPEN node. */
ret = regnode(NOPEN);
} else
ret = NULL;
/* Pick up the branches, linking them together. */
br = regbranch(&flags);
if (br == NULL)
return NULL;
if (ret != NULL)
regtail(ret, br); /* [MZ]OPEN -> first. */
else
ret = br;
/* If one of the branches can be zero-width, the whole thing can.
* If one of the branches has * at start or matches a line-break, the
* whole thing can. */
if (!(flags & HASWIDTH))
*flagp &= ~HASWIDTH;
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
while (peekchr() == Magic('|')) {
skipchr();
br = regbranch(&flags);
if (br == NULL || reg_toolong)
return NULL;
regtail(ret, br); /* BRANCH -> BRANCH. */
if (!(flags & HASWIDTH))
*flagp &= ~HASWIDTH;
*flagp |= flags & (SPSTART | HASNL | HASLOOKBH);
}
/* Make a closing node, and hook it on the end. */
ender = regnode(
paren == REG_ZPAREN ? ZCLOSE + parno :
paren == REG_PAREN ? MCLOSE + parno :
paren == REG_NPAREN ? NCLOSE : END);
regtail(ret, ender);
/* Hook the tails of the branches to the closing node. */
for (br = ret; br != NULL; br = regnext(br))
regoptail(br, ender);
/* Check for proper termination. */
if (paren != REG_NOPAREN && getchr() != Magic(')')) {
if (paren == REG_ZPAREN)
EMSG_RET_NULL(_("E52: Unmatched \\z("));
else if (paren == REG_NPAREN)
EMSG2_RET_NULL(_(e_unmatchedpp), reg_magic == MAGIC_ALL);
else
EMSG2_RET_NULL(_(e_unmatchedp), reg_magic == MAGIC_ALL);
} else if (paren == REG_NOPAREN && peekchr() != NUL) {
if (curchr == Magic(')'))
EMSG2_RET_NULL(_(e_unmatchedpar), reg_magic == MAGIC_ALL);
else
EMSG_RET_NULL(_(e_trailing)); /* "Can't happen". */
/* NOTREACHED */
}
// Here we set the flag allowing back references to this set of
// parentheses.
if (paren == REG_PAREN) {
had_endbrace[parno] = true; // have seen the close paren
}
return ret;
}
/*
* Parse one alternative of an | operator.
* Implements the & operator.
*/
static char_u *regbranch(int *flagp)
{
char_u *ret;
char_u *chain = NULL;
char_u *latest;
int flags;
*flagp = WORST | HASNL; /* Tentatively. */
ret = regnode(BRANCH);
for (;; ) {
latest = regconcat(&flags);
if (latest == NULL)
return NULL;
/* If one of the branches has width, the whole thing has. If one of
* the branches anchors at start-of-line, the whole thing does.
* If one of the branches uses look-behind, the whole thing does. */
*flagp |= flags & (HASWIDTH | SPSTART | HASLOOKBH);
/* If one of the branches doesn't match a line-break, the whole thing
* doesn't. */
*flagp &= ~HASNL | (flags & HASNL);
if (chain != NULL)
regtail(chain, latest);
if (peekchr() != Magic('&'))
break;
skipchr();
regtail(latest, regnode(END)); /* operand ends */
if (reg_toolong)
break;
reginsert(MATCH, latest);
chain = latest;
}
return ret;
}
/*
* Parse one alternative of an | or & operator.
* Implements the concatenation operator.
*/
static char_u *regconcat(int *flagp)
{
char_u *first = NULL;
char_u *chain = NULL;
char_u *latest;
int flags;
int cont = true;
*flagp = WORST; /* Tentatively. */
while (cont) {
switch (peekchr()) {
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
cont = false;
break;
case Magic('Z'):
regflags |= RF_ICOMBINE;
skipchr_keepstart();
break;
case Magic('c'):
regflags |= RF_ICASE;
skipchr_keepstart();
break;
case Magic('C'):
regflags |= RF_NOICASE;
skipchr_keepstart();
break;
case Magic('v'):
reg_magic = MAGIC_ALL;
skipchr_keepstart();
curchr = -1;
break;
case Magic('m'):
reg_magic = MAGIC_ON;
skipchr_keepstart();
curchr = -1;
break;
case Magic('M'):
reg_magic = MAGIC_OFF;
skipchr_keepstart();
curchr = -1;
break;
case Magic('V'):
reg_magic = MAGIC_NONE;
skipchr_keepstart();
curchr = -1;
break;
default:
latest = regpiece(&flags);
if (latest == NULL || reg_toolong)
return NULL;
*flagp |= flags & (HASWIDTH | HASNL | HASLOOKBH);
if (chain == NULL) /* First piece. */
*flagp |= flags & SPSTART;
else
regtail(chain, latest);
chain = latest;
if (first == NULL)
first = latest;
break;
}
}
if (first == NULL) /* Loop ran zero times. */
first = regnode(NOTHING);
return first;
}
/*
* Parse something followed by possible [*+=].
*
* Note that the branching code sequences used for = and the general cases
* of * and + are somewhat optimized: they use the same NOTHING node as
* both the endmarker for their branch list and the body of the last branch.
* It might seem that this node could be dispensed with entirely, but the
* endmarker role is not redundant.
*/
static char_u *regpiece(int *flagp)
{
char_u *ret;
int op;
char_u *next;
int flags;
long minval;
long maxval;
ret = regatom(&flags);
if (ret == NULL)
return NULL;
op = peekchr();
if (re_multi_type(op) == NOT_MULTI) {
*flagp = flags;
return ret;
}
/* default flags */
*flagp = (WORST | SPSTART | (flags & (HASNL | HASLOOKBH)));
skipchr();
switch (op) {
case Magic('*'):
if (flags & SIMPLE)
reginsert(STAR, ret);
else {
/* Emit x* as (x&|), where & means "self". */
reginsert(BRANCH, ret); /* Either x */
regoptail(ret, regnode(BACK)); /* and loop */
regoptail(ret, ret); /* back */
regtail(ret, regnode(BRANCH)); /* or */
regtail(ret, regnode(NOTHING)); /* null. */
}
break;
case Magic('+'):
if (flags & SIMPLE)
reginsert(PLUS, ret);
else {
/* Emit x+ as x(&|), where & means "self". */
next = regnode(BRANCH); /* Either */
regtail(ret, next);
regtail(regnode(BACK), ret); /* loop back */
regtail(next, regnode(BRANCH)); /* or */
regtail(ret, regnode(NOTHING)); /* null. */
}
*flagp = (WORST | HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
case Magic('@'):
{
int lop = END;
int64_t nr = getdecchrs();
switch (no_Magic(getchr())) {
case '=': lop = MATCH; break; /* \@= */
case '!': lop = NOMATCH; break; /* \@! */
case '>': lop = SUBPAT; break; /* \@> */
case '<': switch (no_Magic(getchr())) {
case '=': lop = BEHIND; break; /* \@<= */
case '!': lop = NOBEHIND; break; /* \@<! */
}
}
if (lop == END)
EMSG2_RET_NULL(_("E59: invalid character after %s@"),
reg_magic == MAGIC_ALL);
/* Look behind must match with behind_pos. */
if (lop == BEHIND || lop == NOBEHIND) {
regtail(ret, regnode(BHPOS));
*flagp |= HASLOOKBH;
}
regtail(ret, regnode(END)); /* operand ends */
if (lop == BEHIND || lop == NOBEHIND) {
if (nr < 0)
nr = 0; /* no limit is same as zero limit */
reginsert_nr(lop, (uint32_t)nr, ret);
} else
reginsert(lop, ret);
break;
}
case Magic('?'):
case Magic('='):
/* Emit x= as (x|) */
reginsert(BRANCH, ret); /* Either x */
regtail(ret, regnode(BRANCH)); /* or */
next = regnode(NOTHING); /* null. */
regtail(ret, next);
regoptail(ret, next);
break;
case Magic('{'):
if (!read_limits(&minval, &maxval))
return NULL;
if (flags & SIMPLE) {
reginsert(BRACE_SIMPLE, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
} else {
if (num_complex_braces >= 10)
EMSG2_RET_NULL(_("E60: Too many complex %s{...}s"),
reg_magic == MAGIC_ALL);
reginsert(BRACE_COMPLEX + num_complex_braces, ret);
regoptail(ret, regnode(BACK));
regoptail(ret, ret);
reginsert_limits(BRACE_LIMITS, minval, maxval, ret);
++num_complex_braces;
}
if (minval > 0 && maxval > 0)
*flagp = (HASWIDTH | (flags & (HASNL | HASLOOKBH)));
break;
}
if (re_multi_type(peekchr()) != NOT_MULTI) {
/* Can't have a multi follow a multi. */
if (peekchr() == Magic('*'))
sprintf((char *)IObuff, _("E61: Nested %s*"),
reg_magic >= MAGIC_ON ? "" : "\\");
else
sprintf((char *)IObuff, _("E62: Nested %s%c"),
reg_magic == MAGIC_ALL ? "" : "\\", no_Magic(peekchr()));
EMSG_RET_NULL(IObuff);
}
return ret;
}
/* When making changes to classchars also change nfa_classcodes. */
static char_u *classchars = (char_u *)".iIkKfFpPsSdDxXoOwWhHaAlLuU";
static int classcodes[] = {
ANY, IDENT, SIDENT, KWORD, SKWORD,
FNAME, SFNAME, PRINT, SPRINT,
WHITE, NWHITE, DIGIT, NDIGIT,
HEX, NHEX, OCTAL, NOCTAL,
WORD, NWORD, HEAD, NHEAD,
ALPHA, NALPHA, LOWER, NLOWER,
UPPER, NUPPER
};
/*
* Parse the lowest level.
*
* Optimization: gobbles an entire sequence of ordinary characters so that
* it can turn them into a single node, which is smaller to store and
* faster to run. Don't do this when one_exactly is set.
*/
static char_u *regatom(int *flagp)
{
char_u *ret;
int flags;
int c;
char_u *p;
int extra = 0;
int save_prev_at_start = prev_at_start;
*flagp = WORST; /* Tentatively. */
c = getchr();
switch (c) {
case Magic('^'):
ret = regnode(BOL);
break;
case Magic('$'):
ret = regnode(EOL);
had_eol = true;
break;
case Magic('<'):
ret = regnode(BOW);
break;
case Magic('>'):
ret = regnode(EOW);
break;
case Magic('_'):
c = no_Magic(getchr());
if (c == '^') { /* "\_^" is start-of-line */
ret = regnode(BOL);
break;
}
if (c == '$') { /* "\_$" is end-of-line */
ret = regnode(EOL);
had_eol = true;
break;
}
extra = ADD_NL;
*flagp |= HASNL;
/* "\_[" is character range plus newline */
if (c == '[')
goto collection;
// "\_x" is character class plus newline
FALLTHROUGH;
/*
* Character classes.
*/
case Magic('.'):
case Magic('i'):
case Magic('I'):
case Magic('k'):
case Magic('K'):
case Magic('f'):
case Magic('F'):
case Magic('p'):
case Magic('P'):
case Magic('s'):
case Magic('S'):
case Magic('d'):
case Magic('D'):
case Magic('x'):
case Magic('X'):
case Magic('o'):
case Magic('O'):
case Magic('w'):
case Magic('W'):
case Magic('h'):
case Magic('H'):
case Magic('a'):
case Magic('A'):
case Magic('l'):
case Magic('L'):
case Magic('u'):
case Magic('U'):
p = vim_strchr(classchars, no_Magic(c));
if (p == NULL)
EMSG_RET_NULL(_("E63: invalid use of \\_"));
/* When '.' is followed by a composing char ignore the dot, so that
* the composing char is matched here. */
if (c == Magic('.') && utf_iscomposing(peekchr())) {
c = getchr();
goto do_multibyte;
}
ret = regnode(classcodes[p - classchars] + extra);
*flagp |= HASWIDTH | SIMPLE;
break;
case Magic('n'):
if (reg_string) {
/* In a string "\n" matches a newline character. */
ret = regnode(EXACTLY);
regc(NL);
regc(NUL);
*flagp |= HASWIDTH | SIMPLE;
} else {
/* In buffer text "\n" matches the end of a line. */
ret = regnode(NEWL);
*flagp |= HASWIDTH | HASNL;
}
break;
case Magic('('):
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_PAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
case NUL:
case Magic('|'):
case Magic('&'):
case Magic(')'):
if (one_exactly)
EMSG_ONE_RET_NULL;
IEMSG_RET_NULL(_(e_internal)); // Supposed to be caught earlier.
// NOTREACHED
case Magic('='):
case Magic('?'):
case Magic('+'):
case Magic('@'):
case Magic('{'):
case Magic('*'):
c = no_Magic(c);
sprintf((char *)IObuff, _("E64: %s%c follows nothing"),
(c == '*' ? reg_magic >= MAGIC_ON : reg_magic == MAGIC_ALL)
? "" : "\\", c);
EMSG_RET_NULL(IObuff);
/* NOTREACHED */
case Magic('~'): /* previous substitute pattern */
if (reg_prev_sub != NULL) {
char_u *lp;
ret = regnode(EXACTLY);
lp = reg_prev_sub;
while (*lp != NUL)
regc(*lp++);
regc(NUL);
if (*reg_prev_sub != NUL) {
*flagp |= HASWIDTH;
if ((lp - reg_prev_sub) == 1)
*flagp |= SIMPLE;
}
} else
EMSG_RET_NULL(_(e_nopresub));
break;
case Magic('1'):
case Magic('2'):
case Magic('3'):
case Magic('4'):
case Magic('5'):
case Magic('6'):
case Magic('7'):
case Magic('8'):
case Magic('9'):
{
int refnum;
refnum = c - Magic('0');
if (!seen_endbrace(refnum)) {
return NULL;
}
ret = regnode(BACKREF + refnum);
}
break;
case Magic('z'):
{
c = no_Magic(getchr());
switch (c) {
case '(': if ((reg_do_extmatch & REX_SET) == 0)
EMSG_RET_NULL(_(e_z_not_allowed));
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_ZPAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH|SPSTART|HASNL|HASLOOKBH);
re_has_z = REX_SET;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9': if ((reg_do_extmatch & REX_USE) == 0)
EMSG_RET_NULL(_(e_z1_not_allowed));
ret = regnode(ZREF + c - '0');
re_has_z = REX_USE;
break;
case 's': ret = regnode(MOPEN + 0);
if (!re_mult_next("\\zs")) {
return NULL;
}
break;
case 'e': ret = regnode(MCLOSE + 0);
if (!re_mult_next("\\ze")) {
return NULL;
}
break;
default: EMSG_RET_NULL(_("E68: Invalid character after \\z"));
}
}
break;
case Magic('%'):
{
c = no_Magic(getchr());
switch (c) {
/* () without a back reference */
case '(':
if (one_exactly)
EMSG_ONE_RET_NULL;
ret = reg(REG_NPAREN, &flags);
if (ret == NULL)
return NULL;
*flagp |= flags & (HASWIDTH | SPSTART | HASNL | HASLOOKBH);
break;
/* Catch \%^ and \%$ regardless of where they appear in the
* pattern -- regardless of whether or not it makes sense. */
case '^':
ret = regnode(RE_BOF);
break;
case '$':
ret = regnode(RE_EOF);
break;
case '#':
ret = regnode(CURSOR);
break;
case 'V':
ret = regnode(RE_VISUAL);
break;
case 'C':
ret = regnode(RE_COMPOSING);
break;
/* \%[abc]: Emit as a list of branches, all ending at the last
* branch which matches nothing. */
case '[':
if (one_exactly) /* doesn't nest */
EMSG_ONE_RET_NULL;
{
char_u *lastbranch;
char_u *lastnode = NULL;
char_u *br;
ret = NULL;
while ((c = getchr()) != ']') {
if (c == NUL)
EMSG2_RET_NULL(_(e_missing_sb),
reg_magic == MAGIC_ALL);
br = regnode(BRANCH);
if (ret == NULL) {
ret = br;
} else {
regtail(lastnode, br);
if (reg_toolong) {
return NULL;
}
}
ungetchr();
one_exactly = true;
lastnode = regatom(flagp);
one_exactly = false;
if (lastnode == NULL) {
return NULL;
}
}
if (ret == NULL)
EMSG2_RET_NULL(_(e_empty_sb),
reg_magic == MAGIC_ALL);
lastbranch = regnode(BRANCH);
br = regnode(NOTHING);
if (ret != JUST_CALC_SIZE) {
regtail(lastnode, br);
regtail(lastbranch, br);
/* connect all branches to the NOTHING
* branch at the end */
for (br = ret; br != lastnode; ) {
if (OP(br) == BRANCH) {
regtail(br, lastbranch);
if (reg_toolong) {
return NULL;
}
br = OPERAND(br);
} else
br = regnext(br);
}
}
*flagp &= ~(HASWIDTH | SIMPLE);
break;
}
case 'd': /* %d123 decimal */
case 'o': /* %o123 octal */
case 'x': /* %xab hex 2 */
case 'u': /* %uabcd hex 4 */
case 'U': /* %U1234abcd hex 8 */
{
int64_t i;
switch (c) {
case 'd': i = getdecchrs(); break;
case 'o': i = getoctchrs(); break;
case 'x': i = gethexchrs(2); break;
case 'u': i = gethexchrs(4); break;
case 'U': i = gethexchrs(8); break;
default: i = -1; break;
}
if (i < 0 || i > INT_MAX) {
EMSG2_RET_NULL(_("E678: Invalid character after %s%%[dxouU]"),
reg_magic == MAGIC_ALL);
}
if (use_multibytecode(i)) {
ret = regnode(MULTIBYTECODE);
} else {
ret = regnode(EXACTLY);
}
if (i == 0) {
regc(0x0a);
} else {
regmbc(i);
}
regc(NUL);
*flagp |= HASWIDTH;
break;
}
default:
if (ascii_isdigit(c) || c == '<' || c == '>'
|| c == '\'') {
uint32_t n = 0;
int cmp;
cmp = c;
if (cmp == '<' || cmp == '>')
c = getchr();
while (ascii_isdigit(c)) {
n = n * 10 + (uint32_t)(c - '0');
c = getchr();
}
if (c == '\'' && n == 0) {
/* "\%'m", "\%<'m" and "\%>'m": Mark */
c = getchr();
ret = regnode(RE_MARK);
if (ret == JUST_CALC_SIZE)
regsize += 2;
else {
*regcode++ = c;
*regcode++ = cmp;
}
break;
} else if (c == 'l' || c == 'c' || c == 'v') {
if (c == 'l') {
ret = regnode(RE_LNUM);
if (save_prev_at_start) {
at_start = true;
}
} else if (c == 'c') {
ret = regnode(RE_COL);
} else {
ret = regnode(RE_VCOL);
}
if (ret == JUST_CALC_SIZE) {
regsize += 5;
} else {
// put the number and the optional
// comparator after the opcode
regcode = re_put_uint32(regcode, n);
*regcode++ = cmp;
}
break;
}
}
EMSG2_RET_NULL(_("E71: Invalid character after %s%%"),
reg_magic == MAGIC_ALL);
}
}
break;
case Magic('['):
collection:
{
char_u *lp;
/*
* If there is no matching ']', we assume the '[' is a normal
* character. This makes 'incsearch' and ":help [" work.
*/
lp = skip_anyof(regparse);
if (*lp == ']') { /* there is a matching ']' */
int startc = -1; /* > 0 when next '-' is a range */
int endc;
/*
* In a character class, different parsing rules apply.
* Not even \ is special anymore, nothing is.
*/
if (*regparse == '^') { /* Complement of range. */
ret = regnode(ANYBUT + extra);
regparse++;
} else
ret = regnode(ANYOF + extra);
/* At the start ']' and '-' mean the literal character. */
if (*regparse == ']' || *regparse == '-') {
startc = *regparse;
regc(*regparse++);
}
while (*regparse != NUL && *regparse != ']') {
if (*regparse == '-') {
++regparse;
/* The '-' is not used for a range at the end and
* after or before a '\n'. */
if (*regparse == ']' || *regparse == NUL
|| startc == -1
|| (regparse[0] == '\\' && regparse[1] == 'n')) {
regc('-');
startc = '-'; /* [--x] is a range */
} else {
/* Also accept "a-[.z.]" */
endc = 0;
if (*regparse == '[')
endc = get_coll_element(&regparse);
if (endc == 0) {
endc = mb_ptr2char_adv((const char_u **)&regparse);
}
/* Handle \o40, \x20 and \u20AC style sequences */
if (endc == '\\' && !reg_cpo_lit)
endc = coll_get_char();
if (startc > endc) {
EMSG_RET_NULL(_(e_reverse_range));
}
if ((*mb_char2len)(startc) > 1
|| (*mb_char2len)(endc) > 1) {
// Limit to a range of 256 chars
if (endc > startc + 256) {
EMSG_RET_NULL(_(e_large_class));
}
while (++startc <= endc) {
regmbc(startc);
}
} else {
while (++startc <= endc)
regc(startc);
}
startc = -1;
}
}
/*
* Only "\]", "\^", "\]" and "\\" are special in Vi. Vim
* accepts "\t", "\e", etc., but only when the 'l' flag in
* 'cpoptions' is not included.
*/
else if (*regparse == '\\'
&& (vim_strchr(REGEXP_INRANGE, regparse[1]) != NULL
|| (!reg_cpo_lit
&& vim_strchr(REGEXP_ABBR,
regparse[1]) != NULL))) {
regparse++;
if (*regparse == 'n') {
/* '\n' in range: also match NL */
if (ret != JUST_CALC_SIZE) {
/* Using \n inside [^] does not change what
* matches. "[^\n]" is the same as ".". */
if (*ret == ANYOF) {
*ret = ANYOF + ADD_NL;
*flagp |= HASNL;
}
/* else: must have had a \n already */
}
regparse++;
startc = -1;
} else if (*regparse == 'd'
|| *regparse == 'o'
|| *regparse == 'x'
|| *regparse == 'u'
|| *regparse == 'U') {
startc = coll_get_char();
if (startc == 0)
regc(0x0a);
else
regmbc(startc);
} else {
startc = backslash_trans(*regparse++);
regc(startc);
}
} else if (*regparse == '[') {
int c_class;
int cu;
c_class = get_char_class(&regparse);
startc = -1;
/* Characters assumed to be 8 bits! */
switch (c_class) {
case CLASS_NONE:
c_class = get_equi_class(&regparse);
if (c_class != 0) {
/* produce equivalence class */
reg_equi_class(c_class);
} else if ((c_class =
get_coll_element(&regparse)) != 0) {
/* produce a collating element */
regmbc(c_class);
} else {
/* literal '[', allow [[-x] as a range */
startc = *regparse++;
regc(startc);
}
break;
case CLASS_ALNUM:
for (cu = 1; cu < 128; cu++) {
if (isalnum(cu)) {
regmbc(cu);
}
}
break;
case CLASS_ALPHA:
for (cu = 1; cu < 128; cu++) {
if (isalpha(cu)) {
regmbc(cu);
}
}
break;
case CLASS_BLANK:
regc(' ');
regc('\t');
break;
case CLASS_CNTRL:
for (cu = 1; cu <= 127; cu++) {
if (iscntrl(cu)) {
regmbc(cu);
}
}
break;
case CLASS_DIGIT:
for (cu = 1; cu <= 127; cu++) {
if (ascii_isdigit(cu)) {
regmbc(cu);
}
}
break;
case CLASS_GRAPH:
for (cu = 1; cu <= 127; cu++) {
if (isgraph(cu)) {
regmbc(cu);
}
}
break;
case CLASS_LOWER:
for (cu = 1; cu <= 255; cu++) {
if (mb_islower(cu) && cu != 170 && cu != 186) {
regmbc(cu);
}
}
break;
case CLASS_PRINT:
for (cu = 1; cu <= 255; cu++) {
if (vim_isprintc(cu)) {
regmbc(cu);
}
}
break;
case CLASS_PUNCT:
for (cu = 1; cu < 128; cu++) {
if (ispunct(cu)) {
regmbc(cu);
}
}
break;
case CLASS_SPACE:
for (cu = 9; cu <= 13; cu++)
regc(cu);
regc(' ');
break;
case CLASS_UPPER:
for (cu = 1; cu <= 255; cu++) {
if (mb_isupper(cu)) {
regmbc(cu);
}
}
break;
case CLASS_XDIGIT:
for (cu = 1; cu <= 255; cu++) {
if (ascii_isxdigit(cu)) {
regmbc(cu);
}
}
break;
case CLASS_TAB:
regc('\t');
break;
case CLASS_RETURN:
regc('\r');
break;
case CLASS_BACKSPACE:
regc('\b');
break;
case CLASS_ESCAPE:
regc(ESC);
break;
case CLASS_IDENT:
for (cu = 1; cu <= 255; cu++) {
if (vim_isIDc(cu)) {
regmbc(cu);
}
}
break;
case CLASS_KEYWORD:
for (cu = 1; cu <= 255; cu++) {
if (reg_iswordc(cu)) {
regmbc(cu);
}
}
break;
case CLASS_FNAME:
for (cu = 1; cu <= 255; cu++) {
if (vim_isfilec(cu)) {
regmbc(cu);
}
}
break;
}
} else {
// produce a multibyte character, including any
// following composing characters.
startc = utf_ptr2char(regparse);
int len = utfc_ptr2len(regparse);
if (utf_char2len(startc) != len) {
// composing chars
startc = -1;
}
while (--len >= 0) {
regc(*regparse++);
}
}
}
regc(NUL);
prevchr_len = 1; /* last char was the ']' */
if (*regparse != ']')
EMSG_RET_NULL(_(e_toomsbra)); /* Cannot happen? */
skipchr(); /* let's be friends with the lexer again */
*flagp |= HASWIDTH | SIMPLE;
break;
} else if (reg_strict)
EMSG2_RET_NULL(_(e_missingbracket), reg_magic > MAGIC_OFF);
}
FALLTHROUGH;
default:
{
int len;
/* A multi-byte character is handled as a separate atom if it's
* before a multi and when it's a composing char. */
if (use_multibytecode(c)) {
do_multibyte:
ret = regnode(MULTIBYTECODE);
regmbc(c);
*flagp |= HASWIDTH | SIMPLE;
break;
}
ret = regnode(EXACTLY);
/*
* Append characters as long as:
* - there is no following multi, we then need the character in
* front of it as a single character operand
* - not running into a Magic character
* - "one_exactly" is not set
* But always emit at least one character. Might be a Multi,
* e.g., a "[" without matching "]".
*/
for (len = 0; c != NUL && (len == 0
|| (re_multi_type(peekchr()) == NOT_MULTI
&& !one_exactly
&& !is_Magic(c))); ++len) {
c = no_Magic(c);
{
regmbc(c);
{
int l;
/* Need to get composing character too. */
for (;; ) {
l = utf_ptr2len(regparse);
if (!UTF_COMPOSINGLIKE(regparse, regparse + l))
break;
regmbc(utf_ptr2char(regparse));
skipchr();
}
}
}
c = getchr();
}
ungetchr();
regc(NUL);
*flagp |= HASWIDTH;
if (len == 1)
*flagp |= SIMPLE;
}
break;
}
return ret;
}
/// Used in a place where no * or \+ can follow.
static bool re_mult_next(char *what)
{
if (re_multi_type(peekchr()) == MULTI_MULT) {
EMSG2_RET_FAIL(_("E888: (NFA regexp) cannot repeat %s"), what);
}
return true;
}
// Return true if MULTIBYTECODE should be used instead of EXACTLY for
// character "c".
static bool use_multibytecode(int c)
{
return utf_char2len(c) > 1
&& (re_multi_type(peekchr()) != NOT_MULTI
|| utf_iscomposing(c));
}
/*
* Emit a node.
* Return pointer to generated code.
*/
static char_u *regnode(int op)
{
char_u *ret;
ret = regcode;
if (ret == JUST_CALC_SIZE)
regsize += 3;
else {
*regcode++ = op;
*regcode++ = NUL; /* Null "next" pointer. */
*regcode++ = NUL;
}
return ret;
}
/*
* Emit (if appropriate) a byte of code
*/
static void regc(int b)
{
if (regcode == JUST_CALC_SIZE)
regsize++;
else
*regcode++ = b;
}
/*
* Emit (if appropriate) a multi-byte character of code
*/
static void regmbc(int c)
{
if (regcode == JUST_CALC_SIZE) {
regsize += utf_char2len(c);
} else {
regcode += utf_char2bytes(c, regcode);
}
}
/*
* Insert an operator in front of already-emitted operand
*
* Means relocating the operand.
*/
static void reginsert(int op, char_u *opnd)
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE) {
regsize += 3;
return;
}
src = regcode;
regcode += 3;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; /* Op node, where operand used to be. */
*place++ = op;
*place++ = NUL;
*place = NUL;
}
/*
* Insert an operator in front of already-emitted operand.
* Add a number to the operator.
*/
static void reginsert_nr(int op, long val, char_u *opnd)
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE) {
regsize += 7;
return;
}
src = regcode;
regcode += 7;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; /* Op node, where operand used to be. */
*place++ = op;
*place++ = NUL;
*place++ = NUL;
assert(val >= 0 && (uintmax_t)val <= UINT32_MAX);
re_put_uint32(place, (uint32_t)val);
}
/*
* Insert an operator in front of already-emitted operand.
* The operator has the given limit values as operands. Also set next pointer.
*
* Means relocating the operand.
*/
static void reginsert_limits(int op, long minval, long maxval, char_u *opnd)
{
char_u *src;
char_u *dst;
char_u *place;
if (regcode == JUST_CALC_SIZE) {
regsize += 11;
return;
}
src = regcode;
regcode += 11;
dst = regcode;
while (src > opnd)
*--dst = *--src;
place = opnd; /* Op node, where operand used to be. */
*place++ = op;
*place++ = NUL;
*place++ = NUL;
assert(minval >= 0 && (uintmax_t)minval <= UINT32_MAX);
place = re_put_uint32(place, (uint32_t)minval);
assert(maxval >= 0 && (uintmax_t)maxval <= UINT32_MAX);
place = re_put_uint32(place, (uint32_t)maxval);
regtail(opnd, place);
}
/*
* Write a four bytes number at "p" and return pointer to the next char.
*/
static char_u *re_put_uint32(char_u *p, uint32_t val)
{
*p++ = (char_u) ((val >> 24) & 0377);
*p++ = (char_u) ((val >> 16) & 0377);
*p++ = (char_u) ((val >> 8) & 0377);
*p++ = (char_u) (val & 0377);
return p;
}
// Set the next-pointer at the end of a node chain.
static void regtail(char_u *p, char_u *val)
{
int offset;
if (p == JUST_CALC_SIZE) {
return;
}
// Find last node.
char_u *scan = p;
for (;; ) {
char_u *temp = regnext(scan);
if (temp == NULL) {
break;
}
scan = temp;
}
if (OP(scan) == BACK) {
offset = (int)(scan - val);
} else {
offset = (int)(val - scan);
}
// When the offset uses more than 16 bits it can no longer fit in the two
// bytes available. Use a global flag to avoid having to check return
// values in too many places.
if (offset > 0xffff) {
reg_toolong = true;
} else {
*(scan + 1) = (char_u)(((unsigned)offset >> 8) & 0377);
*(scan + 2) = (char_u)(offset & 0377);
}
}
/*
* Like regtail, on item after a BRANCH; nop if none.
*/
static void regoptail(char_u *p, char_u *val)
{
/* When op is neither BRANCH nor BRACE_COMPLEX0-9, it is "operandless" */
if (p == NULL || p == JUST_CALC_SIZE
|| (OP(p) != BRANCH
&& (OP(p) < BRACE_COMPLEX || OP(p) > BRACE_COMPLEX + 9)))
return;
regtail(OPERAND(p), val);
}
/*
* Functions for getting characters from the regexp input.
*/
/*
* Start parsing at "str".
*/
static void initchr(char_u *str)
{
regparse = str;
prevchr_len = 0;
curchr = prevprevchr = prevchr = nextchr = -1;
at_start = true;
prev_at_start = false;
}
/*
* Save the current parse state, so that it can be restored and parsing
* starts in the same state again.
*/
static void save_parse_state(parse_state_T *ps)
{
ps->regparse = regparse;
ps->prevchr_len = prevchr_len;
ps->curchr = curchr;
ps->prevchr = prevchr;
ps->prevprevchr = prevprevchr;
ps->nextchr = nextchr;
ps->at_start = at_start;
ps->prev_at_start = prev_at_start;
ps->regnpar = regnpar;
}
/*
* Restore a previously saved parse state.
*/
static void restore_parse_state(parse_state_T *ps)
{
regparse = ps->regparse;
prevchr_len = ps->prevchr_len;
curchr = ps->curchr;
prevchr = ps->prevchr;
prevprevchr = ps->prevprevchr;
nextchr = ps->nextchr;
at_start = ps->at_start;
prev_at_start = ps->prev_at_start;
regnpar = ps->regnpar;
}
/*
* Get the next character without advancing.
*/
static int peekchr(void)
{
static int after_slash = false;
if (curchr != -1) {
return curchr;
}
switch (curchr = regparse[0]) {
case '.':
case '[':
case '~':
/* magic when 'magic' is on */
if (reg_magic >= MAGIC_ON)
curchr = Magic(curchr);
break;
case '(':
case ')':
case '{':
case '%':
case '+':
case '=':
case '?':
case '@':
case '!':
case '&':
case '|':
case '<':
case '>':
case '#': /* future ext. */
case '"': /* future ext. */
case '\'': /* future ext. */
case ',': /* future ext. */
case '-': /* future ext. */
case ':': /* future ext. */
case ';': /* future ext. */
case '`': /* future ext. */
case '/': /* Can't be used in / command */
/* magic only after "\v" */
if (reg_magic == MAGIC_ALL)
curchr = Magic(curchr);
break;
case '*':
/* * is not magic as the very first character, eg "?*ptr", when
* after '^', eg "/^*ptr" and when after "\(", "\|", "\&". But
* "\(\*" is not magic, thus must be magic if "after_slash" */
if (reg_magic >= MAGIC_ON
&& !at_start
&& !(prev_at_start && prevchr == Magic('^'))
&& (after_slash
|| (prevchr != Magic('(')
&& prevchr != Magic('&')
&& prevchr != Magic('|'))))
curchr = Magic('*');
break;
case '^':
/* '^' is only magic as the very first character and if it's after
* "\(", "\|", "\&' or "\n" */
if (reg_magic >= MAGIC_OFF
&& (at_start
|| reg_magic == MAGIC_ALL
|| prevchr == Magic('(')
|| prevchr == Magic('|')
|| prevchr == Magic('&')
|| prevchr == Magic('n')
|| (no_Magic(prevchr) == '('
&& prevprevchr == Magic('%')))) {
curchr = Magic('^');
at_start = true;
prev_at_start = false;
}
break;
case '$':
/* '$' is only magic as the very last char and if it's in front of
* either "\|", "\)", "\&", or "\n" */
if (reg_magic >= MAGIC_OFF) {
char_u *p = regparse + 1;
bool is_magic_all = (reg_magic == MAGIC_ALL);
// ignore \c \C \m \M \v \V and \Z after '$'
while (p[0] == '\\' && (p[1] == 'c' || p[1] == 'C'
|| p[1] == 'm' || p[1] == 'M'
|| p[1] == 'v' || p[1] == 'V'
|| p[1] == 'Z')) {
if (p[1] == 'v') {
is_magic_all = true;
} else if (p[1] == 'm' || p[1] == 'M' || p[1] == 'V') {
is_magic_all = false;
}
p += 2;
}
if (p[0] == NUL
|| (p[0] == '\\'
&& (p[1] == '|' || p[1] == '&' || p[1] == ')'
|| p[1] == 'n'))
|| (is_magic_all
&& (p[0] == '|' || p[0] == '&' || p[0] == ')'))
|| reg_magic == MAGIC_ALL) {
curchr = Magic('$');
}
}
break;
case '\\':
{
int c = regparse[1];
if (c == NUL)
curchr = '\\'; /* trailing '\' */
else if (
c <= '~' && META_flags[c]
) {
/*
* META contains everything that may be magic sometimes,
* except ^ and $ ("\^" and "\$" are only magic after
* "\V"). We now fetch the next character and toggle its
* magicness. Therefore, \ is so meta-magic that it is
* not in META.
*/
curchr = -1;
prev_at_start = at_start;
at_start = false; // be able to say "/\*ptr"
regparse++;
after_slash++;
peekchr();
regparse--;
after_slash--;
curchr = toggle_Magic(curchr);
} else if (vim_strchr(REGEXP_ABBR, c)) {
/*
* Handle abbreviations, like "\t" for TAB -- webb
*/
curchr = backslash_trans(c);
} else if (reg_magic == MAGIC_NONE && (c == '$' || c == '^'))
curchr = toggle_Magic(c);
else {
/*
* Next character can never be (made) magic?
* Then backslashing it won't do anything.
*/
curchr = utf_ptr2char(regparse + 1);
}
break;
}
default:
curchr = utf_ptr2char(regparse);
}
return curchr;
}
/*
* Eat one lexed character. Do this in a way that we can undo it.
*/
static void skipchr(void)
{
/* peekchr() eats a backslash, do the same here */
if (*regparse == '\\')
prevchr_len = 1;
else
prevchr_len = 0;
if (regparse[prevchr_len] != NUL) {
// Exclude composing chars that utfc_ptr2len does include.
prevchr_len += utf_ptr2len(regparse + prevchr_len);
}
regparse += prevchr_len;
prev_at_start = at_start;
at_start = false;
prevprevchr = prevchr;
prevchr = curchr;
curchr = nextchr; /* use previously unget char, or -1 */
nextchr = -1;
}
/*
* Skip a character while keeping the value of prev_at_start for at_start.
* prevchr and prevprevchr are also kept.
*/
static void skipchr_keepstart(void)
{
int as = prev_at_start;
int pr = prevchr;
int prpr = prevprevchr;
skipchr();
at_start = as;
prevchr = pr;
prevprevchr = prpr;
}
/*
* Get the next character from the pattern. We know about magic and such, so
* therefore we need a lexical analyzer.
*/
static int getchr(void)
{
int chr = peekchr();
skipchr();
return chr;
}
/*
* put character back. Works only once!
*/
static void ungetchr(void)
{
nextchr = curchr;
curchr = prevchr;
prevchr = prevprevchr;
at_start = prev_at_start;
prev_at_start = false;
/* Backup regparse, so that it's at the same position as before the
* getchr(). */
regparse -= prevchr_len;
}
/*
* Get and return the value of the hex string at the current position.
* Return -1 if there is no valid hex number.
* The position is updated:
* blahblah\%x20asdf
* before-^ ^-after
* The parameter controls the maximum number of input characters. This will be
* 2 when reading a \%x20 sequence and 4 when reading a \%u20AC sequence.
*/
static int64_t gethexchrs(int maxinputlen)
{
int64_t nr = 0;
int c;
int i;
for (i = 0; i < maxinputlen; ++i) {
c = regparse[0];
if (!ascii_isxdigit(c))
break;
nr <<= 4;
nr |= hex2nr(c);
++regparse;
}
if (i == 0)
return -1;
return nr;
}
/*
* Get and return the value of the decimal string immediately after the
* current position. Return -1 for invalid. Consumes all digits.
*/
static int64_t getdecchrs(void)
{
int64_t nr = 0;
int c;
int i;
for (i = 0;; ++i) {
c = regparse[0];
if (c < '0' || c > '9')
break;
nr *= 10;
nr += c - '0';
++regparse;
curchr = -1; /* no longer valid */
}
if (i == 0)
return -1;
return nr;
}
/*
* get and return the value of the octal string immediately after the current
* position. Return -1 for invalid, or 0-255 for valid. Smart enough to handle
* numbers > 377 correctly (for example, 400 is treated as 40) and doesn't
* treat 8 or 9 as recognised characters. Position is updated:
* blahblah\%o210asdf
* before-^ ^-after
*/
static int64_t getoctchrs(void)
{
int64_t nr = 0;
int c;
int i;
for (i = 0; i < 3 && nr < 040; i++) { // -V536
c = regparse[0];
if (c < '0' || c > '7')
break;
nr <<= 3;
nr |= hex2nr(c);
++regparse;
}
if (i == 0)
return -1;
return nr;
}
/*
* Get a number after a backslash that is inside [].
* When nothing is recognized return a backslash.
*/
static int coll_get_char(void)
{
int64_t nr = -1;
switch (*regparse++) {
case 'd': nr = getdecchrs(); break;
case 'o': nr = getoctchrs(); break;
case 'x': nr = gethexchrs(2); break;
case 'u': nr = gethexchrs(4); break;
case 'U': nr = gethexchrs(8); break;
}
if (nr < 0 || nr > INT_MAX) {
// If getting the number fails be backwards compatible: the character
// is a backslash.
regparse--;
nr = '\\';
}
return nr;
}
/*
* read_limits - Read two integers to be taken as a minimum and maximum.
* If the first character is '-', then the range is reversed.
* Should end with 'end'. If minval is missing, zero is default, if maxval is
* missing, a very big number is the default.
*/
static int read_limits(long *minval, long *maxval)
{
int reverse = false;
char_u *first_char;
long tmp;
if (*regparse == '-') {
// Starts with '-', so reverse the range later.
regparse++;
reverse = true;
}
first_char = regparse;
*minval = getdigits_long(&regparse, false, 0);
if (*regparse == ',') { // There is a comma.
if (ascii_isdigit(*++regparse)) {
*maxval = getdigits_long(&regparse, false, MAX_LIMIT);
} else {
*maxval = MAX_LIMIT;
}
} else if (ascii_isdigit(*first_char)) {
*maxval = *minval; // It was \{n} or \{-n}
} else {
*maxval = MAX_LIMIT; // It was \{} or \{-}
}
if (*regparse == '\\') {
regparse++; // Allow either \{...} or \{...\}
}
if (*regparse != '}') {
sprintf((char *)IObuff, _("E554: Syntax error in %s{...}"),
reg_magic == MAGIC_ALL ? "" : "\\");
EMSG_RET_FAIL(IObuff);
}
/*
* Reverse the range if there was a '-', or make sure it is in the right
* order otherwise.
*/
if ((!reverse && *minval > *maxval) || (reverse && *minval < *maxval)) {
tmp = *minval;
*minval = *maxval;
*maxval = tmp;
}
skipchr(); /* let's be friends with the lexer again */
return OK;
}
/*
* vim_regexec and friends
*/
/*
* Global work variables for vim_regexec().
*/
/* Save the sub-expressions before attempting a match. */
#define save_se(savep, posp, pp) \
REG_MULTI ? save_se_multi((savep), (posp)) : save_se_one((savep), (pp))
/* After a failed match restore the sub-expressions. */
#define restore_se(savep, posp, pp) { \
if (REG_MULTI) \
*(posp) = (savep)->se_u.pos; \
else \
*(pp) = (savep)->se_u.ptr; }
#ifdef REGEXP_DEBUG
int regnarrate = 0;
#endif
// Sometimes need to save a copy of a line. Since alloc()/free() is very
// slow, we keep one allocated piece of memory and only re-allocate it when
// it's too small. It's freed in bt_regexec_both() when finished.
static char_u *reg_tofree = NULL;
static unsigned reg_tofreelen;
// Structure used to store the execution state of the regex engine.
// Which ones are set depends on whether a single-line or multi-line match is
// done:
// single-line multi-line
// reg_match &regmatch_T NULL
// reg_mmatch NULL &regmmatch_T
// reg_startp reg_match->startp <invalid>
// reg_endp reg_match->endp <invalid>
// reg_startpos <invalid> reg_mmatch->startpos
// reg_endpos <invalid> reg_mmatch->endpos
// reg_win NULL window in which to search
// reg_buf curbuf buffer in which to search
// reg_firstlnum <invalid> first line in which to search
// reg_maxline 0 last line nr
// reg_line_lbr false or true false
typedef struct {
regmatch_T *reg_match;
regmmatch_T *reg_mmatch;
char_u **reg_startp;
char_u **reg_endp;
lpos_T *reg_startpos;
lpos_T *reg_endpos;
win_T *reg_win;
buf_T *reg_buf;
linenr_T reg_firstlnum;
linenr_T reg_maxline;
bool reg_line_lbr; // "\n" in string is line break
// The current match-position is remembered with these variables:
linenr_T lnum; ///< line number, relative to first line
char_u *line; ///< start of current line
char_u *input; ///< current input, points into "regline"
int need_clear_subexpr; ///< subexpressions still need to be cleared
int need_clear_zsubexpr; ///< extmatch subexpressions still need to be
///< cleared
// Internal copy of 'ignorecase'. It is set at each call to vim_regexec().
// Normally it gets the value of "rm_ic" or "rmm_ic", but when the pattern
// contains '\c' or '\C' the value is overruled.
bool reg_ic;
// Similar to "reg_ic", but only for 'combining' characters. Set with \Z
// flag in the regexp. Defaults to false, always.
bool reg_icombine;
// Copy of "rmm_maxcol": maximum column to search for a match. Zero when
// there is no maximum.
colnr_T reg_maxcol;
// State for the NFA engine regexec.
int nfa_has_zend; ///< NFA regexp \ze operator encountered.
int nfa_has_backref; ///< NFA regexp \1 .. \9 encountered.
int nfa_nsubexpr; ///< Number of sub expressions actually being used
///< during execution. 1 if only the whole match
///< (subexpr 0) is used.
// listid is global, so that it increases on recursive calls to
// nfa_regmatch(), which means we don't have to clear the lastlist field of
// all the states.
int nfa_listid;
int nfa_alt_listid;
int nfa_has_zsubexpr; ///< NFA regexp has \z( ), set zsubexpr.
} regexec_T;
static regexec_T rex;
static bool rex_in_use = false;
/*
* "regstack" and "backpos" are used by regmatch(). They are kept over calls
* to avoid invoking malloc() and free() often.
* "regstack" is a stack with regitem_T items, sometimes preceded by regstar_T
* or regbehind_T.
* "backpos_T" is a table with backpos_T for BACK
*/
static garray_T regstack = GA_EMPTY_INIT_VALUE;
static garray_T backpos = GA_EMPTY_INIT_VALUE;
/*
* Both for regstack and backpos tables we use the following strategy of
* allocation (to reduce malloc/free calls):
* - Initial size is fairly small.
* - When needed, the tables are grown bigger (8 times at first, double after
* that).
* - After executing the match we free the memory only if the array has grown.
* Thus the memory is kept allocated when it's at the initial size.
* This makes it fast while not keeping a lot of memory allocated.
* A three times speed increase was observed when using many simple patterns.
*/
#define REGSTACK_INITIAL 2048
#define BACKPOS_INITIAL 64
#if defined(EXITFREE)
void free_regexp_stuff(void)
{
ga_clear(&regstack);
ga_clear(&backpos);
xfree(reg_tofree);
xfree(reg_prev_sub);
}
#endif
// Return true if character 'c' is included in 'iskeyword' option for
// "reg_buf" buffer.
static bool reg_iswordc(int c)
{
return vim_iswordc_buf(c, rex.reg_buf);
}
/*
* Get pointer to the line "lnum", which is relative to "reg_firstlnum".
*/
static char_u *reg_getline(linenr_T lnum)
{
// when looking behind for a match/no-match lnum is negative. But we
// can't go before line 1
if (rex.reg_firstlnum + lnum < 1) {
return NULL;
}
if (lnum > rex.reg_maxline) {
// Must have matched the "\n" in the last line.
return (char_u *)"";
}
return ml_get_buf(rex.reg_buf, rex.reg_firstlnum + lnum, false);
}
static regsave_T behind_pos;
static char_u *reg_startzp[NSUBEXP]; /* Workspace to mark beginning */
static char_u *reg_endzp[NSUBEXP]; /* and end of \z(...\) matches */
static lpos_T reg_startzpos[NSUBEXP]; /* idem, beginning pos */
static lpos_T reg_endzpos[NSUBEXP]; /* idem, end pos */
// true if using multi-line regexp.
#define REG_MULTI (rex.reg_match == NULL)
/*
* Match a regexp against a string.
* "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
* Uses curbuf for line count and 'iskeyword'.
* If "line_lbr" is true, consider a "\n" in "line" to be a line break.
*
* Returns 0 for failure, number of lines contained in the match otherwise.
*/
static int
bt_regexec_nl (
regmatch_T *rmp,
char_u *line, /* string to match against */
colnr_T col, /* column to start looking for match */
bool line_lbr
)
{
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_line_lbr = line_lbr;
rex.reg_buf = curbuf;
rex.reg_win = NULL;
rex.reg_ic = rmp->rm_ic;
rex.reg_icombine = false;
rex.reg_maxcol = 0;
long r = bt_regexec_both(line, col, NULL, NULL);
assert(r <= INT_MAX);
return (int)r;
}
/// Wrapper around strchr which accounts for case-insensitive searches and
/// non-ASCII characters.
///
/// This function is used a lot for simple searches, keep it fast!
///
/// @param s string to search
/// @param c character to find in @a s
///
/// @return NULL if no match, otherwise pointer to the position in @a s
static inline char_u *cstrchr(const char_u *const s, const int c)
FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL
FUNC_ATTR_ALWAYS_INLINE
{
if (!rex.reg_ic) {
return vim_strchr(s, c);
}
// Use folded case for UTF-8, slow! For ASCII use libc strpbrk which is
// expected to be highly optimized.
if (c > 0x80) {
const int folded_c = utf_fold(c);
for (const char_u *p = s; *p != NUL; p += utfc_ptr2len(p)) {
if (utf_fold(utf_ptr2char(p)) == folded_c) {
return (char_u *)p;
}
}
return NULL;
}
int cc;
if (ASCII_ISUPPER(c)) {
cc = TOLOWER_ASC(c);
} else if (ASCII_ISLOWER(c)) {
cc = TOUPPER_ASC(c);
} else {
return vim_strchr(s, c);
}
char tofind[] = { (char)c, (char)cc, NUL };
return (char_u *)strpbrk((const char *)s, tofind);
}
/// Matches a regexp against multiple lines.
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
/// Uses curbuf for line count and 'iskeyword'.
///
/// @param win Window in which to search or NULL
/// @param buf Buffer in which to search
/// @param lnum Number of line to start looking for match
/// @param col Column to start looking for match
/// @param tm Timeout limit or NULL
///
/// @return zero if there is no match and number of lines contained in the match
/// otherwise.
static long bt_regexec_multi(regmmatch_T *rmp, win_T *win, buf_T *buf,
linenr_T lnum, colnr_T col,
proftime_T *tm, int *timed_out)
{
rex.reg_match = NULL;
rex.reg_mmatch = rmp;
rex.reg_buf = buf;
rex.reg_win = win;
rex.reg_firstlnum = lnum;
rex.reg_maxline = rex.reg_buf->b_ml.ml_line_count - lnum;
rex.reg_line_lbr = false;
rex.reg_ic = rmp->rmm_ic;
rex.reg_icombine = false;
rex.reg_maxcol = rmp->rmm_maxcol;
return bt_regexec_both(NULL, col, tm, timed_out);
}
/// Match a regexp against a string ("line" points to the string) or multiple
/// lines (if "line" is NULL, use reg_getline()).
/// @return 0 for failure, or number of lines contained in the match.
static long bt_regexec_both(char_u *line,
colnr_T col, // column to start search
proftime_T *tm, // timeout limit or NULL
int *timed_out) // flag set on timeout or NULL
{
bt_regprog_T *prog;
char_u *s;
long retval = 0L;
/* Create "regstack" and "backpos" if they are not allocated yet.
* We allocate *_INITIAL amount of bytes first and then set the grow size
* to much bigger value to avoid many malloc calls in case of deep regular
* expressions. */
if (regstack.ga_data == NULL) {
/* Use an item size of 1 byte, since we push different things
* onto the regstack. */
ga_init(&regstack, 1, REGSTACK_INITIAL);
ga_grow(&regstack, REGSTACK_INITIAL);
ga_set_growsize(&regstack, REGSTACK_INITIAL * 8);
}
if (backpos.ga_data == NULL) {
ga_init(&backpos, sizeof(backpos_T), BACKPOS_INITIAL);
ga_grow(&backpos, BACKPOS_INITIAL);
ga_set_growsize(&backpos, BACKPOS_INITIAL * 8);
}
if (REG_MULTI) {
prog = (bt_regprog_T *)rex.reg_mmatch->regprog;
line = reg_getline((linenr_T)0);
rex.reg_startpos = rex.reg_mmatch->startpos;
rex.reg_endpos = rex.reg_mmatch->endpos;
} else {
prog = (bt_regprog_T *)rex.reg_match->regprog;
rex.reg_startp = rex.reg_match->startp;
rex.reg_endp = rex.reg_match->endp;
}
/* Be paranoid... */
if (prog == NULL || line == NULL) {
IEMSG(_(e_null));
goto theend;
}
/* Check validity of program. */
if (prog_magic_wrong())
goto theend;
// If the start column is past the maximum column: no need to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
goto theend;
}
// If pattern contains "\c" or "\C": overrule value of rex.reg_ic
if (prog->regflags & RF_ICASE) {
rex.reg_ic = true;
} else if (prog->regflags & RF_NOICASE) {
rex.reg_ic = false;
}
// If pattern contains "\Z" overrule value of rex.reg_icombine
if (prog->regflags & RF_ICOMBINE) {
rex.reg_icombine = true;
}
/* If there is a "must appear" string, look for it. */
if (prog->regmust != NULL) {
int c = utf_ptr2char(prog->regmust);
s = line + col;
// This is used very often, esp. for ":global". Use two versions of
// the loop to avoid overhead of conditions.
if (!rex.reg_ic) {
while ((s = vim_strchr(s, c)) != NULL) {
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) {
break; // Found it.
}
MB_PTR_ADV(s);
}
} else {
while ((s = cstrchr(s, c)) != NULL) {
if (cstrncmp(s, prog->regmust, &prog->regmlen) == 0) {
break; // Found it.
}
MB_PTR_ADV(s);
}
}
if (s == NULL) { // Not present.
goto theend;
}
}
rex.line = line;
rex.lnum = 0;
reg_toolong = false;
/* Simplest case: Anchored match need be tried only once. */
if (prog->reganch) {
int c = utf_ptr2char(rex.line + col);
if (prog->regstart == NUL
|| prog->regstart == c
|| (rex.reg_ic
&& (utf_fold(prog->regstart) == utf_fold(c)
|| (c < 255 && prog->regstart < 255
&& mb_tolower(prog->regstart) == mb_tolower(c))))) {
retval = regtry(prog, col, tm, timed_out);
} else {
retval = 0;
}
} else {
int tm_count = 0;
/* Messy cases: unanchored match. */
while (!got_int) {
if (prog->regstart != NUL) {
// Skip until the char we know it must start with.
s = cstrchr(rex.line + col, prog->regstart);
if (s == NULL) {
retval = 0;
break;
}
col = (int)(s - rex.line);
}
// Check for maximum column to try.
if (rex.reg_maxcol > 0 && col >= rex.reg_maxcol) {
retval = 0;
break;
}
retval = regtry(prog, col, tm, timed_out);
if (retval > 0) {
break;
}
// if not currently on the first line, get it again
if (rex.lnum != 0) {
rex.lnum = 0;
rex.line = reg_getline((linenr_T)0);
}
if (rex.line[col] == NUL) {
break;
}
col += (*mb_ptr2len)(rex.line + col);
// Check for timeout once in a twenty times to avoid overhead.
if (tm != NULL && ++tm_count == 20) {
tm_count = 0;
if (profile_passed_limit(*tm)) {
if (timed_out != NULL) {
*timed_out = true;
}
break;
}
}
}
}
theend:
/* Free "reg_tofree" when it's a bit big.
* Free regstack and backpos if they are bigger than their initial size. */
if (reg_tofreelen > 400) {
XFREE_CLEAR(reg_tofree);
}
if (regstack.ga_maxlen > REGSTACK_INITIAL)
ga_clear(&regstack);
if (backpos.ga_maxlen > BACKPOS_INITIAL)
ga_clear(&backpos);
if (retval > 0) {
// Make sure the end is never before the start. Can happen when \zs
// and \ze are used.
if (REG_MULTI) {
const lpos_T *const start = &rex.reg_mmatch->startpos[0];
const lpos_T *const end = &rex.reg_mmatch->endpos[0];
if (end->lnum < start->lnum
|| (end->lnum == start->lnum && end->col < start->col)) {
rex.reg_mmatch->endpos[0] = rex.reg_mmatch->startpos[0];
}
} else {
if (rex.reg_match->endp[0] < rex.reg_match->startp[0]) {
rex.reg_match->endp[0] = rex.reg_match->startp[0];
}
}
}
return retval;
}
/*
* Create a new extmatch and mark it as referenced once.
*/
static reg_extmatch_T *make_extmatch(void)
FUNC_ATTR_NONNULL_RET
{
reg_extmatch_T *em = xcalloc(1, sizeof(reg_extmatch_T));
em->refcnt = 1;
return em;
}
/*
* Add a reference to an extmatch.
*/
reg_extmatch_T *ref_extmatch(reg_extmatch_T *em)
{
if (em != NULL)
em->refcnt++;
return em;
}
/*
* Remove a reference to an extmatch. If there are no references left, free
* the info.
*/
void unref_extmatch(reg_extmatch_T *em)
{
int i;
if (em != NULL && --em->refcnt <= 0) {
for (i = 0; i < NSUBEXP; ++i)
xfree(em->matches[i]);
xfree(em);
}
}
/// Try match of "prog" with at rex.line["col"].
/// @returns 0 for failure, or number of lines contained in the match.
static long regtry(bt_regprog_T *prog,
colnr_T col,
proftime_T *tm, // timeout limit or NULL
int *timed_out) // flag set on timeout or NULL
{
rex.input = rex.line + col;
rex.need_clear_subexpr = true;
// Clear the external match subpointers if necessaey.
rex.need_clear_zsubexpr = (prog->reghasz == REX_SET);
if (regmatch(prog->program + 1, tm, timed_out) == 0) {
return 0;
}
cleanup_subexpr();
if (REG_MULTI) {
if (rex.reg_startpos[0].lnum < 0) {
rex.reg_startpos[0].lnum = 0;
rex.reg_startpos[0].col = col;
}
if (rex.reg_endpos[0].lnum < 0) {
rex.reg_endpos[0].lnum = rex.lnum;
rex.reg_endpos[0].col = (int)(rex.input - rex.line);
} else {
// Use line number of "\ze".
rex.lnum = rex.reg_endpos[0].lnum;
}
} else {
if (rex.reg_startp[0] == NULL) {
rex.reg_startp[0] = rex.line + col;
}
if (rex.reg_endp[0] == NULL) {
rex.reg_endp[0] = rex.input;
}
}
/* Package any found \z(...\) matches for export. Default is none. */
unref_extmatch(re_extmatch_out);
re_extmatch_out = NULL;
if (prog->reghasz == REX_SET) {
int i;
cleanup_zsubexpr();
re_extmatch_out = make_extmatch();
for (i = 0; i < NSUBEXP; i++) {
if (REG_MULTI) {
/* Only accept single line matches. */
if (reg_startzpos[i].lnum >= 0
&& reg_endzpos[i].lnum == reg_startzpos[i].lnum
&& reg_endzpos[i].col >= reg_startzpos[i].col) {
re_extmatch_out->matches[i] =
vim_strnsave(reg_getline(reg_startzpos[i].lnum)
+ reg_startzpos[i].col,
reg_endzpos[i].col
- reg_startzpos[i].col);
}
} else {
if (reg_startzp[i] != NULL && reg_endzp[i] != NULL)
re_extmatch_out->matches[i] =
vim_strnsave(reg_startzp[i], reg_endzp[i] - reg_startzp[i]);
}
}
}
return 1 + rex.lnum;
}
// Get class of previous character.
static int reg_prev_class(void)
{
if (rex.input > rex.line) {
return mb_get_class_tab(
rex.input - 1 - utf_head_off(rex.line, rex.input - 1),
rex.reg_buf->b_chartab);
}
return -1;
}
// Return true if the current rex.input position matches the Visual area.
static bool reg_match_visual(void)
{
pos_T top, bot;
linenr_T lnum;
colnr_T col;
win_T *wp = rex.reg_win == NULL ? curwin : rex.reg_win;
int mode;
colnr_T start, end;
colnr_T start2, end2;
// Check if the buffer is the current buffer.
if (rex.reg_buf != curbuf || VIsual.lnum == 0) {
return false;
}
if (VIsual_active) {
if (lt(VIsual, wp->w_cursor)) {
top = VIsual;
bot = wp->w_cursor;
} else {
top = wp->w_cursor;
bot = VIsual;
}
mode = VIsual_mode;
} else {
if (lt(curbuf->b_visual.vi_start, curbuf->b_visual.vi_end)) {
top = curbuf->b_visual.vi_start;
bot = curbuf->b_visual.vi_end;
} else {
top = curbuf->b_visual.vi_end;
bot = curbuf->b_visual.vi_start;
}
mode = curbuf->b_visual.vi_mode;
}
lnum = rex.lnum + rex.reg_firstlnum;
if (lnum < top.lnum || lnum > bot.lnum) {
return false;
}
if (mode == 'v') {
col = (colnr_T)(rex.input - rex.line);
if ((lnum == top.lnum && col < top.col)
|| (lnum == bot.lnum && col >= bot.col + (*p_sel != 'e'))) {
return false;
}
} else if (mode == Ctrl_V) {
getvvcol(wp, &top, &start, NULL, &end);
getvvcol(wp, &bot, &start2, NULL, &end2);
if (start2 < start)
start = start2;
if (end2 > end)
end = end2;
if (top.col == MAXCOL || bot.col == MAXCOL)
end = MAXCOL;
unsigned int cols_u = win_linetabsize(wp, rex.line,
(colnr_T)(rex.input - rex.line));
assert(cols_u <= MAXCOL);
colnr_T cols = (colnr_T)cols_u;
if (cols < start || cols > end - (*p_sel == 'e')) {
return false;
}
}
return true;
}
#define ADVANCE_REGINPUT() MB_PTR_ADV(rex.input)
/*
* The arguments from BRACE_LIMITS are stored here. They are actually local
* to regmatch(), but they are here to reduce the amount of stack space used
* (it can be called recursively many times).
*/
static long bl_minval;
static long bl_maxval;
/// Main matching routine
///
/// Conceptually the strategy is simple: Check to see whether the current node
/// matches, push an item onto the regstack and loop to see whether the rest
/// matches, and then act accordingly. In practice we make some effort to
/// avoid using the regstack, in particular by going through "ordinary" nodes
/// (that don't need to know whether the rest of the match failed) by a nested
/// loop.
///
/// Returns true when there is a match. Leaves rex.input and rex.lnum
/// just after the last matched character.
/// Returns false when there is no match. Leaves rex.input and rex.lnum in an
/// undefined state!
static bool regmatch(
char_u *scan, // Current node.
proftime_T *tm, // timeout limit or NULL
int *timed_out // flag set on timeout or NULL
)
{
char_u *next; /* Next node. */
int op;
int c;
regitem_T *rp;
int no;
int status; // one of the RA_ values:
int tm_count = 0;
#define RA_FAIL 1 // something failed, abort
#define RA_CONT 2 // continue in inner loop
#define RA_BREAK 3 // break inner loop
#define RA_MATCH 4 // successful match
#define RA_NOMATCH 5 // didn't match
// Make "regstack" and "backpos" empty. They are allocated and freed in
// bt_regexec_both() to reduce malloc()/free() calls.
regstack.ga_len = 0;
backpos.ga_len = 0;
/*
* Repeat until "regstack" is empty.
*/
for (;; ) {
/* Some patterns may take a long time to match, e.g., "\([a-z]\+\)\+Q".
* Allow interrupting them with CTRL-C. */
fast_breakcheck();
#ifdef REGEXP_DEBUG
if (scan != NULL && regnarrate) {
mch_errmsg((char *)regprop(scan));
mch_errmsg("(\n");
}
#endif
/*
* Repeat for items that can be matched sequentially, without using the
* regstack.
*/
for (;; ) {
if (got_int || scan == NULL) {
status = RA_FAIL;
break;
}
// Check for timeout once in a 100 times to avoid overhead.
if (tm != NULL && ++tm_count == 100) {
tm_count = 0;
if (profile_passed_limit(*tm)) {
if (timed_out != NULL) {
*timed_out = true;
}
status = RA_FAIL;
break;
}
}
status = RA_CONT;
#ifdef REGEXP_DEBUG
if (regnarrate) {
mch_errmsg((char *)regprop(scan));
mch_errmsg("...\n");
if (re_extmatch_in != NULL) {
int i;
mch_errmsg(_("External submatches:\n"));
for (i = 0; i < NSUBEXP; i++) {
mch_errmsg(" \"");
if (re_extmatch_in->matches[i] != NULL)
mch_errmsg((char *)re_extmatch_in->matches[i]);
mch_errmsg("\"\n");
}
}
}
#endif
next = regnext(scan);
op = OP(scan);
// Check for character class with NL added.
if (!rex.reg_line_lbr && WITH_NL(op) && REG_MULTI
&& *rex.input == NUL && rex.lnum <= rex.reg_maxline) {
reg_nextline();
} else if (rex.reg_line_lbr && WITH_NL(op) && *rex.input == '\n') {
ADVANCE_REGINPUT();
} else {
if (WITH_NL(op)) {
op -= ADD_NL;
}
c = utf_ptr2char(rex.input);
switch (op) {
case BOL:
if (rex.input != rex.line) {
status = RA_NOMATCH;
}
break;
case EOL:
if (c != NUL) {
status = RA_NOMATCH;
}
break;
case RE_BOF:
// We're not at the beginning of the file when below the first
// line where we started, not at the start of the line or we
// didn't start at the first line of the buffer.
if (rex.lnum != 0 || rex.input != rex.line
|| (REG_MULTI && rex.reg_firstlnum > 1)) {
status = RA_NOMATCH;
}
break;
case RE_EOF:
if (rex.lnum != rex.reg_maxline || c != NUL) {
status = RA_NOMATCH;
}
break;
case CURSOR:
// Check if the buffer is in a window and compare the
// rex.reg_win->w_cursor position to the match position.
if (rex.reg_win == NULL
|| (rex.lnum + rex.reg_firstlnum != rex.reg_win->w_cursor.lnum)
|| ((colnr_T)(rex.input - rex.line) !=
rex.reg_win->w_cursor.col)) {
status = RA_NOMATCH;
}
break;
case RE_MARK:
/* Compare the mark position to the match position. */
{
int mark = OPERAND(scan)[0];
int cmp = OPERAND(scan)[1];
pos_T *pos;
pos = getmark_buf(rex.reg_buf, mark, false);
if (pos == NULL // mark doesn't exist
|| pos->lnum <= 0) { // mark isn't set in reg_buf
status = RA_NOMATCH;
} else {
const colnr_T pos_col = pos->lnum == rex.lnum + rex.reg_firstlnum
&& pos->col == MAXCOL
? (colnr_T)STRLEN(reg_getline(pos->lnum - rex.reg_firstlnum))
: pos->col;
if (pos->lnum == rex.lnum + rex.reg_firstlnum
? (pos_col == (colnr_T)(rex.input - rex.line)
? (cmp == '<' || cmp == '>')
: (pos_col < (colnr_T)(rex.input - rex.line)
? cmp != '>'
: cmp != '<'))
: (pos->lnum < rex.lnum + rex.reg_firstlnum
? cmp != '>'
: cmp != '<')) {
status = RA_NOMATCH;
}
}
}
break;
case RE_VISUAL:
if (!reg_match_visual())
status = RA_NOMATCH;
break;
case RE_LNUM:
assert(rex.lnum + rex.reg_firstlnum >= 0
&& (uintmax_t)(rex.lnum + rex.reg_firstlnum) <= UINT32_MAX);
if (!REG_MULTI
|| !re_num_cmp((uint32_t)(rex.lnum + rex.reg_firstlnum), scan)) {
status = RA_NOMATCH;
}
break;
case RE_COL:
assert(rex.input - rex.line + 1 >= 0
&& (uintmax_t)(rex.input - rex.line + 1) <= UINT32_MAX);
if (!re_num_cmp((uint32_t)(rex.input - rex.line + 1), scan)) {
status = RA_NOMATCH;
}
break;
case RE_VCOL:
if (!re_num_cmp(win_linetabsize(rex.reg_win == NULL
? curwin : rex.reg_win,
rex.line,
(colnr_T)(rex.input - rex.line)) + 1,
scan)) {
status = RA_NOMATCH;
}
break;
case BOW: // \<word; rex.input points to w
if (c == NUL) { // Can't match at end of line
status = RA_NOMATCH;
} else {
// Get class of current and previous char (if it exists).
const int this_class =
mb_get_class_tab(rex.input, rex.reg_buf->b_chartab);
if (this_class <= 1) {
status = RA_NOMATCH; // Not on a word at all.
} else if (reg_prev_class() == this_class) {
status = RA_NOMATCH; // Previous char is in same word.
}
}
break;
case EOW: // word\>; rex.input points after d
if (rex.input == rex.line) { // Can't match at start of line
status = RA_NOMATCH;
} else {
int this_class, prev_class;
// Get class of current and previous char (if it exists).
this_class = mb_get_class_tab(rex.input, rex.reg_buf->b_chartab);
prev_class = reg_prev_class();
if (this_class == prev_class
|| prev_class == 0 || prev_class == 1) {
status = RA_NOMATCH;
}
}
break; // Matched with EOW
case ANY:
// ANY does not match new lines.
if (c == NUL) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case IDENT:
if (!vim_isIDc(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case SIDENT:
if (ascii_isdigit(*rex.input) || !vim_isIDc(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case KWORD:
if (!vim_iswordp_buf(rex.input, rex.reg_buf)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SKWORD:
if (ascii_isdigit(*rex.input)
|| !vim_iswordp_buf(rex.input, rex.reg_buf)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case FNAME:
if (!vim_isfilec(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SFNAME:
if (ascii_isdigit(*rex.input) || !vim_isfilec(c)) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case PRINT:
if (!vim_isprintc(PTR2CHAR(rex.input))) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case SPRINT:
if (ascii_isdigit(*rex.input) || !vim_isprintc(PTR2CHAR(rex.input))) {
status = RA_NOMATCH;
} else {
ADVANCE_REGINPUT();
}
break;
case WHITE:
if (!ascii_iswhite(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NWHITE:
if (c == NUL || ascii_iswhite(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case DIGIT:
if (!ri_digit(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NDIGIT:
if (c == NUL || ri_digit(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case HEX:
if (!ri_hex(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NHEX:
if (c == NUL || ri_hex(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case OCTAL:
if (!ri_octal(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NOCTAL:
if (c == NUL || ri_octal(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case WORD:
if (!ri_word(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NWORD:
if (c == NUL || ri_word(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case HEAD:
if (!ri_head(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NHEAD:
if (c == NUL || ri_head(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case ALPHA:
if (!ri_alpha(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NALPHA:
if (c == NUL || ri_alpha(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case LOWER:
if (!ri_lower(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NLOWER:
if (c == NUL || ri_lower(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case UPPER:
if (!ri_upper(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case NUPPER:
if (c == NUL || ri_upper(c))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case EXACTLY:
{
int len;
char_u *opnd;
opnd = OPERAND(scan);
// Inline the first byte, for speed.
if (*opnd != *rex.input
&& (!rex.reg_ic)) {
status = RA_NOMATCH;
} else if (*opnd == NUL) {
// match empty string always works; happens when "~" is
// empty.
} else {
if (opnd[1] == NUL && !rex.reg_ic) {
len = 1; // matched a single byte above
} else {
// Need to match first byte again for multi-byte.
len = (int)STRLEN(opnd);
if (cstrncmp(opnd, rex.input, &len) != 0) {
status = RA_NOMATCH;
}
}
// Check for following composing character, unless %C
// follows (skips over all composing chars).
if (status != RA_NOMATCH
&& UTF_COMPOSINGLIKE(rex.input, rex.input + len)
&& !rex.reg_icombine
&& OP(next) != RE_COMPOSING) {
// raaron: This code makes a composing character get
// ignored, which is the correct behavior (sometimes)
// for voweled Hebrew texts.
status = RA_NOMATCH;
}
if (status != RA_NOMATCH) {
rex.input += len;
}
}
}
break;
case ANYOF:
case ANYBUT:
if (c == NUL)
status = RA_NOMATCH;
else if ((cstrchr(OPERAND(scan), c) == NULL) == (op == ANYOF))
status = RA_NOMATCH;
else
ADVANCE_REGINPUT();
break;
case MULTIBYTECODE:
{
int i, len;
const char_u *opnd = OPERAND(scan);
// Safety check (just in case 'encoding' was changed since
// compiling the program).
if ((len = (*mb_ptr2len)(opnd)) < 2) {
status = RA_NOMATCH;
break;
}
const int opndc = utf_ptr2char(opnd);
if (utf_iscomposing(opndc)) {
// When only a composing char is given match at any
// position where that composing char appears.
status = RA_NOMATCH;
for (i = 0; rex.input[i] != NUL;
i += utf_ptr2len(rex.input + i)) {
const int inpc = utf_ptr2char(rex.input + i);
if (!utf_iscomposing(inpc)) {
if (i > 0) {
break;
}
} else if (opndc == inpc) {
// Include all following composing chars.
len = i + utfc_ptr2len(rex.input + i);
status = RA_MATCH;
break;
}
}
} else {
for (i = 0; i < len; i++) {
if (opnd[i] != rex.input[i]) {
status = RA_NOMATCH;
break;
}
}
}
rex.input += len;
}
break;
case RE_COMPOSING:
{
// Skip composing characters.
while (utf_iscomposing(utf_ptr2char(rex.input))) {
MB_CPTR_ADV(rex.input);
}
}
break;
case NOTHING:
break;
case BACK:
{
int i;
/*
* When we run into BACK we need to check if we don't keep
* looping without matching any input. The second and later
* times a BACK is encountered it fails if the input is still
* at the same position as the previous time.
* The positions are stored in "backpos" and found by the
* current value of "scan", the position in the RE program.
*/
backpos_T *bp = (backpos_T *)backpos.ga_data;
for (i = 0; i < backpos.ga_len; ++i)
if (bp[i].bp_scan == scan)
break;
if (i == backpos.ga_len) {
backpos_T *p = GA_APPEND_VIA_PTR(backpos_T, &backpos);
p->bp_scan = scan;
} else if (reg_save_equal(&bp[i].bp_pos))
/* Still at same position as last time, fail. */
status = RA_NOMATCH;
assert(status != RA_FAIL);
if (status != RA_NOMATCH) {
reg_save(&bp[i].bp_pos, &backpos);
}
}
break;
case MOPEN + 0: /* Match start: \zs */
case MOPEN + 1: /* \( */
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
{
no = op - MOPEN;
cleanup_subexpr();
rp = regstack_push(RS_MOPEN, scan);
if (rp == NULL)
status = RA_FAIL;
else {
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &rex.reg_startpos[no],
&rex.reg_startp[no]);
// We simply continue and handle the result when done.
}
}
break;
case NOPEN: /* \%( */
case NCLOSE: /* \) after \%( */
if (regstack_push(RS_NOPEN, scan) == NULL)
status = RA_FAIL;
/* We simply continue and handle the result when done. */
break;
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
{
no = op - ZOPEN;
cleanup_zsubexpr();
rp = regstack_push(RS_ZOPEN, scan);
if (rp == NULL)
status = RA_FAIL;
else {
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_startzpos[no],
&reg_startzp[no]);
/* We simply continue and handle the result when done. */
}
}
break;
case MCLOSE + 0: /* Match end: \ze */
case MCLOSE + 1: /* \) */
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
{
no = op - MCLOSE;
cleanup_subexpr();
rp = regstack_push(RS_MCLOSE, scan);
if (rp == NULL) {
status = RA_FAIL;
} else {
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &rex.reg_endpos[no], &rex.reg_endp[no]);
// We simply continue and handle the result when done.
}
}
break;
case ZCLOSE + 1: /* \) after \z( */
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
{
no = op - ZCLOSE;
cleanup_zsubexpr();
rp = regstack_push(RS_ZCLOSE, scan);
if (rp == NULL)
status = RA_FAIL;
else {
rp->rs_no = no;
save_se(&rp->rs_un.sesave, &reg_endzpos[no],
&reg_endzp[no]);
/* We simply continue and handle the result when done. */
}
}
break;
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
{
int len;
no = op - BACKREF;
cleanup_subexpr();
if (!REG_MULTI) { // Single-line regexp
if (rex.reg_startp[no] == NULL || rex.reg_endp[no] == NULL) {
// Backref was not set: Match an empty string.
len = 0;
} else {
// Compare current input with back-ref in the same line.
len = (int)(rex.reg_endp[no] - rex.reg_startp[no]);
if (cstrncmp(rex.reg_startp[no], rex.input, &len) != 0) {
status = RA_NOMATCH;
}
}
} else { // Multi-line regexp
if (rex.reg_startpos[no].lnum < 0 || rex.reg_endpos[no].lnum < 0) {
// Backref was not set: Match an empty string.
len = 0;
} else {
if (rex.reg_startpos[no].lnum == rex.lnum
&& rex.reg_endpos[no].lnum == rex.lnum) {
// Compare back-ref within the current line.
len = rex.reg_endpos[no].col - rex.reg_startpos[no].col;
if (cstrncmp(rex.line + rex.reg_startpos[no].col,
rex.input, &len) != 0) {
status = RA_NOMATCH;
}
} else {
// Messy situation: Need to compare between two lines.
int r = match_with_backref(rex.reg_startpos[no].lnum,
rex.reg_startpos[no].col,
rex.reg_endpos[no].lnum,
rex.reg_endpos[no].col,
&len);
if (r != RA_MATCH) {
status = r;
}
}
}
}
// Matched the backref, skip over it.
rex.input += len;
}
break;
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
{
cleanup_zsubexpr();
no = op - ZREF;
if (re_extmatch_in != NULL
&& re_extmatch_in->matches[no] != NULL) {
int len = (int)STRLEN(re_extmatch_in->matches[no]);
if (cstrncmp(re_extmatch_in->matches[no], rex.input, &len) != 0) {
status = RA_NOMATCH;
} else {
rex.input += len;
}
} else {
// Backref was not set: Match an empty string.
}
}
break;
case BRANCH:
{
if (OP(next) != BRANCH) /* No choice. */
next = OPERAND(scan); /* Avoid recursion. */
else {
rp = regstack_push(RS_BRANCH, scan);
if (rp == NULL)
status = RA_FAIL;
else
status = RA_BREAK; /* rest is below */
}
}
break;
case BRACE_LIMITS:
{
if (OP(next) == BRACE_SIMPLE) {
bl_minval = OPERAND_MIN(scan);
bl_maxval = OPERAND_MAX(scan);
} else if (OP(next) >= BRACE_COMPLEX
&& OP(next) < BRACE_COMPLEX + 10) {
no = OP(next) - BRACE_COMPLEX;
brace_min[no] = OPERAND_MIN(scan);
brace_max[no] = OPERAND_MAX(scan);
brace_count[no] = 0;
} else {
internal_error("BRACE_LIMITS");
status = RA_FAIL;
}
}
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
{
no = op - BRACE_COMPLEX;
++brace_count[no];
/* If not matched enough times yet, try one more */
if (brace_count[no] <= (brace_min[no] <= brace_max[no]
? brace_min[no] : brace_max[no])) {
rp = regstack_push(RS_BRCPLX_MORE, scan);
if (rp == NULL)
status = RA_FAIL;
else {
rp->rs_no = no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
/* We continue and handle the result when done. */
}
break;
}
/* If matched enough times, may try matching some more */
if (brace_min[no] <= brace_max[no]) {
/* Range is the normal way around, use longest match */
if (brace_count[no] <= brace_max[no]) {
rp = regstack_push(RS_BRCPLX_LONG, scan);
if (rp == NULL)
status = RA_FAIL;
else {
rp->rs_no = no;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
/* We continue and handle the result when done. */
}
}
} else {
/* Range is backwards, use shortest match first */
if (brace_count[no] <= brace_min[no]) {
rp = regstack_push(RS_BRCPLX_SHORT, scan);
if (rp == NULL)
status = RA_FAIL;
else {
reg_save(&rp->rs_un.regsave, &backpos);
/* We continue and handle the result when done. */
}
}
}
}
break;
case BRACE_SIMPLE:
case STAR:
case PLUS:
{
regstar_T rst;
/*
* Lookahead to avoid useless match attempts when we know
* what character comes next.
*/
if (OP(next) == EXACTLY) {
rst.nextb = *OPERAND(next);
if (rex.reg_ic) {
if (mb_isupper(rst.nextb)) {
rst.nextb_ic = mb_tolower(rst.nextb);
} else {
rst.nextb_ic = mb_toupper(rst.nextb);
}
} else {
rst.nextb_ic = rst.nextb;
}
} else {
rst.nextb = NUL;
rst.nextb_ic = NUL;
}
if (op != BRACE_SIMPLE) {
rst.minval = (op == STAR) ? 0 : 1;
rst.maxval = MAX_LIMIT;
} else {
rst.minval = bl_minval;
rst.maxval = bl_maxval;
}
/*
* When maxval > minval, try matching as much as possible, up
* to maxval. When maxval < minval, try matching at least the
* minimal number (since the range is backwards, that's also
* maxval!).
*/
rst.count = regrepeat(OPERAND(scan), rst.maxval);
if (got_int) {
status = RA_FAIL;
break;
}
if (rst.minval <= rst.maxval
? rst.count >= rst.minval : rst.count >= rst.maxval) {
/* It could match. Prepare for trying to match what
* follows. The code is below. Parameters are stored in
* a regstar_T on the regstack. */
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
EMSG(_(e_maxmempat));
status = RA_FAIL;
} else {
ga_grow(&regstack, sizeof(regstar_T));
regstack.ga_len += sizeof(regstar_T);
rp = regstack_push(rst.minval <= rst.maxval
? RS_STAR_LONG : RS_STAR_SHORT, scan);
if (rp == NULL)
status = RA_FAIL;
else {
*(((regstar_T *)rp) - 1) = rst;
status = RA_BREAK; /* skip the restore bits */
}
}
} else
status = RA_NOMATCH;
}
break;
case NOMATCH:
case MATCH:
case SUBPAT:
rp = regstack_push(RS_NOMATCH, scan);
if (rp == NULL)
status = RA_FAIL;
else {
rp->rs_no = op;
reg_save(&rp->rs_un.regsave, &backpos);
next = OPERAND(scan);
/* We continue and handle the result when done. */
}
break;
case BEHIND:
case NOBEHIND:
/* Need a bit of room to store extra positions. */
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
EMSG(_(e_maxmempat));
status = RA_FAIL;
} else {
ga_grow(&regstack, sizeof(regbehind_T));
regstack.ga_len += sizeof(regbehind_T);
rp = regstack_push(RS_BEHIND1, scan);
if (rp == NULL)
status = RA_FAIL;
else {
/* Need to save the subexpr to be able to restore them
* when there is a match but we don't use it. */
save_subexpr(((regbehind_T *)rp) - 1);
rp->rs_no = op;
reg_save(&rp->rs_un.regsave, &backpos);
/* First try if what follows matches. If it does then we
* check the behind match by looping. */
}
}
break;
case BHPOS:
if (REG_MULTI) {
if (behind_pos.rs_u.pos.col != (colnr_T)(rex.input - rex.line)
|| behind_pos.rs_u.pos.lnum != rex.lnum) {
status = RA_NOMATCH;
}
} else if (behind_pos.rs_u.ptr != rex.input) {
status = RA_NOMATCH;
}
break;
case NEWL:
if ((c != NUL || !REG_MULTI || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) && (c != '\n' || !rex.reg_line_lbr)) {
status = RA_NOMATCH;
} else if (rex.reg_line_lbr) {
ADVANCE_REGINPUT();
} else {
reg_nextline();
}
break;
case END:
status = RA_MATCH; /* Success! */
break;
default:
IEMSG(_(e_re_corr));
#ifdef REGEXP_DEBUG
printf("Illegal op code %d\n", op);
#endif
status = RA_FAIL;
break;
}
}
/* If we can't continue sequentially, break the inner loop. */
if (status != RA_CONT)
break;
/* Continue in inner loop, advance to next item. */
scan = next;
} /* end of inner loop */
/*
* If there is something on the regstack execute the code for the state.
* If the state is popped then loop and use the older state.
*/
while (!GA_EMPTY(&regstack) && status != RA_FAIL) {
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
switch (rp->rs_state) {
case RS_NOPEN:
/* Result is passed on as-is, simply pop the state. */
regstack_pop(&scan);
break;
case RS_MOPEN:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
restore_se(&rp->rs_un.sesave, &rex.reg_startpos[rp->rs_no],
&rex.reg_startp[rp->rs_no]);
}
regstack_pop(&scan);
break;
case RS_ZOPEN:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_startzpos[rp->rs_no],
&reg_startzp[rp->rs_no]);
regstack_pop(&scan);
break;
case RS_MCLOSE:
// Pop the state. Restore pointers when there is no match.
if (status == RA_NOMATCH) {
restore_se(&rp->rs_un.sesave, &rex.reg_endpos[rp->rs_no],
&rex.reg_endp[rp->rs_no]);
}
regstack_pop(&scan);
break;
case RS_ZCLOSE:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
restore_se(&rp->rs_un.sesave, &reg_endzpos[rp->rs_no],
&reg_endzp[rp->rs_no]);
regstack_pop(&scan);
break;
case RS_BRANCH:
if (status == RA_MATCH)
/* this branch matched, use it */
regstack_pop(&scan);
else {
if (status != RA_BREAK) {
/* After a non-matching branch: try next one. */
reg_restore(&rp->rs_un.regsave, &backpos);
scan = rp->rs_scan;
}
if (scan == NULL || OP(scan) != BRANCH) {
/* no more branches, didn't find a match */
status = RA_NOMATCH;
regstack_pop(&scan);
} else {
/* Prepare to try a branch. */
rp->rs_scan = regnext(scan);
reg_save(&rp->rs_un.regsave, &backpos);
scan = OPERAND(scan);
}
}
break;
case RS_BRCPLX_MORE:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH) {
reg_restore(&rp->rs_un.regsave, &backpos);
--brace_count[rp->rs_no]; /* decrement match count */
}
regstack_pop(&scan);
break;
case RS_BRCPLX_LONG:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH) {
/* There was no match, but we did find enough matches. */
reg_restore(&rp->rs_un.regsave, &backpos);
--brace_count[rp->rs_no];
/* continue with the items after "\{}" */
status = RA_CONT;
}
regstack_pop(&scan);
if (status == RA_CONT)
scan = regnext(scan);
break;
case RS_BRCPLX_SHORT:
/* Pop the state. Restore pointers when there is no match. */
if (status == RA_NOMATCH)
/* There was no match, try to match one more item. */
reg_restore(&rp->rs_un.regsave, &backpos);
regstack_pop(&scan);
if (status == RA_NOMATCH) {
scan = OPERAND(scan);
status = RA_CONT;
}
break;
case RS_NOMATCH:
/* Pop the state. If the operand matches for NOMATCH or
* doesn't match for MATCH/SUBPAT, we fail. Otherwise backup,
* except for SUBPAT, and continue with the next item. */
if (status == (rp->rs_no == NOMATCH ? RA_MATCH : RA_NOMATCH))
status = RA_NOMATCH;
else {
status = RA_CONT;
if (rp->rs_no != SUBPAT) /* zero-width */
reg_restore(&rp->rs_un.regsave, &backpos);
}
regstack_pop(&scan);
if (status == RA_CONT)
scan = regnext(scan);
break;
case RS_BEHIND1:
if (status == RA_NOMATCH) {
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
} else {
/* The stuff after BEHIND/NOBEHIND matches. Now try if
* the behind part does (not) match before the current
* position in the input. This must be done at every
* position in the input and checking if the match ends at
* the current position. */
/* save the position after the found match for next */
reg_save(&(((regbehind_T *)rp) - 1)->save_after, &backpos);
/* Start looking for a match with operand at the current
* position. Go back one character until we find the
* result, hitting the start of the line or the previous
* line (for multi-line matching).
* Set behind_pos to where the match should end, BHPOS
* will match it. Save the current value. */
(((regbehind_T *)rp) - 1)->save_behind = behind_pos;
behind_pos = rp->rs_un.regsave;
rp->rs_state = RS_BEHIND2;
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
}
break;
case RS_BEHIND2:
/*
* Looping for BEHIND / NOBEHIND match.
*/
if (status == RA_MATCH && reg_save_equal(&behind_pos)) {
/* found a match that ends where "next" started */
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == BEHIND)
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
else {
/* But we didn't want a match. Need to restore the
* subexpr, because what follows matched, so they have
* been set. */
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
} else {
long limit;
/* No match or a match that doesn't end where we want it: Go
* back one character. May go to previous line once. */
no = OK;
limit = OPERAND_MIN(rp->rs_scan);
if (REG_MULTI) {
if (limit > 0
&& ((rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
? (colnr_T)STRLEN(rex.line)
: behind_pos.rs_u.pos.col)
- rp->rs_un.regsave.rs_u.pos.col >= limit))
no = FAIL;
else if (rp->rs_un.regsave.rs_u.pos.col == 0) {
if (rp->rs_un.regsave.rs_u.pos.lnum
< behind_pos.rs_u.pos.lnum
|| reg_getline(
--rp->rs_un.regsave.rs_u.pos.lnum)
== NULL)
no = FAIL;
else {
reg_restore(&rp->rs_un.regsave, &backpos);
rp->rs_un.regsave.rs_u.pos.col =
(colnr_T)STRLEN(rex.line);
}
} else {
const char_u *const line =
reg_getline(rp->rs_un.regsave.rs_u.pos.lnum);
rp->rs_un.regsave.rs_u.pos.col -=
utf_head_off(line,
line + rp->rs_un.regsave.rs_u.pos.col - 1)
+ 1;
}
} else {
if (rp->rs_un.regsave.rs_u.ptr == rex.line) {
no = FAIL;
} else {
MB_PTR_BACK(rex.line, rp->rs_un.regsave.rs_u.ptr);
if (limit > 0
&& (long)(behind_pos.rs_u.ptr
- rp->rs_un.regsave.rs_u.ptr) > limit) {
no = FAIL;
}
}
}
if (no == OK) {
/* Advanced, prepare for finding match again. */
reg_restore(&rp->rs_un.regsave, &backpos);
scan = OPERAND(rp->rs_scan) + 4;
if (status == RA_MATCH) {
/* We did match, so subexpr may have been changed,
* need to restore them for the next try. */
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
} else {
/* Can't advance. For NOBEHIND that's a match. */
behind_pos = (((regbehind_T *)rp) - 1)->save_behind;
if (rp->rs_no == NOBEHIND) {
reg_restore(&(((regbehind_T *)rp) - 1)->save_after,
&backpos);
status = RA_MATCH;
} else {
/* We do want a proper match. Need to restore the
* subexpr if we had a match, because they may have
* been set. */
if (status == RA_MATCH) {
status = RA_NOMATCH;
restore_subexpr(((regbehind_T *)rp) - 1);
}
}
regstack_pop(&scan);
regstack.ga_len -= sizeof(regbehind_T);
}
}
break;
case RS_STAR_LONG:
case RS_STAR_SHORT:
{
regstar_T *rst = ((regstar_T *)rp) - 1;
if (status == RA_MATCH) {
regstack_pop(&scan);
regstack.ga_len -= sizeof(regstar_T);
break;
}
/* Tried once already, restore input pointers. */
if (status != RA_BREAK)
reg_restore(&rp->rs_un.regsave, &backpos);
/* Repeat until we found a position where it could match. */
for (;; ) {
if (status != RA_BREAK) {
/* Tried first position already, advance. */
if (rp->rs_state == RS_STAR_LONG) {
/* Trying for longest match, but couldn't or
* didn't match -- back up one char. */
if (--rst->count < rst->minval)
break;
if (rex.input == rex.line) {
// backup to last char of previous line
rex.lnum--;
rex.line = reg_getline(rex.lnum);
// Just in case regrepeat() didn't count right.
if (rex.line == NULL) {
break;
}
rex.input = rex.line + STRLEN(rex.line);
fast_breakcheck();
} else {
MB_PTR_BACK(rex.line, rex.input);
}
} else {
/* Range is backwards, use shortest match first.
* Careful: maxval and minval are exchanged!
* Couldn't or didn't match: try advancing one
* char. */
if (rst->count == rst->minval
|| regrepeat(OPERAND(rp->rs_scan), 1L) == 0)
break;
++rst->count;
}
if (got_int)
break;
} else
status = RA_NOMATCH;
// If it could match, try it.
if (rst->nextb == NUL || *rex.input == rst->nextb
|| *rex.input == rst->nextb_ic) {
reg_save(&rp->rs_un.regsave, &backpos);
scan = regnext(rp->rs_scan);
status = RA_CONT;
break;
}
}
if (status != RA_CONT) {
/* Failed. */
regstack_pop(&scan);
regstack.ga_len -= sizeof(regstar_T);
status = RA_NOMATCH;
}
}
break;
}
/* If we want to continue the inner loop or didn't pop a state
* continue matching loop */
if (status == RA_CONT || rp == (regitem_T *)
((char *)regstack.ga_data + regstack.ga_len) - 1)
break;
}
/* May need to continue with the inner loop, starting at "scan". */
if (status == RA_CONT)
continue;
/*
* If the regstack is empty or something failed we are done.
*/
if (GA_EMPTY(&regstack) || status == RA_FAIL) {
if (scan == NULL) {
/*
* We get here only if there's trouble -- normally "case END" is
* the terminating point.
*/
IEMSG(_(e_re_corr));
#ifdef REGEXP_DEBUG
printf("Premature EOL\n");
#endif
}
return status == RA_MATCH;
}
} /* End of loop until the regstack is empty. */
/* NOTREACHED */
}
/*
* Push an item onto the regstack.
* Returns pointer to new item. Returns NULL when out of memory.
*/
static regitem_T *regstack_push(regstate_T state, char_u *scan)
{
regitem_T *rp;
if ((long)((unsigned)regstack.ga_len >> 10) >= p_mmp) {
EMSG(_(e_maxmempat));
return NULL;
}
ga_grow(&regstack, sizeof(regitem_T));
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len);
rp->rs_state = state;
rp->rs_scan = scan;
regstack.ga_len += sizeof(regitem_T);
return rp;
}
/*
* Pop an item from the regstack.
*/
static void regstack_pop(char_u **scan)
{
regitem_T *rp;
rp = (regitem_T *)((char *)regstack.ga_data + regstack.ga_len) - 1;
*scan = rp->rs_scan;
regstack.ga_len -= sizeof(regitem_T);
}
/*
* regrepeat - repeatedly match something simple, return how many.
* Advances rex.input (and rex.lnum) to just after the matched chars.
*/
static int
regrepeat (
char_u *p,
long maxcount /* maximum number of matches allowed */
)
{
long count = 0;
char_u *opnd;
int mask;
int testval = 0;
char_u *scan = rex.input; // Make local copy of rex.input for speed.
opnd = OPERAND(p);
switch (OP(p)) {
case ANY:
case ANY + ADD_NL:
while (count < maxcount) {
/* Matching anything means we continue until end-of-line (or
* end-of-file for ANY + ADD_NL), only limited by maxcount. */
while (*scan != NUL && count < maxcount) {
count++;
MB_PTR_ADV(scan);
}
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr || count == maxcount) {
break;
}
count++; // count the line-break
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
}
break;
case IDENT:
case IDENT + ADD_NL:
testval = 1;
FALLTHROUGH;
case SIDENT:
case SIDENT + ADD_NL:
while (count < maxcount) {
if (vim_isIDc(PTR2CHAR(scan)) && (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
++count;
}
break;
case KWORD:
case KWORD + ADD_NL:
testval = 1;
FALLTHROUGH;
case SKWORD:
case SKWORD + ADD_NL:
while (count < maxcount) {
if (vim_iswordp_buf(scan, rex.reg_buf)
&& (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case FNAME:
case FNAME + ADD_NL:
testval = 1;
FALLTHROUGH;
case SFNAME:
case SFNAME + ADD_NL:
while (count < maxcount) {
if (vim_isfilec(PTR2CHAR(scan)) && (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case PRINT:
case PRINT + ADD_NL:
testval = 1;
FALLTHROUGH;
case SPRINT:
case SPRINT + ADD_NL:
while (count < maxcount) {
if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (vim_isprintc(PTR2CHAR(scan)) == 1
&& (testval || !ascii_isdigit(*scan))) {
MB_PTR_ADV(scan);
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
count++;
}
break;
case WHITE:
case WHITE + ADD_NL:
testval = mask = RI_WHITE;
do_class:
while (count < maxcount) {
int l;
if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if ((l = (*mb_ptr2len)(scan)) > 1) {
if (testval != 0) {
break;
}
scan += l;
} else if ((class_tab[*scan] & mask) == testval) {
scan++;
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else {
break;
}
++count;
}
break;
case NWHITE:
case NWHITE + ADD_NL:
mask = RI_WHITE;
goto do_class;
case DIGIT:
case DIGIT + ADD_NL:
testval = mask = RI_DIGIT;
goto do_class;
case NDIGIT:
case NDIGIT + ADD_NL:
mask = RI_DIGIT;
goto do_class;
case HEX:
case HEX + ADD_NL:
testval = mask = RI_HEX;
goto do_class;
case NHEX:
case NHEX + ADD_NL:
mask = RI_HEX;
goto do_class;
case OCTAL:
case OCTAL + ADD_NL:
testval = mask = RI_OCTAL;
goto do_class;
case NOCTAL:
case NOCTAL + ADD_NL:
mask = RI_OCTAL;
goto do_class;
case WORD:
case WORD + ADD_NL:
testval = mask = RI_WORD;
goto do_class;
case NWORD:
case NWORD + ADD_NL:
mask = RI_WORD;
goto do_class;
case HEAD:
case HEAD + ADD_NL:
testval = mask = RI_HEAD;
goto do_class;
case NHEAD:
case NHEAD + ADD_NL:
mask = RI_HEAD;
goto do_class;
case ALPHA:
case ALPHA + ADD_NL:
testval = mask = RI_ALPHA;
goto do_class;
case NALPHA:
case NALPHA + ADD_NL:
mask = RI_ALPHA;
goto do_class;
case LOWER:
case LOWER + ADD_NL:
testval = mask = RI_LOWER;
goto do_class;
case NLOWER:
case NLOWER + ADD_NL:
mask = RI_LOWER;
goto do_class;
case UPPER:
case UPPER + ADD_NL:
testval = mask = RI_UPPER;
goto do_class;
case NUPPER:
case NUPPER + ADD_NL:
mask = RI_UPPER;
goto do_class;
case EXACTLY:
{
int cu, cl;
// This doesn't do a multi-byte character, because a MULTIBYTECODE
// would have been used for it. It does handle single-byte
// characters, such as latin1.
if (rex.reg_ic) {
cu = mb_toupper(*opnd);
cl = mb_tolower(*opnd);
while (count < maxcount && (*scan == cu || *scan == cl)) {
count++;
scan++;
}
} else {
cu = *opnd;
while (count < maxcount && *scan == cu) {
count++;
scan++;
}
}
break;
}
case MULTIBYTECODE:
{
int i, len, cf = 0;
/* Safety check (just in case 'encoding' was changed since
* compiling the program). */
if ((len = (*mb_ptr2len)(opnd)) > 1) {
if (rex.reg_ic) {
cf = utf_fold(utf_ptr2char(opnd));
}
while (count < maxcount && (*mb_ptr2len)(scan) >= len) {
for (i = 0; i < len; ++i) {
if (opnd[i] != scan[i]) {
break;
}
}
if (i < len && (!rex.reg_ic
|| utf_fold(utf_ptr2char(scan)) != cf)) {
break;
}
scan += len;
++count;
}
}
}
break;
case ANYOF:
case ANYOF + ADD_NL:
testval = 1;
FALLTHROUGH;
case ANYBUT:
case ANYBUT + ADD_NL:
while (count < maxcount) {
int len;
if (*scan == NUL) {
if (!REG_MULTI || !WITH_NL(OP(p)) || rex.lnum > rex.reg_maxline
|| rex.reg_line_lbr) {
break;
}
reg_nextline();
scan = rex.input;
if (got_int) {
break;
}
} else if (rex.reg_line_lbr && *scan == '\n' && WITH_NL(OP(p))) {
scan++;
} else if ((len = utfc_ptr2len(scan)) > 1) {
if ((cstrchr(opnd, utf_ptr2char(scan)) == NULL) == testval) {
break;
}
scan += len;
} else {
if ((cstrchr(opnd, *scan) == NULL) == testval)
break;
++scan;
}
++count;
}
break;
case NEWL:
while (count < maxcount
&& ((*scan == NUL && rex.lnum <= rex.reg_maxline && !rex.reg_line_lbr
&& REG_MULTI) || (*scan == '\n' && rex.reg_line_lbr))) {
count++;
if (rex.reg_line_lbr) {
ADVANCE_REGINPUT();
} else {
reg_nextline();
}
scan = rex.input;
if (got_int) {
break;
}
}
break;
default: // Oh dear. Called inappropriately.
IEMSG(_(e_re_corr));
#ifdef REGEXP_DEBUG
printf("Called regrepeat with op code %d\n", OP(p));
#endif
break;
}
rex.input = scan;
return (int)count;
}
/*
* regnext - dig the "next" pointer out of a node
* Returns NULL when calculating size, when there is no next item and when
* there is an error.
*/
static char_u *regnext(char_u *p)
FUNC_ATTR_NONNULL_ALL
{
int offset;
if (p == JUST_CALC_SIZE || reg_toolong)
return NULL;
offset = NEXT(p);
if (offset == 0)
return NULL;
if (OP(p) == BACK)
return p - offset;
else
return p + offset;
}
/*
* Check the regexp program for its magic number.
* Return true if it's wrong.
*/
static int prog_magic_wrong(void)
{
regprog_T *prog;
prog = REG_MULTI ? rex.reg_mmatch->regprog : rex.reg_match->regprog;
if (prog->engine == &nfa_regengine) {
// For NFA matcher we don't check the magic
return false;
}
if (UCHARAT(((bt_regprog_T *)prog)->program) != REGMAGIC) {
EMSG(_(e_re_corr));
return true;
}
return false;
}
/*
* Cleanup the subexpressions, if this wasn't done yet.
* This construction is used to clear the subexpressions only when they are
* used (to increase speed).
*/
static void cleanup_subexpr(void)
{
if (rex.need_clear_subexpr) {
if (REG_MULTI) {
// Use 0xff to set lnum to -1
memset(rex.reg_startpos, 0xff, sizeof(lpos_T) * NSUBEXP);
memset(rex.reg_endpos, 0xff, sizeof(lpos_T) * NSUBEXP);
} else {
memset(rex.reg_startp, 0, sizeof(char_u *) * NSUBEXP);
memset(rex.reg_endp, 0, sizeof(char_u *) * NSUBEXP);
}
rex.need_clear_subexpr = false;
}
}
static void cleanup_zsubexpr(void)
{
if (rex.need_clear_zsubexpr) {
if (REG_MULTI) {
/* Use 0xff to set lnum to -1 */
memset(reg_startzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
memset(reg_endzpos, 0xff, sizeof(lpos_T) * NSUBEXP);
} else {
memset(reg_startzp, 0, sizeof(char_u *) * NSUBEXP);
memset(reg_endzp, 0, sizeof(char_u *) * NSUBEXP);
}
rex.need_clear_zsubexpr = false;
}
}
// Save the current subexpr to "bp", so that they can be restored
// later by restore_subexpr().
static void save_subexpr(regbehind_T *bp)
FUNC_ATTR_NONNULL_ALL
{
// When "rex.need_clear_subexpr" is set we don't need to save the values, only
// remember that this flag needs to be set again when restoring.
bp->save_need_clear_subexpr = rex.need_clear_subexpr;
if (!rex.need_clear_subexpr) {
for (int i = 0; i < NSUBEXP; i++) {
if (REG_MULTI) {
bp->save_start[i].se_u.pos = rex.reg_startpos[i];
bp->save_end[i].se_u.pos = rex.reg_endpos[i];
} else {
bp->save_start[i].se_u.ptr = rex.reg_startp[i];
bp->save_end[i].se_u.ptr = rex.reg_endp[i];
}
}
}
}
// Restore the subexpr from "bp".
static void restore_subexpr(regbehind_T *bp)
FUNC_ATTR_NONNULL_ALL
{
// Only need to restore saved values when they are not to be cleared.
rex.need_clear_subexpr = bp->save_need_clear_subexpr;
if (!rex.need_clear_subexpr) {
for (int i = 0; i < NSUBEXP; i++) {
if (REG_MULTI) {
rex.reg_startpos[i] = bp->save_start[i].se_u.pos;
rex.reg_endpos[i] = bp->save_end[i].se_u.pos;
} else {
rex.reg_startp[i] = bp->save_start[i].se_u.ptr;
rex.reg_endp[i] = bp->save_end[i].se_u.ptr;
}
}
}
}
// Advance rex.lnum, rex.line and rex.input to the next line.
static void reg_nextline(void)
{
rex.line = reg_getline(++rex.lnum);
rex.input = rex.line;
fast_breakcheck();
}
// Save the input line and position in a regsave_T.
static void reg_save(regsave_T *save, garray_T *gap)
FUNC_ATTR_NONNULL_ALL
{
if (REG_MULTI) {
save->rs_u.pos.col = (colnr_T)(rex.input - rex.line);
save->rs_u.pos.lnum = rex.lnum;
} else {
save->rs_u.ptr = rex.input;
}
save->rs_len = gap->ga_len;
}
// Restore the input line and position from a regsave_T.
static void reg_restore(regsave_T *save, garray_T *gap)
FUNC_ATTR_NONNULL_ALL
{
if (REG_MULTI) {
if (rex.lnum != save->rs_u.pos.lnum) {
// only call reg_getline() when the line number changed to save
// a bit of time
rex.lnum = save->rs_u.pos.lnum;
rex.line = reg_getline(rex.lnum);
}
rex.input = rex.line + save->rs_u.pos.col;
} else {
rex.input = save->rs_u.ptr;
}
gap->ga_len = save->rs_len;
}
// Return true if current position is equal to saved position.
static bool reg_save_equal(const regsave_T *save)
FUNC_ATTR_NONNULL_ALL
{
if (REG_MULTI) {
return rex.lnum == save->rs_u.pos.lnum
&& rex.input == rex.line + save->rs_u.pos.col;
}
return rex.input == save->rs_u.ptr;
}
/*
* Tentatively set the sub-expression start to the current position (after
* calling regmatch() they will have changed). Need to save the existing
* values for when there is no match.
* Use se_save() to use pointer (save_se_multi()) or position (save_se_one()),
* depending on REG_MULTI.
*/
static void save_se_multi(save_se_T *savep, lpos_T *posp)
{
savep->se_u.pos = *posp;
posp->lnum = rex.lnum;
posp->col = (colnr_T)(rex.input - rex.line);
}
static void save_se_one(save_se_T *savep, char_u **pp)
{
savep->se_u.ptr = *pp;
*pp = rex.input;
}
/*
* Compare a number with the operand of RE_LNUM, RE_COL or RE_VCOL.
*/
static int re_num_cmp(uint32_t val, char_u *scan)
{
uint32_t n = (uint32_t)OPERAND_MIN(scan);
if (OPERAND_CMP(scan) == '>')
return val > n;
if (OPERAND_CMP(scan) == '<')
return val < n;
return val == n;
}
/*
* Check whether a backreference matches.
* Returns RA_FAIL, RA_NOMATCH or RA_MATCH.
* If "bytelen" is not NULL, it is set to the byte length of the match in the
* last line.
*/
static int match_with_backref(linenr_T start_lnum, colnr_T start_col, linenr_T end_lnum, colnr_T end_col, int *bytelen)
{
linenr_T clnum = start_lnum;
colnr_T ccol = start_col;
int len;
char_u *p;
if (bytelen != NULL)
*bytelen = 0;
for (;; ) {
/* Since getting one line may invalidate the other, need to make copy.
* Slow! */
if (rex.line != reg_tofree) {
len = (int)STRLEN(rex.line);
if (reg_tofree == NULL || len >= (int)reg_tofreelen) {
len += 50; /* get some extra */
xfree(reg_tofree);
reg_tofree = xmalloc(len);
reg_tofreelen = len;
}
STRCPY(reg_tofree, rex.line);
rex.input = reg_tofree + (rex.input - rex.line);
rex.line = reg_tofree;
}
/* Get the line to compare with. */
p = reg_getline(clnum);
assert(p);
if (clnum == end_lnum)
len = end_col - ccol;
else
len = (int)STRLEN(p + ccol);
if (cstrncmp(p + ccol, rex.input, &len) != 0) {
return RA_NOMATCH; // doesn't match
}
if (bytelen != NULL) {
*bytelen += len;
}
if (clnum == end_lnum) {
break; // match and at end!
}
if (rex.lnum >= rex.reg_maxline) {
return RA_NOMATCH; // text too short
}
/* Advance to next line. */
reg_nextline();
if (bytelen != NULL)
*bytelen = 0;
++clnum;
ccol = 0;
if (got_int)
return RA_FAIL;
}
// found a match! Note that rex.line may now point to a copy of the line,
// that should not matter.
return RA_MATCH;
}
#ifdef BT_REGEXP_DUMP
/*
* regdump - dump a regexp onto stdout in vaguely comprehensible form
*/
static void regdump(char_u *pattern, bt_regprog_T *r)
{
char_u *s;
int op = EXACTLY; /* Arbitrary non-END op. */
char_u *next;
char_u *end = NULL;
FILE *f;
#ifdef BT_REGEXP_LOG
f = fopen("bt_regexp_log.log", "a");
#else
f = stdout;
#endif
if (f == NULL)
return;
fprintf(f, "-------------------------------------\n\r\nregcomp(%s):\r\n",
pattern);
s = r->program + 1;
/*
* Loop until we find the END that isn't before a referred next (an END
* can also appear in a NOMATCH operand).
*/
while (op != END || s <= end) {
op = OP(s);
fprintf(f, "%2d%s", (int)(s - r->program), regprop(s)); /* Where, what. */
next = regnext(s);
if (next == NULL) /* Next ptr. */
fprintf(f, "(0)");
else
fprintf(f, "(%d)", (int)((s - r->program) + (next - s)));
if (end < next)
end = next;
if (op == BRACE_LIMITS) {
/* Two ints */
fprintf(f, " minval %" PRId64 ", maxval %" PRId64,
(int64_t)OPERAND_MIN(s), (int64_t)OPERAND_MAX(s));
s += 8;
} else if (op == BEHIND || op == NOBEHIND) {
/* one int */
fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s));
s += 4;
} else if (op == RE_LNUM || op == RE_COL || op == RE_VCOL) {
// one int plus comparator
fprintf(f, " count %" PRId64, (int64_t)OPERAND_MIN(s));
s += 5;
}
s += 3;
if (op == ANYOF || op == ANYOF + ADD_NL
|| op == ANYBUT || op == ANYBUT + ADD_NL
|| op == EXACTLY) {
/* Literal string, where present. */
fprintf(f, "\nxxxxxxxxx\n");
while (*s != NUL)
fprintf(f, "%c", *s++);
fprintf(f, "\nxxxxxxxxx\n");
s++;
}
fprintf(f, "\r\n");
}
/* Header fields of interest. */
if (r->regstart != NUL)
fprintf(f, "start `%s' 0x%x; ", r->regstart < 256
? (char *)transchar(r->regstart)
: "multibyte", r->regstart);
if (r->reganch)
fprintf(f, "anchored; ");
if (r->regmust != NULL)
fprintf(f, "must have \"%s\"", r->regmust);
fprintf(f, "\r\n");
#ifdef BT_REGEXP_LOG
fclose(f);
#endif
}
#endif /* BT_REGEXP_DUMP */
#ifdef REGEXP_DEBUG
/*
* regprop - printable representation of opcode
*/
static char_u *regprop(char_u *op)
{
char *p;
static char buf[50];
STRCPY(buf, ":");
switch ((int) OP(op)) {
case BOL:
p = "BOL";
break;
case EOL:
p = "EOL";
break;
case RE_BOF:
p = "BOF";
break;
case RE_EOF:
p = "EOF";
break;
case CURSOR:
p = "CURSOR";
break;
case RE_VISUAL:
p = "RE_VISUAL";
break;
case RE_LNUM:
p = "RE_LNUM";
break;
case RE_MARK:
p = "RE_MARK";
break;
case RE_COL:
p = "RE_COL";
break;
case RE_VCOL:
p = "RE_VCOL";
break;
case BOW:
p = "BOW";
break;
case EOW:
p = "EOW";
break;
case ANY:
p = "ANY";
break;
case ANY + ADD_NL:
p = "ANY+NL";
break;
case ANYOF:
p = "ANYOF";
break;
case ANYOF + ADD_NL:
p = "ANYOF+NL";
break;
case ANYBUT:
p = "ANYBUT";
break;
case ANYBUT + ADD_NL:
p = "ANYBUT+NL";
break;
case IDENT:
p = "IDENT";
break;
case IDENT + ADD_NL:
p = "IDENT+NL";
break;
case SIDENT:
p = "SIDENT";
break;
case SIDENT + ADD_NL:
p = "SIDENT+NL";
break;
case KWORD:
p = "KWORD";
break;
case KWORD + ADD_NL:
p = "KWORD+NL";
break;
case SKWORD:
p = "SKWORD";
break;
case SKWORD + ADD_NL:
p = "SKWORD+NL";
break;
case FNAME:
p = "FNAME";
break;
case FNAME + ADD_NL:
p = "FNAME+NL";
break;
case SFNAME:
p = "SFNAME";
break;
case SFNAME + ADD_NL:
p = "SFNAME+NL";
break;
case PRINT:
p = "PRINT";
break;
case PRINT + ADD_NL:
p = "PRINT+NL";
break;
case SPRINT:
p = "SPRINT";
break;
case SPRINT + ADD_NL:
p = "SPRINT+NL";
break;
case WHITE:
p = "WHITE";
break;
case WHITE + ADD_NL:
p = "WHITE+NL";
break;
case NWHITE:
p = "NWHITE";
break;
case NWHITE + ADD_NL:
p = "NWHITE+NL";
break;
case DIGIT:
p = "DIGIT";
break;
case DIGIT + ADD_NL:
p = "DIGIT+NL";
break;
case NDIGIT:
p = "NDIGIT";
break;
case NDIGIT + ADD_NL:
p = "NDIGIT+NL";
break;
case HEX:
p = "HEX";
break;
case HEX + ADD_NL:
p = "HEX+NL";
break;
case NHEX:
p = "NHEX";
break;
case NHEX + ADD_NL:
p = "NHEX+NL";
break;
case OCTAL:
p = "OCTAL";
break;
case OCTAL + ADD_NL:
p = "OCTAL+NL";
break;
case NOCTAL:
p = "NOCTAL";
break;
case NOCTAL + ADD_NL:
p = "NOCTAL+NL";
break;
case WORD:
p = "WORD";
break;
case WORD + ADD_NL:
p = "WORD+NL";
break;
case NWORD:
p = "NWORD";
break;
case NWORD + ADD_NL:
p = "NWORD+NL";
break;
case HEAD:
p = "HEAD";
break;
case HEAD + ADD_NL:
p = "HEAD+NL";
break;
case NHEAD:
p = "NHEAD";
break;
case NHEAD + ADD_NL:
p = "NHEAD+NL";
break;
case ALPHA:
p = "ALPHA";
break;
case ALPHA + ADD_NL:
p = "ALPHA+NL";
break;
case NALPHA:
p = "NALPHA";
break;
case NALPHA + ADD_NL:
p = "NALPHA+NL";
break;
case LOWER:
p = "LOWER";
break;
case LOWER + ADD_NL:
p = "LOWER+NL";
break;
case NLOWER:
p = "NLOWER";
break;
case NLOWER + ADD_NL:
p = "NLOWER+NL";
break;
case UPPER:
p = "UPPER";
break;
case UPPER + ADD_NL:
p = "UPPER+NL";
break;
case NUPPER:
p = "NUPPER";
break;
case NUPPER + ADD_NL:
p = "NUPPER+NL";
break;
case BRANCH:
p = "BRANCH";
break;
case EXACTLY:
p = "EXACTLY";
break;
case NOTHING:
p = "NOTHING";
break;
case BACK:
p = "BACK";
break;
case END:
p = "END";
break;
case MOPEN + 0:
p = "MATCH START";
break;
case MOPEN + 1:
case MOPEN + 2:
case MOPEN + 3:
case MOPEN + 4:
case MOPEN + 5:
case MOPEN + 6:
case MOPEN + 7:
case MOPEN + 8:
case MOPEN + 9:
sprintf(buf + STRLEN(buf), "MOPEN%d", OP(op) - MOPEN);
p = NULL;
break;
case MCLOSE + 0:
p = "MATCH END";
break;
case MCLOSE + 1:
case MCLOSE + 2:
case MCLOSE + 3:
case MCLOSE + 4:
case MCLOSE + 5:
case MCLOSE + 6:
case MCLOSE + 7:
case MCLOSE + 8:
case MCLOSE + 9:
sprintf(buf + STRLEN(buf), "MCLOSE%d", OP(op) - MCLOSE);
p = NULL;
break;
case BACKREF + 1:
case BACKREF + 2:
case BACKREF + 3:
case BACKREF + 4:
case BACKREF + 5:
case BACKREF + 6:
case BACKREF + 7:
case BACKREF + 8:
case BACKREF + 9:
sprintf(buf + STRLEN(buf), "BACKREF%d", OP(op) - BACKREF);
p = NULL;
break;
case NOPEN:
p = "NOPEN";
break;
case NCLOSE:
p = "NCLOSE";
break;
case ZOPEN + 1:
case ZOPEN + 2:
case ZOPEN + 3:
case ZOPEN + 4:
case ZOPEN + 5:
case ZOPEN + 6:
case ZOPEN + 7:
case ZOPEN + 8:
case ZOPEN + 9:
sprintf(buf + STRLEN(buf), "ZOPEN%d", OP(op) - ZOPEN);
p = NULL;
break;
case ZCLOSE + 1:
case ZCLOSE + 2:
case ZCLOSE + 3:
case ZCLOSE + 4:
case ZCLOSE + 5:
case ZCLOSE + 6:
case ZCLOSE + 7:
case ZCLOSE + 8:
case ZCLOSE + 9:
sprintf(buf + STRLEN(buf), "ZCLOSE%d", OP(op) - ZCLOSE);
p = NULL;
break;
case ZREF + 1:
case ZREF + 2:
case ZREF + 3:
case ZREF + 4:
case ZREF + 5:
case ZREF + 6:
case ZREF + 7:
case ZREF + 8:
case ZREF + 9:
sprintf(buf + STRLEN(buf), "ZREF%d", OP(op) - ZREF);
p = NULL;
break;
case STAR:
p = "STAR";
break;
case PLUS:
p = "PLUS";
break;
case NOMATCH:
p = "NOMATCH";
break;
case MATCH:
p = "MATCH";
break;
case BEHIND:
p = "BEHIND";
break;
case NOBEHIND:
p = "NOBEHIND";
break;
case SUBPAT:
p = "SUBPAT";
break;
case BRACE_LIMITS:
p = "BRACE_LIMITS";
break;
case BRACE_SIMPLE:
p = "BRACE_SIMPLE";
break;
case BRACE_COMPLEX + 0:
case BRACE_COMPLEX + 1:
case BRACE_COMPLEX + 2:
case BRACE_COMPLEX + 3:
case BRACE_COMPLEX + 4:
case BRACE_COMPLEX + 5:
case BRACE_COMPLEX + 6:
case BRACE_COMPLEX + 7:
case BRACE_COMPLEX + 8:
case BRACE_COMPLEX + 9:
sprintf(buf + STRLEN(buf), "BRACE_COMPLEX%d", OP(op) - BRACE_COMPLEX);
p = NULL;
break;
case MULTIBYTECODE:
p = "MULTIBYTECODE";
break;
case NEWL:
p = "NEWL";
break;
default:
sprintf(buf + STRLEN(buf), "corrupt %d", OP(op));
p = NULL;
break;
}
if (p != NULL)
STRCAT(buf, p);
return (char_u *)buf;
}
#endif /* REGEXP_DEBUG */
/* 0xfb20 - 0xfb4f */
static decomp_T decomp_table[0xfb4f-0xfb20+1] =
{
{0x5e2,0,0}, /* 0xfb20 alt ayin */
{0x5d0,0,0}, /* 0xfb21 alt alef */
{0x5d3,0,0}, /* 0xfb22 alt dalet */
{0x5d4,0,0}, /* 0xfb23 alt he */
{0x5db,0,0}, /* 0xfb24 alt kaf */
{0x5dc,0,0}, /* 0xfb25 alt lamed */
{0x5dd,0,0}, /* 0xfb26 alt mem-sofit */
{0x5e8,0,0}, /* 0xfb27 alt resh */
{0x5ea,0,0}, /* 0xfb28 alt tav */
{'+', 0, 0}, /* 0xfb29 alt plus */
{0x5e9, 0x5c1, 0}, /* 0xfb2a shin+shin-dot */
{0x5e9, 0x5c2, 0}, /* 0xfb2b shin+sin-dot */
{0x5e9, 0x5c1, 0x5bc}, /* 0xfb2c shin+shin-dot+dagesh */
{0x5e9, 0x5c2, 0x5bc}, /* 0xfb2d shin+sin-dot+dagesh */
{0x5d0, 0x5b7, 0}, /* 0xfb2e alef+patah */
{0x5d0, 0x5b8, 0}, /* 0xfb2f alef+qamats */
{0x5d0, 0x5b4, 0}, /* 0xfb30 alef+hiriq */
{0x5d1, 0x5bc, 0}, /* 0xfb31 bet+dagesh */
{0x5d2, 0x5bc, 0}, /* 0xfb32 gimel+dagesh */
{0x5d3, 0x5bc, 0}, /* 0xfb33 dalet+dagesh */
{0x5d4, 0x5bc, 0}, /* 0xfb34 he+dagesh */
{0x5d5, 0x5bc, 0}, /* 0xfb35 vav+dagesh */
{0x5d6, 0x5bc, 0}, /* 0xfb36 zayin+dagesh */
{0xfb37, 0, 0}, /* 0xfb37 -- */
{0x5d8, 0x5bc, 0}, /* 0xfb38 tet+dagesh */
{0x5d9, 0x5bc, 0}, /* 0xfb39 yud+dagesh */
{0x5da, 0x5bc, 0}, /* 0xfb3a kaf sofit+dagesh */
{0x5db, 0x5bc, 0}, /* 0xfb3b kaf+dagesh */
{0x5dc, 0x5bc, 0}, /* 0xfb3c lamed+dagesh */
{0xfb3d, 0, 0}, /* 0xfb3d -- */
{0x5de, 0x5bc, 0}, /* 0xfb3e mem+dagesh */
{0xfb3f, 0, 0}, /* 0xfb3f -- */
{0x5e0, 0x5bc, 0}, /* 0xfb40 nun+dagesh */
{0x5e1, 0x5bc, 0}, /* 0xfb41 samech+dagesh */
{0xfb42, 0, 0}, /* 0xfb42 -- */
{0x5e3, 0x5bc, 0}, /* 0xfb43 pe sofit+dagesh */
{0x5e4, 0x5bc,0}, /* 0xfb44 pe+dagesh */
{0xfb45, 0, 0}, /* 0xfb45 -- */
{0x5e6, 0x5bc, 0}, /* 0xfb46 tsadi+dagesh */
{0x5e7, 0x5bc, 0}, /* 0xfb47 qof+dagesh */
{0x5e8, 0x5bc, 0}, /* 0xfb48 resh+dagesh */
{0x5e9, 0x5bc, 0}, /* 0xfb49 shin+dagesh */
{0x5ea, 0x5bc, 0}, /* 0xfb4a tav+dagesh */
{0x5d5, 0x5b9, 0}, /* 0xfb4b vav+holam */
{0x5d1, 0x5bf, 0}, /* 0xfb4c bet+rafe */
{0x5db, 0x5bf, 0}, /* 0xfb4d kaf+rafe */
{0x5e4, 0x5bf, 0}, /* 0xfb4e pe+rafe */
{0x5d0, 0x5dc, 0} /* 0xfb4f alef-lamed */
};
static void mb_decompose(int c, int *c1, int *c2, int *c3)
{
decomp_T d;
if (c >= 0xfb20 && c <= 0xfb4f) {
d = decomp_table[c - 0xfb20];
*c1 = d.a;
*c2 = d.b;
*c3 = d.c;
} else {
*c1 = c;
*c2 = *c3 = 0;
}
}
// Compare two strings, ignore case if rex.reg_ic set.
// Return 0 if strings match, non-zero otherwise.
// Correct the length "*n" when composing characters are ignored.
static int cstrncmp(char_u *s1, char_u *s2, int *n)
{
int result;
if (!rex.reg_ic) {
result = STRNCMP(s1, s2, *n);
} else {
assert(*n >= 0);
result = mb_strnicmp(s1, s2, (size_t)*n);
}
// if it failed and it's utf8 and we want to combineignore:
if (result != 0 && rex.reg_icombine) {
char_u *str1, *str2;
int c1, c2, c11, c12;
int junk;
/* we have to handle the strcmp ourselves, since it is necessary to
* deal with the composing characters by ignoring them: */
str1 = s1;
str2 = s2;
c1 = c2 = 0;
while ((int)(str1 - s1) < *n) {
c1 = mb_ptr2char_adv((const char_u **)&str1);
c2 = mb_ptr2char_adv((const char_u **)&str2);
/* decompose the character if necessary, into 'base' characters
* because I don't care about Arabic, I will hard-code the Hebrew
* which I *do* care about! So sue me... */
if (c1 != c2 && (!rex.reg_ic || utf_fold(c1) != utf_fold(c2))) {
// decomposition necessary?
mb_decompose(c1, &c11, &junk, &junk);
mb_decompose(c2, &c12, &junk, &junk);
c1 = c11;
c2 = c12;
if (c11 != c12 && (!rex.reg_ic || utf_fold(c11) != utf_fold(c12))) {
break;
}
}
}
result = c2 - c1;
if (result == 0)
*n = (int)(str2 - s2);
}
return result;
}
/***************************************************************
* regsub stuff *
***************************************************************/
/* This stuff below really confuses cc on an SGI -- webb */
static fptr_T do_upper(int *d, int c)
{
*d = mb_toupper(c);
return (fptr_T)NULL;
}
static fptr_T do_Upper(int *d, int c)
{
*d = mb_toupper(c);
return (fptr_T)do_Upper;
}
static fptr_T do_lower(int *d, int c)
{
*d = mb_tolower(c);
return (fptr_T)NULL;
}
static fptr_T do_Lower(int *d, int c)
{
*d = mb_tolower(c);
return (fptr_T)do_Lower;
}
/*
* regtilde(): Replace tildes in the pattern by the old pattern.
*
* Short explanation of the tilde: It stands for the previous replacement
* pattern. If that previous pattern also contains a ~ we should go back a
* step further... But we insert the previous pattern into the current one
* and remember that.
* This still does not handle the case where "magic" changes. So require the
* user to keep his hands off of "magic".
*
* The tildes are parsed once before the first call to vim_regsub().
*/
char_u *regtilde(char_u *source, int magic)
{
char_u *newsub = source;
char_u *tmpsub;
char_u *p;
int len;
int prevlen;
for (p = newsub; *p; ++p) {
if ((*p == '~' && magic) || (*p == '\\' && *(p + 1) == '~' && !magic)) {
if (reg_prev_sub != NULL) {
/* length = len(newsub) - 1 + len(prev_sub) + 1 */
prevlen = (int)STRLEN(reg_prev_sub);
tmpsub = xmalloc(STRLEN(newsub) + prevlen);
/* copy prefix */
len = (int)(p - newsub); /* not including ~ */
memmove(tmpsub, newsub, (size_t)len);
/* interpret tilde */
memmove(tmpsub + len, reg_prev_sub, (size_t)prevlen);
/* copy postfix */
if (!magic)
++p; /* back off \ */
STRCPY(tmpsub + len + prevlen, p + 1);
if (newsub != source) /* already allocated newsub */
xfree(newsub);
newsub = tmpsub;
p = newsub + len + prevlen;
} else if (magic)
STRMOVE(p, p + 1); /* remove '~' */
else
STRMOVE(p, p + 2); /* remove '\~' */
--p;
} else {
if (*p == '\\' && p[1]) { // skip escaped characters
p++;
}
p += (*mb_ptr2len)(p) - 1;
}
}
xfree(reg_prev_sub);
if (newsub != source) /* newsub was allocated, just keep it */
reg_prev_sub = newsub;
else /* no ~ found, need to save newsub */
reg_prev_sub = vim_strsave(newsub);
return newsub;
}
static bool can_f_submatch = false; // true when submatch() can be used
// These pointers are used for reg_submatch(). Needed for when the
// substitution string is an expression that contains a call to substitute()
// and submatch().
typedef struct {
regmatch_T *sm_match;
regmmatch_T *sm_mmatch;
linenr_T sm_firstlnum;
linenr_T sm_maxline;
int sm_line_lbr;
} regsubmatch_T;
static regsubmatch_T rsm; // can only be used when can_f_submatch is true
/// Put the submatches in "argv[argskip]" which is a list passed into
/// call_func() by vim_regsub_both().
static int fill_submatch_list(int argc FUNC_ATTR_UNUSED, typval_T *argv,
int argskip, int argcount)
FUNC_ATTR_NONNULL_ALL
{
typval_T *listarg = argv + argskip;
if (argcount == argskip) {
// called function doesn't take a submatches argument
return argskip;
}
// Relies on sl_list to be the first item in staticList10_T.
tv_list_init_static10((staticList10_T *)listarg->vval.v_list);
// There are always 10 list items in staticList10_T.
listitem_T *li = tv_list_first(listarg->vval.v_list);
for (int i = 0; i < 10; i++) {
char_u *s = rsm.sm_match->startp[i];
if (s == NULL || rsm.sm_match->endp[i] == NULL) {
s = NULL;
} else {
s = vim_strnsave(s, rsm.sm_match->endp[i] - s);
}
TV_LIST_ITEM_TV(li)->v_type = VAR_STRING;
TV_LIST_ITEM_TV(li)->vval.v_string = s;
li = TV_LIST_ITEM_NEXT(argv->vval.v_list, li);
}
return argskip + 1;
}
static void clear_submatch_list(staticList10_T *sl)
{
TV_LIST_ITER(&sl->sl_list, li, {
xfree(TV_LIST_ITEM_TV(li)->vval.v_string);
});
}
/// vim_regsub() - perform substitutions after a vim_regexec() or
/// vim_regexec_multi() match.
///
/// If "copy" is true really copy into "dest".
/// If "copy" is false nothing is copied, this is just to find out the length
/// of the result.
///
/// If "backslash" is true, a backslash will be removed later, need to double
/// them to keep them, and insert a backslash before a CR to avoid it being
/// replaced with a line break later.
///
/// Note: The matched text must not change between the call of
/// vim_regexec()/vim_regexec_multi() and vim_regsub()! It would make the back
/// references invalid!
///
/// Returns the size of the replacement, including terminating NUL.
int vim_regsub(regmatch_T *rmp, char_u *source, typval_T *expr, char_u *dest,
int copy, int magic, int backslash)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
rex.reg_match = rmp;
rex.reg_mmatch = NULL;
rex.reg_maxline = 0;
rex.reg_buf = curbuf;
rex.reg_line_lbr = true;
int result = vim_regsub_both(source, expr, dest, copy, magic, backslash);
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result;
}
int vim_regsub_multi(regmmatch_T *rmp, linenr_T lnum, char_u *source, char_u *dest, int copy, int magic, int backslash)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
rex.reg_match = NULL;
rex.reg_mmatch = rmp;
rex.reg_buf = curbuf; // always works on the current buffer!
rex.reg_firstlnum = lnum;
rex.reg_maxline = curbuf->b_ml.ml_line_count - lnum;
rex.reg_line_lbr = false;
int result = vim_regsub_both(source, NULL, dest, copy, magic, backslash);
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result;
}
static int vim_regsub_both(char_u *source, typval_T *expr, char_u *dest,
int copy, int magic, int backslash)
{
char_u *src;
char_u *dst;
char_u *s;
int c;
int cc;
int no = -1;
fptr_T func_all = (fptr_T)NULL;
fptr_T func_one = (fptr_T)NULL;
linenr_T clnum = 0; /* init for GCC */
int len = 0; /* init for GCC */
static char_u *eval_result = NULL;
// We need to keep track of how many backslashes we escape, so that the byte
// counts for `extmark_splice` are correct.
int num_escaped = 0;
// Be paranoid...
if ((source == NULL && expr == NULL) || dest == NULL) {
EMSG(_(e_null));
return 0;
}
if (prog_magic_wrong())
return 0;
src = source;
dst = dest;
// When the substitute part starts with "\=" evaluate it as an expression.
if (expr != NULL || (source[0] == '\\' && source[1] == '=')) {
// To make sure that the length doesn't change between checking the
// length and copying the string, and to speed up things, the
// resulting string is saved from the call with "copy" == false to the
// call with "copy" == true.
if (copy) {
if (eval_result != NULL) {
STRCPY(dest, eval_result);
dst += STRLEN(eval_result);
XFREE_CLEAR(eval_result);
}
} else {
const bool prev_can_f_submatch = can_f_submatch;
regsubmatch_T rsm_save;
xfree(eval_result);
// The expression may contain substitute(), which calls us
// recursively. Make sure submatch() gets the text from the first
// level.
if (can_f_submatch) {
rsm_save = rsm;
}
can_f_submatch = true;
rsm.sm_match = rex.reg_match;
rsm.sm_mmatch = rex.reg_mmatch;
rsm.sm_firstlnum = rex.reg_firstlnum;
rsm.sm_maxline = rex.reg_maxline;
rsm.sm_line_lbr = rex.reg_line_lbr;
if (expr != NULL) {
typval_T argv[2];
int dummy;
typval_T rettv;
staticList10_T matchList = TV_LIST_STATIC10_INIT;
rettv.v_type = VAR_STRING;
rettv.vval.v_string = NULL;
argv[0].v_type = VAR_LIST;
argv[0].vval.v_list = &matchList.sl_list;
if (expr->v_type == VAR_FUNC) {
s = expr->vval.v_string;
call_func(s, -1, &rettv, 1, argv,
fill_submatch_list, 0L, 0L, &dummy,
true, NULL, NULL);
} else if (expr->v_type == VAR_PARTIAL) {
partial_T *partial = expr->vval.v_partial;
s = partial_name(partial);
call_func(s, -1, &rettv, 1, argv,
fill_submatch_list, 0L, 0L, &dummy,
true, partial, NULL);
}
if (tv_list_len(&matchList.sl_list) > 0) {
// fill_submatch_list() was called.
clear_submatch_list(&matchList);
}
if (rettv.v_type == VAR_UNKNOWN) {
// something failed, no need to report another error
eval_result = NULL;
} else {
char buf[NUMBUFLEN];
eval_result = (char_u *)tv_get_string_buf_chk(&rettv, buf);
if (eval_result != NULL) {
eval_result = vim_strsave(eval_result);
}
}
tv_clear(&rettv);
} else {
eval_result = eval_to_string(source + 2, NULL, true);
}
if (eval_result != NULL) {
int had_backslash = false;
for (s = eval_result; *s != NUL; MB_PTR_ADV(s)) {
// Change NL to CR, so that it becomes a line break,
// unless called from vim_regexec_nl().
// Skip over a backslashed character.
if (*s == NL && !rsm.sm_line_lbr) {
*s = CAR;
} else if (*s == '\\' && s[1] != NUL) {
s++;
/* Change NL to CR here too, so that this works:
* :s/abc\\\ndef/\="aaa\\\nbbb"/ on text:
* abc\
* def
* Not when called from vim_regexec_nl().
*/
if (*s == NL && !rsm.sm_line_lbr) {
*s = CAR;
}
had_backslash = true;
}
}
if (had_backslash && backslash) {
/* Backslashes will be consumed, need to double them. */
s = vim_strsave_escaped(eval_result, (char_u *)"\\");
xfree(eval_result);
eval_result = s;
}
dst += STRLEN(eval_result);
}
can_f_submatch = prev_can_f_submatch;
if (can_f_submatch) {
rsm = rsm_save;
}
}
} else
while ((c = *src++) != NUL) {
if (c == '&' && magic)
no = 0;
else if (c == '\\' && *src != NUL) {
if (*src == '&' && !magic) {
++src;
no = 0;
} else if ('0' <= *src && *src <= '9') {
no = *src++ - '0';
} else if (vim_strchr((char_u *)"uUlLeE", *src)) {
switch (*src++) {
case 'u': func_one = (fptr_T)do_upper;
continue;
case 'U': func_all = (fptr_T)do_Upper;
continue;
case 'l': func_one = (fptr_T)do_lower;
continue;
case 'L': func_all = (fptr_T)do_Lower;
continue;
case 'e':
case 'E': func_one = func_all = (fptr_T)NULL;
continue;
}
}
}
if (no < 0) { /* Ordinary character. */
if (c == K_SPECIAL && src[0] != NUL && src[1] != NUL) {
/* Copy a special key as-is. */
if (copy) {
*dst++ = c;
*dst++ = *src++;
*dst++ = *src++;
} else {
dst += 3;
src += 2;
}
continue;
}
if (c == '\\' && *src != NUL) {
// Check for abbreviations -- webb
switch (*src) {
case 'r': c = CAR; ++src; break;
case 'n': c = NL; ++src; break;
case 't': c = TAB; ++src; break;
// Oh no! \e already has meaning in subst pat :-(
// case 'e': c = ESC; ++src; break;
case 'b': c = Ctrl_H; ++src; break;
// If "backslash" is true the backslash will be removed
// later. Used to insert a literal CR.
default:
if (backslash) {
num_escaped += 1;
if (copy) {
*dst = '\\';
}
dst++;
}
c = *src++;
}
} else {
c = utf_ptr2char(src - 1);
}
// Write to buffer, if copy is set.
if (func_one != NULL) {
func_one = (fptr_T)(func_one(&cc, c));
} else if (func_all != NULL) {
func_all = (fptr_T)(func_all(&cc, c));
} else {
// just copy
cc = c;
}
int totlen = utfc_ptr2len(src - 1);
if (copy) {
utf_char2bytes(cc, dst);
}
dst += utf_char2len(cc) - 1;
int clen = utf_ptr2len(src - 1);
// If the character length is shorter than "totlen", there
// are composing characters; copy them as-is.
if (clen < totlen) {
if (copy) {
memmove(dst + 1, src - 1 + clen, (size_t)(totlen - clen));
}
dst += totlen - clen;
}
src += totlen - 1;
dst++;
} else {
if (REG_MULTI) {
clnum = rex.reg_mmatch->startpos[no].lnum;
if (clnum < 0 || rex.reg_mmatch->endpos[no].lnum < 0) {
s = NULL;
} else {
s = reg_getline(clnum) + rex.reg_mmatch->startpos[no].col;
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
len = rex.reg_mmatch->endpos[no].col
- rex.reg_mmatch->startpos[no].col;
} else {
len = (int)STRLEN(s);
}
}
} else {
s = rex.reg_match->startp[no];
if (rex.reg_match->endp[no] == NULL) {
s = NULL;
} else {
len = (int)(rex.reg_match->endp[no] - s);
}
}
if (s != NULL) {
for (;; ) {
if (len == 0) {
if (REG_MULTI) {
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
break;
}
if (copy) {
*dst = CAR;
}
dst++;
s = reg_getline(++clnum);
if (rex.reg_mmatch->endpos[no].lnum == clnum) {
len = rex.reg_mmatch->endpos[no].col;
} else {
len = (int)STRLEN(s);
}
} else {
break;
}
} else if (*s == NUL) { // we hit NUL.
if (copy) {
IEMSG(_(e_re_damg));
}
goto exit;
} else {
if (backslash && (*s == CAR || *s == '\\')) {
/*
* Insert a backslash in front of a CR, otherwise
* it will be replaced by a line break.
* Number of backslashes will be halved later,
* double them here.
*/
if (copy) {
dst[0] = '\\';
dst[1] = *s;
}
dst += 2;
} else {
c = utf_ptr2char(s);
if (func_one != (fptr_T)NULL)
/* Turbo C complains without the typecast */
func_one = (fptr_T)(func_one(&cc, c));
else if (func_all != (fptr_T)NULL)
/* Turbo C complains without the typecast */
func_all = (fptr_T)(func_all(&cc, c));
else /* just copy */
cc = c;
{
int l;
// Copy composing characters separately, one
// at a time.
l = utf_ptr2len(s) - 1;
s += l;
len -= l;
if (copy) {
utf_char2bytes(cc, dst);
}
dst += utf_char2len(cc) - 1;
}
dst++;
}
++s;
--len;
}
}
}
no = -1;
}
}
if (copy)
*dst = NUL;
exit:
return (int)((dst - dest) + 1 - num_escaped);
}
/*
* Call reg_getline() with the line numbers from the submatch. If a
* substitute() was used the reg_maxline and other values have been
* overwritten.
*/
static char_u *reg_getline_submatch(linenr_T lnum)
{
char_u *s;
linenr_T save_first = rex.reg_firstlnum;
linenr_T save_max = rex.reg_maxline;
rex.reg_firstlnum = rsm.sm_firstlnum;
rex.reg_maxline = rsm.sm_maxline;
s = reg_getline(lnum);
rex.reg_firstlnum = save_first;
rex.reg_maxline = save_max;
return s;
}
/*
* Used for the submatch() function: get the string from the n'th submatch in
* allocated memory.
* Returns NULL when not in a ":s" command and for a non-existing submatch.
*/
char_u *reg_submatch(int no)
{
char_u *retval = NULL;
char_u *s;
int round;
linenr_T lnum;
if (!can_f_submatch || no < 0)
return NULL;
if (rsm.sm_match == NULL) {
ssize_t len;
/*
* First round: compute the length and allocate memory.
* Second round: copy the text.
*/
for (round = 1; round <= 2; round++) {
lnum = rsm.sm_mmatch->startpos[no].lnum;
if (lnum < 0 || rsm.sm_mmatch->endpos[no].lnum < 0) {
return NULL;
}
s = reg_getline_submatch(lnum);
if (s == NULL) { // anti-crash check, cannot happen?
break;
}
s += rsm.sm_mmatch->startpos[no].col;
if (rsm.sm_mmatch->endpos[no].lnum == lnum) {
// Within one line: take form start to end col.
len = rsm.sm_mmatch->endpos[no].col - rsm.sm_mmatch->startpos[no].col;
if (round == 2) {
STRLCPY(retval, s, len + 1);
}
len++;
} else {
// Multiple lines: take start line from start col, middle
// lines completely and end line up to end col.
len = (ssize_t)STRLEN(s);
if (round == 2) {
STRCPY(retval, s);
retval[len] = '\n';
}
len++;
lnum++;
while (lnum < rsm.sm_mmatch->endpos[no].lnum) {
s = reg_getline_submatch(lnum++);
if (round == 2)
STRCPY(retval + len, s);
len += STRLEN(s);
if (round == 2)
retval[len] = '\n';
++len;
}
if (round == 2) {
STRNCPY(retval + len, reg_getline_submatch(lnum),
rsm.sm_mmatch->endpos[no].col);
}
len += rsm.sm_mmatch->endpos[no].col;
if (round == 2) {
retval[len] = NUL; // -V595
}
len++;
}
if (retval == NULL) {
retval = xmalloc(len);
}
}
} else {
s = rsm.sm_match->startp[no];
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
retval = NULL;
} else {
retval = vim_strnsave(s, rsm.sm_match->endp[no] - s);
}
}
return retval;
}
// Used for the submatch() function with the optional non-zero argument: get
// the list of strings from the n'th submatch in allocated memory with NULs
// represented in NLs.
// Returns a list of allocated strings. Returns NULL when not in a ":s"
// command, for a non-existing submatch and for any error.
list_T *reg_submatch_list(int no)
{
if (!can_f_submatch || no < 0) {
return NULL;
}
linenr_T slnum;
linenr_T elnum;
list_T *list;
const char *s;
if (rsm.sm_match == NULL) {
slnum = rsm.sm_mmatch->startpos[no].lnum;
elnum = rsm.sm_mmatch->endpos[no].lnum;
if (slnum < 0 || elnum < 0) {
return NULL;
}
colnr_T scol = rsm.sm_mmatch->startpos[no].col;
colnr_T ecol = rsm.sm_mmatch->endpos[no].col;
list = tv_list_alloc(elnum - slnum + 1);
s = (const char *)reg_getline_submatch(slnum) + scol;
if (slnum == elnum) {
tv_list_append_string(list, s, ecol - scol);
} else {
tv_list_append_string(list, s, -1);
for (int i = 1; i < elnum - slnum; i++) {
s = (const char *)reg_getline_submatch(slnum + i);
tv_list_append_string(list, s, -1);
}
s = (const char *)reg_getline_submatch(elnum);
tv_list_append_string(list, s, ecol);
}
} else {
s = (const char *)rsm.sm_match->startp[no];
if (s == NULL || rsm.sm_match->endp[no] == NULL) {
return NULL;
}
list = tv_list_alloc(1);
tv_list_append_string(list, s, (const char *)rsm.sm_match->endp[no] - s);
}
tv_list_ref(list);
return list;
}
static regengine_T bt_regengine =
{
bt_regcomp,
bt_regfree,
bt_regexec_nl,
bt_regexec_multi,
(char_u *)""
};
// XXX Do not allow headers generator to catch definitions from regexp_nfa.c
#ifndef DO_NOT_DEFINE_EMPTY_ATTRIBUTES
# include "nvim/regexp_nfa.c"
#endif
static regengine_T nfa_regengine =
{
nfa_regcomp,
nfa_regfree,
nfa_regexec_nl,
nfa_regexec_multi,
(char_u *)""
};
/* Which regexp engine to use? Needed for vim_regcomp().
* Must match with 'regexpengine'. */
static int regexp_engine = 0;
#ifdef REGEXP_DEBUG
static char_u regname[][30] = {
"AUTOMATIC Regexp Engine",
"BACKTRACKING Regexp Engine",
"NFA Regexp Engine"
};
#endif
/*
* Compile a regular expression into internal code.
* Returns the program in allocated memory.
* Use vim_regfree() to free the memory.
* Returns NULL for an error.
*/
regprog_T *vim_regcomp(char_u *expr_arg, int re_flags)
{
regprog_T *prog = NULL;
char_u *expr = expr_arg;
int save_called_emsg;
regexp_engine = p_re;
/* Check for prefix "\%#=", that sets the regexp engine */
if (STRNCMP(expr, "\\%#=", 4) == 0) {
int newengine = expr[4] - '0';
if (newengine == AUTOMATIC_ENGINE
|| newengine == BACKTRACKING_ENGINE
|| newengine == NFA_ENGINE) {
regexp_engine = expr[4] - '0';
expr += 5;
#ifdef REGEXP_DEBUG
smsg("New regexp mode selected (%d): %s",
regexp_engine,
regname[newengine]);
#endif
} else {
EMSG(_(
"E864: \\%#= can only be followed by 0, 1, or 2. The automatic engine will be used "));
regexp_engine = AUTOMATIC_ENGINE;
}
}
#ifdef REGEXP_DEBUG
bt_regengine.expr = expr;
nfa_regengine.expr = expr;
#endif
// reg_iswordc() uses rex.reg_buf
rex.reg_buf = curbuf;
//
// First try the NFA engine, unless backtracking was requested.
//
save_called_emsg = called_emsg;
called_emsg = false;
if (regexp_engine != BACKTRACKING_ENGINE) {
prog = nfa_regengine.regcomp(expr,
re_flags + (regexp_engine == AUTOMATIC_ENGINE ? RE_AUTO : 0));
} else {
prog = bt_regengine.regcomp(expr, re_flags);
}
// Check for error compiling regexp with initial engine.
if (prog == NULL) {
#ifdef BT_REGEXP_DEBUG_LOG
// Debugging log for BT engine.
if (regexp_engine != BACKTRACKING_ENGINE) {
FILE *f = fopen(BT_REGEXP_DEBUG_LOG_NAME, "a");
if (f) {
fprintf(f, "Syntax error in \"%s\"\n", expr);
fclose(f);
} else
EMSG2("(NFA) Could not open \"%s\" to write !!!",
BT_REGEXP_DEBUG_LOG_NAME);
}
#endif
// If the NFA engine failed, try the backtracking engine. The NFA engine
// also fails for patterns that it can't handle well but are still valid
// patterns, thus a retry should work.
// But don't try if an error message was given.
if (regexp_engine == AUTOMATIC_ENGINE && !called_emsg) {
regexp_engine = BACKTRACKING_ENGINE;
report_re_switch(expr);
prog = bt_regengine.regcomp(expr, re_flags);
}
}
called_emsg |= save_called_emsg;
if (prog != NULL) {
// Store the info needed to call regcomp() again when the engine turns out
// to be very slow when executing it.
prog->re_engine = regexp_engine;
prog->re_flags = re_flags;
}
return prog;
}
/*
* Free a compiled regexp program, returned by vim_regcomp().
*/
void vim_regfree(regprog_T *prog)
{
if (prog != NULL)
prog->engine->regfree(prog);
}
static void report_re_switch(char_u *pat)
{
if (p_verbose > 0) {
verbose_enter();
MSG_PUTS(_("Switching to backtracking RE engine for pattern: "));
MSG_PUTS(pat);
verbose_leave();
}
}
/// Matches a regexp against a string.
/// "rmp->regprog" is a compiled regexp as returned by vim_regcomp().
/// Note: "rmp->regprog" may be freed and changed.
/// Uses curbuf for line count and 'iskeyword'.
/// When "nl" is true consider a "\n" in "line" to be a line break.
///
/// @param rmp
/// @param line the string to match against
/// @param col the column to start looking for match
/// @param nl
///
/// @return true if there is a match, false if not.
static bool vim_regexec_string(regmatch_T *rmp, char_u *line, colnr_T col,
bool nl)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
// Cannot use the same prog recursively, it contains state.
if (rmp->regprog->re_in_use) {
EMSG(_(e_recursive));
return false;
}
rmp->regprog->re_in_use = true;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
rex.reg_startp = NULL;
rex.reg_endp = NULL;
rex.reg_startpos = NULL;
rex.reg_endpos = NULL;
int result = rmp->regprog->engine->regexec_nl(rmp, line, col, nl);
rmp->regprog->re_in_use = false;
// NFA engine aborted because it's very slow, use backtracking engine instead.
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
&& result == NFA_TOO_EXPENSIVE) {
int save_p_re = p_re;
int re_flags = rmp->regprog->re_flags;
char_u *pat = vim_strsave(((nfa_regprog_T *)rmp->regprog)->pattern);
p_re = BACKTRACKING_ENGINE;
vim_regfree(rmp->regprog);
report_re_switch(pat);
rmp->regprog = vim_regcomp(pat, re_flags);
if (rmp->regprog != NULL) {
rmp->regprog->re_in_use = true;
result = rmp->regprog->engine->regexec_nl(rmp, line, col, nl);
rmp->regprog->re_in_use = false;
}
xfree(pat);
p_re = save_p_re;
}
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result > 0;
}
// Note: "*prog" may be freed and changed.
// Return true if there is a match, false if not.
bool vim_regexec_prog(regprog_T **prog, bool ignore_case, char_u *line,
colnr_T col)
{
regmatch_T regmatch = { .regprog = *prog, .rm_ic = ignore_case };
bool r = vim_regexec_string(&regmatch, line, col, false);
*prog = regmatch.regprog;
return r;
}
// Note: "rmp->regprog" may be freed and changed.
// Return true if there is a match, false if not.
bool vim_regexec(regmatch_T *rmp, char_u *line, colnr_T col)
{
return vim_regexec_string(rmp, line, col, false);
}
// Like vim_regexec(), but consider a "\n" in "line" to be a line break.
// Note: "rmp->regprog" may be freed and changed.
// Return true if there is a match, false if not.
bool vim_regexec_nl(regmatch_T *rmp, char_u *line, colnr_T col)
{
return vim_regexec_string(rmp, line, col, true);
}
/// Match a regexp against multiple lines.
/// "rmp->regprog" must be a compiled regexp as returned by vim_regcomp().
/// Note: "rmp->regprog" may be freed and changed, even set to NULL.
/// Uses curbuf for line count and 'iskeyword'.
///
/// Return zero if there is no match. Return number of lines contained in the
/// match otherwise.
long vim_regexec_multi(
regmmatch_T *rmp,
win_T *win, // window in which to search or NULL
buf_T *buf, // buffer in which to search
linenr_T lnum, // nr of line to start looking for match
colnr_T col, // column to start looking for match
proftime_T *tm, // timeout limit or NULL
int *timed_out // flag is set when timeout limit reached
)
FUNC_ATTR_NONNULL_ARG(1)
{
regexec_T rex_save;
bool rex_in_use_save = rex_in_use;
// Cannot use the same prog recursively, it contains state.
if (rmp->regprog->re_in_use) {
EMSG(_(e_recursive));
return false;
}
rmp->regprog->re_in_use = true;
if (rex_in_use) {
// Being called recursively, save the state.
rex_save = rex;
}
rex_in_use = true;
int result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col,
tm, timed_out);
rmp->regprog->re_in_use = false;
// NFA engine aborted because it's very slow, use backtracking engine instead.
if (rmp->regprog->re_engine == AUTOMATIC_ENGINE
&& result == NFA_TOO_EXPENSIVE) {
int save_p_re = p_re;
int re_flags = rmp->regprog->re_flags;
char_u *pat = vim_strsave(((nfa_regprog_T *)rmp->regprog)->pattern);
p_re = BACKTRACKING_ENGINE;
vim_regfree(rmp->regprog);
report_re_switch(pat);
// checking for \z misuse was already done when compiling for NFA,
// allow all here
reg_do_extmatch = REX_ALL;
rmp->regprog = vim_regcomp(pat, re_flags);
reg_do_extmatch = 0;
if (rmp->regprog != NULL) {
rmp->regprog->re_in_use = true;
result = rmp->regprog->engine->regexec_multi(rmp, win, buf, lnum, col,
tm, timed_out);
rmp->regprog->re_in_use = false;
}
xfree(pat);
p_re = save_p_re;
}
rex_in_use = rex_in_use_save;
if (rex_in_use) {
rex = rex_save;
}
return result <= 0 ? 0 : result;
}