mirror of
https://github.com/raysan5/raylib.git
synced 2025-09-06 03:18:14 +00:00
Increasing maxInterations glsl100 to 255 to match with glsl330 and add glsl120
This commit is contained in:
@@ -12,7 +12,7 @@ uniform float zoom; // Zoom of the scale.
|
|||||||
|
|
||||||
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
|
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
|
||||||
// for example, on RasperryPi for this examply only supports up to 60
|
// for example, on RasperryPi for this examply only supports up to 60
|
||||||
const int maxIterations = 48; // Max iterations to do.
|
const int maxIterations = 255; // Max iterations to do.
|
||||||
const float colorCycles = 1.0; // Number of times the color palette repeats.
|
const float colorCycles = 1.0; // Number of times the color palette repeats.
|
||||||
|
|
||||||
// Square a complex number
|
// Square a complex number
|
||||||
@@ -57,7 +57,7 @@ void main()
|
|||||||
z.y += offset.y;
|
z.y += offset.y;
|
||||||
|
|
||||||
int iter = 0;
|
int iter = 0;
|
||||||
for (int iterations = 0; iterations < 60; iterations++)
|
for (int iterations = 0; iterations < maxIterations; iterations++)
|
||||||
{
|
{
|
||||||
z = ComplexSquare(z) + c; // Iterate function
|
z = ComplexSquare(z) + c; // Iterate function
|
||||||
if (dot(z, z) > 4.0) break;
|
if (dot(z, z) > 4.0) break;
|
||||||
|
80
examples/shaders/resources/shaders/glsl120/julia_set.fs
Normal file
80
examples/shaders/resources/shaders/glsl120/julia_set.fs
Normal file
@@ -0,0 +1,80 @@
|
|||||||
|
#version 120
|
||||||
|
|
||||||
|
// Input vertex attributes (from vertex shader)
|
||||||
|
varying vec2 fragTexCoord;
|
||||||
|
varying vec4 fragColor;
|
||||||
|
|
||||||
|
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
|
||||||
|
uniform vec2 offset; // Offset of the scale.
|
||||||
|
uniform float zoom; // Zoom of the scale.
|
||||||
|
|
||||||
|
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
|
||||||
|
// for example, on RasperryPi for this examply only supports up to 60
|
||||||
|
const int maxIterations = 255; // Max iterations to do.
|
||||||
|
const float colorCycles = 1.0; // Number of times the color palette repeats.
|
||||||
|
|
||||||
|
// Square a complex number
|
||||||
|
vec2 ComplexSquare(vec2 z)
|
||||||
|
{
|
||||||
|
return vec2(z.x*z.x - z.y*z.y, z.x*z.y*2.0);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert Hue Saturation Value (HSV) color into RGB
|
||||||
|
vec3 Hsv2rgb(vec3 c)
|
||||||
|
{
|
||||||
|
vec4 K = vec4(1.0, 2.0/3.0, 1.0/3.0, 3.0);
|
||||||
|
vec3 p = abs(fract(c.xxx + K.xyz)*6.0 - K.www);
|
||||||
|
return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
|
||||||
|
}
|
||||||
|
|
||||||
|
void main()
|
||||||
|
{
|
||||||
|
/**********************************************************************************************
|
||||||
|
Julia sets use a function z^2 + c, where c is a constant.
|
||||||
|
This function is iterated until the nature of the point is determined.
|
||||||
|
|
||||||
|
If the magnitude of the number becomes greater than 2, then from that point onward
|
||||||
|
the number will get bigger and bigger, and will never get smaller (tends towards infinity).
|
||||||
|
2^2 = 4, 4^2 = 8 and so on.
|
||||||
|
So at 2 we stop iterating.
|
||||||
|
|
||||||
|
If the number is below 2, we keep iterating.
|
||||||
|
But when do we stop iterating if the number is always below 2 (it converges)?
|
||||||
|
That is what maxIterations is for.
|
||||||
|
Then we can divide the iterations by the maxIterations value to get a normalized value that we can
|
||||||
|
then map to a color.
|
||||||
|
|
||||||
|
We use dot product (z.x * z.x + z.y * z.y) to determine the magnitude (length) squared.
|
||||||
|
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power).
|
||||||
|
*************************************************************************************************/
|
||||||
|
|
||||||
|
// The pixel coordinates are scaled so they are on the mandelbrot scale
|
||||||
|
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
|
||||||
|
vec2 z = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
|
||||||
|
z.x += offset.x;
|
||||||
|
z.y += offset.y;
|
||||||
|
|
||||||
|
int iter = 0;
|
||||||
|
for (int iterations = 0; iterations < maxIterations; iterations++)
|
||||||
|
{
|
||||||
|
z = ComplexSquare(z) + c; // Iterate function
|
||||||
|
if (dot(z, z) > 4.0) break;
|
||||||
|
|
||||||
|
iter = iterations;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Another few iterations decreases errors in the smoothing calculation.
|
||||||
|
// See http://linas.org/art-gallery/escape/escape.html for more information.
|
||||||
|
z = ComplexSquare(z) + c;
|
||||||
|
z = ComplexSquare(z) + c;
|
||||||
|
|
||||||
|
// This last part smooths the color (again see link above).
|
||||||
|
float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0));
|
||||||
|
|
||||||
|
// Normalize the value so it is between 0 and 1.
|
||||||
|
float norm = smoothVal/float(maxIterations);
|
||||||
|
|
||||||
|
// If in set, color black. 0.999 allows for some float accuracy error.
|
||||||
|
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
|
||||||
|
else gl_FragColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0, 1.0)), 1.0);
|
||||||
|
}
|
Reference in New Issue
Block a user