mirror of
https://github.com/raysan5/raylib.git
synced 2025-09-24 20:18:30 +00:00
Complete review of raymath for API consistency
This commit is contained in:
495
src/raymath.h
495
src/raymath.h
@@ -83,11 +83,16 @@
|
||||
#define RAD2DEG (180.0f/PI)
|
||||
#endif
|
||||
|
||||
// Return float vector
|
||||
// Return float vector for Matrix
|
||||
#ifndef MatrixToFloat
|
||||
#define MatrixToFloat(mat) (MatrixToFloatV(mat).v)
|
||||
#endif
|
||||
|
||||
// Return float vector for Vector3
|
||||
#ifndef Vector3ToFloat
|
||||
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v)
|
||||
#endif
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Types and Structures Definition
|
||||
//----------------------------------------------------------------------------------
|
||||
@@ -147,84 +152,86 @@ RMDEF float Clamp(float value, float min, float max)
|
||||
// Vector with components value 0.0f
|
||||
RMDEF Vector2 Vector2Zero(void)
|
||||
{
|
||||
Vector2 tmp = {0.0f, 0.0f};
|
||||
return tmp;
|
||||
Vector2 result = { 0.0f, 0.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Vector with components value 1.0f
|
||||
RMDEF Vector2 Vector2One(void)
|
||||
{
|
||||
Vector2 tmp = {1.0f, 1.0f};
|
||||
return tmp;
|
||||
Vector2 result = { 1.0f, 1.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Add two vectors (v1 + v2)
|
||||
RMDEF Vector2 Vector2Add(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
Vector2 tmp = { v1.x + v2.x, v1.y + v2.y };
|
||||
return tmp;
|
||||
Vector2 result = { v1.x + v2.x, v1.y + v2.y };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Subtract two vectors (v1 - v2)
|
||||
RMDEF Vector2 Vector2Subtract(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
Vector2 tmp = { v1.x - v2.x, v1.y - v2.y };
|
||||
return tmp;
|
||||
Vector2 result = { v1.x - v2.x, v1.y - v2.y };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate vector length
|
||||
RMDEF float Vector2Length(Vector2 v)
|
||||
{
|
||||
return sqrtf((v.x*v.x) + (v.y*v.y));
|
||||
float result = sqrtf((v.x*v.x) + (v.y*v.y));
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate two vectors dot product
|
||||
RMDEF float Vector2DotProduct(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
return (v1.x*v2.x + v1.y*v2.y);
|
||||
float result = (v1.x*v2.x + v1.y*v2.y);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate distance between two vectors
|
||||
RMDEF float Vector2Distance(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
return sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
|
||||
float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y));
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate angle from two vectors in X-axis
|
||||
RMDEF float Vector2Angle(Vector2 v1, Vector2 v2)
|
||||
{
|
||||
float angle = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
|
||||
|
||||
if (angle < 0) angle += 360.0f;
|
||||
|
||||
return angle;
|
||||
float result = atan2f(v2.y - v1.y, v2.x - v1.x)*(180.0f/PI);
|
||||
if (result < 0) result += 360.0f;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Scale vector (multiply by value)
|
||||
RMDEF void Vector2Scale(Vector2 *v, float scale)
|
||||
RMDEF Vector2 Vector2Scale(Vector2 v, float scale)
|
||||
{
|
||||
v->x *= scale;
|
||||
v->y *= scale;
|
||||
Vector2 result = { v.x*scale, v.y*scale };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Negate vector
|
||||
RMDEF void Vector2Negate(Vector2 *v)
|
||||
RMDEF Vector2 Vector2Negate(Vector2 v)
|
||||
{
|
||||
v->x = -v->x;
|
||||
v->y = -v->y;
|
||||
Vector2 result = { -v.x, -v.y };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Divide vector by a float value
|
||||
RMDEF void Vector2Divide(Vector2 *v, float div)
|
||||
RMDEF Vector2 Vector2Divide(Vector2 v, float div)
|
||||
{
|
||||
Vector2 tmp = {v->x/div, v->y/div};
|
||||
*v = tmp;
|
||||
Vector2 result = { v.x/div, v.y/div };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided vector
|
||||
RMDEF void Vector2Normalize(Vector2 *v)
|
||||
RMDEF Vector2 Vector2Normalize(Vector2 v)
|
||||
{
|
||||
Vector2Divide(v, Vector2Length(*v));
|
||||
Vector2 result = Vector2Divide(v, Vector2Length(v));
|
||||
return result;
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
@@ -234,69 +241,56 @@ RMDEF void Vector2Normalize(Vector2 *v)
|
||||
// Vector with components value 0.0f
|
||||
RMDEF Vector3 Vector3Zero(void)
|
||||
{
|
||||
Vector3 tmp = { 0.0f, 0.0f, 0.0f };
|
||||
return tmp;
|
||||
Vector3 result = { 0.0f, 0.0f, 0.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Vector with components value 1.0f
|
||||
RMDEF Vector3 Vector3One(void)
|
||||
{
|
||||
Vector3 tmp = { 1.0f, 1.0f, 1.0f };
|
||||
return tmp;
|
||||
Vector3 result = { 1.0f, 1.0f, 1.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Add two vectors
|
||||
RMDEF Vector3 Vector3Add(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 tmp = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
|
||||
return tmp;
|
||||
Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Substract two vectors
|
||||
RMDEF Vector3 Vector3Subtract(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 tmp = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
|
||||
return tmp;
|
||||
Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Multiply vector by scalar
|
||||
RMDEF Vector3 Vector3Multiply(Vector3 v, float scalar)
|
||||
{
|
||||
v.x *= scalar;
|
||||
v.y *= scalar;
|
||||
v.z *= scalar;
|
||||
|
||||
return v;
|
||||
{
|
||||
Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Multiply vector by vector
|
||||
RMDEF Vector3 Vector3MultiplyV(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result;
|
||||
|
||||
result.x = v1.x * v2.x;
|
||||
result.y = v1.y * v2.y;
|
||||
result.z = v1.z * v2.z;
|
||||
|
||||
Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate two vectors cross product
|
||||
RMDEF Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result;
|
||||
|
||||
result.x = v1.y*v2.z - v1.z*v2.y;
|
||||
result.y = v1.z*v2.x - v1.x*v2.z;
|
||||
result.z = v1.x*v2.y - v1.y*v2.x;
|
||||
|
||||
Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate one vector perpendicular vector
|
||||
RMDEF Vector3 Vector3Perpendicular(Vector3 v)
|
||||
{
|
||||
Vector3 result;
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float min = fabsf(v.x);
|
||||
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f};
|
||||
@@ -322,13 +316,15 @@ RMDEF Vector3 Vector3Perpendicular(Vector3 v)
|
||||
// Calculate vector length
|
||||
RMDEF float Vector3Length(const Vector3 v)
|
||||
{
|
||||
return sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
|
||||
float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate two vectors dot product
|
||||
RMDEF float Vector3DotProduct(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
|
||||
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate distance between two vectors
|
||||
@@ -337,58 +333,60 @@ RMDEF float Vector3Distance(Vector3 v1, Vector3 v2)
|
||||
float dx = v2.x - v1.x;
|
||||
float dy = v2.y - v1.y;
|
||||
float dz = v2.z - v1.z;
|
||||
|
||||
return sqrtf(dx*dx + dy*dy + dz*dz);
|
||||
float result = sqrtf(dx*dx + dy*dy + dz*dz);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Scale provided vector
|
||||
RMDEF void Vector3Scale(Vector3 *v, float scale)
|
||||
RMDEF Vector3 Vector3Scale(Vector3 v, float scale)
|
||||
{
|
||||
v->x *= scale;
|
||||
v->y *= scale;
|
||||
v->z *= scale;
|
||||
Vector3 result = { v.x*scale, v.y*scale, v.z*scale };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Negate provided vector (invert direction)
|
||||
RMDEF void Vector3Negate(Vector3 *v)
|
||||
RMDEF Vector3 Vector3Negate(Vector3 v)
|
||||
{
|
||||
v->x = -v->x;
|
||||
v->y = -v->y;
|
||||
v->z = -v->z;
|
||||
Vector3 result = { -v.x, -v.y, -v.z };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided vector
|
||||
RMDEF void Vector3Normalize(Vector3 *v)
|
||||
RMDEF Vector3 Vector3Normalize(Vector3 v)
|
||||
{
|
||||
Vector3 result = v;
|
||||
|
||||
float length, ilength;
|
||||
|
||||
length = Vector3Length(*v);
|
||||
|
||||
length = Vector3Length(v);
|
||||
if (length == 0.0f) length = 1.0f;
|
||||
|
||||
ilength = 1.0f/length;
|
||||
|
||||
v->x *= ilength;
|
||||
v->y *= ilength;
|
||||
v->z *= ilength;
|
||||
result.x *= ilength;
|
||||
result.y *= ilength;
|
||||
result.z *= ilength;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Transforms a Vector3 by a given Matrix
|
||||
RMDEF void Vector3Transform(Vector3 *v, Matrix mat)
|
||||
RMDEF Vector3 Vector3Transform(Vector3 v, Matrix mat)
|
||||
{
|
||||
float x = v->x;
|
||||
float y = v->y;
|
||||
float z = v->z;
|
||||
Vector3 result = { 0 };
|
||||
float x = v.x;
|
||||
float y = v.y;
|
||||
float z = v.z;
|
||||
|
||||
v->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
|
||||
v->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
|
||||
v->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
|
||||
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12;
|
||||
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13;
|
||||
result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14;
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
// Calculate linear interpolation between two vectors
|
||||
RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
|
||||
{
|
||||
Vector3 result;
|
||||
Vector3 result = { 0 };
|
||||
|
||||
result.x = v1.x + amount*(v2.x - v1.x);
|
||||
result.y = v1.y + amount*(v2.y - v1.y);
|
||||
@@ -398,43 +396,43 @@ RMDEF Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount)
|
||||
}
|
||||
|
||||
// Calculate reflected vector to normal
|
||||
RMDEF Vector3 Vector3Reflect(Vector3 vector, Vector3 normal)
|
||||
RMDEF Vector3 Vector3Reflect(Vector3 v, Vector3 normal)
|
||||
{
|
||||
// I is the original vector
|
||||
// N is the normal of the incident plane
|
||||
// R = I - (2*N*( DotProduct[ I,N] ))
|
||||
|
||||
Vector3 result;
|
||||
Vector3 result = { 0 };
|
||||
|
||||
float dotProduct = Vector3DotProduct(vector, normal);
|
||||
float dotProduct = Vector3DotProduct(v, normal);
|
||||
|
||||
result.x = vector.x - (2.0f*normal.x)*dotProduct;
|
||||
result.y = vector.y - (2.0f*normal.y)*dotProduct;
|
||||
result.z = vector.z - (2.0f*normal.z)*dotProduct;
|
||||
result.x = v.x - (2.0f*normal.x)*dotProduct;
|
||||
result.y = v.y - (2.0f*normal.y)*dotProduct;
|
||||
result.z = v.z - (2.0f*normal.z)*dotProduct;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Return min value for each pair of components
|
||||
RMDEF Vector3 Vector3Min(Vector3 vec1, Vector3 vec2)
|
||||
RMDEF Vector3 Vector3Min(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result;
|
||||
Vector3 result = { 0 };
|
||||
|
||||
result.x = fminf(vec1.x, vec2.x);
|
||||
result.y = fminf(vec1.y, vec2.y);
|
||||
result.z = fminf(vec1.z, vec2.z);
|
||||
result.x = fminf(v1.x, v2.x);
|
||||
result.y = fminf(v1.y, v2.y);
|
||||
result.z = fminf(v1.z, v2.z);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Return max value for each pair of components
|
||||
RMDEF Vector3 Vector3Max(Vector3 vec1, Vector3 vec2)
|
||||
RMDEF Vector3 Vector3Max(Vector3 v1, Vector3 v2)
|
||||
{
|
||||
Vector3 result;
|
||||
Vector3 result = { 0 };
|
||||
|
||||
result.x = fmaxf(vec1.x, vec2.x);
|
||||
result.y = fmaxf(vec1.y, vec2.y);
|
||||
result.z = fmaxf(vec1.z, vec2.z);
|
||||
result.x = fmaxf(v1.x, v2.x);
|
||||
result.y = fmaxf(v1.y, v2.y);
|
||||
result.z = fmaxf(v1.z, v2.z);
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -456,7 +454,7 @@ RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
|
||||
|
||||
float denom = d00*d11 - d01*d01;
|
||||
|
||||
Vector3 result;
|
||||
Vector3 result = { 0 };
|
||||
|
||||
result.y = (d11*d20 - d01*d21)/denom;
|
||||
result.z = (d00*d21 - d01*d20)/denom;
|
||||
@@ -466,19 +464,16 @@ RMDEF Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c)
|
||||
}
|
||||
|
||||
// Returns Vector3 as float array
|
||||
RMDEF float3 Vector3ToFloat_(Vector3 vec)
|
||||
RMDEF float3 Vector3ToFloatV(Vector3 v)
|
||||
{
|
||||
float3 buffer;
|
||||
float3 buffer = { 0 };
|
||||
|
||||
buffer.v[0] = vec.x;
|
||||
buffer.v[1] = vec.y;
|
||||
buffer.v[2] = vec.z;
|
||||
buffer.v[0] = v.x;
|
||||
buffer.v[1] = v.y;
|
||||
buffer.v[2] = v.z;
|
||||
|
||||
return buffer;
|
||||
}
|
||||
#ifndef Vector3ToFloat
|
||||
#define Vector3ToFloat(vec) (Vector3ToFloat_(vec).v)
|
||||
#endif
|
||||
|
||||
//----------------------------------------------------------------------------------
|
||||
// Module Functions Definition - Matrix math
|
||||
@@ -487,7 +482,7 @@ RMDEF float3 Vector3ToFloat_(Vector3 vec)
|
||||
// Compute matrix determinant
|
||||
RMDEF float MatrixDeterminant(Matrix mat)
|
||||
{
|
||||
float result;
|
||||
float result = { 0 };
|
||||
|
||||
// Cache the matrix values (speed optimization)
|
||||
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
|
||||
@@ -508,44 +503,45 @@ RMDEF float MatrixDeterminant(Matrix mat)
|
||||
// Returns the trace of the matrix (sum of the values along the diagonal)
|
||||
RMDEF float MatrixTrace(Matrix mat)
|
||||
{
|
||||
return (mat.m0 + mat.m5 + mat.m10 + mat.m15);
|
||||
float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Transposes provided matrix
|
||||
RMDEF void MatrixTranspose(Matrix *mat)
|
||||
RMDEF Matrix MatrixTranspose(Matrix mat)
|
||||
{
|
||||
Matrix temp;
|
||||
Matrix result = { 0 };
|
||||
|
||||
temp.m0 = mat->m0;
|
||||
temp.m1 = mat->m4;
|
||||
temp.m2 = mat->m8;
|
||||
temp.m3 = mat->m12;
|
||||
temp.m4 = mat->m1;
|
||||
temp.m5 = mat->m5;
|
||||
temp.m6 = mat->m9;
|
||||
temp.m7 = mat->m13;
|
||||
temp.m8 = mat->m2;
|
||||
temp.m9 = mat->m6;
|
||||
temp.m10 = mat->m10;
|
||||
temp.m11 = mat->m14;
|
||||
temp.m12 = mat->m3;
|
||||
temp.m13 = mat->m7;
|
||||
temp.m14 = mat->m11;
|
||||
temp.m15 = mat->m15;
|
||||
result.m0 = mat.m0;
|
||||
result.m1 = mat.m4;
|
||||
result.m2 = mat.m8;
|
||||
result.m3 = mat.m12;
|
||||
result.m4 = mat.m1;
|
||||
result.m5 = mat.m5;
|
||||
result.m6 = mat.m9;
|
||||
result.m7 = mat.m13;
|
||||
result.m8 = mat.m2;
|
||||
result.m9 = mat.m6;
|
||||
result.m10 = mat.m10;
|
||||
result.m11 = mat.m14;
|
||||
result.m12 = mat.m3;
|
||||
result.m13 = mat.m7;
|
||||
result.m14 = mat.m11;
|
||||
result.m15 = mat.m15;
|
||||
|
||||
*mat = temp;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Invert provided matrix
|
||||
RMDEF void MatrixInvert(Matrix *mat)
|
||||
RMDEF Matrix MatrixInvert(Matrix mat)
|
||||
{
|
||||
Matrix temp;
|
||||
Matrix result = { 0 };
|
||||
|
||||
// Cache the matrix values (speed optimization)
|
||||
float a00 = mat->m0, a01 = mat->m1, a02 = mat->m2, a03 = mat->m3;
|
||||
float a10 = mat->m4, a11 = mat->m5, a12 = mat->m6, a13 = mat->m7;
|
||||
float a20 = mat->m8, a21 = mat->m9, a22 = mat->m10, a23 = mat->m11;
|
||||
float a30 = mat->m12, a31 = mat->m13, a32 = mat->m14, a33 = mat->m15;
|
||||
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3;
|
||||
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7;
|
||||
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11;
|
||||
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15;
|
||||
|
||||
float b00 = a00*a11 - a01*a10;
|
||||
float b01 = a00*a12 - a02*a10;
|
||||
@@ -563,47 +559,51 @@ RMDEF void MatrixInvert(Matrix *mat)
|
||||
// Calculate the invert determinant (inlined to avoid double-caching)
|
||||
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06);
|
||||
|
||||
temp.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
|
||||
temp.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
|
||||
temp.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
|
||||
temp.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
|
||||
temp.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
|
||||
temp.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
|
||||
temp.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
|
||||
temp.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
|
||||
temp.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
|
||||
temp.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
|
||||
temp.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
|
||||
temp.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
|
||||
temp.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
|
||||
temp.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
|
||||
temp.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
|
||||
temp.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
|
||||
result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet;
|
||||
result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet;
|
||||
result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet;
|
||||
result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet;
|
||||
result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet;
|
||||
result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet;
|
||||
result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet;
|
||||
result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet;
|
||||
result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet;
|
||||
result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet;
|
||||
result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet;
|
||||
result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet;
|
||||
result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet;
|
||||
result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet;
|
||||
result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet;
|
||||
result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet;
|
||||
|
||||
*mat = temp;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided matrix
|
||||
RMDEF void MatrixNormalize(Matrix *mat)
|
||||
RMDEF Matrix MatrixNormalize(Matrix mat)
|
||||
{
|
||||
float det = MatrixDeterminant(*mat);
|
||||
Matrix result = { 0 };
|
||||
|
||||
float det = MatrixDeterminant(mat);
|
||||
|
||||
mat->m0 /= det;
|
||||
mat->m1 /= det;
|
||||
mat->m2 /= det;
|
||||
mat->m3 /= det;
|
||||
mat->m4 /= det;
|
||||
mat->m5 /= det;
|
||||
mat->m6 /= det;
|
||||
mat->m7 /= det;
|
||||
mat->m8 /= det;
|
||||
mat->m9 /= det;
|
||||
mat->m10 /= det;
|
||||
mat->m11 /= det;
|
||||
mat->m12 /= det;
|
||||
mat->m13 /= det;
|
||||
mat->m14 /= det;
|
||||
mat->m15 /= det;
|
||||
result.m0 = mat.m0/det;
|
||||
result.m1 = mat.m1/det;
|
||||
result.m2 = mat.m2/det;
|
||||
result.m3 = mat.m3/det;
|
||||
result.m4 = mat.m4/det;
|
||||
result.m5 = mat.m5/det;
|
||||
result.m6 = mat.m6/det;
|
||||
result.m7 = mat.m7/det;
|
||||
result.m8 = mat.m8/det;
|
||||
result.m9 = mat.m9/det;
|
||||
result.m10 = mat.m10/det;
|
||||
result.m11 = mat.m11/det;
|
||||
result.m12 = mat.m12/det;
|
||||
result.m13 = mat.m13/det;
|
||||
result.m14 = mat.m14/det;
|
||||
result.m15 = mat.m15/det;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns identity matrix
|
||||
@@ -682,7 +682,7 @@ RMDEF Matrix MatrixTranslate(float x, float y, float z)
|
||||
// NOTE: Angle should be provided in radians
|
||||
RMDEF Matrix MatrixRotate(Vector3 axis, float angle)
|
||||
{
|
||||
Matrix result;
|
||||
Matrix result = { 0 };
|
||||
|
||||
float x = axis.x, y = axis.y, z = axis.z;
|
||||
|
||||
@@ -786,7 +786,7 @@ RMDEF Matrix MatrixScale(float x, float y, float z)
|
||||
// NOTE: When multiplying matrices... the order matters!
|
||||
RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
|
||||
{
|
||||
Matrix result;
|
||||
Matrix result = { 0 };
|
||||
|
||||
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12;
|
||||
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13;
|
||||
@@ -811,7 +811,7 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
|
||||
// Returns perspective projection matrix
|
||||
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
|
||||
{
|
||||
Matrix result;
|
||||
Matrix result = { 0 };
|
||||
|
||||
float rl = (right - left);
|
||||
float tb = (top - bottom);
|
||||
@@ -846,14 +846,15 @@ RMDEF Matrix MatrixPerspective(double fovy, double aspect, double near, double f
|
||||
{
|
||||
double top = near*tan(fovy*0.5);
|
||||
double right = top*aspect;
|
||||
Matrix result = MatrixFrustum(-right, right, -top, top, near, far);
|
||||
|
||||
return MatrixFrustum(-right, right, -top, top, near, far);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns orthographic projection matrix
|
||||
RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, double near, double far)
|
||||
{
|
||||
Matrix result;
|
||||
Matrix result = { 0 };
|
||||
|
||||
float rl = (right - left);
|
||||
float tb = (top - bottom);
|
||||
@@ -882,14 +883,14 @@ RMDEF Matrix MatrixOrtho(double left, double right, double bottom, double top, d
|
||||
// Returns camera look-at matrix (view matrix)
|
||||
RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
|
||||
{
|
||||
Matrix result;
|
||||
Matrix result = { 0 };
|
||||
|
||||
Vector3 z = Vector3Subtract(eye, target);
|
||||
Vector3Normalize(&z);
|
||||
z = Vector3Normalize(z);
|
||||
Vector3 x = Vector3CrossProduct(up, z);
|
||||
Vector3Normalize(&x);
|
||||
x = Vector3Normalize(x);
|
||||
Vector3 y = Vector3CrossProduct(z, x);
|
||||
Vector3Normalize(&y);
|
||||
y = Vector3Normalize(y);
|
||||
|
||||
result.m0 = x.x;
|
||||
result.m1 = x.y;
|
||||
@@ -908,7 +909,7 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
|
||||
result.m14 = eye.z;
|
||||
result.m15 = 1.0f;
|
||||
|
||||
MatrixInvert(&result);
|
||||
result = MatrixInvert(result);
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -916,7 +917,7 @@ RMDEF Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up)
|
||||
// Returns float array of matrix data
|
||||
RMDEF float16 MatrixToFloatV(Matrix mat)
|
||||
{
|
||||
float16 buffer;
|
||||
float16 buffer = { 0 };
|
||||
|
||||
buffer.v[0] = mat.m0;
|
||||
buffer.v[1] = mat.m1;
|
||||
@@ -945,54 +946,59 @@ RMDEF float16 MatrixToFloatV(Matrix mat)
|
||||
// Returns identity quaternion
|
||||
RMDEF Quaternion QuaternionIdentity(void)
|
||||
{
|
||||
Quaternion q = { 0.0f, 0.0f, 0.0f, 1.0f };
|
||||
return q;
|
||||
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f };
|
||||
return result;
|
||||
}
|
||||
|
||||
// Computes the length of a quaternion
|
||||
RMDEF float QuaternionLength(Quaternion quat)
|
||||
RMDEF float QuaternionLength(Quaternion q)
|
||||
{
|
||||
return sqrt(quat.x*quat.x + quat.y*quat.y + quat.z*quat.z + quat.w*quat.w);
|
||||
float result = sqrt(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Normalize provided quaternion
|
||||
RMDEF void QuaternionNormalize(Quaternion *q)
|
||||
RMDEF Quaternion QuaternionNormalize(Quaternion q)
|
||||
{
|
||||
Quaternion result = { 0 };
|
||||
|
||||
float length, ilength;
|
||||
|
||||
length = QuaternionLength(*q);
|
||||
|
||||
length = QuaternionLength(q);
|
||||
if (length == 0.0f) length = 1.0f;
|
||||
|
||||
ilength = 1.0f/length;
|
||||
|
||||
q->x *= ilength;
|
||||
q->y *= ilength;
|
||||
q->z *= ilength;
|
||||
q->w *= ilength;
|
||||
result.x = q.x*ilength;
|
||||
result.y = q.y*ilength;
|
||||
result.z = q.z*ilength;
|
||||
result.w = q.w*ilength;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Invert provided quaternion
|
||||
RMDEF void QuaternionInvert(Quaternion *quat)
|
||||
RMDEF Quaternion QuaternionInvert(Quaternion q)
|
||||
{
|
||||
float length = QuaternionLength(*quat);
|
||||
Quaternion result = q;
|
||||
float length = QuaternionLength(q);
|
||||
float lengthSq = length*length;
|
||||
|
||||
if (lengthSq != 0.0)
|
||||
{
|
||||
float i = 1.0f/lengthSq;
|
||||
|
||||
quat->x *= -i;
|
||||
quat->y *= -i;
|
||||
quat->z *= -i;
|
||||
quat->w *= i;
|
||||
result.x *= -i;
|
||||
result.y *= -i;
|
||||
result.z *= -i;
|
||||
result.w *= i;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Calculate two quaternion multiplication
|
||||
RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
|
||||
{
|
||||
Quaternion result;
|
||||
Quaternion result = { 0 };
|
||||
|
||||
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w;
|
||||
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w;
|
||||
@@ -1008,7 +1014,7 @@ RMDEF Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2)
|
||||
// Calculate linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
|
||||
{
|
||||
Quaternion result;
|
||||
Quaternion result = { 0 };
|
||||
|
||||
result.x = q1.x + amount*(q2.x - q1.x);
|
||||
result.y = q1.y + amount*(q2.y - q1.y);
|
||||
@@ -1022,7 +1028,7 @@ RMDEF Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount)
|
||||
RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
{
|
||||
Quaternion result = QuaternionLerp(q1, q2, amount);
|
||||
QuaternionNormalize(&result);
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1030,7 +1036,7 @@ RMDEF Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
// Calculates spherical linear interpolation between two quaternions
|
||||
RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
{
|
||||
Quaternion result;
|
||||
Quaternion result = { 0 };
|
||||
|
||||
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w;
|
||||
|
||||
@@ -1066,31 +1072,31 @@ RMDEF Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount)
|
||||
// Calculate quaternion based on the rotation from one vector to another
|
||||
RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
|
||||
{
|
||||
Quaternion q = { 0 };
|
||||
Quaternion result = { 0 };
|
||||
|
||||
float cos2Theta = Vector3DotProduct(from, to);
|
||||
Vector3 cross = Vector3CrossProduct(from, to);
|
||||
|
||||
q.x = cross.x;
|
||||
q.y = cross.y;
|
||||
q.z = cross.y;
|
||||
q.w = 1.0f + cos2Theta; // NOTE: Added QuaternioIdentity()
|
||||
result.x = cross.x;
|
||||
result.y = cross.y;
|
||||
result.z = cross.y;
|
||||
result.w = 1.0f + cos2Theta; // NOTE: Added QuaternioIdentity()
|
||||
|
||||
// Normalize to essentially nlerp the original and identity to 0.5
|
||||
QuaternionNormalize(&q);
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
// Above lines are equivalent to:
|
||||
//Quaternion result = QuaternionNlerp(q, QuaternionIdentity(), 0.5f);
|
||||
|
||||
return q;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns a quaternion for a given rotation matrix
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
|
||||
{
|
||||
Quaternion result;
|
||||
Quaternion result = { 0 };
|
||||
|
||||
float trace = MatrixTrace(matrix);
|
||||
float trace = MatrixTrace(mat);
|
||||
|
||||
if (trace > 0.0f)
|
||||
{
|
||||
@@ -1098,42 +1104,42 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = s*0.25f;
|
||||
result.x = (matrix.m6 - matrix.m9)*invS;
|
||||
result.y = (matrix.m8 - matrix.m2)*invS;
|
||||
result.z = (matrix.m1 - matrix.m4)*invS;
|
||||
result.x = (mat.m6 - mat.m9)*invS;
|
||||
result.y = (mat.m8 - mat.m2)*invS;
|
||||
result.z = (mat.m1 - mat.m4)*invS;
|
||||
}
|
||||
else
|
||||
{
|
||||
float m00 = matrix.m0, m11 = matrix.m5, m22 = matrix.m10;
|
||||
float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
|
||||
|
||||
if (m00 > m11 && m00 > m22)
|
||||
{
|
||||
float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = (matrix.m6 - matrix.m9)*invS;
|
||||
result.w = (mat.m6 - mat.m9)*invS;
|
||||
result.x = s*0.25f;
|
||||
result.y = (matrix.m4 + matrix.m1)*invS;
|
||||
result.z = (matrix.m8 + matrix.m2)*invS;
|
||||
result.y = (mat.m4 + mat.m1)*invS;
|
||||
result.z = (mat.m8 + mat.m2)*invS;
|
||||
}
|
||||
else if (m11 > m22)
|
||||
{
|
||||
float s = (float)sqrt(1.0f + m11 - m00 - m22)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = (matrix.m8 - matrix.m2)*invS;
|
||||
result.x = (matrix.m4 + matrix.m1)*invS;
|
||||
result.w = (mat.m8 - mat.m2)*invS;
|
||||
result.x = (mat.m4 + mat.m1)*invS;
|
||||
result.y = s*0.25f;
|
||||
result.z = (matrix.m9 + matrix.m6)*invS;
|
||||
result.z = (mat.m9 + mat.m6)*invS;
|
||||
}
|
||||
else
|
||||
{
|
||||
float s = (float)sqrt(1.0f + m22 - m00 - m11)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = (matrix.m1 - matrix.m4)*invS;
|
||||
result.x = (matrix.m8 + matrix.m2)*invS;
|
||||
result.y = (matrix.m9 + matrix.m6)*invS;
|
||||
result.w = (mat.m1 - mat.m4)*invS;
|
||||
result.x = (mat.m8 + mat.m2)*invS;
|
||||
result.y = (mat.m9 + mat.m6)*invS;
|
||||
result.z = s*0.25f;
|
||||
}
|
||||
}
|
||||
@@ -1144,7 +1150,7 @@ RMDEF Quaternion QuaternionFromMatrix(Matrix matrix)
|
||||
// Returns a matrix for a given quaternion
|
||||
RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
||||
{
|
||||
Matrix result;
|
||||
Matrix result = { 0 };
|
||||
|
||||
float x = q.x, y = q.y, z = q.z, w = q.w;
|
||||
|
||||
@@ -1197,7 +1203,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
|
||||
|
||||
angle *= 0.5f;
|
||||
|
||||
Vector3Normalize(&axis);
|
||||
axis = Vector3Normalize(axis);
|
||||
|
||||
float sinres = sinf(angle);
|
||||
float cosres = cosf(angle);
|
||||
@@ -1207,7 +1213,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
|
||||
result.z = axis.z*sinres;
|
||||
result.w = cosres;
|
||||
|
||||
QuaternionNormalize(&result);
|
||||
result = QuaternionNormalize(result);
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1215,7 +1221,7 @@ RMDEF Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle)
|
||||
// Returns the rotation angle and axis for a given quaternion
|
||||
RMDEF void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle)
|
||||
{
|
||||
if (fabs(q.w) > 1.0f) QuaternionNormalize(&q);
|
||||
if (fabs(q.w) > 1.0f) q = QuaternionNormalize(q);
|
||||
|
||||
Vector3 resAxis = { 0.0f, 0.0f, 0.0f };
|
||||
float resAngle = 0.0f;
|
||||
@@ -1264,39 +1270,38 @@ RMDEF Quaternion QuaternionFromEuler(float roll, float pitch, float yaw)
|
||||
// NOTE: Angles are returned in a Vector3 struct in degrees
|
||||
RMDEF Vector3 QuaternionToEuler(Quaternion q)
|
||||
{
|
||||
Vector3 v = { 0 };
|
||||
Vector3 result = { 0 };
|
||||
|
||||
// roll (x-axis rotation)
|
||||
float x0 = 2.0f*(q.w*q.x + q.y*q.z);
|
||||
float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y);
|
||||
v.x = atan2f(x0, x1)*RAD2DEG;
|
||||
result.x = atan2f(x0, x1)*RAD2DEG;
|
||||
|
||||
// pitch (y-axis rotation)
|
||||
float y0 = 2.0f*(q.w*q.y - q.z*q.x);
|
||||
y0 = y0 > 1.0f ? 1.0f : y0;
|
||||
y0 = y0 < -1.0f ? -1.0f : y0;
|
||||
v.y = asinf(y0)*RAD2DEG;
|
||||
result.y = asinf(y0)*RAD2DEG;
|
||||
|
||||
// yaw (z-axis rotation)
|
||||
float z0 = 2.0f*(q.w*q.z + q.x*q.y);
|
||||
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z);
|
||||
v.z = atan2f(z0, z1)*RAD2DEG;
|
||||
result.z = atan2f(z0, z1)*RAD2DEG;
|
||||
|
||||
return v;
|
||||
return result;
|
||||
}
|
||||
|
||||
// Transform a quaternion given a transformation matrix
|
||||
RMDEF void QuaternionTransform(Quaternion *q, Matrix mat)
|
||||
RMDEF Quaternion QuaternionTransform(Quaternion q, Matrix mat)
|
||||
{
|
||||
float x = q->x;
|
||||
float y = q->y;
|
||||
float z = q->z;
|
||||
float w = q->w;
|
||||
Quaternion result = { 0 };
|
||||
|
||||
q->x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12*w;
|
||||
q->y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13*w;
|
||||
q->z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14*w;
|
||||
q->w = mat.m3*x + mat.m7*y + mat.m11*z + mat.m15*w;
|
||||
result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w;
|
||||
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w;
|
||||
result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w;
|
||||
result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif // RAYMATH_H
|
||||
|
Reference in New Issue
Block a user