[examples] Added: shaders_mandelbrot_set (#5282)

* [examples] Added: `shaders_mandelbrot_set`

* Simplified shader code and added comments

* Comments starting with a capital letter, and some minor fixes to adhere to the convention
This commit is contained in:
JordSant
2025-10-18 19:50:52 +02:00
committed by GitHub
parent 9ef3448193
commit aeafce5db4
7 changed files with 973 additions and 0 deletions

View File

@@ -0,0 +1,61 @@
#version 100
#define PI 3.1415926535897932384626433832795
precision highp float;
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform vec2 offset; // Offset of the scale
uniform float zoom; // Zoom of the scale
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
// For example, on RasperryPi for this examply only supports up to 60
uniform int maxIterations; // Max iterations per pixel
const float max = 4.0; // We consider infinite as 4.0: if a point reaches a distance of 4.0 it will escape to infinity
const float max2 = max*max; // Square of max to avoid computing square root
void main()
{
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 c = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
c.x += offset.x;
c.y += offset.y;
float a = 0.0;
float b = 0.0;
// The Mandelbrot set is a two-dimensional set defined in the complex plane on which the iteration of the function
// Fc(z) = z^2 + c on the complex numbers c from the plane does not diverge to infinity starting at z = 0
// Here: z = a + bi. Iterations: z -> z^2 + c = (a + bi)^2 + (c.x + c.yi) = (a^2 - b^2 + c.x) + (2ab + c.y)i
int iter = 0;
while (iter < maxIterations)
{
float aa = a*a;
float bb = b*b;
if (aa + bb > max2)
break;
float twoab = 2.0*a*b;
a = aa - bb + c.x;
b = twoab + c.y;
++iter;
}
if (iter >= maxIterations)
{
gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
}
else
{
float normR = float(iter - (iter/55)*55)/55.0;
float normG = float(iter - (iter/69)*69)/69.0;
float normB = float(iter - (iter/40)*40)/40.0;
gl_FragColor = vec4(sin(normR*PI), sin(normG*PI), sin(normB*PI), 1.0);
}
}

View File

@@ -0,0 +1,59 @@
#version 120
#define PI 3.1415926535897932384626433832795
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform vec2 offset; // Offset of the scale
uniform float zoom; // Zoom of the scale
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
// For example, on RasperryPi for this examply only supports up to 60
uniform int maxIterations; // Max iterations per pixel
const float max = 4.0; // We consider infinite as 4.0: if a point reaches a distance of 4.0 it will escape to infinity
const float max2 = max*max; // Square of max to avoid computing square root
void main()
{
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 c = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
c.x += offset.x;
c.y += offset.y;
float a = 0.0;
float b = 0.0;
// The Mandelbrot set is a two-dimensional set defined in the complex plane on which the iteration of the function
// Fc(z) = z^2 + c on the complex numbers c from the plane does not diverge to infinity starting at z = 0
// Here: z = a + bi. Iterations: z -> z^2 + c = (a + bi)^2 + (c.x + c.yi) = (a^2 - b^2 + c.x) + (2ab + c.y)i
int iter = 0;
while (iter < maxIterations)
{
float aa = a*a;
float bb = b*b;
if (aa + bb > max2)
break;
float twoab = 2.0*a*b;
a = aa - bb + c.x;
b = twoab + c.y;
++iter;
}
if (iter >= maxIterations)
{
gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
}
else
{
float normR = float(iter - (iter/55)*55)/55.0;
float normG = float(iter - (iter/69)*69)/69.0;
float normB = float(iter - (iter/40)*40)/40.0;
gl_FragColor = vec4(sin(normR*PI), sin(normG*PI), sin(normB*PI), 1.0);
}
}

View File

@@ -0,0 +1,58 @@
#version 330
#define PI 3.1415926535897932384626433832795
// Input vertex attributes (from vertex shader)
in vec2 fragTexCoord;
in vec4 fragColor;
// Output fragment color
out vec4 finalColor;
uniform vec2 offset; // Offset of the scale
uniform float zoom; // Zoom of the scale
uniform int maxIterations; // Max iterations per pixel
const float max = 4.0; // We consider infinite as 4.0: if a point reaches a distance of 4.0 it will escape to infinity
const float max2 = max*max; // Square of max to avoid computing square root
void main()
{
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 c = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
c.x += offset.x;
c.y += offset.y;
float a = 0.0;
float b = 0.0;
// The Mandelbrot set is a two-dimensional set defined in the complex plane on which the iteration of the function
// Fc(z) = z^2 + c on the complex numbers c from the plane does not diverge to infinity starting at z = 0
// Here: z = a + bi. Iterations: z -> z^2 + c = (a + bi)^2 + (c.x + c.yi) = (a^2 - b^2 + c.x) + (2ab + c.y)i
int iter = 0;
for (iter = 0; iter < maxIterations; ++iter)
{
float aa = a*a;
float bb = b*b;
if (aa + bb > max2)
break;
float twoab = 2.0*a*b;
a = aa - bb + c.x;
b = twoab + c.y;
}
if (iter >= maxIterations)
{
finalColor = vec4(0.0, 0.0, 0.0, 1.0);
}
else
{
float normR = float(iter%55)/55.0;
float normG = float(iter%69)/69.0;
float normB = float(iter%40)/40.0;
finalColor = vec4(sin(normR*PI), sin(normG*PI), sin(normB*PI), 1.0);
}
}