mirror of
https://github.com/raysan5/raylib.git
synced 2025-10-15 22:36:01 +00:00
Submitting rmem memory and object pool module (#898)
* Submitting rmem memory and object pool module * changed 'restrict' to '__restrict' so it can compile for MSVC Added `const` to parameters for `MemPool_Realloc` * Update and rename mempool README.txt to mempool_README.md * Update mempool_README.md * Update mempool_README.md * Update and rename objpool README.txt to objpool_README.md * implementing changes * updating header for changes. * forgot to change _RemoveNode to __RemoveNode * removing l * removing l * Updating documentation on MemPool_CleanUp function * Updating documentation on ObjPool_CleanUp function * changed *_CleanUp function parameter Replaced `void*` pointer to pointer param to `void**` so it's more explicit. * Updating header to reflect changes to the *_CleanUp functions * A single change for the mempool and a patch for the objpool. Object Pool Patch: if you deplete the object pool to 0 free blocks and then free back one block, the last given block will be rejected because it was exactly at the memory holding the entire pool. Mempool change: switched memory aligning the size from the constructor to when allocating.
This commit is contained in:
433
src/rmem.c
Normal file
433
src/rmem.c
Normal file
@@ -0,0 +1,433 @@
|
||||
#include "rmem.h"
|
||||
|
||||
// excessive but just in case.
|
||||
#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
|
||||
# ifndef restrict
|
||||
# define restrict __restrict
|
||||
# endif
|
||||
#endif
|
||||
|
||||
static inline size_t __AlignSize(const size_t size, const size_t align)
|
||||
{
|
||||
return (size + (align-1)) & -align;
|
||||
}
|
||||
|
||||
|
||||
/************* Memory Pool *************/
|
||||
|
||||
static void __RemoveNode(struct MemNode **const node)
|
||||
{
|
||||
((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (*node = (*node)->next);
|
||||
((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (*node = (*node)->prev);
|
||||
}
|
||||
|
||||
struct MemPool MemPool_Create(const size_t size)
|
||||
{
|
||||
struct MemPool mempool = {0};
|
||||
if (size==0UL)
|
||||
return mempool;
|
||||
else {
|
||||
// align the mempool size to at least the size of an alloc node.
|
||||
mempool.stack.size = size;
|
||||
mempool.stack.mem = malloc(1 + mempool.stack.size*sizeof *mempool.stack.mem);
|
||||
if (mempool.stack.mem==NULL) {
|
||||
mempool.stack.size = 0UL;
|
||||
return mempool;
|
||||
} else {
|
||||
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
|
||||
return mempool;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct MemPool MemPool_FromBuffer(void *buf, const size_t size)
|
||||
{
|
||||
struct MemPool mempool = {0};
|
||||
if (size==0UL || buf==NULL || size<=sizeof(struct MemNode))
|
||||
return mempool;
|
||||
else {
|
||||
mempool.stack.size = size;
|
||||
mempool.stack.mem = buf;
|
||||
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
|
||||
return mempool;
|
||||
}
|
||||
}
|
||||
|
||||
void MemPool_Destroy(struct MemPool *const mempool)
|
||||
{
|
||||
if (mempool==NULL || mempool->stack.mem==NULL)
|
||||
return;
|
||||
else {
|
||||
free(mempool->stack.mem);
|
||||
*mempool = (struct MemPool){0};
|
||||
}
|
||||
}
|
||||
|
||||
void *MemPool_Alloc(struct MemPool *const mempool, const size_t size)
|
||||
{
|
||||
if (mempool==NULL || size==0UL || size > mempool->stack.size)
|
||||
return NULL;
|
||||
else {
|
||||
struct MemNode *new_mem = NULL;
|
||||
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
|
||||
if (mempool->freeList.head != NULL) {
|
||||
const size_t MEM_SPLIT_THRESHOLD = sizeof(intptr_t);
|
||||
// if the freelist is valid, let's allocate FROM the freelist then!
|
||||
for (struct MemNode **inode = &mempool->freeList.head; *inode != NULL; inode = &(*inode)->next) {
|
||||
if ((*inode)->size < ALLOC_SIZE)
|
||||
continue;
|
||||
else if ((*inode)->size <= ALLOC_SIZE + MEM_SPLIT_THRESHOLD) {
|
||||
// close in size - reduce fragmentation by not splitting.
|
||||
new_mem = *inode;
|
||||
__RemoveNode(inode);
|
||||
mempool->freeList.len--;
|
||||
new_mem->next = new_mem->prev = NULL;
|
||||
break;
|
||||
} else {
|
||||
// split the memory chunk.
|
||||
new_mem = (struct MemNode *)( (uint8_t *)*inode + ((*inode)->size - ALLOC_SIZE));
|
||||
(*inode)->size -= ALLOC_SIZE;
|
||||
new_mem->size = ALLOC_SIZE;
|
||||
new_mem->next = new_mem->prev = NULL;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (new_mem==NULL) {
|
||||
// not enough memory to support the size!
|
||||
if (mempool->stack.base - ALLOC_SIZE < mempool->stack.mem)
|
||||
return NULL;
|
||||
else {
|
||||
// couldn't allocate from a freelist, allocate from available mempool.
|
||||
// subtract allocation size from the mempool.
|
||||
mempool->stack.base -= ALLOC_SIZE;
|
||||
|
||||
// use the available mempool space as the new node.
|
||||
new_mem = (struct MemNode *)mempool->stack.base;
|
||||
new_mem->size = ALLOC_SIZE;
|
||||
new_mem->next = new_mem->prev = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
// visual of the allocation block.
|
||||
// --------------
|
||||
// | mem size | lowest addr of block
|
||||
// | next node |
|
||||
// --------------
|
||||
// | alloc'd |
|
||||
// | memory |
|
||||
// | space | highest addr of block
|
||||
// --------------
|
||||
uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
|
||||
memset(final_mem, 0, new_mem->size - sizeof *new_mem);
|
||||
return final_mem;
|
||||
}
|
||||
}
|
||||
|
||||
void *MemPool_Realloc(struct MemPool *const restrict mempool, void *ptr, const size_t size)
|
||||
{
|
||||
if (mempool==NULL || size > mempool->stack.size)
|
||||
return NULL;
|
||||
// NULL ptr should make this work like regular Allocation.
|
||||
else if (ptr==NULL)
|
||||
return MemPool_Alloc(mempool, size);
|
||||
else if ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)
|
||||
return NULL;
|
||||
else {
|
||||
struct MemNode *node = (struct MemNode *)((uint8_t *)ptr - sizeof *node);
|
||||
const size_t NODE_SIZE = sizeof *node;
|
||||
uint8_t *resized_block = MemPool_Alloc(mempool, size);
|
||||
if (resized_block==NULL)
|
||||
return NULL;
|
||||
else {
|
||||
struct MemNode *resized = (struct MemNode *)(resized_block - sizeof *resized);
|
||||
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
|
||||
MemPool_Free(mempool, ptr);
|
||||
return resized_block;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MemPool_Free(struct MemPool *const restrict mempool, void *ptr)
|
||||
{
|
||||
if (mempool==NULL || ptr==NULL || (uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)
|
||||
return;
|
||||
else {
|
||||
// behind the actual pointer data is the allocation info.
|
||||
struct MemNode *mem_node = (struct MemNode *)((uint8_t *)ptr - sizeof *mem_node);
|
||||
// make sure the pointer data is valid.
|
||||
if ((uintptr_t)mem_node < (uintptr_t)mempool->stack.base || ((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size || mem_node->size==0UL || mem_node->size > mempool->stack.size)
|
||||
return;
|
||||
// if the mem_node is right at the stack base ptr, then add it to the stack.
|
||||
else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base) {
|
||||
mempool->stack.base += mem_node->size;
|
||||
}
|
||||
// otherwise, we add it to the free list.
|
||||
// We also check if the freelist already has the pointer so we can prevent double frees.
|
||||
else if (mempool->freeList.len==0UL || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size)) {
|
||||
for (struct MemNode *n = mempool->freeList.head; n != NULL; n = n->next)
|
||||
if (n==mem_node)
|
||||
return;
|
||||
|
||||
// this code inserts at head.
|
||||
/*
|
||||
( mempool->freeList.head==NULL)? (mempool->freeList.tail = mem_node) : (mempool->freeList.head->prev = mem_node);
|
||||
mem_node->next = mempool->freeList.head;
|
||||
mempool->freeList.head = mem_node;
|
||||
mempool->freeList.len++;
|
||||
*/
|
||||
|
||||
// this code insertion sorts where largest size is first.
|
||||
if (mempool->freeList.head==NULL) {
|
||||
mempool->freeList.head = mempool->freeList.tail = mem_node;
|
||||
mempool->freeList.len++;
|
||||
} else if (mempool->freeList.head->size <= mem_node->size) {
|
||||
mem_node->next = mempool->freeList.head;
|
||||
mem_node->next->prev = mem_node;
|
||||
mempool->freeList.head = mem_node;
|
||||
mempool->freeList.len++;
|
||||
} else if (mempool->freeList.tail->size > mem_node->size) {
|
||||
mem_node->prev = mempool->freeList.tail;
|
||||
mempool->freeList.tail->next = mem_node;
|
||||
mempool->freeList.tail = mem_node;
|
||||
mempool->freeList.len++;
|
||||
} else {
|
||||
struct MemNode *n = mempool->freeList.head;
|
||||
while (n->next != NULL && n->next->size > mem_node->size)
|
||||
n = n->next;
|
||||
|
||||
mem_node->next = n->next;
|
||||
if (n->next != NULL)
|
||||
mem_node->next->prev = mem_node;
|
||||
|
||||
n->next = mem_node;
|
||||
mem_node->prev = n;
|
||||
mempool->freeList.len++;
|
||||
}
|
||||
|
||||
if (mempool->freeList.autoDefrag && mempool->freeList.maxNodes != 0UL && mempool->freeList.len > mempool->freeList.maxNodes)
|
||||
MemPool_DeFrag(mempool);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MemPool_CleanUp(struct MemPool *const restrict mempool, void **ptrref)
|
||||
{
|
||||
if (mempool==NULL || ptrref==NULL || *ptrref==NULL)
|
||||
return;
|
||||
else {
|
||||
MemPool_Free(mempool, *ptrref);
|
||||
*ptrref = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
size_t MemPool_MemoryRemaining(const MemPool mempool)
|
||||
{
|
||||
size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
|
||||
for (struct MemNode *n=mempool.freeList.head; n != NULL; n = n->next)
|
||||
total_remaining += n->size;
|
||||
return total_remaining;
|
||||
}
|
||||
|
||||
|
||||
bool MemPool_DeFrag(struct MemPool *const mempool)
|
||||
{
|
||||
if (mempool==NULL)
|
||||
return false;
|
||||
else {
|
||||
// if the memory pool has been entirely released, fully defrag it.
|
||||
if (mempool->stack.size == MemPool_MemoryRemaining(*mempool)) {
|
||||
memset(&mempool->freeList, 0, sizeof mempool->freeList);
|
||||
mempool->stack.base = mempool->stack.mem + mempool->stack.size;
|
||||
return true;
|
||||
} else {
|
||||
const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
|
||||
struct MemNode **node = &mempool->freeList.head;
|
||||
while (*node != NULL) {
|
||||
if ((uintptr_t)*node == (uintptr_t)mempool->stack.base) {
|
||||
// if node is right at the stack, merge it back into the stack.
|
||||
mempool->stack.base += (*node)->size;
|
||||
(*node)->size = 0UL;
|
||||
__RemoveNode(node);
|
||||
mempool->freeList.len--;
|
||||
node = &mempool->freeList.head;
|
||||
} else if ((uintptr_t)*node + (*node)->size == (uintptr_t)(*node)->next) {
|
||||
// next node is at a higher address.
|
||||
(*node)->size += (*node)->next->size;
|
||||
(*node)->next->size = 0UL;
|
||||
|
||||
// <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
|
||||
//
|
||||
// |--------------------|
|
||||
// <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
|
||||
if ((*node)->next->next != NULL)
|
||||
(*node)->next->next->prev = *node;
|
||||
|
||||
// <-[P Curr N]-> <-[P NextNext N]->
|
||||
(*node)->next = (*node)->next->next;
|
||||
|
||||
mempool->freeList.len--;
|
||||
node = &mempool->freeList.head;
|
||||
} else if ((uintptr_t)*node + (*node)->size == (uintptr_t)(*node)->prev && (*node)->prev->prev != NULL) {
|
||||
// prev node is at a higher address.
|
||||
(*node)->size += (*node)->prev->size;
|
||||
(*node)->prev->size = 0UL;
|
||||
|
||||
// <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
|
||||
//
|
||||
// |--------------------|
|
||||
// <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
|
||||
(*node)->prev->prev->next = *node;
|
||||
|
||||
// <-[P PrevPrev N]-> <-[P Curr N]->
|
||||
(*node)->prev = (*node)->prev->prev;
|
||||
|
||||
mempool->freeList.len--;
|
||||
node = &mempool->freeList.head;
|
||||
} else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next) {
|
||||
// next node is at a lower address.
|
||||
(*node)->next->size += (*node)->size;
|
||||
|
||||
(*node)->size = 0UL;
|
||||
(*node)->next->prev = (*node)->prev;
|
||||
(*node)->prev->next = (*node)->next;
|
||||
|
||||
mempool->freeList.len--;
|
||||
node = &mempool->freeList.head;
|
||||
} else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev) {
|
||||
// prev node is at a lower address.
|
||||
(*node)->prev->size += (*node)->size;
|
||||
|
||||
(*node)->size = 0UL;
|
||||
(*node)->next->prev = (*node)->prev;
|
||||
(*node)->prev->next = (*node)->next;
|
||||
|
||||
mempool->freeList.len--;
|
||||
node = &mempool->freeList.head;
|
||||
} else {
|
||||
node = &(*node)->next;
|
||||
}
|
||||
}
|
||||
return PRE_DEFRAG_LEN > mempool->freeList.len;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MemPool_ToggleAutoDefrag(struct MemPool *const mempool)
|
||||
{
|
||||
if (mempool==NULL)
|
||||
return;
|
||||
else mempool->freeList.autoDefrag ^= true;
|
||||
}
|
||||
/***************************************************/
|
||||
|
||||
|
||||
/************* Object Pool *************/
|
||||
union ObjInfo {
|
||||
uint8_t *const byte;
|
||||
size_t *const size;
|
||||
};
|
||||
|
||||
struct ObjPool ObjPool_Create(const size_t objsize, const size_t len)
|
||||
{
|
||||
struct ObjPool objpool = {0};
|
||||
if (len==0UL || objsize==0UL)
|
||||
return objpool;
|
||||
else {
|
||||
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
|
||||
objpool.stack.size = objpool.freeBlocks = len;
|
||||
objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
|
||||
if (objpool.stack.mem==NULL) {
|
||||
objpool.stack.size = 0UL;
|
||||
return objpool;
|
||||
} else {
|
||||
for (size_t i=0; i<objpool.freeBlocks; i++) {
|
||||
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
|
||||
*block.size = i + 1;
|
||||
}
|
||||
objpool.stack.base = objpool.stack.mem;
|
||||
return objpool;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct ObjPool ObjPool_FromBuffer(void *const buf, const size_t objsize, const size_t len)
|
||||
{
|
||||
struct ObjPool objpool = {0};
|
||||
// If the object size isn't large enough to align to a size_t, then we can't use it.
|
||||
if (buf==NULL || len==0UL || objsize<sizeof(size_t) || objsize*len != __AlignSize(objsize, sizeof(size_t))*len)
|
||||
return objpool;
|
||||
else {
|
||||
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
|
||||
objpool.stack.size = objpool.freeBlocks = len;
|
||||
objpool.stack.mem = buf;
|
||||
for (size_t i=0; i<objpool.freeBlocks; i++) {
|
||||
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
|
||||
*block.size = i + 1;
|
||||
}
|
||||
objpool.stack.base = objpool.stack.mem;
|
||||
return objpool;
|
||||
}
|
||||
}
|
||||
|
||||
void ObjPool_Destroy(struct ObjPool *const objpool)
|
||||
{
|
||||
if (objpool==NULL || objpool->stack.mem==NULL)
|
||||
return;
|
||||
else {
|
||||
free(objpool->stack.mem);
|
||||
*objpool = (struct ObjPool){0};
|
||||
}
|
||||
}
|
||||
|
||||
void *ObjPool_Alloc(struct ObjPool *const objpool)
|
||||
{
|
||||
if (objpool==NULL)
|
||||
return NULL;
|
||||
else {
|
||||
if (objpool->freeBlocks>0UL) {
|
||||
// for first allocation, head points to the very first index.
|
||||
// Head = &pool[0];
|
||||
// ret = Head == ret = &pool[0];
|
||||
union ObjInfo ret = { .byte = objpool->stack.base };
|
||||
objpool->freeBlocks--;
|
||||
|
||||
// after allocating, we set head to the address of the index that *Head holds.
|
||||
// Head = &pool[*Head * pool.objsize];
|
||||
objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + ( *ret.size*objpool->objSize) : NULL;
|
||||
memset(ret.byte, 0, objpool->objSize);
|
||||
return ret.byte;
|
||||
}
|
||||
else return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
void ObjPool_Free(struct ObjPool *const restrict objpool, void *ptr)
|
||||
{
|
||||
union ObjInfo p = { .byte = ptr };
|
||||
if (objpool==NULL || ptr==NULL || p.byte < objpool->stack.mem || p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)
|
||||
return;
|
||||
else {
|
||||
// when we free our Bointer, we recycle the pointer space to store the previous index
|
||||
// and then we push it as our new head.
|
||||
|
||||
// *p = index of Head in relation to the buffer;
|
||||
// Head = p;
|
||||
*p.size = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
|
||||
objpool->stack.base = p.byte;
|
||||
objpool->freeBlocks++;
|
||||
}
|
||||
}
|
||||
|
||||
void ObjPool_CleanUp(struct ObjPool *const restrict objpool, void **ptrref)
|
||||
{
|
||||
if (objpool==NULL || ptrref==NULL || *ptrref==NULL)
|
||||
return;
|
||||
else {
|
||||
ObjPool_Free(objpool, *ptrref);
|
||||
*ptrref = NULL;
|
||||
}
|
||||
}
|
||||
/***************************************************/
|
75
src/rmem.h
Normal file
75
src/rmem.h
Normal file
@@ -0,0 +1,75 @@
|
||||
#ifndef RAYLIB_MEMORY_INCLUDED
|
||||
# define RAYLIB_MEMORY_INCLUDED
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <inttypes.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
/************* Memory Pool (mempool.c) *************/
|
||||
typedef struct MemNode {
|
||||
size_t size;
|
||||
struct MemNode *next, *prev;
|
||||
} MemNode;
|
||||
|
||||
typedef struct AllocList {
|
||||
struct MemNode *head, *tail;
|
||||
size_t len, maxNodes;
|
||||
bool autoDefrag : 1;
|
||||
} AllocList;
|
||||
|
||||
typedef struct Stack {
|
||||
uint8_t *mem, *base;
|
||||
size_t size;
|
||||
} Stack;
|
||||
|
||||
typedef struct MemPool {
|
||||
struct AllocList freeList;
|
||||
struct Stack stack;
|
||||
} MemPool;
|
||||
/***************************************************/
|
||||
|
||||
|
||||
/************* Object Pool *************/
|
||||
typedef struct ObjPool {
|
||||
struct Stack stack;
|
||||
size_t objSize, freeBlocks;
|
||||
} ObjPool;
|
||||
/***************************************************/
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/************* Memory Pool *************/
|
||||
struct MemPool MemPool_Create(size_t bytes);
|
||||
struct MemPool MemPool_FromBuffer(void *buf, size_t bytes);
|
||||
void MemPool_Destroy(struct MemPool *mempool);
|
||||
|
||||
void *MemPool_Alloc(struct MemPool *mempool, size_t bytes);
|
||||
void *MemPool_Realloc(struct MemPool *mempool, void *ptr, size_t bytes);
|
||||
void MemPool_Free(struct MemPool *mempool, void *ptr);
|
||||
void MemPool_CleanUp(struct MemPool *mempool, void **ptrref);
|
||||
|
||||
size_t MemPool_MemoryRemaining(const struct MemPool mempool);
|
||||
bool MemPool_DeFrag(struct MemPool *mempool);
|
||||
void MemPool_ToggleAutoDefrag(struct MemPool *mempool);
|
||||
/***************************************************/
|
||||
|
||||
/************* Object Pool (objpool.c) *************/
|
||||
struct ObjPool ObjPool_Create(size_t objsize, size_t len);
|
||||
struct ObjPool ObjPool_FromBuffer(void *buf, size_t objsize, size_t len);
|
||||
void ObjPool_Destroy(struct ObjPool *objpool);
|
||||
|
||||
void *ObjPool_Alloc(struct ObjPool *objpool);
|
||||
void ObjPool_Free(struct ObjPool *objpool, void *ptr);
|
||||
void ObjPool_CleanUp(struct ObjPool *objpool, void **ptrref);
|
||||
/***************************************************/
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* RAYLIB_MEMORY_INCLUDED */
|
Reference in New Issue
Block a user