Submitting rmem memory and object pool module (#898)

* Submitting rmem memory and object pool module

* changed 'restrict' to '__restrict' so it can compile for MSVC

Added `const` to parameters for `MemPool_Realloc`

* Update and rename mempool README.txt to mempool_README.md

* Update mempool_README.md

* Update mempool_README.md

* Update and rename objpool README.txt to objpool_README.md

* implementing changes

* updating header for changes.

* forgot to change _RemoveNode to __RemoveNode

* removing l

* removing l

* Updating documentation on MemPool_CleanUp function

* Updating documentation on ObjPool_CleanUp function

* changed *_CleanUp function parameter

Replaced `void*` pointer to pointer param to `void**` so it's more explicit.

* Updating header to reflect changes to the *_CleanUp functions

* A single change for the mempool and a patch for the objpool.

Object Pool Patch: if you deplete the object pool to 0 free blocks and then free back one block, the last given block will be rejected because it was exactly at the memory holding the entire pool.
Mempool change: switched memory aligning the size from the constructor to when allocating.
This commit is contained in:
Kevin Yonan
2019-07-15 09:28:09 -07:00
committed by Ray
parent e19616592d
commit c563b53afb
4 changed files with 751 additions and 0 deletions

433
src/rmem.c Normal file
View File

@@ -0,0 +1,433 @@
#include "rmem.h"
// excessive but just in case.
#if defined(_WIN32) || defined(_WIN64) || defined(__CYGWIN__) || defined(_MSC_VER)
# ifndef restrict
# define restrict __restrict
# endif
#endif
static inline size_t __AlignSize(const size_t size, const size_t align)
{
return (size + (align-1)) & -align;
}
/************* Memory Pool *************/
static void __RemoveNode(struct MemNode **const node)
{
((*node)->prev != NULL)? ((*node)->prev->next = (*node)->next) : (*node = (*node)->next);
((*node)->next != NULL)? ((*node)->next->prev = (*node)->prev) : (*node = (*node)->prev);
}
struct MemPool MemPool_Create(const size_t size)
{
struct MemPool mempool = {0};
if (size==0UL)
return mempool;
else {
// align the mempool size to at least the size of an alloc node.
mempool.stack.size = size;
mempool.stack.mem = malloc(1 + mempool.stack.size*sizeof *mempool.stack.mem);
if (mempool.stack.mem==NULL) {
mempool.stack.size = 0UL;
return mempool;
} else {
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
return mempool;
}
}
}
struct MemPool MemPool_FromBuffer(void *buf, const size_t size)
{
struct MemPool mempool = {0};
if (size==0UL || buf==NULL || size<=sizeof(struct MemNode))
return mempool;
else {
mempool.stack.size = size;
mempool.stack.mem = buf;
mempool.stack.base = mempool.stack.mem + mempool.stack.size;
return mempool;
}
}
void MemPool_Destroy(struct MemPool *const mempool)
{
if (mempool==NULL || mempool->stack.mem==NULL)
return;
else {
free(mempool->stack.mem);
*mempool = (struct MemPool){0};
}
}
void *MemPool_Alloc(struct MemPool *const mempool, const size_t size)
{
if (mempool==NULL || size==0UL || size > mempool->stack.size)
return NULL;
else {
struct MemNode *new_mem = NULL;
const size_t ALLOC_SIZE = __AlignSize(size + sizeof *new_mem, sizeof(intptr_t));
if (mempool->freeList.head != NULL) {
const size_t MEM_SPLIT_THRESHOLD = sizeof(intptr_t);
// if the freelist is valid, let's allocate FROM the freelist then!
for (struct MemNode **inode = &mempool->freeList.head; *inode != NULL; inode = &(*inode)->next) {
if ((*inode)->size < ALLOC_SIZE)
continue;
else if ((*inode)->size <= ALLOC_SIZE + MEM_SPLIT_THRESHOLD) {
// close in size - reduce fragmentation by not splitting.
new_mem = *inode;
__RemoveNode(inode);
mempool->freeList.len--;
new_mem->next = new_mem->prev = NULL;
break;
} else {
// split the memory chunk.
new_mem = (struct MemNode *)( (uint8_t *)*inode + ((*inode)->size - ALLOC_SIZE));
(*inode)->size -= ALLOC_SIZE;
new_mem->size = ALLOC_SIZE;
new_mem->next = new_mem->prev = NULL;
break;
}
}
}
if (new_mem==NULL) {
// not enough memory to support the size!
if (mempool->stack.base - ALLOC_SIZE < mempool->stack.mem)
return NULL;
else {
// couldn't allocate from a freelist, allocate from available mempool.
// subtract allocation size from the mempool.
mempool->stack.base -= ALLOC_SIZE;
// use the available mempool space as the new node.
new_mem = (struct MemNode *)mempool->stack.base;
new_mem->size = ALLOC_SIZE;
new_mem->next = new_mem->prev = NULL;
}
}
// visual of the allocation block.
// --------------
// | mem size | lowest addr of block
// | next node |
// --------------
// | alloc'd |
// | memory |
// | space | highest addr of block
// --------------
uint8_t *const final_mem = (uint8_t *)new_mem + sizeof *new_mem;
memset(final_mem, 0, new_mem->size - sizeof *new_mem);
return final_mem;
}
}
void *MemPool_Realloc(struct MemPool *const restrict mempool, void *ptr, const size_t size)
{
if (mempool==NULL || size > mempool->stack.size)
return NULL;
// NULL ptr should make this work like regular Allocation.
else if (ptr==NULL)
return MemPool_Alloc(mempool, size);
else if ((uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)
return NULL;
else {
struct MemNode *node = (struct MemNode *)((uint8_t *)ptr - sizeof *node);
const size_t NODE_SIZE = sizeof *node;
uint8_t *resized_block = MemPool_Alloc(mempool, size);
if (resized_block==NULL)
return NULL;
else {
struct MemNode *resized = (struct MemNode *)(resized_block - sizeof *resized);
memmove(resized_block, ptr, (node->size > resized->size)? (resized->size - NODE_SIZE) : (node->size - NODE_SIZE));
MemPool_Free(mempool, ptr);
return resized_block;
}
}
}
void MemPool_Free(struct MemPool *const restrict mempool, void *ptr)
{
if (mempool==NULL || ptr==NULL || (uintptr_t)ptr <= (uintptr_t)mempool->stack.mem)
return;
else {
// behind the actual pointer data is the allocation info.
struct MemNode *mem_node = (struct MemNode *)((uint8_t *)ptr - sizeof *mem_node);
// make sure the pointer data is valid.
if ((uintptr_t)mem_node < (uintptr_t)mempool->stack.base || ((uintptr_t)mem_node - (uintptr_t)mempool->stack.mem) > mempool->stack.size || mem_node->size==0UL || mem_node->size > mempool->stack.size)
return;
// if the mem_node is right at the stack base ptr, then add it to the stack.
else if ((uintptr_t)mem_node == (uintptr_t)mempool->stack.base) {
mempool->stack.base += mem_node->size;
}
// otherwise, we add it to the free list.
// We also check if the freelist already has the pointer so we can prevent double frees.
else if (mempool->freeList.len==0UL || ((uintptr_t)mempool->freeList.head >= (uintptr_t)mempool->stack.mem && (uintptr_t)mempool->freeList.head - (uintptr_t)mempool->stack.mem < mempool->stack.size)) {
for (struct MemNode *n = mempool->freeList.head; n != NULL; n = n->next)
if (n==mem_node)
return;
// this code inserts at head.
/*
( mempool->freeList.head==NULL)? (mempool->freeList.tail = mem_node) : (mempool->freeList.head->prev = mem_node);
mem_node->next = mempool->freeList.head;
mempool->freeList.head = mem_node;
mempool->freeList.len++;
*/
// this code insertion sorts where largest size is first.
if (mempool->freeList.head==NULL) {
mempool->freeList.head = mempool->freeList.tail = mem_node;
mempool->freeList.len++;
} else if (mempool->freeList.head->size <= mem_node->size) {
mem_node->next = mempool->freeList.head;
mem_node->next->prev = mem_node;
mempool->freeList.head = mem_node;
mempool->freeList.len++;
} else if (mempool->freeList.tail->size > mem_node->size) {
mem_node->prev = mempool->freeList.tail;
mempool->freeList.tail->next = mem_node;
mempool->freeList.tail = mem_node;
mempool->freeList.len++;
} else {
struct MemNode *n = mempool->freeList.head;
while (n->next != NULL && n->next->size > mem_node->size)
n = n->next;
mem_node->next = n->next;
if (n->next != NULL)
mem_node->next->prev = mem_node;
n->next = mem_node;
mem_node->prev = n;
mempool->freeList.len++;
}
if (mempool->freeList.autoDefrag && mempool->freeList.maxNodes != 0UL && mempool->freeList.len > mempool->freeList.maxNodes)
MemPool_DeFrag(mempool);
}
}
}
void MemPool_CleanUp(struct MemPool *const restrict mempool, void **ptrref)
{
if (mempool==NULL || ptrref==NULL || *ptrref==NULL)
return;
else {
MemPool_Free(mempool, *ptrref);
*ptrref = NULL;
}
}
size_t MemPool_MemoryRemaining(const MemPool mempool)
{
size_t total_remaining = (uintptr_t)mempool.stack.base - (uintptr_t)mempool.stack.mem;
for (struct MemNode *n=mempool.freeList.head; n != NULL; n = n->next)
total_remaining += n->size;
return total_remaining;
}
bool MemPool_DeFrag(struct MemPool *const mempool)
{
if (mempool==NULL)
return false;
else {
// if the memory pool has been entirely released, fully defrag it.
if (mempool->stack.size == MemPool_MemoryRemaining(*mempool)) {
memset(&mempool->freeList, 0, sizeof mempool->freeList);
mempool->stack.base = mempool->stack.mem + mempool->stack.size;
return true;
} else {
const size_t PRE_DEFRAG_LEN = mempool->freeList.len;
struct MemNode **node = &mempool->freeList.head;
while (*node != NULL) {
if ((uintptr_t)*node == (uintptr_t)mempool->stack.base) {
// if node is right at the stack, merge it back into the stack.
mempool->stack.base += (*node)->size;
(*node)->size = 0UL;
__RemoveNode(node);
mempool->freeList.len--;
node = &mempool->freeList.head;
} else if ((uintptr_t)*node + (*node)->size == (uintptr_t)(*node)->next) {
// next node is at a higher address.
(*node)->size += (*node)->next->size;
(*node)->next->size = 0UL;
// <-[P Curr N]-> <-[P Next N]-> <-[P NextNext N]->
//
// |--------------------|
// <-[P Curr N]-> <-[P Next N]-> [P NextNext N]->
if ((*node)->next->next != NULL)
(*node)->next->next->prev = *node;
// <-[P Curr N]-> <-[P NextNext N]->
(*node)->next = (*node)->next->next;
mempool->freeList.len--;
node = &mempool->freeList.head;
} else if ((uintptr_t)*node + (*node)->size == (uintptr_t)(*node)->prev && (*node)->prev->prev != NULL) {
// prev node is at a higher address.
(*node)->size += (*node)->prev->size;
(*node)->prev->size = 0UL;
// <-[P PrevPrev N]-> <-[P Prev N]-> <-[P Curr N]->
//
// |--------------------|
// <-[P PrevPrev N] <-[P Prev N]-> <-[P Curr N]->
(*node)->prev->prev->next = *node;
// <-[P PrevPrev N]-> <-[P Curr N]->
(*node)->prev = (*node)->prev->prev;
mempool->freeList.len--;
node = &mempool->freeList.head;
} else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->next->size == (uintptr_t)(*node)->next) {
// next node is at a lower address.
(*node)->next->size += (*node)->size;
(*node)->size = 0UL;
(*node)->next->prev = (*node)->prev;
(*node)->prev->next = (*node)->next;
mempool->freeList.len--;
node = &mempool->freeList.head;
} else if ((*node)->prev != NULL && (*node)->next != NULL && (uintptr_t)*node - (*node)->prev->size == (uintptr_t)(*node)->prev) {
// prev node is at a lower address.
(*node)->prev->size += (*node)->size;
(*node)->size = 0UL;
(*node)->next->prev = (*node)->prev;
(*node)->prev->next = (*node)->next;
mempool->freeList.len--;
node = &mempool->freeList.head;
} else {
node = &(*node)->next;
}
}
return PRE_DEFRAG_LEN > mempool->freeList.len;
}
}
}
void MemPool_ToggleAutoDefrag(struct MemPool *const mempool)
{
if (mempool==NULL)
return;
else mempool->freeList.autoDefrag ^= true;
}
/***************************************************/
/************* Object Pool *************/
union ObjInfo {
uint8_t *const byte;
size_t *const size;
};
struct ObjPool ObjPool_Create(const size_t objsize, const size_t len)
{
struct ObjPool objpool = {0};
if (len==0UL || objsize==0UL)
return objpool;
else {
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
objpool.stack.size = objpool.freeBlocks = len;
objpool.stack.mem = calloc(objpool.stack.size, objpool.objSize);
if (objpool.stack.mem==NULL) {
objpool.stack.size = 0UL;
return objpool;
} else {
for (size_t i=0; i<objpool.freeBlocks; i++) {
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
*block.size = i + 1;
}
objpool.stack.base = objpool.stack.mem;
return objpool;
}
}
}
struct ObjPool ObjPool_FromBuffer(void *const buf, const size_t objsize, const size_t len)
{
struct ObjPool objpool = {0};
// If the object size isn't large enough to align to a size_t, then we can't use it.
if (buf==NULL || len==0UL || objsize<sizeof(size_t) || objsize*len != __AlignSize(objsize, sizeof(size_t))*len)
return objpool;
else {
objpool.objSize = __AlignSize(objsize, sizeof(size_t));
objpool.stack.size = objpool.freeBlocks = len;
objpool.stack.mem = buf;
for (size_t i=0; i<objpool.freeBlocks; i++) {
union ObjInfo block = { .byte = &objpool.stack.mem[i*objpool.objSize] };
*block.size = i + 1;
}
objpool.stack.base = objpool.stack.mem;
return objpool;
}
}
void ObjPool_Destroy(struct ObjPool *const objpool)
{
if (objpool==NULL || objpool->stack.mem==NULL)
return;
else {
free(objpool->stack.mem);
*objpool = (struct ObjPool){0};
}
}
void *ObjPool_Alloc(struct ObjPool *const objpool)
{
if (objpool==NULL)
return NULL;
else {
if (objpool->freeBlocks>0UL) {
// for first allocation, head points to the very first index.
// Head = &pool[0];
// ret = Head == ret = &pool[0];
union ObjInfo ret = { .byte = objpool->stack.base };
objpool->freeBlocks--;
// after allocating, we set head to the address of the index that *Head holds.
// Head = &pool[*Head * pool.objsize];
objpool->stack.base = (objpool->freeBlocks != 0UL)? objpool->stack.mem + ( *ret.size*objpool->objSize) : NULL;
memset(ret.byte, 0, objpool->objSize);
return ret.byte;
}
else return NULL;
}
}
void ObjPool_Free(struct ObjPool *const restrict objpool, void *ptr)
{
union ObjInfo p = { .byte = ptr };
if (objpool==NULL || ptr==NULL || p.byte < objpool->stack.mem || p.byte > objpool->stack.mem + objpool->stack.size*objpool->objSize)
return;
else {
// when we free our Bointer, we recycle the pointer space to store the previous index
// and then we push it as our new head.
// *p = index of Head in relation to the buffer;
// Head = p;
*p.size = (objpool->stack.base != NULL)? (objpool->stack.base - objpool->stack.mem)/objpool->objSize : objpool->stack.size;
objpool->stack.base = p.byte;
objpool->freeBlocks++;
}
}
void ObjPool_CleanUp(struct ObjPool *const restrict objpool, void **ptrref)
{
if (objpool==NULL || ptrref==NULL || *ptrref==NULL)
return;
else {
ObjPool_Free(objpool, *ptrref);
*ptrref = NULL;
}
}
/***************************************************/

75
src/rmem.h Normal file
View File

@@ -0,0 +1,75 @@
#ifndef RAYLIB_MEMORY_INCLUDED
# define RAYLIB_MEMORY_INCLUDED
#include <stdlib.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
/************* Memory Pool (mempool.c) *************/
typedef struct MemNode {
size_t size;
struct MemNode *next, *prev;
} MemNode;
typedef struct AllocList {
struct MemNode *head, *tail;
size_t len, maxNodes;
bool autoDefrag : 1;
} AllocList;
typedef struct Stack {
uint8_t *mem, *base;
size_t size;
} Stack;
typedef struct MemPool {
struct AllocList freeList;
struct Stack stack;
} MemPool;
/***************************************************/
/************* Object Pool *************/
typedef struct ObjPool {
struct Stack stack;
size_t objSize, freeBlocks;
} ObjPool;
/***************************************************/
#ifdef __cplusplus
extern "C" {
#endif
/************* Memory Pool *************/
struct MemPool MemPool_Create(size_t bytes);
struct MemPool MemPool_FromBuffer(void *buf, size_t bytes);
void MemPool_Destroy(struct MemPool *mempool);
void *MemPool_Alloc(struct MemPool *mempool, size_t bytes);
void *MemPool_Realloc(struct MemPool *mempool, void *ptr, size_t bytes);
void MemPool_Free(struct MemPool *mempool, void *ptr);
void MemPool_CleanUp(struct MemPool *mempool, void **ptrref);
size_t MemPool_MemoryRemaining(const struct MemPool mempool);
bool MemPool_DeFrag(struct MemPool *mempool);
void MemPool_ToggleAutoDefrag(struct MemPool *mempool);
/***************************************************/
/************* Object Pool (objpool.c) *************/
struct ObjPool ObjPool_Create(size_t objsize, size_t len);
struct ObjPool ObjPool_FromBuffer(void *buf, size_t objsize, size_t len);
void ObjPool_Destroy(struct ObjPool *objpool);
void *ObjPool_Alloc(struct ObjPool *objpool);
void ObjPool_Free(struct ObjPool *objpool, void *ptr);
void ObjPool_CleanUp(struct ObjPool *objpool, void **ptrref);
/***************************************************/
#ifdef __cplusplus
}
#endif
#endif /* RAYLIB_MEMORY_INCLUDED */