mirror of
https://github.com/raysan5/raylib.git
synced 2025-09-07 20:08:14 +00:00
work on quat and matrix math - deleted multiple copies of raymath.h causing issues (#1359)
Co-authored-by: codifies <nospam@antispam.com>
This commit is contained in:
145
src/raymath.h
145
src/raymath.h
@@ -78,6 +78,8 @@
|
||||
#define PI 3.14159265358979323846
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifndef DEG2RAD
|
||||
#define DEG2RAD (PI/180.0f)
|
||||
#endif
|
||||
@@ -926,6 +928,8 @@ RMDEF Matrix MatrixRotateZ(float angle)
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Returns scaling matrix
|
||||
RMDEF Matrix MatrixScale(float x, float y, float z)
|
||||
{
|
||||
@@ -963,6 +967,17 @@ RMDEF Matrix MatrixMultiply(Matrix left, Matrix right)
|
||||
return result;
|
||||
}
|
||||
|
||||
// TODO suboptimal should be able to create this matrix in one go
|
||||
// this is an aditional 3 matrix multiplies!
|
||||
RMDEF Matrix MatrixRotateZYX(Vector3 v)
|
||||
{
|
||||
Matrix result = MatrixRotateZ(v.z);
|
||||
result = MatrixMultiply(result, MatrixRotateY(v.y));
|
||||
result = MatrixMultiply(result, MatrixRotateX(v.x));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns perspective projection matrix
|
||||
RMDEF Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far)
|
||||
{
|
||||
@@ -1297,105 +1312,53 @@ RMDEF Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to)
|
||||
}
|
||||
|
||||
// Returns a quaternion for a given rotation matrix
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix mat)
|
||||
RMDEF Quaternion QuaternionFromMatrix(Matrix m)
|
||||
{
|
||||
Quaternion result = { 0 };
|
||||
|
||||
float trace = MatrixTrace(mat);
|
||||
|
||||
if (trace > 0.0f)
|
||||
{
|
||||
float s = sqrtf(trace + 1)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = s*0.25f;
|
||||
result.x = (mat.m6 - mat.m9)*invS;
|
||||
result.y = (mat.m8 - mat.m2)*invS;
|
||||
result.z = (mat.m1 - mat.m4)*invS;
|
||||
}
|
||||
else
|
||||
{
|
||||
float m00 = mat.m0, m11 = mat.m5, m22 = mat.m10;
|
||||
|
||||
if (m00 > m11 && m00 > m22)
|
||||
{
|
||||
float s = (float)sqrt(1.0f + m00 - m11 - m22)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = (mat.m6 - mat.m9)*invS;
|
||||
result.x = s*0.25f;
|
||||
result.y = (mat.m4 + mat.m1)*invS;
|
||||
result.z = (mat.m8 + mat.m2)*invS;
|
||||
}
|
||||
else if (m11 > m22)
|
||||
{
|
||||
float s = sqrtf(1.0f + m11 - m00 - m22)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = (mat.m8 - mat.m2)*invS;
|
||||
result.x = (mat.m4 + mat.m1)*invS;
|
||||
result.y = s*0.25f;
|
||||
result.z = (mat.m9 + mat.m6)*invS;
|
||||
}
|
||||
else
|
||||
{
|
||||
float s = sqrtf(1.0f + m22 - m00 - m11)*2.0f;
|
||||
float invS = 1.0f/s;
|
||||
|
||||
result.w = (mat.m1 - mat.m4)*invS;
|
||||
result.x = (mat.m8 + mat.m2)*invS;
|
||||
result.y = (mat.m9 + mat.m6)*invS;
|
||||
result.z = s*0.25f;
|
||||
}
|
||||
}
|
||||
|
||||
return result;
|
||||
Quaternion q;
|
||||
if ( m.m0 > m.m5 && m.m0 > m.m10 ) {
|
||||
float s = sqrt( 1.0 + m.m0 - m.m5 - m.m10 ) * 2;
|
||||
q.x = 0.25 * s;
|
||||
q.y = (m.m4 + m.m1 ) / s;
|
||||
q.z = (m.m2 + m.m8 ) / s;
|
||||
q.w = (m.m9 - m.m6 ) / s;
|
||||
} else if ( m.m5 > m.m10 ) {
|
||||
float s = sqrt( 1.0 + m.m5 - m.m0 - m.m10 ) * 2;
|
||||
q.x = (m.m4 + m.m1 ) / s;
|
||||
q.y = 0.25 * s;
|
||||
q.z = (m.m9 + m.m6 ) / s;
|
||||
q.w = (m.m2 - m.m8 ) / s;
|
||||
} else {
|
||||
float s = sqrt( 1.0 + m.m10 - m.m0 - m.m5 ) * 2;
|
||||
q.x = (m.m2 + m.m8 ) / s;
|
||||
q.y = (m.m9 + m.m6 ) / s;
|
||||
q.z = 0.25 * s;
|
||||
q.w = (m.m4 - m.m1 ) / s;
|
||||
}
|
||||
return q;
|
||||
}
|
||||
|
||||
// Returns a matrix for a given quaternion
|
||||
RMDEF Matrix QuaternionToMatrix(Quaternion q)
|
||||
{
|
||||
Matrix result = { 0 };
|
||||
Matrix m = MatrixIdentity();
|
||||
float a2=2*(q.x*q.x), b2=2*(q.y*q.y), c2=2*(q.z*q.z); //, d2=2*(q.w*q.w);
|
||||
|
||||
float ab=2*(q.x*q.y), ac=2*(q.x*q.z), bc=2*(q.y*q.z);
|
||||
float ad=2*(q.x*q.w), bd=2*(q.y*q.w), cd=2*(q.z*q.w);
|
||||
|
||||
float x = q.x, y = q.y, z = q.z, w = q.w;
|
||||
m.m0 = 1 - b2 - c2;
|
||||
m.m1 = ab - cd;
|
||||
m.m2 = ac + bd;
|
||||
|
||||
m.m4 = ab + cd;
|
||||
m.m5 = 1 - a2 - c2;
|
||||
m.m6 = bc - ad;
|
||||
|
||||
m.m8 = ac - bd;
|
||||
m.m9 = bc + ad;
|
||||
m.m10 = 1 - a2 - b2;
|
||||
|
||||
float x2 = x + x;
|
||||
float y2 = y + y;
|
||||
float z2 = z + z;
|
||||
|
||||
float length = QuaternionLength(q);
|
||||
float lengthSquared = length*length;
|
||||
|
||||
float xx = x*x2/lengthSquared;
|
||||
float xy = x*y2/lengthSquared;
|
||||
float xz = x*z2/lengthSquared;
|
||||
|
||||
float yy = y*y2/lengthSquared;
|
||||
float yz = y*z2/lengthSquared;
|
||||
float zz = z*z2/lengthSquared;
|
||||
|
||||
float wx = w*x2/lengthSquared;
|
||||
float wy = w*y2/lengthSquared;
|
||||
float wz = w*z2/lengthSquared;
|
||||
|
||||
result.m0 = 1.0f - (yy + zz);
|
||||
result.m1 = xy - wz;
|
||||
result.m2 = xz + wy;
|
||||
result.m3 = 0.0f;
|
||||
result.m4 = xy + wz;
|
||||
result.m5 = 1.0f - (xx + zz);
|
||||
result.m6 = yz - wx;
|
||||
result.m7 = 0.0f;
|
||||
result.m8 = xz - wy;
|
||||
result.m9 = yz + wx;
|
||||
result.m10 = 1.0f - (xx + yy);
|
||||
result.m11 = 0.0f;
|
||||
result.m12 = 0.0f;
|
||||
result.m13 = 0.0f;
|
||||
result.m14 = 0.0f;
|
||||
result.m15 = 1.0f;
|
||||
|
||||
return result;
|
||||
return m;
|
||||
}
|
||||
|
||||
// Returns rotation quaternion for an angle and axis
|
||||
|
Reference in New Issue
Block a user