/********************************************************************************************** * * raylib Gestures System - Gestures Detection and Usage Functions (Android and HTML5) * * Copyright (c) 2015 Marc Palau and Ramon Santamaria * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ //#define GESTURES_STANDALONE // NOTE: To use the gestures module as standalone lib, just uncomment this line #if defined(GESTURES_STANDALONE) #include "gestures.h" #else #include "raylib.h" // Required for typedef(s): Vector2, Gestures #endif #include // malloc(), free() #include // printf(), fprintf() #include // Used for ... #include // Defines int32_t, int64_t #if defined(_WIN32) // Functions required to query time on Windows int __stdcall QueryPerformanceCounter(unsigned long long int *lpPerformanceCount); int __stdcall QueryPerformanceFrequency(unsigned long long int *lpFrequency); #elif defined(__linux) #include // Used for clock functions #endif //---------------------------------------------------------------------------------- // Defines and Macros //---------------------------------------------------------------------------------- #define FORCE_TO_SWIPE 20 #define TAP_TIMEOUT 300 //#define MAX_TOUCH_POINTS 4 //---------------------------------------------------------------------------------- // Types and Structures Definition //---------------------------------------------------------------------------------- typedef enum { TYPE_MOTIONLESS, TYPE_DRAG, TYPE_DUAL_INPUT } GestureType; //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- static GestureType gestureType = TYPE_MOTIONLESS; static double eventTime = 0; //static int32_t touchId; // Not used... // Tap gesture variables static Vector2 initialTapPosition = { 0, 0 }; // Double Tap gesture variables static bool doubleTapping = false; static bool untap = false; // Check if recently done a tap // Drag gesture variables static Vector2 initialDragPosition = { 0, 0 }; static Vector2 endDragPosition = { 0, 0 }; static Vector2 lastDragPosition = { 0, 0 }; static Vector2 dragVector = { 0, 0 }; static float magnitude = 0; // Distance traveled dragging static float angle = 0; // Angle direction of the drag static float intensity = 0; // How fast we did the drag (pixels per frame) static int draggingTimeCounter = 0; // Time that have passed while dragging // Pinch gesture variables static Vector2 firstInitialPinchPosition = { 0, 0 }; static Vector2 secondInitialPinchPosition = { 0, 0 }; static Vector2 firstEndPinchPosition = { 0, 0 }; static Vector2 secondEndPinchPosition = { 0, 0 }; static float pinchDelta = 0; // Pinch delta displacement // Detected gestures static int previousGesture = GESTURE_NONE; static int currentGesture = GESTURE_NONE; // Enabled gestures flags, all gestures enabled by default static unsigned int enabledGestures = 0b0000011111111111; //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- static void InitPinchGesture(Vector2 posA, Vector2 posB); static float CalculateAngle(Vector2 initialPosition, Vector2 actualPosition, float magnitude); static float VectorDistance(Vector2 v1, Vector2 v2); static float VectorDotProduct(Vector2 v1, Vector2 v2); static double GetCurrentTime(); //---------------------------------------------------------------------------------- // Module Functions Definition //---------------------------------------------------------------------------------- // Process gesture event and translate it into gestures void ProcessGestureEvent(GestureEvent event) { // Resets dragVector = (Vector2){ 0, 0 }; pinchDelta = 0; previousGesture = currentGesture; switch (gestureType) { case TYPE_MOTIONLESS: // Detect TAP, DOUBLE_TAP and HOLD events { if (event.touchAction == TOUCH_DOWN) { if (event.pointCount > 1) InitPinchGesture(event.position[0], event.position[1]); else { // Set the press position initialTapPosition = event.position[0]; // If too much time have passed, we reset the double tap if (GetCurrentTime() - eventTime > TAP_TIMEOUT) untap = false; // If we are in time, we detect the double tap if (untap) doubleTapping = true; // Update our event time eventTime = GetCurrentTime(); // Set hold if (doubleTapping) currentGesture = GESTURE_DOUBLETAP; else currentGesture = GESTURE_TAP; } } else if (event.touchAction == TOUCH_UP) { currentGesture = GESTURE_NONE; // Detect that we are tapping instead of holding if (GetCurrentTime() - eventTime < TAP_TIMEOUT) { if (doubleTapping) untap = false; else untap = true; } // Tap finished doubleTapping = false; // Update our event time eventTime = GetCurrentTime(); } // Begin dragging else if (event.touchAction == TOUCH_MOVE) { if (event.pointCount > 1) InitPinchGesture(event.position[0], event.position[1]); else { // Set the drag starting position initialDragPosition = initialTapPosition; endDragPosition = initialDragPosition; // Initialize drag draggingTimeCounter = 0; gestureType = TYPE_DRAG; currentGesture = GESTURE_NONE; } } } break; case TYPE_DRAG: // Detect DRAG and SWIPE events { // end of the drag if (event.touchAction == TOUCH_UP) { // Return Swipe if we have enough sensitivity if (intensity > FORCE_TO_SWIPE) { if (angle < 30 || angle > 330) currentGesture = GESTURE_SWIPE_RIGHT; // Right else if (angle > 60 && angle < 120) currentGesture = GESTURE_SWIPE_UP; // Up else if (angle > 150 && angle < 210) currentGesture = GESTURE_SWIPE_LEFT; // Left else if (angle > 240 && angle < 300) currentGesture = GESTURE_SWIPE_DOWN; // Down } magnitude = 0; angle = 0; intensity = 0; gestureType = TYPE_MOTIONLESS; } // Update while we are dragging else if (event.touchAction == TOUCH_MOVE) { if (event.pointCount > 1) InitPinchGesture(event.position[0], event.position[1]); else { lastDragPosition = endDragPosition; endDragPosition = event.position[0]; //endDragPosition.x = AMotionEvent_getX(event, 0); //endDragPosition.y = AMotionEvent_getY(event, 0); // Calculate attributes dragVector = (Vector2){ endDragPosition.x - lastDragPosition.x, endDragPosition.y - lastDragPosition.y }; magnitude = sqrt(pow(endDragPosition.x - initialDragPosition.x, 2) + pow(endDragPosition.y - initialDragPosition.y, 2)); angle = CalculateAngle(initialDragPosition, endDragPosition, magnitude); intensity = magnitude / (float)draggingTimeCounter; currentGesture = GESTURE_DRAG; draggingTimeCounter++; } } } break; case TYPE_DUAL_INPUT: { if (event.touchAction == TOUCH_UP) { if (event.pointCount == 1) { // Set the drag starting position initialTapPosition = event.position[0]; } gestureType = TYPE_MOTIONLESS; } else if (event.touchAction == TOUCH_MOVE) { // Adapt the ending position of the inputs firstEndPinchPosition = event.position[0]; secondEndPinchPosition = event.position[1]; // If there is no more than two inputs if (event.pointCount == 2) { // Calculate distances float initialDistance = VectorDistance(firstInitialPinchPosition, secondInitialPinchPosition); float endDistance = VectorDistance(firstEndPinchPosition, secondEndPinchPosition); // Calculate Vectors Vector2 firstTouchVector = { firstEndPinchPosition.x - firstInitialPinchPosition.x, firstEndPinchPosition.y - firstInitialPinchPosition.y }; Vector2 secondTouchVector = { secondEndPinchPosition.x - secondInitialPinchPosition.x, secondEndPinchPosition.y - secondInitialPinchPosition.y }; // Detect the pinch gesture if (VectorDotProduct(firstTouchVector, secondTouchVector) < -0.5) pinchDelta = initialDistance - endDistance; else pinchDelta = 0; // Pinch gesture resolution if (pinchDelta != 0) { if (pinchDelta > 0) currentGesture = GESTURE_PINCH_IN; else currentGesture = GESTURE_PINCH_OUT; } } else { // Set the drag starting position initialTapPosition = event.position[0]; gestureType = TYPE_MOTIONLESS; } // Readapt the initial position of the inputs firstInitialPinchPosition = firstEndPinchPosition; secondInitialPinchPosition = secondEndPinchPosition; } } break; } } // Check if a gesture have been detected bool IsGestureDetected(void) { if (currentGesture != GESTURE_NONE) return true; else return false; } // Check gesture type int GetGestureType(void) { // Get current gesture only if enabled return (enabledGestures & currentGesture); } void SetGesturesEnabled(unsigned int gestureFlags) { enabledGestures = enabledGestures | gestureFlags; } // Get drag intensity (pixels per frame) float GetGestureDragIntensity(void) { return intensity; } // Get drag angle // NOTE: Angle in degrees, horizontal-right is 0, counterclock-wise float GetGestureDragAngle(void) { return angle; } // Get drag vector (between initial and final position) Vector2 GetGestureDragVector(void) { return dragVector; } // Hold time measured in frames int GetGestureHoldDuration(void) { return 0; } // Get magnitude between two pinch points float GetGesturePinchDelta(void) { return pinchDelta; } // Get angle beween two pinch points // NOTE: Angle in degrees, horizontal-right is 0, counterclock-wise float GetGesturePinchAngle(void) { return 0; } // Update gestures detected (must be called every frame) void UpdateGestures(void) { // NOTE: Gestures are processed through system callbacks on touch events if ((previousGesture == GESTURE_TAP) && (currentGesture == GESTURE_TAP)) currentGesture = GESTURE_HOLD; else if (currentGesture != GESTURE_HOLD) currentGesture = GESTURE_NONE; } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- static float CalculateAngle(Vector2 initialPosition, Vector2 finalPosition, float magnitude) { float angle; // Calculate arcsinus of the movement angle = asin((finalPosition.y - initialPosition.y)/magnitude); angle *= RAD2DEG; // Calculate angle depending on the sector if ((finalPosition.x - initialPosition.x) >= 0) { // Sector 4 if ((finalPosition.y - initialPosition.y) >= 0) { angle *= -1; angle += 360; } // Sector 1 else angle *= -1; } else { // Sector 3 if ((finalPosition.y - initialPosition.y) >= 0) angle += 180; // Sector 2 else { angle *= -1; angle = 180 - angle; } } return angle; } static void InitPinchGesture(Vector2 posA, Vector2 posB) { initialDragPosition = (Vector2){ 0, 0 }; endDragPosition = (Vector2){ 0, 0 }; lastDragPosition = (Vector2){ 0, 0 }; // Initialize positions firstInitialPinchPosition = posA; secondInitialPinchPosition = posB; firstEndPinchPosition = firstInitialPinchPosition; secondEndPinchPosition = secondInitialPinchPosition; // Resets magnitude = 0; angle = 0; intensity = 0; gestureType = TYPE_DUAL_INPUT; } static float VectorDistance(Vector2 v1, Vector2 v2) { float result; float dx = v2.x - v1.x; float dy = v2.y - v1.y; result = sqrt(dx*dx + dy*dy); return result; } static float VectorDotProduct(Vector2 v1, Vector2 v2) { float result; float v1Module = sqrt(v1.x*v1.x + v1.y*v1.y); float v2Module = sqrt(v2.x*v2.x + v2.y*v2.y); Vector2 v1Normalized = { v1.x / v1Module, v1.y / v1Module }; Vector2 v2Normalized = { v2.x / v2Module, v2.y / v2Module }; result = v1Normalized.x*v2Normalized.x + v1Normalized.y*v2Normalized.y; return result; } static double GetCurrentTime() { double time = 0; #if defined(_WIN32) unsigned long long int clockFrequency, currentTime; QueryPerformanceFrequency(&clockFrequency); QueryPerformanceCounter(¤tTime); time = (double)currentTime/clockFrequency*1000.0f; // time in miliseconds #endif #if defined(__linux) // NOTE: Only for Linux-based systems struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); uint64_t nowTime = (uint64_t)now.tv_sec*1000000000LLU + (uint64_t)now.tv_nsec; // Time provided in nanoseconds time = ((double)nowTime/1000000.0); // time in miliseconds #endif return time; }