Files
raylib/examples/shaders/resources/shaders/glsl120/julia_set.fs
2025-08-11 20:26:16 +02:00

81 lines
3.2 KiB
GLSL

#version 120
// Input vertex attributes (from vertex shader)
varying vec2 fragTexCoord;
varying vec4 fragColor;
uniform vec2 c; // c.x = real, c.y = imaginary component. Equation done is z^2 + c
uniform vec2 offset; // Offset of the scale.
uniform float zoom; // Zoom of the scale.
// NOTE: Maximum number of shader for-loop iterations depend on GPU,
// for example, on RasperryPi for this examply only supports up to 60
const int maxIterations = 255; // Max iterations to do
const float colorCycles = 1.0; // Number of times the color palette repeats
// Square a complex number
vec2 ComplexSquare(vec2 z)
{
return vec2(z.x*z.x - z.y*z.y, z.x*z.y*2.0);
}
// Convert Hue Saturation Value (HSV) color into RGB
vec3 Hsv2rgb(vec3 c)
{
vec4 K = vec4(1.0, 2.0/3.0, 1.0/3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz)*6.0 - K.www);
return c.z*mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main()
{
/**********************************************************************************************
Julia sets use a function z^2 + c, where c is a constant
This function is iterated until the nature of the point is determined
If the magnitude of the number becomes greater than 2, then from that point onward
the number will get bigger and bigger, and will never get smaller (tends towards infinity)
2^2 = 4, 4^2 = 8 and so on
So at 2 we stop iterating
If the number is below 2, we keep iterating
But when do we stop iterating if the number is always below 2 (it converges)?
That is what maxIterations is for
Then we can divide the iterations by the maxIterations value to get a normalized value
that we can then map to a color
We use dot product (z.x*z.x + z.y*z.y) to determine the magnitude (length) squared
And once the magnitude squared is > 4, then magnitude > 2 is also true (saves computational power)
*************************************************************************************************/
// The pixel coordinates are scaled so they are on the mandelbrot scale
// NOTE: fragTexCoord already comes as normalized screen coordinates but offset must be normalized before scaling and zoom
vec2 z = vec2((fragTexCoord.x - 0.5)*2.5, (fragTexCoord.y - 0.5)*1.5)/zoom;
z.x += offset.x;
z.y += offset.y;
int iter = 0;
for (int iterations = 0; iterations < maxIterations; iterations++)
{
z = ComplexSquare(z) + c; // Iterate function
if (dot(z, z) > 4.0) break;
iter = iterations;
}
// Another few iterations decreases errors in the smoothing calculation
// See http://linas.org/art-gallery/escape/escape.html for more information
z = ComplexSquare(z) + c;
z = ComplexSquare(z) + c;
// This last part smooths the color (again see link above)
float smoothVal = float(iter) + 1.0 - (log(log(length(z)))/log(2.0));
// Normalize the value so it is between 0 and 1
float norm = smoothVal/float(maxIterations);
// If in set, color black. 0.999 allows for some float accuracy error
if (norm > 0.999) gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
else gl_FragColor = vec4(Hsv2rgb(vec3(norm*colorCycles, 1.0, 1.0)), 1.0);
}