mirror of
https://github.com/raysan5/raylib.git
synced 2025-10-07 02:16:28 +00:00

* add base of rlsw.h * implement state support Also replace the triangle rasterization functions with macros that generate specific functions for each state of the rendering system. Also, add the OpenGL definitions in order to add a binding for rlgl. * branchless float saturation * apply perspective correction to colors * impl line clipping and rasterization + tweak function names * impl face culling * impl color blending * fixes and tweaks * add clear buffer bitmasks * small optimizations / tweaks * review ndc to screen projection * avoid to recalculate MVP when its not needed + tweaks * review the loading and management of textures to be closer to the OpenGL API * texture sampling optimization * review get pixel functions + review unorm/float conversion * add several buffer format support Several depth and color formats have been added for the framebuffer. 8-bit, 16-bit, and 24-bit formats are now available for depth. RGB 8-bit (332), RGB 16-bit (565), and RGB 24-bit (888) formats are now available for color. Alpha support is no longer present for the framebuffer at the moment, but it can easily be restored by adding the formats and reinterpolating the alpha in the areas that do not perform color blending. Additionally, this commit brings performance improvements. * tweaks * impl line width * impl points + point size * fix and improve polygon clipping functions * impl polygone modes * add some not planned functions - `glDepthMask` - `glColorMask` * framebuffer resizing + handle init failure * add quick notes about line clipping algorithms used * start to impl scissor test + review line clipping The support for the scissor test has been implemented for clearing as well as for triangle clipping. The implementation for lines and points is still missing. I also removed the 2D clipping of lines that used the Cohen-Sutherland algorithm, opting instead to always use the Liang-Barsky algorithm in all cases. This simplifies the implementation, and the 2D version would have caused issues when interpolating vertices in the future if we want to implement additional features. * review scissor clear * review `swScissor` * impl line scissor clipping * round screen coordinate (line rasterization) * impl point scissor clipping * remove unused defs * add getter functions * gl binding * add `glHint` and `glShadeModel` macros (not implmented) * binding tweaks * impl copy framebuffer function + glReadPixels * review `swCopyFramebuffer` * update rlgl.h * update rlgl.h * texture copy support * fix typo.. * add get error function * def sw alloc macros * reimpl get color buffer func just in case * remove normal interpolation * review texture wrap * fix ndc projection (viewport/scissor) * impl framebuffer blit function * reduce matrix compuations and memory usage * swBegin tweaks * preventing a possible division by zero * remove useless scissor related data * review color blending system * greatly improve float saturation * tweak lerp vertex function * use opitmized fract function in sw_texture_map * tweak framebuffer functions for better readability * optimized copy/blit functions for each dst format * review framebuffer filling functions * impl specific quad rendering func * use of a single global vertex buffer * fix 'sw_poly_point_render' * added `SW_RESTRICT` and redesigned `sw_lerp_vertex_PNCTH` * tweak the pipeline flow regarding the face culling avoids misprediction, improves vectorization if possible * new rendering path for axis aligned quads * oops, translating some comments * use of `restrict` for blending function parameters * update rlgl.h * adding `GRAPHICS_API_OPENGL_11_SOFTWARE` in `DrawMesh` * add `RL_OPENGL_11_SOFTWARE` enum * temp tweak * build fixes * fix DrawMesh for GL 1.1 * update swClose * review texture format + fix copy * set minimum req vertices to 3 (quads) * check swInit * review pixelformat * tweaks * fix animNormals (DrawMesh) * fallback color/texcoord (swDrawArrays) * review swMultMatrixf * fix texture pool alloc.. * review triangle scanlines increment all data * fix `sw_quad_sort_cw` * impl sdl platform * rm def * increase max clipped polygon vertices * improve triangle rasterization along Y axis improved robustness against numerical errors incremental interpolation along Y simplified function, fewer jumps * review current vertex data + increase max clipped polygon vertices (for extreme cases) * fix and improve polygon clipping Sets the vertex count to zero when the polygon is invalid Stops clipping when the vertex count drops below 3 * fix gradient calculation * cache texture size minus one + comments * tweaks * BGRA copy support * adding software backend option (cmake) * update Makefile * fix face culling * excluse some exemple with the software backend * review SW_CLAMP case in sw_texture_map * review sw_saturate * review line raster * fix sw_quad_is_aligned * review sw_raster_quad_axis_aligned * tweaks * codepoint fix (?) * fix var name... * rcore_drm software renderering * cleanup and tweaks * adding support for `GL_POINT_SIZE` and `GL_LINE_WIDTH` get * fix sampling issue * fix swBlendFunc --------- Co-authored-by: Ray <raysan5@gmail.com>
7004 lines
313 KiB
C
7004 lines
313 KiB
C
/**********************************************************************************************
|
|
*
|
|
* rmodels - Basic functions to draw 3d shapes and load and draw 3d models
|
|
*
|
|
* CONFIGURATION:
|
|
* #define SUPPORT_MODULE_RMODELS
|
|
* rmodels module is included in the build
|
|
*
|
|
* #define SUPPORT_FILEFORMAT_OBJ
|
|
* #define SUPPORT_FILEFORMAT_MTL
|
|
* #define SUPPORT_FILEFORMAT_IQM
|
|
* #define SUPPORT_FILEFORMAT_GLTF
|
|
* #define SUPPORT_FILEFORMAT_VOX
|
|
* #define SUPPORT_FILEFORMAT_M3D
|
|
* Selected desired fileformats to be supported for model data loading
|
|
*
|
|
* #define SUPPORT_MESH_GENERATION
|
|
* Support procedural mesh generation functions, uses external par_shapes.h library
|
|
* NOTE: Some generated meshes DO NOT include generated texture coordinates
|
|
*
|
|
*
|
|
* LICENSE: zlib/libpng
|
|
*
|
|
* Copyright (c) 2013-2025 Ramon Santamaria (@raysan5)
|
|
*
|
|
* This software is provided "as-is", without any express or implied warranty. In no event
|
|
* will the authors be held liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you
|
|
* wrote the original software. If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented
|
|
* as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
**********************************************************************************************/
|
|
|
|
#include "raylib.h" // Declares module functions
|
|
|
|
// Check if config flags have been externally provided on compilation line
|
|
#if !defined(EXTERNAL_CONFIG_FLAGS)
|
|
#include "config.h" // Defines module configuration flags
|
|
#endif
|
|
|
|
#if defined(SUPPORT_MODULE_RMODELS)
|
|
|
|
#include "utils.h" // Required for: TRACELOG(), LoadFileData(), LoadFileText(), SaveFileText()
|
|
#include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
|
|
#include "raymath.h" // Required for: Vector3, Quaternion and Matrix functionality
|
|
|
|
#include <stdio.h> // Required for: sprintf()
|
|
#include <stdlib.h> // Required for: malloc(), calloc(), free()
|
|
#include <string.h> // Required for: memcmp(), strlen(), strncpy()
|
|
#include <math.h> // Required for: sinf(), cosf(), sqrtf(), fabsf()
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
|
|
#define TINYOBJ_MALLOC RL_MALLOC
|
|
#define TINYOBJ_CALLOC RL_CALLOC
|
|
#define TINYOBJ_REALLOC RL_REALLOC
|
|
#define TINYOBJ_FREE RL_FREE
|
|
|
|
#define TINYOBJ_LOADER_C_IMPLEMENTATION
|
|
#include "external/tinyobj_loader_c.h" // OBJ/MTL file formats loading
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
#define CGLTF_MALLOC RL_MALLOC
|
|
#define CGLTF_FREE RL_FREE
|
|
|
|
#define CGLTF_IMPLEMENTATION
|
|
#include "external/cgltf.h" // glTF file format loading
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_VOX)
|
|
#define VOX_MALLOC RL_MALLOC
|
|
#define VOX_CALLOC RL_CALLOC
|
|
#define VOX_REALLOC RL_REALLOC
|
|
#define VOX_FREE RL_FREE
|
|
|
|
#define VOX_LOADER_IMPLEMENTATION
|
|
#include "external/vox_loader.h" // VOX file format loading (MagikaVoxel)
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_M3D)
|
|
#define M3D_MALLOC RL_MALLOC
|
|
#define M3D_REALLOC RL_REALLOC
|
|
#define M3D_FREE RL_FREE
|
|
|
|
#define M3D_IMPLEMENTATION
|
|
#include "external/m3d.h" // Model3D file format loading
|
|
#endif
|
|
|
|
#if defined(SUPPORT_MESH_GENERATION)
|
|
#define PAR_MALLOC(T, N) ((T *)RL_MALLOC(N*sizeof(T)))
|
|
#define PAR_CALLOC(T, N) ((T *)RL_CALLOC(N*sizeof(T), 1))
|
|
#define PAR_REALLOC(T, BUF, N) ((T *)RL_REALLOC(BUF, sizeof(T)*(N)))
|
|
#define PAR_FREE RL_FREE
|
|
|
|
#if defined(_MSC_VER) // Disable some MSVC warning
|
|
#pragma warning(push)
|
|
#pragma warning(disable : 4244)
|
|
#pragma warning(disable : 4305)
|
|
#endif
|
|
|
|
#define PAR_SHAPES_IMPLEMENTATION
|
|
#include "external/par_shapes.h" // Shapes 3d parametric generation
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(pop) // Disable MSVC warning suppression
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(_WIN32)
|
|
#include <direct.h> // Required for: _chdir() [Used in LoadOBJ()]
|
|
#define CHDIR _chdir
|
|
#else
|
|
#include <unistd.h> // Required for: chdir() (POSIX) [Used in LoadOBJ()]
|
|
#define CHDIR chdir
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Defines and Macros
|
|
//----------------------------------------------------------------------------------
|
|
#ifndef MAX_MATERIAL_MAPS
|
|
#define MAX_MATERIAL_MAPS 12 // Maximum number of maps supported
|
|
#endif
|
|
#ifndef MAX_MESH_VERTEX_BUFFERS
|
|
#define MAX_MESH_VERTEX_BUFFERS 9 // Maximum vertex buffers (VBO) per mesh
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Types and Structures Definition
|
|
//----------------------------------------------------------------------------------
|
|
// ...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Global Variables Definition
|
|
//----------------------------------------------------------------------------------
|
|
// ...
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Internal Functions Declaration
|
|
//----------------------------------------------------------------------------------
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ)
|
|
static Model LoadOBJ(const char *fileName); // Load OBJ mesh data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
static Model LoadIQM(const char *fileName); // Load IQM mesh data
|
|
static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, int *animCount); // Load IQM animation data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
static Model LoadGLTF(const char *fileName); // Load GLTF mesh data
|
|
static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, int *animCount); // Load GLTF animation data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_VOX)
|
|
static Model LoadVOX(const char *filename); // Load VOX mesh data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_M3D)
|
|
static Model LoadM3D(const char *filename); // Load M3D mesh data
|
|
static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, int *animCount); // Load M3D animation data
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
|
|
static void ProcessMaterialsOBJ(Material *rayMaterials, tinyobj_material_t *materials, int materialCount); // Process obj materials
|
|
#endif
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Functions Definition
|
|
//----------------------------------------------------------------------------------
|
|
// Draw a line in 3D world space
|
|
void DrawLine3D(Vector3 startPos, Vector3 endPos, Color color)
|
|
{
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex3f(startPos.x, startPos.y, startPos.z);
|
|
rlVertex3f(endPos.x, endPos.y, endPos.z);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a point in 3D space, actually a small line
|
|
// WARNING: OpenGL ES 2.0 does not support point mode drawing
|
|
void DrawPoint3D(Vector3 position, Color color)
|
|
{
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex3f(0.0f, 0.0f, 0.0f);
|
|
rlVertex3f(0.0f, 0.0f, 0.1f);
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a circle in 3D world space
|
|
void DrawCircle3D(Vector3 center, float radius, Vector3 rotationAxis, float rotationAngle, Color color)
|
|
{
|
|
rlPushMatrix();
|
|
rlTranslatef(center.x, center.y, center.z);
|
|
rlRotatef(rotationAngle, rotationAxis.x, rotationAxis.y, rotationAxis.z);
|
|
|
|
rlBegin(RL_LINES);
|
|
for (int i = 0; i < 360; i += 10)
|
|
{
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*i)*radius, cosf(DEG2RAD*i)*radius, 0.0f);
|
|
rlVertex3f(sinf(DEG2RAD*(i + 10))*radius, cosf(DEG2RAD*(i + 10))*radius, 0.0f);
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a color-filled triangle (vertex in counter-clockwise order!)
|
|
void DrawTriangle3D(Vector3 v1, Vector3 v2, Vector3 v3, Color color)
|
|
{
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlVertex3f(v1.x, v1.y, v1.z);
|
|
rlVertex3f(v2.x, v2.y, v2.z);
|
|
rlVertex3f(v3.x, v3.y, v3.z);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a triangle strip defined by points
|
|
void DrawTriangleStrip3D(const Vector3 *points, int pointCount, Color color)
|
|
{
|
|
if (pointCount < 3) return; // Security check
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 2; i < pointCount; i++)
|
|
{
|
|
if ((i%2) == 0)
|
|
{
|
|
rlVertex3f(points[i].x, points[i].y, points[i].z);
|
|
rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
|
|
rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
|
|
}
|
|
else
|
|
{
|
|
rlVertex3f(points[i].x, points[i].y, points[i].z);
|
|
rlVertex3f(points[i - 1].x, points[i - 1].y, points[i - 1].z);
|
|
rlVertex3f(points[i - 2].x, points[i - 2].y, points[i - 2].z);
|
|
}
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw cube
|
|
// NOTE: Cube position is the center position
|
|
void DrawCube(Vector3 position, float width, float height, float length, Color color)
|
|
{
|
|
float x = 0.0f;
|
|
float y = 0.0f;
|
|
float z = 0.0f;
|
|
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> rotate -> translate)
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
//rlRotatef(45, 0, 1, 0);
|
|
//rlScalef(1.0f, 1.0f, 1.0f); // NOTE: Vertices are directly scaled on definition
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// Front face
|
|
rlNormal3f(0.0f, 0.0f, 1.0f);
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
|
|
// Back face
|
|
rlNormal3f(0.0f, 0.0f, -1.0f);
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Left
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
|
|
// Top face
|
|
rlNormal3f(0.0f, 1.0f, 0.0f);
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
|
|
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Left
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Bottom Right
|
|
|
|
// Bottom face
|
|
rlNormal3f(0.0f, -1.0f, 0.0f);
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
|
|
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Top Right
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top Left
|
|
|
|
// Right face
|
|
rlNormal3f(1.0f, 0.0f, 0.0f);
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top Right
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
|
|
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top Left
|
|
|
|
// Left face
|
|
rlNormal3f(-1.0f, 0.0f, 0.0f);
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top Right
|
|
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom Left
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top Left
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom Right
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw cube (Vector version)
|
|
void DrawCubeV(Vector3 position, Vector3 size, Color color)
|
|
{
|
|
DrawCube(position, size.x, size.y, size.z, color);
|
|
}
|
|
|
|
// Draw cube wires
|
|
void DrawCubeWires(Vector3 position, float width, float height, float length, Color color)
|
|
{
|
|
float x = 0.0f;
|
|
float y = 0.0f;
|
|
float z = 0.0f;
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// Front face
|
|
//------------------------------------------------------------------
|
|
// Bottom line
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right
|
|
|
|
// Left line
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Bottom right
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right
|
|
|
|
// Top line
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left
|
|
|
|
// Right line
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Bottom left
|
|
|
|
// Back face
|
|
//------------------------------------------------------------------
|
|
// Bottom line
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right
|
|
|
|
// Left line
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Bottom right
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right
|
|
|
|
// Top line
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left
|
|
|
|
// Right line
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Bottom left
|
|
|
|
// Top face
|
|
//------------------------------------------------------------------
|
|
// Left line
|
|
rlVertex3f(x - width/2, y + height/2, z + length/2); // Top left front
|
|
rlVertex3f(x - width/2, y + height/2, z - length/2); // Top left back
|
|
|
|
// Right line
|
|
rlVertex3f(x + width/2, y + height/2, z + length/2); // Top right front
|
|
rlVertex3f(x + width/2, y + height/2, z - length/2); // Top right back
|
|
|
|
// Bottom face
|
|
//------------------------------------------------------------------
|
|
// Left line
|
|
rlVertex3f(x - width/2, y - height/2, z + length/2); // Top left front
|
|
rlVertex3f(x - width/2, y - height/2, z - length/2); // Top left back
|
|
|
|
// Right line
|
|
rlVertex3f(x + width/2, y - height/2, z + length/2); // Top right front
|
|
rlVertex3f(x + width/2, y - height/2, z - length/2); // Top right back
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw cube wires (vector version)
|
|
void DrawCubeWiresV(Vector3 position, Vector3 size, Color color)
|
|
{
|
|
DrawCubeWires(position, size.x, size.y, size.z, color);
|
|
}
|
|
|
|
// Draw sphere
|
|
void DrawSphere(Vector3 centerPos, float radius, Color color)
|
|
{
|
|
DrawSphereEx(centerPos, radius, 16, 16, color);
|
|
}
|
|
|
|
// Draw sphere with extended parameters
|
|
void DrawSphereEx(Vector3 centerPos, float radius, int rings, int slices, Color color)
|
|
{
|
|
#if 0
|
|
// Basic implementation, do not use it!
|
|
// For a sphere with 16 rings and 16 slices it requires 8640 cos()/sin() function calls!
|
|
// New optimized version below only requires 4 cos()/sin() calls
|
|
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> translate)
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(radius, radius, radius);
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < (rings + 2); i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
|
|
}
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
#endif
|
|
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> translate)
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(radius, radius, radius);
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
float ringangle = DEG2RAD*(180.0f/(rings + 1)); // Angle between latitudinal parallels
|
|
float sliceangle = DEG2RAD*(360.0f/slices); // Angle between longitudinal meridians
|
|
|
|
float cosring = cosf(ringangle);
|
|
float sinring = sinf(ringangle);
|
|
float cosslice = cosf(sliceangle);
|
|
float sinslice = sinf(sliceangle);
|
|
|
|
Vector3 vertices[4] = { 0 }; // Required to store face vertices
|
|
vertices[2] = (Vector3){ 0, 1, 0 };
|
|
vertices[3] = (Vector3){ sinring, cosring, 0 };
|
|
|
|
for (int i = 0; i < rings + 1; i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
vertices[0] = vertices[2]; // Rotate around y axis to set up vertices for next face
|
|
vertices[1] = vertices[3];
|
|
vertices[2] = (Vector3){ cosslice*vertices[2].x - sinslice*vertices[2].z, vertices[2].y, sinslice*vertices[2].x + cosslice*vertices[2].z }; // Rotation matrix around y axis
|
|
vertices[3] = (Vector3){ cosslice*vertices[3].x - sinslice*vertices[3].z, vertices[3].y, sinslice*vertices[3].x + cosslice*vertices[3].z };
|
|
|
|
rlNormal3f(vertices[0].x, vertices[0].y, vertices[0].z);
|
|
rlVertex3f(vertices[0].x, vertices[0].y, vertices[0].z);
|
|
rlNormal3f(vertices[3].x, vertices[3].y, vertices[3].z);
|
|
rlVertex3f(vertices[3].x, vertices[3].y, vertices[3].z);
|
|
rlNormal3f(vertices[1].x, vertices[1].y, vertices[1].z);
|
|
rlVertex3f(vertices[1].x, vertices[1].y, vertices[1].z);
|
|
|
|
rlNormal3f(vertices[0].x, vertices[0].y, vertices[0].z);
|
|
rlVertex3f(vertices[0].x, vertices[0].y, vertices[0].z);
|
|
rlNormal3f(vertices[2].x, vertices[2].y, vertices[2].z);
|
|
rlVertex3f(vertices[2].x, vertices[2].y, vertices[2].z);
|
|
rlNormal3f(vertices[3].x, vertices[3].y, vertices[3].z);
|
|
rlVertex3f(vertices[3].x, vertices[3].y, vertices[3].z);
|
|
}
|
|
|
|
vertices[2] = vertices[3]; // Rotate around z axis to set up starting vertices for next ring
|
|
vertices[3] = (Vector3){ cosring*vertices[3].x + sinring*vertices[3].y, -sinring*vertices[3].x + cosring*vertices[3].y, vertices[3].z }; // Rotation matrix around z axis
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw sphere wires
|
|
void DrawSphereWires(Vector3 centerPos, float radius, int rings, int slices, Color color)
|
|
{
|
|
rlPushMatrix();
|
|
// NOTE: Transformation is applied in inverse order (scale -> translate)
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(radius, radius, radius);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < (rings + 2); i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
|
|
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*(j + 1)/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*(j + 1)/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1))),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*(i + 1)))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
rlVertex3f(cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*sinf(DEG2RAD*(360.0f*j/slices)),
|
|
sinf(DEG2RAD*(270 + (180.0f/(rings + 1))*i)),
|
|
cosf(DEG2RAD*(270 + (180.0f/(rings + 1))*i))*cosf(DEG2RAD*(360.0f*j/slices)));
|
|
}
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a cylinder
|
|
// NOTE: It could be also used for pyramid and cone
|
|
void DrawCylinder(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
|
|
const float angleStep = 360.0f/sides;
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
if (radiusTop > 0)
|
|
{
|
|
// Draw Body -------------------------------------------------------------------------------------
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); //Bottom Left
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom); //Bottom Right
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); //Top Right
|
|
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop); //Top Left
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom); //Bottom Left
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop); //Top Right
|
|
}
|
|
|
|
// Draw Cap --------------------------------------------------------------------------------------
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlVertex3f(0, height, 0);
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop);
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Draw Cone -------------------------------------------------------------------------------------
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlVertex3f(0, height, 0);
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
|
|
}
|
|
}
|
|
|
|
// Draw Base -----------------------------------------------------------------------------------------
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlVertex3f(0, 0, 0);
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
|
|
}
|
|
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a cylinder with base at startPos and top at endPos
|
|
// NOTE: It could be also used for pyramid and cone
|
|
void DrawCylinderEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
|
|
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
|
|
if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; // Security check
|
|
|
|
// Construct a basis of the base and the top face:
|
|
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
|
|
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
|
|
|
|
float baseAngle = (2.0f*PI)/sides;
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
// Compute the four vertices
|
|
float s1 = sinf(baseAngle*(i + 0))*startRadius;
|
|
float c1 = cosf(baseAngle*(i + 0))*startRadius;
|
|
Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z };
|
|
float s2 = sinf(baseAngle*(i + 1))*startRadius;
|
|
float c2 = cosf(baseAngle*(i + 1))*startRadius;
|
|
Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z };
|
|
float s3 = sinf(baseAngle*(i + 0))*endRadius;
|
|
float c3 = cosf(baseAngle*(i + 0))*endRadius;
|
|
Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z };
|
|
float s4 = sinf(baseAngle*(i + 1))*endRadius;
|
|
float c4 = cosf(baseAngle*(i + 1))*endRadius;
|
|
Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z };
|
|
|
|
if (startRadius > 0)
|
|
{
|
|
rlVertex3f(startPos.x, startPos.y, startPos.z); // |
|
|
rlVertex3f(w2.x, w2.y, w2.z); // T0
|
|
rlVertex3f(w1.x, w1.y, w1.z); // |
|
|
}
|
|
// w2 x.-----------x startPos
|
|
rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 /
|
|
rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. /
|
|
rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. /
|
|
// | 2 \ T 'x w1
|
|
rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos
|
|
rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/
|
|
rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | /
|
|
// '.\|/
|
|
if (endRadius > 0) // 'x w3
|
|
{
|
|
rlVertex3f(endPos.x, endPos.y, endPos.z); // |
|
|
rlVertex3f(w3.x, w3.y, w3.z); // T3
|
|
rlVertex3f(w4.x, w4.y, w4.z); // |
|
|
} //
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a wired cylinder
|
|
// NOTE: It could be also used for pyramid and cone
|
|
void DrawCylinderWires(Vector3 position, float radiusTop, float radiusBottom, float height, int sides, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
|
|
const float angleStep = 360.0f/sides;
|
|
|
|
rlPushMatrix();
|
|
rlTranslatef(position.x, position.y, position.z);
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusBottom, 0, cosf(DEG2RAD*(i+1)*angleStep)*radiusBottom);
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*(i+1)*angleStep)*radiusTop, height, cosf(DEG2RAD*(i+1)*angleStep)*radiusTop);
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop);
|
|
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusTop, height, cosf(DEG2RAD*i*angleStep)*radiusTop);
|
|
rlVertex3f(sinf(DEG2RAD*i*angleStep)*radiusBottom, 0, cosf(DEG2RAD*i*angleStep)*radiusBottom);
|
|
}
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a wired cylinder with base at startPos and top at endPos
|
|
// NOTE: It could be also used for pyramid and cone
|
|
void DrawCylinderWiresEx(Vector3 startPos, Vector3 endPos, float startRadius, float endRadius, int sides, Color color)
|
|
{
|
|
if (sides < 3) sides = 3;
|
|
|
|
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
|
|
if ((direction.x == 0) && (direction.y == 0) && (direction.z == 0)) return; // Security check
|
|
|
|
// Construct a basis of the base and the top face:
|
|
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
|
|
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
|
|
|
|
float baseAngle = (2.0f*PI)/sides;
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
for (int i = 0; i < sides; i++)
|
|
{
|
|
// Compute the four vertices
|
|
float s1 = sinf(baseAngle*(i + 0))*startRadius;
|
|
float c1 = cosf(baseAngle*(i + 0))*startRadius;
|
|
Vector3 w1 = { startPos.x + s1*b1.x + c1*b2.x, startPos.y + s1*b1.y + c1*b2.y, startPos.z + s1*b1.z + c1*b2.z };
|
|
float s2 = sinf(baseAngle*(i + 1))*startRadius;
|
|
float c2 = cosf(baseAngle*(i + 1))*startRadius;
|
|
Vector3 w2 = { startPos.x + s2*b1.x + c2*b2.x, startPos.y + s2*b1.y + c2*b2.y, startPos.z + s2*b1.z + c2*b2.z };
|
|
float s3 = sinf(baseAngle*(i + 0))*endRadius;
|
|
float c3 = cosf(baseAngle*(i + 0))*endRadius;
|
|
Vector3 w3 = { endPos.x + s3*b1.x + c3*b2.x, endPos.y + s3*b1.y + c3*b2.y, endPos.z + s3*b1.z + c3*b2.z };
|
|
float s4 = sinf(baseAngle*(i + 1))*endRadius;
|
|
float c4 = cosf(baseAngle*(i + 1))*endRadius;
|
|
Vector3 w4 = { endPos.x + s4*b1.x + c4*b2.x, endPos.y + s4*b1.y + c4*b2.y, endPos.z + s4*b1.z + c4*b2.z };
|
|
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
rlVertex3f(w4.x, w4.y, w4.z);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a capsule with the center of its sphere caps at startPos and endPos
|
|
void DrawCapsule(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color)
|
|
{
|
|
if (slices < 3) slices = 3;
|
|
|
|
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
|
|
|
|
// draw a sphere if start and end points are the same
|
|
bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0);
|
|
if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f};
|
|
|
|
// Construct a basis of the base and the caps:
|
|
Vector3 b0 = Vector3Normalize(direction);
|
|
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
|
|
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
|
|
Vector3 capCenter = endPos;
|
|
|
|
float baseSliceAngle = (2.0f*PI)/slices;
|
|
float baseRingAngle = PI*0.5f/rings;
|
|
|
|
rlBegin(RL_TRIANGLES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// render both caps
|
|
for (int c = 0; c < 2; c++)
|
|
{
|
|
for (int i = 0; i < rings; i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
|
|
// we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier
|
|
|
|
// as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i))
|
|
// as we iterate through the rings they must get smaller by the cos(angle(i))
|
|
|
|
// compute the four vertices
|
|
float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
|
|
float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
|
|
Vector3 w1 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z)*radius
|
|
};
|
|
float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
|
|
float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
|
|
Vector3 w2 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z)*radius
|
|
};
|
|
|
|
float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
|
|
float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
|
|
Vector3 w3 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z)*radius
|
|
};
|
|
float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
|
|
float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
|
|
Vector3 w4 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z)*radius
|
|
};
|
|
|
|
// Make sure cap triangle normals are facing outwards
|
|
if (c == 0)
|
|
{
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w4.x, w4.y, w4.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
}
|
|
else
|
|
{
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
rlVertex3f(w4.x, w4.y, w4.z);
|
|
}
|
|
}
|
|
}
|
|
capCenter = startPos;
|
|
b0 = Vector3Scale(b0, -1.0f);
|
|
}
|
|
// render middle
|
|
if (!sphereCase)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
// compute the four vertices
|
|
float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius;
|
|
float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius;
|
|
Vector3 w1 = {
|
|
startPos.x + ringSin1*b1.x + ringCos1*b2.x,
|
|
startPos.y + ringSin1*b1.y + ringCos1*b2.y,
|
|
startPos.z + ringSin1*b1.z + ringCos1*b2.z
|
|
};
|
|
float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius;
|
|
float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius;
|
|
Vector3 w2 = {
|
|
startPos.x + ringSin2*b1.x + ringCos2*b2.x,
|
|
startPos.y + ringSin2*b1.y + ringCos2*b2.y,
|
|
startPos.z + ringSin2*b1.z + ringCos2*b2.z
|
|
};
|
|
|
|
float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius;
|
|
float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius;
|
|
Vector3 w3 = {
|
|
endPos.x + ringSin3*b1.x + ringCos3*b2.x,
|
|
endPos.y + ringSin3*b1.y + ringCos3*b2.y,
|
|
endPos.z + ringSin3*b1.z + ringCos3*b2.z
|
|
};
|
|
float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius;
|
|
float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius;
|
|
Vector3 w4 = {
|
|
endPos.x + ringSin4*b1.x + ringCos4*b2.x,
|
|
endPos.y + ringSin4*b1.y + ringCos4*b2.y,
|
|
endPos.z + ringSin4*b1.z + ringCos4*b2.z
|
|
};
|
|
// w2 x.-----------x startPos
|
|
rlVertex3f(w1.x, w1.y, w1.z); // | |\'. T0 /
|
|
rlVertex3f(w2.x, w2.y, w2.z); // T1 | \ '. /
|
|
rlVertex3f(w3.x, w3.y, w3.z); // | |T \ '. /
|
|
// | 2 \ T 'x w1
|
|
rlVertex3f(w2.x, w2.y, w2.z); // | w4 x.---\-1-|---x endPos
|
|
rlVertex3f(w4.x, w4.y, w4.z); // T2 '. \ |T3/
|
|
rlVertex3f(w3.x, w3.y, w3.z); // | '. \ | /
|
|
// '.\|/
|
|
// 'x w3
|
|
}
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw capsule wires with the center of its sphere caps at startPos and endPos
|
|
void DrawCapsuleWires(Vector3 startPos, Vector3 endPos, float radius, int slices, int rings, Color color)
|
|
{
|
|
if (slices < 3) slices = 3;
|
|
|
|
Vector3 direction = { endPos.x - startPos.x, endPos.y - startPos.y, endPos.z - startPos.z };
|
|
|
|
// draw a sphere if start and end points are the same
|
|
bool sphereCase = (direction.x == 0) && (direction.y == 0) && (direction.z == 0);
|
|
if (sphereCase) direction = (Vector3){0.0f, 1.0f, 0.0f};
|
|
|
|
// Construct a basis of the base and the caps:
|
|
Vector3 b0 = Vector3Normalize(direction);
|
|
Vector3 b1 = Vector3Normalize(Vector3Perpendicular(direction));
|
|
Vector3 b2 = Vector3Normalize(Vector3CrossProduct(b1, direction));
|
|
Vector3 capCenter = endPos;
|
|
|
|
float baseSliceAngle = (2.0f*PI)/slices;
|
|
float baseRingAngle = PI*0.5f/rings;
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
// render both caps
|
|
for (int c = 0; c < 2; c++)
|
|
{
|
|
for (int i = 0; i < rings; i++)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
|
|
// we build up the rings from capCenter in the direction of the 'direction' vector we computed earlier
|
|
|
|
// as we iterate through the rings they must be placed higher above the center, the height we need is sin(angle(i))
|
|
// as we iterate through the rings they must get smaller by the cos(angle(i))
|
|
|
|
// compute the four vertices
|
|
float ringSin1 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
|
|
float ringCos1 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 0 ));
|
|
Vector3 w1 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin1*b1.x + ringCos1*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin1*b1.y + ringCos1*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin1*b1.z + ringCos1*b2.z)*radius
|
|
};
|
|
float ringSin2 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
|
|
float ringCos2 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 0 ));
|
|
Vector3 w2 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 0 ))*b0.x + ringSin2*b1.x + ringCos2*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 0 ))*b0.y + ringSin2*b1.y + ringCos2*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 0 ))*b0.z + ringSin2*b1.z + ringCos2*b2.z)*radius
|
|
};
|
|
|
|
float ringSin3 = sinf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
|
|
float ringCos3 = cosf(baseSliceAngle*(j + 0))*cosf(baseRingAngle*( i + 1 ));
|
|
Vector3 w3 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin3*b1.x + ringCos3*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin3*b1.y + ringCos3*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin3*b1.z + ringCos3*b2.z)*radius
|
|
};
|
|
float ringSin4 = sinf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
|
|
float ringCos4 = cosf(baseSliceAngle*(j + 1))*cosf(baseRingAngle*( i + 1 ));
|
|
Vector3 w4 = (Vector3){
|
|
capCenter.x + (sinf(baseRingAngle*( i + 1 ))*b0.x + ringSin4*b1.x + ringCos4*b2.x)*radius,
|
|
capCenter.y + (sinf(baseRingAngle*( i + 1 ))*b0.y + ringSin4*b1.y + ringCos4*b2.y)*radius,
|
|
capCenter.z + (sinf(baseRingAngle*( i + 1 ))*b0.z + ringSin4*b1.z + ringCos4*b2.z)*radius
|
|
};
|
|
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w4.x, w4.y, w4.z);
|
|
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
rlVertex3f(w4.x, w4.y, w4.z);
|
|
}
|
|
}
|
|
capCenter = startPos;
|
|
b0 = Vector3Scale(b0, -1.0f);
|
|
}
|
|
// render middle
|
|
if (!sphereCase)
|
|
{
|
|
for (int j = 0; j < slices; j++)
|
|
{
|
|
// compute the four vertices
|
|
float ringSin1 = sinf(baseSliceAngle*(j + 0))*radius;
|
|
float ringCos1 = cosf(baseSliceAngle*(j + 0))*radius;
|
|
Vector3 w1 = {
|
|
startPos.x + ringSin1*b1.x + ringCos1*b2.x,
|
|
startPos.y + ringSin1*b1.y + ringCos1*b2.y,
|
|
startPos.z + ringSin1*b1.z + ringCos1*b2.z
|
|
};
|
|
float ringSin2 = sinf(baseSliceAngle*(j + 1))*radius;
|
|
float ringCos2 = cosf(baseSliceAngle*(j + 1))*radius;
|
|
Vector3 w2 = {
|
|
startPos.x + ringSin2*b1.x + ringCos2*b2.x,
|
|
startPos.y + ringSin2*b1.y + ringCos2*b2.y,
|
|
startPos.z + ringSin2*b1.z + ringCos2*b2.z
|
|
};
|
|
|
|
float ringSin3 = sinf(baseSliceAngle*(j + 0))*radius;
|
|
float ringCos3 = cosf(baseSliceAngle*(j + 0))*radius;
|
|
Vector3 w3 = {
|
|
endPos.x + ringSin3*b1.x + ringCos3*b2.x,
|
|
endPos.y + ringSin3*b1.y + ringCos3*b2.y,
|
|
endPos.z + ringSin3*b1.z + ringCos3*b2.z
|
|
};
|
|
float ringSin4 = sinf(baseSliceAngle*(j + 1))*radius;
|
|
float ringCos4 = cosf(baseSliceAngle*(j + 1))*radius;
|
|
Vector3 w4 = {
|
|
endPos.x + ringSin4*b1.x + ringCos4*b2.x,
|
|
endPos.y + ringSin4*b1.y + ringCos4*b2.y,
|
|
endPos.z + ringSin4*b1.z + ringCos4*b2.z
|
|
};
|
|
|
|
rlVertex3f(w1.x, w1.y, w1.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w4.x, w4.y, w4.z);
|
|
|
|
rlVertex3f(w2.x, w2.y, w2.z);
|
|
rlVertex3f(w3.x, w3.y, w3.z);
|
|
}
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a plane
|
|
void DrawPlane(Vector3 centerPos, Vector2 size, Color color)
|
|
{
|
|
// NOTE: Plane is always created on XZ ground
|
|
rlPushMatrix();
|
|
rlTranslatef(centerPos.x, centerPos.y, centerPos.z);
|
|
rlScalef(size.x, 1.0f, size.y);
|
|
|
|
rlBegin(RL_QUADS);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlNormal3f(0.0f, 1.0f, 0.0f);
|
|
|
|
rlVertex3f(-0.5f, 0.0f, -0.5f);
|
|
rlVertex3f(-0.5f, 0.0f, 0.5f);
|
|
rlVertex3f(0.5f, 0.0f, 0.5f);
|
|
rlVertex3f(0.5f, 0.0f, -0.5f);
|
|
rlEnd();
|
|
rlPopMatrix();
|
|
}
|
|
|
|
// Draw a ray line
|
|
void DrawRay(Ray ray, Color color)
|
|
{
|
|
float scale = 10000;
|
|
|
|
rlBegin(RL_LINES);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
rlColor4ub(color.r, color.g, color.b, color.a);
|
|
|
|
rlVertex3f(ray.position.x, ray.position.y, ray.position.z);
|
|
rlVertex3f(ray.position.x + ray.direction.x*scale, ray.position.y + ray.direction.y*scale, ray.position.z + ray.direction.z*scale);
|
|
rlEnd();
|
|
}
|
|
|
|
// Draw a grid centered at (0, 0, 0)
|
|
void DrawGrid(int slices, float spacing)
|
|
{
|
|
int halfSlices = slices/2;
|
|
|
|
rlBegin(RL_LINES);
|
|
for (int i = -halfSlices; i <= halfSlices; i++)
|
|
{
|
|
if (i == 0)
|
|
{
|
|
rlColor3f(0.5f, 0.5f, 0.5f);
|
|
}
|
|
else
|
|
{
|
|
rlColor3f(0.75f, 0.75f, 0.75f);
|
|
}
|
|
|
|
rlVertex3f((float)i*spacing, 0.0f, (float)-halfSlices*spacing);
|
|
rlVertex3f((float)i*spacing, 0.0f, (float)halfSlices*spacing);
|
|
|
|
rlVertex3f((float)-halfSlices*spacing, 0.0f, (float)i*spacing);
|
|
rlVertex3f((float)halfSlices*spacing, 0.0f, (float)i*spacing);
|
|
}
|
|
rlEnd();
|
|
}
|
|
|
|
// Load model from files (mesh and material)
|
|
Model LoadModel(const char *fileName)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ)
|
|
if (IsFileExtension(fileName, ".obj")) model = LoadOBJ(fileName);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
if (IsFileExtension(fileName, ".iqm")) model = LoadIQM(fileName);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
if (IsFileExtension(fileName, ".gltf") || IsFileExtension(fileName, ".glb")) model = LoadGLTF(fileName);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_VOX)
|
|
if (IsFileExtension(fileName, ".vox")) model = LoadVOX(fileName);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_M3D)
|
|
if (IsFileExtension(fileName, ".m3d")) model = LoadM3D(fileName);
|
|
#endif
|
|
|
|
// Make sure model transform is set to identity matrix!
|
|
model.transform = MatrixIdentity();
|
|
|
|
if ((model.meshCount != 0) && (model.meshes != NULL))
|
|
{
|
|
// Upload vertex data to GPU (static meshes)
|
|
for (int i = 0; i < model.meshCount; i++) UploadMesh(&model.meshes[i], false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: [%s] Failed to load model mesh(es) data", fileName);
|
|
|
|
if (model.materialCount == 0)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to load model material data, default to white material", fileName);
|
|
|
|
model.materialCount = 1;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.materials[0] = LoadMaterialDefault();
|
|
|
|
if (model.meshMaterial == NULL) model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
}
|
|
|
|
return model;
|
|
}
|
|
|
|
// Load model from generated mesh
|
|
// WARNING: A shallow copy of mesh is generated, passed by value,
|
|
// as long as struct contains pointers to data and some values, we get a copy
|
|
// of mesh pointing to same data as original version... be careful!
|
|
Model LoadModelFromMesh(Mesh mesh)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
model.transform = MatrixIdentity();
|
|
|
|
model.meshCount = 1;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
model.meshes[0] = mesh;
|
|
|
|
model.materialCount = 1;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.materials[0] = LoadMaterialDefault();
|
|
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
model.meshMaterial[0] = 0; // First material index
|
|
|
|
return model;
|
|
}
|
|
|
|
// Check if a model is valid (loaded in GPU, VAO/VBOs)
|
|
bool IsModelValid(Model model)
|
|
{
|
|
bool result = false;
|
|
|
|
if ((model.meshes != NULL) && // Validate model contains some mesh
|
|
(model.materials != NULL) && // Validate model contains some material (at least default one)
|
|
(model.meshMaterial != NULL) && // Validate mesh-material linkage
|
|
(model.meshCount > 0) && // Validate mesh count
|
|
(model.materialCount > 0)) result = true; // Validate material count
|
|
|
|
// NOTE: Many elements could be validated from a model, including every model mesh VAO/VBOs
|
|
// but some VBOs could not be used, it depends on Mesh vertex data
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
if ((model.meshes[i].vertices != NULL) && (model.meshes[i].vboId[0] == 0)) { result = false; break; } // Vertex position buffer not uploaded to GPU
|
|
if ((model.meshes[i].texcoords != NULL) && (model.meshes[i].vboId[1] == 0)) { result = false; break; } // Vertex textcoords buffer not uploaded to GPU
|
|
if ((model.meshes[i].normals != NULL) && (model.meshes[i].vboId[2] == 0)) { result = false; break; } // Vertex normals buffer not uploaded to GPU
|
|
if ((model.meshes[i].colors != NULL) && (model.meshes[i].vboId[3] == 0)) { result = false; break; } // Vertex colors buffer not uploaded to GPU
|
|
if ((model.meshes[i].tangents != NULL) && (model.meshes[i].vboId[4] == 0)) { result = false; break; } // Vertex tangents buffer not uploaded to GPU
|
|
if ((model.meshes[i].texcoords2 != NULL) && (model.meshes[i].vboId[5] == 0)) { result = false; break; } // Vertex texcoords2 buffer not uploaded to GPU
|
|
if ((model.meshes[i].indices != NULL) && (model.meshes[i].vboId[6] == 0)) { result = false; break; } // Vertex indices buffer not uploaded to GPU
|
|
if ((model.meshes[i].boneIds != NULL) && (model.meshes[i].vboId[7] == 0)) { result = false; break; } // Vertex boneIds buffer not uploaded to GPU
|
|
if ((model.meshes[i].boneWeights != NULL) && (model.meshes[i].vboId[8] == 0)) { result = false; break; } // Vertex boneWeights buffer not uploaded to GPU
|
|
|
|
// NOTE: Some OpenGL versions do not support VAO, so we don't check it
|
|
//if (model.meshes[i].vaoId == 0) { result = false; break }
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
// Unload model (meshes/materials) from memory (RAM and/or VRAM)
|
|
// NOTE: This function takes care of all model elements, for a detailed control
|
|
// over them, use UnloadMesh() and UnloadMaterial()
|
|
void UnloadModel(Model model)
|
|
{
|
|
// Unload meshes
|
|
for (int i = 0; i < model.meshCount; i++) UnloadMesh(model.meshes[i]);
|
|
|
|
// Unload materials maps
|
|
// NOTE: As the user could be sharing shaders and textures between models,
|
|
// we don't unload the material but just free its maps,
|
|
// the user is responsible for freeing models shaders and textures
|
|
for (int i = 0; i < model.materialCount; i++) RL_FREE(model.materials[i].maps);
|
|
|
|
// Unload arrays
|
|
RL_FREE(model.meshes);
|
|
RL_FREE(model.materials);
|
|
RL_FREE(model.meshMaterial);
|
|
|
|
// Unload animation data
|
|
RL_FREE(model.bones);
|
|
RL_FREE(model.bindPose);
|
|
|
|
TRACELOG(LOG_INFO, "MODEL: Unloaded model (and meshes) from RAM and VRAM");
|
|
}
|
|
|
|
// Compute model bounding box limits (considers all meshes)
|
|
BoundingBox GetModelBoundingBox(Model model)
|
|
{
|
|
BoundingBox bounds = { 0 };
|
|
|
|
if (model.meshCount > 0)
|
|
{
|
|
Vector3 temp = { 0 };
|
|
bounds = GetMeshBoundingBox(model.meshes[0]);
|
|
|
|
for (int i = 1; i < model.meshCount; i++)
|
|
{
|
|
BoundingBox tempBounds = GetMeshBoundingBox(model.meshes[i]);
|
|
|
|
temp.x = (bounds.min.x < tempBounds.min.x)? bounds.min.x : tempBounds.min.x;
|
|
temp.y = (bounds.min.y < tempBounds.min.y)? bounds.min.y : tempBounds.min.y;
|
|
temp.z = (bounds.min.z < tempBounds.min.z)? bounds.min.z : tempBounds.min.z;
|
|
bounds.min = temp;
|
|
|
|
temp.x = (bounds.max.x > tempBounds.max.x)? bounds.max.x : tempBounds.max.x;
|
|
temp.y = (bounds.max.y > tempBounds.max.y)? bounds.max.y : tempBounds.max.y;
|
|
temp.z = (bounds.max.z > tempBounds.max.z)? bounds.max.z : tempBounds.max.z;
|
|
bounds.max = temp;
|
|
}
|
|
}
|
|
|
|
// Apply model.transform to bounding box
|
|
// WARNING: Current BoundingBox structure design does not support rotation transformations,
|
|
// in those cases is up to the user to calculate the proper box bounds (8 vertices transformed)
|
|
bounds.min = Vector3Transform(bounds.min, model.transform);
|
|
bounds.max = Vector3Transform(bounds.max, model.transform);
|
|
|
|
return bounds;
|
|
}
|
|
|
|
// Upload vertex data into a VAO (if supported) and VBO
|
|
void UploadMesh(Mesh *mesh, bool dynamic)
|
|
{
|
|
if (mesh->vaoId > 0)
|
|
{
|
|
// Check if mesh has already been loaded in GPU
|
|
TRACELOG(LOG_WARNING, "VAO: [ID %i] Trying to re-load an already loaded mesh", mesh->vaoId);
|
|
return;
|
|
}
|
|
|
|
mesh->vboId = (unsigned int *)RL_CALLOC(MAX_MESH_VERTEX_BUFFERS, sizeof(unsigned int));
|
|
|
|
mesh->vaoId = 0; // Vertex Array Object
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION] = 0; // Vertex buffer: positions
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD] = 0; // Vertex buffer: texcoords
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL] = 0; // Vertex buffer: normals
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] = 0; // Vertex buffer: colors
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT] = 0; // Vertex buffer: tangents
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2] = 0; // Vertex buffer: texcoords2
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES] = 0; // Vertex buffer: indices
|
|
|
|
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS] = 0; // Vertex buffer: boneIds
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS] = 0; // Vertex buffer: boneWeights
|
|
#endif
|
|
|
|
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
|
|
mesh->vaoId = rlLoadVertexArray();
|
|
rlEnableVertexArray(mesh->vaoId);
|
|
|
|
// NOTE: Vertex attributes must be uploaded considering default locations points and available vertex data
|
|
|
|
// Enable vertex attributes: position (shader-location = 0)
|
|
void *vertices = (mesh->animVertices != NULL)? mesh->animVertices : mesh->vertices;
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION] = rlLoadVertexBuffer(vertices, mesh->vertexCount*3*sizeof(float), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION, 3, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION);
|
|
|
|
// Enable vertex attributes: texcoords (shader-location = 1)
|
|
|
|
if (mesh->texcoords != NULL)
|
|
{
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD] = rlLoadVertexBuffer(mesh->texcoords, mesh->vertexCount*2*sizeof(float), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD, 2, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD);
|
|
}
|
|
else
|
|
{
|
|
float value[2] = { 0.0f, 0.0f };
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD, value, SHADER_ATTRIB_VEC2, 2);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD);
|
|
}
|
|
// WARNING: When setting default vertex attribute values, the values for each generic vertex attribute
|
|
// is part of current state, and it is maintained even if a different program object is used
|
|
|
|
if (mesh->normals != NULL)
|
|
{
|
|
// Enable vertex attributes: normals (shader-location = 2)
|
|
void *normals = (mesh->animNormals != NULL)? mesh->animNormals : mesh->normals;
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL] = rlLoadVertexBuffer(normals, mesh->vertexCount*3*sizeof(float), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL, 3, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL);
|
|
}
|
|
else
|
|
{
|
|
// Default vertex attribute: normal
|
|
// WARNING: Default value provided to shader if location available
|
|
float value[3] = { 0.0f, 0.0f, 1.0f };
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL, value, SHADER_ATTRIB_VEC3, 3);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL);
|
|
}
|
|
|
|
if (mesh->colors != NULL)
|
|
{
|
|
// Enable vertex attribute: color (shader-location = 3)
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] = rlLoadVertexBuffer(mesh->colors, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR, 4, RL_UNSIGNED_BYTE, 1, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR);
|
|
}
|
|
else
|
|
{
|
|
// Default vertex attribute: color
|
|
// WARNING: Default value provided to shader if location available
|
|
float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f }; // WHITE
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR, value, SHADER_ATTRIB_VEC4, 4);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR);
|
|
}
|
|
|
|
if (mesh->tangents != NULL)
|
|
{
|
|
// Enable vertex attribute: tangent (shader-location = 4)
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT);
|
|
}
|
|
else
|
|
{
|
|
// Default vertex attribute: tangent
|
|
// WARNING: Default value provided to shader if location available
|
|
float value[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, value, SHADER_ATTRIB_VEC4, 4);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT);
|
|
}
|
|
|
|
if (mesh->texcoords2 != NULL)
|
|
{
|
|
// Enable vertex attribute: texcoord2 (shader-location = 5)
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2] = rlLoadVertexBuffer(mesh->texcoords2, mesh->vertexCount*2*sizeof(float), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2, 2, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2);
|
|
}
|
|
else
|
|
{
|
|
// Default vertex attribute: texcoord2
|
|
// WARNING: Default value provided to shader if location available
|
|
float value[2] = { 0.0f, 0.0f };
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2, value, SHADER_ATTRIB_VEC2, 2);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2);
|
|
}
|
|
|
|
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
|
|
if (mesh->boneIds != NULL)
|
|
{
|
|
// Enable vertex attribute: boneIds (shader-location = 7)
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS] = rlLoadVertexBuffer(mesh->boneIds, mesh->vertexCount*4*sizeof(unsigned char), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS, 4, RL_UNSIGNED_BYTE, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS);
|
|
}
|
|
else
|
|
{
|
|
// Default vertex attribute: boneIds
|
|
// WARNING: Default value provided to shader if location available
|
|
float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS, value, SHADER_ATTRIB_VEC4, 4);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS);
|
|
}
|
|
|
|
if (mesh->boneWeights != NULL)
|
|
{
|
|
// Enable vertex attribute: boneWeights (shader-location = 8)
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS] = rlLoadVertexBuffer(mesh->boneWeights, mesh->vertexCount*4*sizeof(float), dynamic);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS, 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS);
|
|
}
|
|
else
|
|
{
|
|
// Default vertex attribute: boneWeights
|
|
// WARNING: Default value provided to shader if location available
|
|
float value[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
|
rlSetVertexAttributeDefault(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS, value, SHADER_ATTRIB_VEC4, 2);
|
|
rlDisableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS);
|
|
}
|
|
#endif
|
|
|
|
if (mesh->indices != NULL)
|
|
{
|
|
mesh->vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES] = rlLoadVertexBufferElement(mesh->indices, mesh->triangleCount*3*sizeof(unsigned short), dynamic);
|
|
}
|
|
|
|
if (mesh->vaoId > 0) TRACELOG(LOG_INFO, "VAO: [ID %i] Mesh uploaded successfully to VRAM (GPU)", mesh->vaoId);
|
|
else TRACELOG(LOG_INFO, "VBO: Mesh uploaded successfully to VRAM (GPU)");
|
|
|
|
rlDisableVertexArray();
|
|
#endif
|
|
}
|
|
|
|
// Update mesh vertex data in GPU for a specific buffer index
|
|
void UpdateMeshBuffer(Mesh mesh, int index, const void *data, int dataSize, int offset)
|
|
{
|
|
rlUpdateVertexBuffer(mesh.vboId[index], data, dataSize, offset);
|
|
}
|
|
|
|
// Draw a 3d mesh with material and transform
|
|
void DrawMesh(Mesh mesh, Material material, Matrix transform)
|
|
{
|
|
#if defined(GRAPHICS_API_OPENGL_11) || defined(GRAPHICS_API_OPENGL_11_SOFTWARE)
|
|
#define GL_VERTEX_ARRAY 0x8074
|
|
#define GL_NORMAL_ARRAY 0x8075
|
|
#define GL_COLOR_ARRAY 0x8076
|
|
#define GL_TEXTURE_COORD_ARRAY 0x8078
|
|
|
|
rlEnableTexture(material.maps[MATERIAL_MAP_DIFFUSE].texture.id);
|
|
|
|
if (mesh.animVertices) rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.animVertices);
|
|
else rlEnableStatePointer(GL_VERTEX_ARRAY, mesh.vertices);
|
|
|
|
if (mesh.texcoords) rlEnableStatePointer(GL_TEXTURE_COORD_ARRAY, mesh.texcoords);
|
|
|
|
if (mesh.animNormals) rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.animNormals);
|
|
else if (mesh.normals) rlEnableStatePointer(GL_NORMAL_ARRAY, mesh.normals);
|
|
|
|
if (mesh.colors) rlEnableStatePointer(GL_COLOR_ARRAY, mesh.colors);
|
|
|
|
rlPushMatrix();
|
|
rlMultMatrixf(MatrixToFloat(transform));
|
|
rlColor4ub(material.maps[MATERIAL_MAP_DIFFUSE].color.r,
|
|
material.maps[MATERIAL_MAP_DIFFUSE].color.g,
|
|
material.maps[MATERIAL_MAP_DIFFUSE].color.b,
|
|
material.maps[MATERIAL_MAP_DIFFUSE].color.a);
|
|
|
|
if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, mesh.indices);
|
|
else rlDrawVertexArray(0, mesh.vertexCount);
|
|
rlPopMatrix();
|
|
|
|
rlDisableStatePointer(GL_VERTEX_ARRAY);
|
|
rlDisableStatePointer(GL_TEXTURE_COORD_ARRAY);
|
|
rlDisableStatePointer(GL_NORMAL_ARRAY);
|
|
rlDisableStatePointer(GL_COLOR_ARRAY);
|
|
|
|
rlDisableTexture();
|
|
#endif
|
|
|
|
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
|
|
// Bind shader program
|
|
rlEnableShader(material.shader.id);
|
|
|
|
// Send required data to shader (matrices, values)
|
|
//-----------------------------------------------------
|
|
// Upload to shader material.colDiffuse
|
|
if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
|
|
{
|
|
float values[4] = {
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
|
|
};
|
|
|
|
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
|
|
}
|
|
|
|
// Upload to shader material.colSpecular (if location available)
|
|
if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
|
|
{
|
|
float values[4] = {
|
|
(float)material.maps[MATERIAL_MAP_SPECULAR].color.r/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_SPECULAR].color.g/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_SPECULAR].color.b/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_SPECULAR].color.a/255.0f
|
|
};
|
|
|
|
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
|
|
}
|
|
|
|
// Get a copy of current matrices to work with,
|
|
// just in case stereo render is required, and we need to modify them
|
|
// NOTE: At this point the modelview matrix just contains the view matrix (camera)
|
|
// That's because BeginMode3D() sets it and there is no model-drawing function
|
|
// that modifies it, all use rlPushMatrix() and rlPopMatrix()
|
|
Matrix matModel = MatrixIdentity();
|
|
Matrix matView = rlGetMatrixModelview();
|
|
Matrix matModelView = MatrixIdentity();
|
|
Matrix matProjection = rlGetMatrixProjection();
|
|
|
|
// Upload view and projection matrices (if locations available)
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
|
|
|
|
// Accumulate several model transformations:
|
|
// transform: model transformation provided (includes DrawModel() params combined with model.transform)
|
|
// rlGetMatrixTransform(): rlgl internal transform matrix due to push/pop matrix stack
|
|
matModel = MatrixMultiply(transform, rlGetMatrixTransform());
|
|
|
|
// Model transformation matrix is sent to shader uniform location: SHADER_LOC_MATRIX_MODEL
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_MODEL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MODEL], matModel);
|
|
|
|
// Get model-view matrix
|
|
matModelView = MatrixMultiply(matModel, matView);
|
|
|
|
// Upload model normal matrix (if locations available)
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel)));
|
|
|
|
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
|
|
// Upload Bone Transforms
|
|
if ((material.shader.locs[SHADER_LOC_BONE_MATRICES] != -1) && mesh.boneMatrices)
|
|
{
|
|
rlSetUniformMatrices(material.shader.locs[SHADER_LOC_BONE_MATRICES], mesh.boneMatrices, mesh.boneCount);
|
|
}
|
|
#endif
|
|
//-----------------------------------------------------
|
|
|
|
// Bind active texture maps (if available)
|
|
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
|
|
{
|
|
if (material.maps[i].texture.id > 0)
|
|
{
|
|
// Select current shader texture slot
|
|
rlActiveTextureSlot(i);
|
|
|
|
// Enable texture for active slot
|
|
if ((i == MATERIAL_MAP_IRRADIANCE) ||
|
|
(i == MATERIAL_MAP_PREFILTER) ||
|
|
(i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
|
|
else rlEnableTexture(material.maps[i].texture.id);
|
|
|
|
rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
|
|
}
|
|
}
|
|
|
|
// Try binding vertex array objects (VAO) or use VBOs if not possible
|
|
// WARNING: UploadMesh() enables all vertex attributes available in mesh and sets default attribute values
|
|
// for shader expected vertex attributes that are not provided by the mesh (i.e. colors)
|
|
// This could be a dangerous approach because different meshes with different shaders can enable/disable some attributes
|
|
if (!rlEnableVertexArray(mesh.vaoId))
|
|
{
|
|
// Bind mesh VBO data: vertex position (shader-location = 0)
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
|
|
|
|
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
|
|
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
|
|
{
|
|
// Bind mesh VBO data: vertex normals (shader-location = 2)
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
|
|
{
|
|
if (mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] != 0)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
|
|
}
|
|
else
|
|
{
|
|
// Set default value for defined vertex attribute in shader but not provided by mesh
|
|
// WARNING: It could result in GPU undefined behaviour
|
|
float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4);
|
|
rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
|
|
}
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
|
|
}
|
|
|
|
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
|
|
// Bind mesh VBO data: vertex bone ids (shader-location = 6, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_BONEIDS] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS], 4, RL_UNSIGNED_BYTE, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS]);
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex bone weights (shader-location = 7, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS], 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS]);
|
|
}
|
|
#endif
|
|
|
|
if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES]);
|
|
}
|
|
|
|
int eyeCount = 1;
|
|
if (rlIsStereoRenderEnabled()) eyeCount = 2;
|
|
|
|
for (int eye = 0; eye < eyeCount; eye++)
|
|
{
|
|
// Calculate model-view-projection matrix (MVP)
|
|
Matrix matModelViewProjection = MatrixIdentity();
|
|
if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection);
|
|
else
|
|
{
|
|
// Setup current eye viewport (half screen width)
|
|
rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
|
|
matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
|
|
}
|
|
|
|
// Send combined model-view-projection matrix to shader
|
|
rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection);
|
|
|
|
// Draw mesh
|
|
if (mesh.indices != NULL) rlDrawVertexArrayElements(0, mesh.triangleCount*3, 0);
|
|
else rlDrawVertexArray(0, mesh.vertexCount);
|
|
}
|
|
|
|
// Unbind all bound texture maps
|
|
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
|
|
{
|
|
if (material.maps[i].texture.id > 0)
|
|
{
|
|
// Select current shader texture slot
|
|
rlActiveTextureSlot(i);
|
|
|
|
// Disable texture for active slot
|
|
if ((i == MATERIAL_MAP_IRRADIANCE) ||
|
|
(i == MATERIAL_MAP_PREFILTER) ||
|
|
(i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
|
|
else rlDisableTexture();
|
|
}
|
|
}
|
|
|
|
// Disable all possible vertex array objects (or VBOs)
|
|
rlDisableVertexArray();
|
|
rlDisableVertexBuffer();
|
|
rlDisableVertexBufferElement();
|
|
|
|
// Disable shader program
|
|
rlDisableShader();
|
|
|
|
// Restore rlgl internal modelview and projection matrices
|
|
rlSetMatrixModelview(matView);
|
|
rlSetMatrixProjection(matProjection);
|
|
#endif
|
|
}
|
|
|
|
// Draw multiple mesh instances with material and different transforms
|
|
void DrawMeshInstanced(Mesh mesh, Material material, const Matrix *transforms, int instances)
|
|
{
|
|
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
|
|
// Instancing required variables
|
|
float16 *instanceTransforms = NULL;
|
|
unsigned int instancesVboId = 0;
|
|
|
|
// Bind shader program
|
|
rlEnableShader(material.shader.id);
|
|
|
|
// Send required data to shader (matrices, values)
|
|
//-----------------------------------------------------
|
|
// Upload to shader material.colDiffuse
|
|
if (material.shader.locs[SHADER_LOC_COLOR_DIFFUSE] != -1)
|
|
{
|
|
float values[4] = {
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.r/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.g/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.b/255.0f,
|
|
(float)material.maps[MATERIAL_MAP_DIFFUSE].color.a/255.0f
|
|
};
|
|
|
|
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_DIFFUSE], values, SHADER_UNIFORM_VEC4, 1);
|
|
}
|
|
|
|
// Upload to shader material.colSpecular (if location available)
|
|
if (material.shader.locs[SHADER_LOC_COLOR_SPECULAR] != -1)
|
|
{
|
|
float values[4] = {
|
|
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.r/255.0f,
|
|
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.g/255.0f,
|
|
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.b/255.0f,
|
|
(float)material.maps[SHADER_LOC_COLOR_SPECULAR].color.a/255.0f
|
|
};
|
|
|
|
rlSetUniform(material.shader.locs[SHADER_LOC_COLOR_SPECULAR], values, SHADER_UNIFORM_VEC4, 1);
|
|
}
|
|
|
|
// Get a copy of current matrices to work with,
|
|
// just in case stereo render is required, and we need to modify them
|
|
// NOTE: At this point the modelview matrix just contains the view matrix (camera)
|
|
// That's because BeginMode3D() sets it and there is no model-drawing function
|
|
// that modifies it, all use rlPushMatrix() and rlPopMatrix()
|
|
Matrix matModel = MatrixIdentity();
|
|
Matrix matView = rlGetMatrixModelview();
|
|
Matrix matModelView = MatrixIdentity();
|
|
Matrix matProjection = rlGetMatrixProjection();
|
|
|
|
// Upload view and projection matrices (if locations available)
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_VIEW] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_VIEW], matView);
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_PROJECTION] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_PROJECTION], matProjection);
|
|
|
|
// Create instances buffer
|
|
instanceTransforms = (float16 *)RL_MALLOC(instances*sizeof(float16));
|
|
|
|
// Fill buffer with instances transformations as float16 arrays
|
|
for (int i = 0; i < instances; i++) instanceTransforms[i] = MatrixToFloatV(transforms[i]);
|
|
|
|
// Enable mesh VAO to attach new buffer
|
|
rlEnableVertexArray(mesh.vaoId);
|
|
|
|
// This could alternatively use a static VBO and either glMapBuffer() or glBufferSubData()
|
|
// It isn't clear which would be reliably faster in all cases and on all platforms,
|
|
// anecdotally glMapBuffer() seems very slow (syncs) while glBufferSubData() seems
|
|
// no faster, since we're transferring all the transform matrices anyway
|
|
instancesVboId = rlLoadVertexBuffer(instanceTransforms, instances*sizeof(float16), false);
|
|
|
|
// Instances transformation matrices are sent to shader attribute location: SHADER_LOC_VERTEX_INSTANCE_TX
|
|
for (unsigned int i = 0; i < 4; i++)
|
|
{
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_INSTANCE_TX] + i);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_INSTANCE_TX] + i, 4, RL_FLOAT, 0, sizeof(Matrix), i*sizeof(Vector4));
|
|
rlSetVertexAttributeDivisor(material.shader.locs[SHADER_LOC_VERTEX_INSTANCE_TX] + i, 1);
|
|
}
|
|
|
|
rlDisableVertexBuffer();
|
|
rlDisableVertexArray();
|
|
|
|
// Accumulate internal matrix transform (push/pop) and view matrix
|
|
// NOTE: In this case, model instance transformation must be computed in the shader
|
|
matModelView = MatrixMultiply(rlGetMatrixTransform(), matView);
|
|
|
|
// Upload model normal matrix (if locations available)
|
|
if (material.shader.locs[SHADER_LOC_MATRIX_NORMAL] != -1) rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_NORMAL], MatrixTranspose(MatrixInvert(matModel)));
|
|
|
|
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
|
|
// Upload Bone Transforms
|
|
if ((material.shader.locs[SHADER_LOC_BONE_MATRICES] != -1) && mesh.boneMatrices)
|
|
{
|
|
rlSetUniformMatrices(material.shader.locs[SHADER_LOC_BONE_MATRICES], mesh.boneMatrices, mesh.boneCount);
|
|
}
|
|
#endif
|
|
|
|
//-----------------------------------------------------
|
|
|
|
// Bind active texture maps (if available)
|
|
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
|
|
{
|
|
if (material.maps[i].texture.id > 0)
|
|
{
|
|
// Select current shader texture slot
|
|
rlActiveTextureSlot(i);
|
|
|
|
// Enable texture for active slot
|
|
if ((i == MATERIAL_MAP_IRRADIANCE) ||
|
|
(i == MATERIAL_MAP_PREFILTER) ||
|
|
(i == MATERIAL_MAP_CUBEMAP)) rlEnableTextureCubemap(material.maps[i].texture.id);
|
|
else rlEnableTexture(material.maps[i].texture.id);
|
|
|
|
rlSetUniform(material.shader.locs[SHADER_LOC_MAP_DIFFUSE + i], &i, SHADER_UNIFORM_INT, 1);
|
|
}
|
|
}
|
|
|
|
// Try binding vertex array objects (VAO)
|
|
// or use VBOs if not possible
|
|
if (!rlEnableVertexArray(mesh.vaoId))
|
|
{
|
|
// Bind mesh VBO data: vertex position (shader-location = 0)
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_POSITION]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION], 3, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_POSITION]);
|
|
|
|
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01], 2, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD01]);
|
|
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_NORMAL] != -1)
|
|
{
|
|
// Bind mesh VBO data: vertex normals (shader-location = 2)
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_NORMAL]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL], 3, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_NORMAL]);
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_COLOR] != -1)
|
|
{
|
|
if (mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR] != 0)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_COLOR]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR], 4, RL_UNSIGNED_BYTE, 1, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
|
|
}
|
|
else
|
|
{
|
|
// Set default value for unused attribute
|
|
// NOTE: Required when using default shader and no VAO support
|
|
float value[4] = { 1.0f, 1.0f, 1.0f, 1.0f };
|
|
rlSetVertexAttributeDefault(material.shader.locs[SHADER_LOC_VERTEX_COLOR], value, SHADER_ATTRIB_VEC4, 4);
|
|
rlDisableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_COLOR]);
|
|
}
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_TANGENT] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT], 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TANGENT]);
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_TEXCOORD2]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02], 2, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_TEXCOORD02]);
|
|
}
|
|
|
|
#ifdef RL_SUPPORT_MESH_GPU_SKINNING
|
|
// Bind mesh VBO data: vertex bone ids (shader-location = 6, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_BONEIDS] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEIDS]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS], 4, RL_UNSIGNED_BYTE, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEIDS]);
|
|
}
|
|
|
|
// Bind mesh VBO data: vertex bone weights (shader-location = 7, if available)
|
|
if (material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS] != -1)
|
|
{
|
|
rlEnableVertexBuffer(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_BONEWEIGHTS]);
|
|
rlSetVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS], 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(material.shader.locs[SHADER_LOC_VERTEX_BONEWEIGHTS]);
|
|
}
|
|
#endif
|
|
|
|
if (mesh.indices != NULL) rlEnableVertexBufferElement(mesh.vboId[RL_DEFAULT_SHADER_ATTRIB_LOCATION_INDICES]);
|
|
}
|
|
|
|
int eyeCount = 1;
|
|
if (rlIsStereoRenderEnabled()) eyeCount = 2;
|
|
|
|
for (int eye = 0; eye < eyeCount; eye++)
|
|
{
|
|
// Calculate model-view-projection matrix (MVP)
|
|
Matrix matModelViewProjection = MatrixIdentity();
|
|
if (eyeCount == 1) matModelViewProjection = MatrixMultiply(matModelView, matProjection);
|
|
else
|
|
{
|
|
// Setup current eye viewport (half screen width)
|
|
rlViewport(eye*rlGetFramebufferWidth()/2, 0, rlGetFramebufferWidth()/2, rlGetFramebufferHeight());
|
|
matModelViewProjection = MatrixMultiply(MatrixMultiply(matModelView, rlGetMatrixViewOffsetStereo(eye)), rlGetMatrixProjectionStereo(eye));
|
|
}
|
|
|
|
// Send combined model-view-projection matrix to shader
|
|
rlSetUniformMatrix(material.shader.locs[SHADER_LOC_MATRIX_MVP], matModelViewProjection);
|
|
|
|
// Draw mesh instanced
|
|
if (mesh.indices != NULL) rlDrawVertexArrayElementsInstanced(0, mesh.triangleCount*3, 0, instances);
|
|
else rlDrawVertexArrayInstanced(0, mesh.vertexCount, instances);
|
|
}
|
|
|
|
// Unbind all bound texture maps
|
|
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
|
|
{
|
|
if (material.maps[i].texture.id > 0)
|
|
{
|
|
// Select current shader texture slot
|
|
rlActiveTextureSlot(i);
|
|
|
|
// Disable texture for active slot
|
|
if ((i == MATERIAL_MAP_IRRADIANCE) ||
|
|
(i == MATERIAL_MAP_PREFILTER) ||
|
|
(i == MATERIAL_MAP_CUBEMAP)) rlDisableTextureCubemap();
|
|
else rlDisableTexture();
|
|
}
|
|
}
|
|
|
|
// Disable all possible vertex array objects (or VBOs)
|
|
rlDisableVertexArray();
|
|
rlDisableVertexBuffer();
|
|
rlDisableVertexBufferElement();
|
|
|
|
// Disable shader program
|
|
rlDisableShader();
|
|
|
|
// Remove instance transforms buffer
|
|
rlUnloadVertexBuffer(instancesVboId);
|
|
RL_FREE(instanceTransforms);
|
|
#endif
|
|
}
|
|
|
|
// Unload mesh from memory (RAM and VRAM)
|
|
void UnloadMesh(Mesh mesh)
|
|
{
|
|
// Unload rlgl mesh vboId data
|
|
rlUnloadVertexArray(mesh.vaoId);
|
|
|
|
if (mesh.vboId != NULL) for (int i = 0; i < MAX_MESH_VERTEX_BUFFERS; i++) rlUnloadVertexBuffer(mesh.vboId[i]);
|
|
RL_FREE(mesh.vboId);
|
|
|
|
RL_FREE(mesh.vertices);
|
|
RL_FREE(mesh.texcoords);
|
|
RL_FREE(mesh.normals);
|
|
RL_FREE(mesh.colors);
|
|
RL_FREE(mesh.tangents);
|
|
RL_FREE(mesh.texcoords2);
|
|
RL_FREE(mesh.indices);
|
|
|
|
RL_FREE(mesh.animVertices);
|
|
RL_FREE(mesh.animNormals);
|
|
RL_FREE(mesh.boneWeights);
|
|
RL_FREE(mesh.boneIds);
|
|
RL_FREE(mesh.boneMatrices);
|
|
}
|
|
|
|
// Export mesh data to file
|
|
bool ExportMesh(Mesh mesh, const char *fileName)
|
|
{
|
|
bool success = false;
|
|
|
|
if (IsFileExtension(fileName, ".obj"))
|
|
{
|
|
// Estimated data size, it should be enough...
|
|
int vc = mesh.vertexCount;
|
|
int dataSize = vc*(int)strlen("v -0000.000000f -0000.000000f -0000.000000f\n") +
|
|
vc*(int)strlen("vt -0.000000f -0.000000f\n") +
|
|
vc*(int)strlen("vn -0.0000f -0.0000f -0.0000f\n") +
|
|
mesh.triangleCount*snprintf(NULL, 0, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", vc, vc, vc, vc, vc, vc, vc, vc, vc);
|
|
|
|
// NOTE: Text data buffer size is estimated considering mesh data size
|
|
char *txtData = (char *)RL_CALLOC(dataSize + 1000, sizeof(char));
|
|
|
|
int byteCount = 0;
|
|
byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // rMeshOBJ exporter v1.0 - Mesh exported as triangle faces and not optimized //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // more info and bugs-report: github.com/raysan5/raylib //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // feedback and support: ray[at]raylib.com //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // Copyright (c) 2018-2025 Ramon Santamaria (@raysan5) //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# // //\n");
|
|
byteCount += sprintf(txtData + byteCount, "# //////////////////////////////////////////////////////////////////////////////////\n\n");
|
|
byteCount += sprintf(txtData + byteCount, "# Vertex Count: %i\n", mesh.vertexCount);
|
|
byteCount += sprintf(txtData + byteCount, "# Triangle Count: %i\n\n", mesh.triangleCount);
|
|
|
|
byteCount += sprintf(txtData + byteCount, "g mesh\n");
|
|
|
|
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "v %.6f %.6f %.6f\n", mesh.vertices[v], mesh.vertices[v + 1], mesh.vertices[v + 2]);
|
|
}
|
|
|
|
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 2)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "vt %.6f %.6f\n", mesh.texcoords[v], mesh.texcoords[v + 1]);
|
|
}
|
|
|
|
for (int i = 0, v = 0; i < mesh.vertexCount; i++, v += 3)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "vn %.4f %.4f %.4f\n", mesh.normals[v], mesh.normals[v + 1], mesh.normals[v + 2]);
|
|
}
|
|
|
|
if (mesh.indices != NULL)
|
|
{
|
|
for (int i = 0, v = 0; i < mesh.triangleCount; i++, v += 3)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n",
|
|
mesh.indices[v] + 1, mesh.indices[v] + 1, mesh.indices[v] + 1,
|
|
mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1, mesh.indices[v + 1] + 1,
|
|
mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1, mesh.indices[v + 2] + 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0, v = 1; i < mesh.triangleCount; i++, v += 3)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "f %i/%i/%i %i/%i/%i %i/%i/%i\n", v, v, v, v + 1, v + 1, v + 1, v + 2, v + 2, v + 2);
|
|
}
|
|
}
|
|
|
|
// NOTE: Text data length exported is determined by '\0' (NULL) character
|
|
success = SaveFileText(fileName, txtData);
|
|
|
|
RL_FREE(txtData);
|
|
}
|
|
else if (IsFileExtension(fileName, ".raw"))
|
|
{
|
|
// TODO: Support additional file formats to export mesh vertex data
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
// Export mesh as code file (.h) defining multiple arrays of vertex attributes
|
|
bool ExportMeshAsCode(Mesh mesh, const char *fileName)
|
|
{
|
|
bool success = false;
|
|
|
|
#ifndef TEXT_BYTES_PER_LINE
|
|
#define TEXT_BYTES_PER_LINE 20
|
|
#endif
|
|
|
|
// NOTE: Text data buffer size is fixed to 64MB
|
|
char *txtData = (char *)RL_CALLOC(64*1024*1024, sizeof(char)); // 64 MB
|
|
|
|
int byteCount = 0;
|
|
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n");
|
|
byteCount += sprintf(txtData + byteCount, "// //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// MeshAsCode exporter v1.0 - Mesh vertex data exported as arrays //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// more info and bugs-report: github.com/raysan5/raylib //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// feedback and support: ray[at]raylib.com //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// Copyright (c) 2023 Ramon Santamaria (@raysan5) //\n");
|
|
byteCount += sprintf(txtData + byteCount, "// //\n");
|
|
byteCount += sprintf(txtData + byteCount, "////////////////////////////////////////////////////////////////////////////////////////\n\n");
|
|
|
|
// Get file name from path and convert variable name to uppercase
|
|
char varFileName[256] = { 0 };
|
|
strcpy(varFileName, GetFileNameWithoutExt(fileName));
|
|
for (int i = 0; varFileName[i] != '\0'; i++) if ((varFileName[i] >= 'a') && (varFileName[i] <= 'z')) { varFileName[i] = varFileName[i] - 32; }
|
|
|
|
// Add image information
|
|
byteCount += sprintf(txtData + byteCount, "// Mesh basic information\n");
|
|
byteCount += sprintf(txtData + byteCount, "#define %s_VERTEX_COUNT %i\n", varFileName, mesh.vertexCount);
|
|
byteCount += sprintf(txtData + byteCount, "#define %s_TRIANGLE_COUNT %i\n\n", varFileName, mesh.triangleCount);
|
|
|
|
// Define vertex attributes data as separate arrays
|
|
//-----------------------------------------------------------------------------------------
|
|
if (mesh.vertices != NULL) // Vertex position (XYZ - 3 components per vertex - float)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static float %s_VERTEX_DATA[%i] = { ", varFileName, mesh.vertexCount*3);
|
|
for (int i = 0; i < mesh.vertexCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.vertices[i]);
|
|
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.vertices[mesh.vertexCount*3 - 1]);
|
|
}
|
|
|
|
if (mesh.texcoords != NULL) // Vertex texture coordinates (UV - 2 components per vertex - float)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static float %s_TEXCOORD_DATA[%i] = { ", varFileName, mesh.vertexCount*2);
|
|
for (int i = 0; i < mesh.vertexCount*2 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.texcoords[i]);
|
|
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.texcoords[mesh.vertexCount*2 - 1]);
|
|
}
|
|
|
|
if (mesh.texcoords2 != NULL) // Vertex texture coordinates (UV - 2 components per vertex - float)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static float %s_TEXCOORD2_DATA[%i] = { ", varFileName, mesh.vertexCount*2);
|
|
for (int i = 0; i < mesh.vertexCount*2 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.texcoords2[i]);
|
|
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.texcoords2[mesh.vertexCount*2 - 1]);
|
|
}
|
|
|
|
if (mesh.normals != NULL) // Vertex normals (XYZ - 3 components per vertex - float)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static float %s_NORMAL_DATA[%i] = { ", varFileName, mesh.vertexCount*3);
|
|
for (int i = 0; i < mesh.vertexCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.normals[i]);
|
|
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.normals[mesh.vertexCount*3 - 1]);
|
|
}
|
|
|
|
if (mesh.tangents != NULL) // Vertex tangents (XYZW - 4 components per vertex - float)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static float %s_TANGENT_DATA[%i] = { ", varFileName, mesh.vertexCount*4);
|
|
for (int i = 0; i < mesh.vertexCount*4 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%.3ff,\n" : "%.3ff, "), mesh.tangents[i]);
|
|
byteCount += sprintf(txtData + byteCount, "%.3ff };\n\n", mesh.tangents[mesh.vertexCount*4 - 1]);
|
|
}
|
|
|
|
if (mesh.colors != NULL) // Vertex colors (RGBA - 4 components per vertex - unsigned char)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static unsigned char %s_COLOR_DATA[%i] = { ", varFileName, mesh.vertexCount*4);
|
|
for (int i = 0; i < mesh.vertexCount*4 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "0x%x,\n" : "0x%x, "), mesh.colors[i]);
|
|
byteCount += sprintf(txtData + byteCount, "0x%x };\n\n", mesh.colors[mesh.vertexCount*4 - 1]);
|
|
}
|
|
|
|
if (mesh.indices != NULL) // Vertex indices (3 index per triangle - unsigned short)
|
|
{
|
|
byteCount += sprintf(txtData + byteCount, "static unsigned short %s_INDEX_DATA[%i] = { ", varFileName, mesh.triangleCount*3);
|
|
for (int i = 0; i < mesh.triangleCount*3 - 1; i++) byteCount += sprintf(txtData + byteCount, ((i%TEXT_BYTES_PER_LINE == 0)? "%i,\n" : "%i, "), mesh.indices[i]);
|
|
byteCount += sprintf(txtData + byteCount, "%i };\n", mesh.indices[mesh.triangleCount*3 - 1]);
|
|
}
|
|
//-----------------------------------------------------------------------------------------
|
|
|
|
// NOTE: Text data size exported is determined by '\0' (NULL) character
|
|
success = SaveFileText(fileName, txtData);
|
|
|
|
RL_FREE(txtData);
|
|
|
|
//if (success != 0) TRACELOG(LOG_INFO, "FILEIO: [%s] Image as code exported successfully", fileName);
|
|
//else TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to export image as code", fileName);
|
|
|
|
return success;
|
|
}
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ) || defined(SUPPORT_FILEFORMAT_MTL)
|
|
// Process obj materials
|
|
static void ProcessMaterialsOBJ(Material *materials, tinyobj_material_t *mats, int materialCount)
|
|
{
|
|
// Init model mats
|
|
for (int m = 0; m < materialCount; m++)
|
|
{
|
|
// Init material to default
|
|
// NOTE: Uses default shader, which only supports MATERIAL_MAP_DIFFUSE
|
|
materials[m] = LoadMaterialDefault();
|
|
|
|
if (mats == NULL) continue;
|
|
|
|
// Get default texture, in case no texture is defined
|
|
// NOTE: rlgl default texture is a 1x1 pixel UNCOMPRESSED_R8G8B8A8
|
|
materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
|
|
|
|
if (mats[m].diffuse_texname != NULL) materials[m].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTexture(mats[m].diffuse_texname); //char *diffuse_texname; // map_Kd
|
|
else materials[m].maps[MATERIAL_MAP_DIFFUSE].color = (Color){ (unsigned char)(mats[m].diffuse[0]*255.0f), (unsigned char)(mats[m].diffuse[1]*255.0f), (unsigned char)(mats[m].diffuse[2]*255.0f), 255 }; //float diffuse[3];
|
|
materials[m].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
|
|
|
|
if (mats[m].specular_texname != NULL) materials[m].maps[MATERIAL_MAP_SPECULAR].texture = LoadTexture(mats[m].specular_texname); //char *specular_texname; // map_Ks
|
|
materials[m].maps[MATERIAL_MAP_SPECULAR].color = (Color){ (unsigned char)(mats[m].specular[0]*255.0f), (unsigned char)(mats[m].specular[1]*255.0f), (unsigned char)(mats[m].specular[2]*255.0f), 255 }; //float specular[3];
|
|
materials[m].maps[MATERIAL_MAP_SPECULAR].value = 0.0f;
|
|
|
|
if (mats[m].bump_texname != NULL) materials[m].maps[MATERIAL_MAP_NORMAL].texture = LoadTexture(mats[m].bump_texname); //char *bump_texname; // map_bump, bump
|
|
materials[m].maps[MATERIAL_MAP_NORMAL].color = WHITE;
|
|
materials[m].maps[MATERIAL_MAP_NORMAL].value = mats[m].shininess;
|
|
|
|
materials[m].maps[MATERIAL_MAP_EMISSION].color = (Color){ (unsigned char)(mats[m].emission[0]*255.0f), (unsigned char)(mats[m].emission[1]*255.0f), (unsigned char)(mats[m].emission[2]*255.0f), 255 }; //float emission[3];
|
|
|
|
if (mats[m].displacement_texname != NULL) materials[m].maps[MATERIAL_MAP_HEIGHT].texture = LoadTexture(mats[m].displacement_texname); //char *displacement_texname; // disp
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Load materials from model file
|
|
Material *LoadMaterials(const char *fileName, int *materialCount)
|
|
{
|
|
Material *materials = NULL;
|
|
unsigned int count = 0;
|
|
|
|
// TODO: Support IQM and GLTF for materials parsing
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_MTL)
|
|
if (IsFileExtension(fileName, ".mtl"))
|
|
{
|
|
tinyobj_material_t *mats = NULL;
|
|
|
|
int result = tinyobj_parse_mtl_file(&mats, &count, fileName);
|
|
if (result != TINYOBJ_SUCCESS) TRACELOG(LOG_WARNING, "MATERIAL: [%s] Failed to parse materials file", fileName);
|
|
|
|
materials = (Material *)RL_MALLOC(count*sizeof(Material));
|
|
ProcessMaterialsOBJ(materials, mats, count);
|
|
|
|
tinyobj_materials_free(mats, count);
|
|
}
|
|
#else
|
|
TRACELOG(LOG_WARNING, "FILEIO: [%s] Failed to load material file", fileName);
|
|
#endif
|
|
|
|
*materialCount = count;
|
|
return materials;
|
|
}
|
|
|
|
// Load default material (Supports: DIFFUSE, SPECULAR, NORMAL maps)
|
|
Material LoadMaterialDefault(void)
|
|
{
|
|
Material material = { 0 };
|
|
material.maps = (MaterialMap *)RL_CALLOC(MAX_MATERIAL_MAPS, sizeof(MaterialMap));
|
|
|
|
// Using rlgl default shader
|
|
material.shader.id = rlGetShaderIdDefault();
|
|
material.shader.locs = rlGetShaderLocsDefault();
|
|
|
|
// Using rlgl default texture (1x1 pixel, UNCOMPRESSED_R8G8B8A8, 1 mipmap)
|
|
material.maps[MATERIAL_MAP_DIFFUSE].texture = (Texture2D){ rlGetTextureIdDefault(), 1, 1, 1, PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 };
|
|
//material.maps[MATERIAL_MAP_NORMAL].texture; // NOTE: By default, not set
|
|
//material.maps[MATERIAL_MAP_SPECULAR].texture; // NOTE: By default, not set
|
|
|
|
material.maps[MATERIAL_MAP_DIFFUSE].color = WHITE; // Diffuse color
|
|
material.maps[MATERIAL_MAP_SPECULAR].color = WHITE; // Specular color
|
|
|
|
return material;
|
|
}
|
|
|
|
// Check if a material is valid (map textures loaded in GPU)
|
|
bool IsMaterialValid(Material material)
|
|
{
|
|
bool result = false;
|
|
|
|
if ((material.maps != NULL) && // Validate material contain some map
|
|
(material.shader.id > 0)) result = true; // Validate material shader is valid
|
|
|
|
// TODO: Check if available maps contain loaded textures
|
|
|
|
return result;
|
|
}
|
|
|
|
// Unload material from memory
|
|
void UnloadMaterial(Material material)
|
|
{
|
|
// Unload material shader (avoid unloading default shader, managed by raylib)
|
|
if (material.shader.id != rlGetShaderIdDefault()) UnloadShader(material.shader);
|
|
|
|
// Unload loaded texture maps (avoid unloading default texture, managed by raylib)
|
|
if (material.maps != NULL)
|
|
{
|
|
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
|
|
{
|
|
if (material.maps[i].texture.id != rlGetTextureIdDefault()) rlUnloadTexture(material.maps[i].texture.id);
|
|
}
|
|
}
|
|
|
|
RL_FREE(material.maps);
|
|
}
|
|
|
|
// Set texture for a material map type (MATERIAL_MAP_DIFFUSE, MATERIAL_MAP_SPECULAR...)
|
|
// NOTE: Previous texture should be manually unloaded
|
|
void SetMaterialTexture(Material *material, int mapType, Texture2D texture)
|
|
{
|
|
material->maps[mapType].texture = texture;
|
|
}
|
|
|
|
// Set the material for a mesh
|
|
void SetModelMeshMaterial(Model *model, int meshId, int materialId)
|
|
{
|
|
if (meshId >= model->meshCount) TRACELOG(LOG_WARNING, "MESH: Id greater than mesh count");
|
|
else if (materialId >= model->materialCount) TRACELOG(LOG_WARNING, "MATERIAL: Id greater than material count");
|
|
else model->meshMaterial[meshId] = materialId;
|
|
}
|
|
|
|
// Load model animations from file
|
|
ModelAnimation *LoadModelAnimations(const char *fileName, int *animCount)
|
|
{
|
|
ModelAnimation *animations = NULL;
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
if (IsFileExtension(fileName, ".iqm")) animations = LoadModelAnimationsIQM(fileName, animCount);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_M3D)
|
|
if (IsFileExtension(fileName, ".m3d")) animations = LoadModelAnimationsM3D(fileName, animCount);
|
|
#endif
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
if (IsFileExtension(fileName, ".gltf;.glb")) animations = LoadModelAnimationsGLTF(fileName, animCount);
|
|
#endif
|
|
|
|
return animations;
|
|
}
|
|
|
|
// Update model animated bones transform matrices for a given frame
|
|
// NOTE: Updated data is not uploaded to GPU but kept at model.meshes[i].boneMatrices[boneId],
|
|
// to be uploaded to shader at drawing, in case GPU skinning is enabled
|
|
void UpdateModelAnimationBones(Model model, ModelAnimation anim, int frame)
|
|
{
|
|
if ((anim.frameCount > 0) && (anim.bones != NULL) && (anim.framePoses != NULL))
|
|
{
|
|
if (frame >= anim.frameCount) frame = frame%anim.frameCount;
|
|
|
|
// Get first mesh which have bones
|
|
int firstMeshWithBones = -1;
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
if (model.meshes[i].boneMatrices)
|
|
{
|
|
if (firstMeshWithBones == -1)
|
|
{
|
|
firstMeshWithBones = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (firstMeshWithBones != -1)
|
|
{
|
|
// Update all bones and boneMatrices of first mesh with bones
|
|
for (int boneId = 0; boneId < anim.boneCount; boneId++)
|
|
{
|
|
Transform *bindTransform = &model.bindPose[boneId];
|
|
Matrix bindMatrix = MatrixMultiply(MatrixMultiply(
|
|
MatrixScale(bindTransform->scale.x, bindTransform->scale.y, bindTransform->scale.z),
|
|
QuaternionToMatrix(bindTransform->rotation)),
|
|
MatrixTranslate(bindTransform->translation.x, bindTransform->translation.y, bindTransform->translation.z));
|
|
|
|
Transform *targetTransform = &anim.framePoses[frame][boneId];
|
|
Matrix targetMatrix = MatrixMultiply(MatrixMultiply(
|
|
MatrixScale(targetTransform->scale.x, targetTransform->scale.y, targetTransform->scale.z),
|
|
QuaternionToMatrix(targetTransform->rotation)),
|
|
MatrixTranslate(targetTransform->translation.x, targetTransform->translation.y, targetTransform->translation.z));
|
|
|
|
model.meshes[firstMeshWithBones].boneMatrices[boneId] = MatrixMultiply(MatrixInvert(bindMatrix), targetMatrix);
|
|
}
|
|
|
|
// Update remaining meshes with bones
|
|
// NOTE: Using deep copy because shallow copy results in double free with 'UnloadModel()'
|
|
for (int i = firstMeshWithBones + 1; i < model.meshCount; i++)
|
|
{
|
|
if (model.meshes[i].boneMatrices)
|
|
{
|
|
memcpy(model.meshes[i].boneMatrices,
|
|
model.meshes[firstMeshWithBones].boneMatrices,
|
|
model.meshes[i].boneCount*sizeof(model.meshes[i].boneMatrices[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// at least 2x speed up vs the old method
|
|
// Update model animated vertex data (positions and normals) for a given frame
|
|
// NOTE: Updated data is uploaded to GPU
|
|
void UpdateModelAnimation(Model model, ModelAnimation anim, int frame)
|
|
{
|
|
UpdateModelAnimationBones(model,anim,frame);
|
|
|
|
for (int m = 0; m < model.meshCount; m++)
|
|
{
|
|
Mesh mesh = model.meshes[m];
|
|
Vector3 animVertex = { 0 };
|
|
Vector3 animNormal = { 0 };
|
|
int boneId = 0;
|
|
int boneCounter = 0;
|
|
float boneWeight = 0.0;
|
|
bool updated = false; // Flag to check when anim vertex information is updated
|
|
const int vValues = mesh.vertexCount*3;
|
|
|
|
// Skip if missing bone data, causes segfault without on some models
|
|
if ((mesh.boneWeights == NULL) || (mesh.boneIds == NULL)) continue;
|
|
|
|
for (int vCounter = 0; vCounter < vValues; vCounter += 3)
|
|
{
|
|
mesh.animVertices[vCounter] = 0;
|
|
mesh.animVertices[vCounter + 1] = 0;
|
|
mesh.animVertices[vCounter + 2] = 0;
|
|
if (mesh.animNormals != NULL)
|
|
{
|
|
mesh.animNormals[vCounter] = 0;
|
|
mesh.animNormals[vCounter + 1] = 0;
|
|
mesh.animNormals[vCounter + 2] = 0;
|
|
}
|
|
|
|
// Iterates over 4 bones per vertex
|
|
for (int j = 0; j < 4; j++, boneCounter++)
|
|
{
|
|
boneWeight = mesh.boneWeights[boneCounter];
|
|
boneId = mesh.boneIds[boneCounter];
|
|
|
|
// Early stop when no transformation will be applied
|
|
if (boneWeight == 0.0f) continue;
|
|
animVertex = (Vector3){ mesh.vertices[vCounter], mesh.vertices[vCounter + 1], mesh.vertices[vCounter + 2] };
|
|
animVertex = Vector3Transform(animVertex,model.meshes[m].boneMatrices[boneId]);
|
|
mesh.animVertices[vCounter] += animVertex.x*boneWeight;
|
|
mesh.animVertices[vCounter+1] += animVertex.y*boneWeight;
|
|
mesh.animVertices[vCounter+2] += animVertex.z*boneWeight;
|
|
updated = true;
|
|
|
|
// Normals processing
|
|
// NOTE: We use meshes.baseNormals (default normal) to calculate meshes.normals (animated normals)
|
|
if ((mesh.normals != NULL) && (mesh.animNormals != NULL ))
|
|
{
|
|
animNormal = (Vector3){ mesh.normals[vCounter], mesh.normals[vCounter + 1], mesh.normals[vCounter + 2] };
|
|
animNormal = Vector3Transform(animNormal, MatrixTranspose(MatrixInvert(model.meshes[m].boneMatrices[boneId])));
|
|
mesh.animNormals[vCounter] += animNormal.x*boneWeight;
|
|
mesh.animNormals[vCounter + 1] += animNormal.y*boneWeight;
|
|
mesh.animNormals[vCounter + 2] += animNormal.z*boneWeight;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (updated)
|
|
{
|
|
rlUpdateVertexBuffer(mesh.vboId[0], mesh.animVertices, mesh.vertexCount*3*sizeof(float), 0); // Update vertex position
|
|
if (mesh.normals != NULL) rlUpdateVertexBuffer(mesh.vboId[2], mesh.animNormals, mesh.vertexCount*3*sizeof(float), 0); // Update vertex normals
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unload animation array data
|
|
void UnloadModelAnimations(ModelAnimation *animations, int animCount)
|
|
{
|
|
for (int i = 0; i < animCount; i++) UnloadModelAnimation(animations[i]);
|
|
RL_FREE(animations);
|
|
}
|
|
|
|
// Unload animation data
|
|
void UnloadModelAnimation(ModelAnimation anim)
|
|
{
|
|
for (int i = 0; i < anim.frameCount; i++) RL_FREE(anim.framePoses[i]);
|
|
|
|
RL_FREE(anim.bones);
|
|
RL_FREE(anim.framePoses);
|
|
}
|
|
|
|
// Check model animation skeleton match
|
|
// NOTE: Only number of bones and parent connections are checked
|
|
bool IsModelAnimationValid(Model model, ModelAnimation anim)
|
|
{
|
|
int result = true;
|
|
|
|
if (model.boneCount != anim.boneCount) result = false;
|
|
else
|
|
{
|
|
for (int i = 0; i < model.boneCount; i++)
|
|
{
|
|
if (model.bones[i].parent != anim.bones[i].parent) { result = false; break; }
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
#if defined(SUPPORT_MESH_GENERATION)
|
|
// Generate polygonal mesh
|
|
Mesh GenMeshPoly(int sides, float radius)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if (sides < 3) return mesh; // Security check
|
|
|
|
int vertexCount = sides*3;
|
|
|
|
// Vertices definition
|
|
Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
|
|
float d = 0.0f, dStep = 360.0f/sides;
|
|
for (int v = 0; v < vertexCount - 2; v += 3)
|
|
{
|
|
vertices[v] = (Vector3){ 0.0f, 0.0f, 0.0f };
|
|
vertices[v + 1] = (Vector3){ sinf(DEG2RAD*d)*radius, 0.0f, cosf(DEG2RAD*d)*radius };
|
|
vertices[v + 2] = (Vector3){ sinf(DEG2RAD*(d+dStep))*radius, 0.0f, cosf(DEG2RAD*(d+dStep))*radius };
|
|
d += dStep;
|
|
}
|
|
|
|
// Normals definition
|
|
Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
|
|
|
|
// TexCoords definition
|
|
Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
|
|
for (int n = 0; n < vertexCount; n++) texcoords[n] = (Vector2){ 0.0f, 0.0f };
|
|
|
|
mesh.vertexCount = vertexCount;
|
|
mesh.triangleCount = sides;
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
|
|
// Mesh vertices position array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.vertices[3*i] = vertices[i].x;
|
|
mesh.vertices[3*i + 1] = vertices[i].y;
|
|
mesh.vertices[3*i + 2] = vertices[i].z;
|
|
}
|
|
|
|
// Mesh texcoords array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.texcoords[2*i] = texcoords[i].x;
|
|
mesh.texcoords[2*i + 1] = texcoords[i].y;
|
|
}
|
|
|
|
// Mesh normals array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.normals[3*i] = normals[i].x;
|
|
mesh.normals[3*i + 1] = normals[i].y;
|
|
mesh.normals[3*i + 2] = normals[i].z;
|
|
}
|
|
|
|
RL_FREE(vertices);
|
|
RL_FREE(normals);
|
|
RL_FREE(texcoords);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
// NOTE: mesh.vboId array is allocated inside UploadMesh()
|
|
UploadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate plane mesh (with subdivisions)
|
|
Mesh GenMeshPlane(float width, float length, int resX, int resZ)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
#define CUSTOM_MESH_GEN_PLANE
|
|
#if defined(CUSTOM_MESH_GEN_PLANE)
|
|
resX++;
|
|
resZ++;
|
|
|
|
// Vertices definition
|
|
int vertexCount = resX*resZ; // vertices get reused for the faces
|
|
|
|
Vector3 *vertices = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int z = 0; z < resZ; z++)
|
|
{
|
|
// [-length/2, length/2]
|
|
float zPos = ((float)z/(resZ - 1) - 0.5f)*length;
|
|
for (int x = 0; x < resX; x++)
|
|
{
|
|
// [-width/2, width/2]
|
|
float xPos = ((float)x/(resX - 1) - 0.5f)*width;
|
|
vertices[x + z*resX] = (Vector3){ xPos, 0.0f, zPos };
|
|
}
|
|
}
|
|
|
|
// Normals definition
|
|
Vector3 *normals = (Vector3 *)RL_MALLOC(vertexCount*sizeof(Vector3));
|
|
for (int n = 0; n < vertexCount; n++) normals[n] = (Vector3){ 0.0f, 1.0f, 0.0f }; // Vector3.up;
|
|
|
|
// TexCoords definition
|
|
Vector2 *texcoords = (Vector2 *)RL_MALLOC(vertexCount*sizeof(Vector2));
|
|
for (int v = 0; v < resZ; v++)
|
|
{
|
|
for (int u = 0; u < resX; u++)
|
|
{
|
|
texcoords[u + v*resX] = (Vector2){ (float)u/(resX - 1), (float)v/(resZ - 1) };
|
|
}
|
|
}
|
|
|
|
// Triangles definition (indices)
|
|
int numFaces = (resX - 1)*(resZ - 1);
|
|
int *triangles = (int *)RL_MALLOC(numFaces*6*sizeof(int));
|
|
int t = 0;
|
|
for (int face = 0; face < numFaces; face++)
|
|
{
|
|
// Retrieve lower left corner from face ind
|
|
int i = face + face/(resX - 1);
|
|
|
|
triangles[t++] = i + resX;
|
|
triangles[t++] = i + 1;
|
|
triangles[t++] = i;
|
|
|
|
triangles[t++] = i + resX;
|
|
triangles[t++] = i + resX + 1;
|
|
triangles[t++] = i + 1;
|
|
}
|
|
|
|
mesh.vertexCount = vertexCount;
|
|
mesh.triangleCount = numFaces*2;
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.indices = (unsigned short *)RL_MALLOC(mesh.triangleCount*3*sizeof(unsigned short));
|
|
|
|
// Mesh vertices position array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.vertices[3*i] = vertices[i].x;
|
|
mesh.vertices[3*i + 1] = vertices[i].y;
|
|
mesh.vertices[3*i + 2] = vertices[i].z;
|
|
}
|
|
|
|
// Mesh texcoords array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.texcoords[2*i] = texcoords[i].x;
|
|
mesh.texcoords[2*i + 1] = texcoords[i].y;
|
|
}
|
|
|
|
// Mesh normals array
|
|
for (int i = 0; i < mesh.vertexCount; i++)
|
|
{
|
|
mesh.normals[3*i] = normals[i].x;
|
|
mesh.normals[3*i + 1] = normals[i].y;
|
|
mesh.normals[3*i + 2] = normals[i].z;
|
|
}
|
|
|
|
// Mesh indices array initialization
|
|
for (int i = 0; i < mesh.triangleCount*3; i++) mesh.indices[i] = triangles[i];
|
|
|
|
RL_FREE(vertices);
|
|
RL_FREE(normals);
|
|
RL_FREE(texcoords);
|
|
RL_FREE(triangles);
|
|
|
|
#else // Use par_shapes library to generate plane mesh
|
|
|
|
par_shapes_mesh *plane = par_shapes_create_plane(resX, resZ); // No normals/texcoords generated!!!
|
|
par_shapes_scale(plane, width, length, 1.0f);
|
|
par_shapes_rotate(plane, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_translate(plane, -width/2, 0.0f, length/2);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(plane->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(plane->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = plane->ntriangles*3;
|
|
mesh.triangleCount = plane->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = plane->points[plane->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = plane->points[plane->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = plane->points[plane->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = plane->normals[plane->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = plane->normals[plane->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = plane->normals[plane->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = plane->tcoords[plane->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = plane->tcoords[plane->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(plane);
|
|
#endif
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generated cuboid mesh
|
|
Mesh GenMeshCube(float width, float height, float length)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
#define CUSTOM_MESH_GEN_CUBE
|
|
#if defined(CUSTOM_MESH_GEN_CUBE)
|
|
float vertices[] = {
|
|
-width/2, -height/2, length/2,
|
|
width/2, -height/2, length/2,
|
|
width/2, height/2, length/2,
|
|
-width/2, height/2, length/2,
|
|
-width/2, -height/2, -length/2,
|
|
-width/2, height/2, -length/2,
|
|
width/2, height/2, -length/2,
|
|
width/2, -height/2, -length/2,
|
|
-width/2, height/2, -length/2,
|
|
-width/2, height/2, length/2,
|
|
width/2, height/2, length/2,
|
|
width/2, height/2, -length/2,
|
|
-width/2, -height/2, -length/2,
|
|
width/2, -height/2, -length/2,
|
|
width/2, -height/2, length/2,
|
|
-width/2, -height/2, length/2,
|
|
width/2, -height/2, -length/2,
|
|
width/2, height/2, -length/2,
|
|
width/2, height/2, length/2,
|
|
width/2, -height/2, length/2,
|
|
-width/2, -height/2, -length/2,
|
|
-width/2, -height/2, length/2,
|
|
-width/2, height/2, length/2,
|
|
-width/2, height/2, -length/2
|
|
};
|
|
|
|
float texcoords[] = {
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f,
|
|
0.0f, 0.0f,
|
|
0.0f, 0.0f,
|
|
1.0f, 0.0f,
|
|
1.0f, 1.0f,
|
|
0.0f, 1.0f
|
|
};
|
|
|
|
float normals[] = {
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f, 1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 0.0f,-1.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f, 1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
0.0f,-1.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f,
|
|
-1.0f, 0.0f, 0.0f
|
|
};
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(24*3*sizeof(float));
|
|
memcpy(mesh.vertices, vertices, 24*3*sizeof(float));
|
|
|
|
mesh.texcoords = (float *)RL_MALLOC(24*2*sizeof(float));
|
|
memcpy(mesh.texcoords, texcoords, 24*2*sizeof(float));
|
|
|
|
mesh.normals = (float *)RL_MALLOC(24*3*sizeof(float));
|
|
memcpy(mesh.normals, normals, 24*3*sizeof(float));
|
|
|
|
mesh.indices = (unsigned short *)RL_MALLOC(36*sizeof(unsigned short));
|
|
|
|
int k = 0;
|
|
|
|
// Indices can be initialized right now
|
|
for (int i = 0; i < 36; i += 6)
|
|
{
|
|
mesh.indices[i] = 4*k;
|
|
mesh.indices[i + 1] = 4*k + 1;
|
|
mesh.indices[i + 2] = 4*k + 2;
|
|
mesh.indices[i + 3] = 4*k;
|
|
mesh.indices[i + 4] = 4*k + 2;
|
|
mesh.indices[i + 5] = 4*k + 3;
|
|
|
|
k++;
|
|
}
|
|
|
|
mesh.vertexCount = 24;
|
|
mesh.triangleCount = 12;
|
|
|
|
#else // Use par_shapes library to generate cube mesh
|
|
/*
|
|
// Platonic solids:
|
|
par_shapes_mesh *par_shapes_create_tetrahedron(); // 4 sides polyhedron (pyramid)
|
|
par_shapes_mesh *par_shapes_create_cube(); // 6 sides polyhedron (cube)
|
|
par_shapes_mesh *par_shapes_create_octahedron(); // 8 sides polyhedron (diamond)
|
|
par_shapes_mesh *par_shapes_create_dodecahedron(); // 12 sides polyhedron
|
|
par_shapes_mesh *par_shapes_create_icosahedron(); // 20 sides polyhedron
|
|
*/
|
|
// Platonic solid generation: cube (6 sides)
|
|
// NOTE: No normals/texcoords generated by default
|
|
par_shapes_mesh *cube = par_shapes_create_cube();
|
|
cube->tcoords = PAR_MALLOC(float, 2*cube->npoints);
|
|
for (int i = 0; i < 2*cube->npoints; i++) cube->tcoords[i] = 0.0f;
|
|
par_shapes_scale(cube, width, height, length);
|
|
par_shapes_translate(cube, -width/2, 0.0f, -length/2);
|
|
par_shapes_compute_normals(cube);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(cube->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(cube->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = cube->ntriangles*3;
|
|
mesh.triangleCount = cube->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = cube->points[cube->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = cube->points[cube->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = cube->points[cube->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = cube->normals[cube->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = cube->normals[cube->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = cube->normals[cube->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = cube->tcoords[cube->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = cube->tcoords[cube->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(cube);
|
|
#endif
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate sphere mesh (standard sphere)
|
|
Mesh GenMeshSphere(float radius, int rings, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if ((rings >= 3) && (slices >= 3))
|
|
{
|
|
par_shapes_set_epsilon_degenerate_sphere(0.0);
|
|
par_shapes_mesh *sphere = par_shapes_create_parametric_sphere(slices, rings);
|
|
par_shapes_scale(sphere, radius, radius, radius);
|
|
// NOTE: Soft normals are computed internally
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = sphere->ntriangles*3;
|
|
mesh.triangleCount = sphere->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(sphere);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: sphere");
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate hemisphere mesh (half sphere, no bottom cap)
|
|
Mesh GenMeshHemiSphere(float radius, int rings, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if ((rings >= 3) && (slices >= 3))
|
|
{
|
|
if (radius < 0.0f) radius = 0.0f;
|
|
|
|
par_shapes_mesh *sphere = par_shapes_create_hemisphere(slices, rings);
|
|
par_shapes_scale(sphere, radius, radius, radius);
|
|
// NOTE: Soft normals are computed internally
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(sphere->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(sphere->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = sphere->ntriangles*3;
|
|
mesh.triangleCount = sphere->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = sphere->points[sphere->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = sphere->points[sphere->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = sphere->points[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = sphere->normals[sphere->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = sphere->normals[sphere->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = sphere->normals[sphere->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = sphere->tcoords[sphere->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = sphere->tcoords[sphere->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(sphere);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: hemisphere");
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate cylinder mesh
|
|
Mesh GenMeshCylinder(float radius, float height, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if (slices >= 3)
|
|
{
|
|
// Instance a cylinder that sits on the Z=0 plane using the given tessellation
|
|
// levels across the UV domain. Think of "slices" like a number of pizza
|
|
// slices, and "stacks" like a number of stacked rings
|
|
// Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
|
|
par_shapes_mesh *cylinder = par_shapes_create_cylinder(slices, 8);
|
|
par_shapes_scale(cylinder, radius, radius, height);
|
|
par_shapes_rotate(cylinder, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
|
|
// Generate an orientable disk shape (top cap)
|
|
par_shapes_mesh *capTop = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, 1 });
|
|
capTop->tcoords = PAR_MALLOC(float, 2*capTop->npoints);
|
|
for (int i = 0; i < 2*capTop->npoints; i++) capTop->tcoords[i] = 0.0f;
|
|
par_shapes_rotate(capTop, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_rotate(capTop, 90*DEG2RAD, (float[]){ 0, 1, 0 });
|
|
par_shapes_translate(capTop, 0, height, 0);
|
|
|
|
// Generate an orientable disk shape (bottom cap)
|
|
par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
|
|
capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
|
|
for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
|
|
par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_rotate(capBottom, -90*DEG2RAD, (float[]){ 0, 1, 0 });
|
|
|
|
par_shapes_merge_and_free(cylinder, capTop);
|
|
par_shapes_merge_and_free(cylinder, capBottom);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(cylinder->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(cylinder->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = cylinder->ntriangles*3;
|
|
mesh.triangleCount = cylinder->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = cylinder->points[cylinder->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = cylinder->points[cylinder->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = cylinder->points[cylinder->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = cylinder->normals[cylinder->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = cylinder->normals[cylinder->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = cylinder->normals[cylinder->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = cylinder->tcoords[cylinder->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = cylinder->tcoords[cylinder->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(cylinder);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cylinder");
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate cone/pyramid mesh
|
|
Mesh GenMeshCone(float radius, float height, int slices)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if (slices >= 3)
|
|
{
|
|
// Instance a cone that sits on the Z=0 plane using the given tessellation
|
|
// levels across the UV domain. Think of "slices" like a number of pizza
|
|
// slices, and "stacks" like a number of stacked rings
|
|
// Height and radius are both 1.0, but they can easily be changed with par_shapes_scale
|
|
par_shapes_mesh *cone = par_shapes_create_cone(slices, 8);
|
|
par_shapes_scale(cone, radius, radius, height);
|
|
par_shapes_rotate(cone, -PI/2.0f, (float[]){ 1, 0, 0 });
|
|
par_shapes_rotate(cone, PI/2.0f, (float[]){ 0, 1, 0 });
|
|
|
|
// Generate an orientable disk shape (bottom cap)
|
|
par_shapes_mesh *capBottom = par_shapes_create_disk(radius, slices, (float[]){ 0, 0, 0 }, (float[]){ 0, 0, -1 });
|
|
capBottom->tcoords = PAR_MALLOC(float, 2*capBottom->npoints);
|
|
for (int i = 0; i < 2*capBottom->npoints; i++) capBottom->tcoords[i] = 0.95f;
|
|
par_shapes_rotate(capBottom, PI/2.0f, (float[]){ 1, 0, 0 });
|
|
|
|
par_shapes_merge_and_free(cone, capBottom);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(cone->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(cone->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = cone->ntriangles*3;
|
|
mesh.triangleCount = cone->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = cone->points[cone->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = cone->points[cone->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = cone->points[cone->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = cone->normals[cone->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = cone->normals[cone->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = cone->normals[cone->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = cone->tcoords[cone->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = cone->tcoords[cone->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(cone);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: cone");
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate torus mesh
|
|
Mesh GenMeshTorus(float radius, float size, int radSeg, int sides)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if ((sides >= 3) && (radSeg >= 3))
|
|
{
|
|
if (radius > 1.0f) radius = 1.0f;
|
|
else if (radius < 0.1f) radius = 0.1f;
|
|
|
|
// Create a donut that sits on the Z=0 plane with the specified inner radius
|
|
// The outer radius can be controlled with par_shapes_scale
|
|
par_shapes_mesh *torus = par_shapes_create_torus(radSeg, sides, radius);
|
|
par_shapes_scale(torus, size/2, size/2, size/2);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(torus->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(torus->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = torus->ntriangles*3;
|
|
mesh.triangleCount = torus->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = torus->points[torus->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = torus->points[torus->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = torus->points[torus->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = torus->normals[torus->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = torus->normals[torus->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = torus->normals[torus->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = torus->tcoords[torus->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = torus->tcoords[torus->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(torus);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: torus");
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate trefoil knot mesh
|
|
Mesh GenMeshKnot(float radius, float size, int radSeg, int sides)
|
|
{
|
|
Mesh mesh = { 0 };
|
|
|
|
if ((sides >= 3) && (radSeg >= 3))
|
|
{
|
|
if (radius > 3.0f) radius = 3.0f;
|
|
else if (radius < 0.5f) radius = 0.5f;
|
|
|
|
par_shapes_mesh *knot = par_shapes_create_trefoil_knot(radSeg, sides, radius);
|
|
par_shapes_scale(knot, size, size, size);
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(knot->ntriangles*3*2*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(knot->ntriangles*3*3*sizeof(float));
|
|
|
|
mesh.vertexCount = knot->ntriangles*3;
|
|
mesh.triangleCount = knot->ntriangles;
|
|
|
|
for (int k = 0; k < mesh.vertexCount; k++)
|
|
{
|
|
mesh.vertices[k*3] = knot->points[knot->triangles[k]*3];
|
|
mesh.vertices[k*3 + 1] = knot->points[knot->triangles[k]*3 + 1];
|
|
mesh.vertices[k*3 + 2] = knot->points[knot->triangles[k]*3 + 2];
|
|
|
|
mesh.normals[k*3] = knot->normals[knot->triangles[k]*3];
|
|
mesh.normals[k*3 + 1] = knot->normals[knot->triangles[k]*3 + 1];
|
|
mesh.normals[k*3 + 2] = knot->normals[knot->triangles[k]*3 + 2];
|
|
|
|
mesh.texcoords[k*2] = knot->tcoords[knot->triangles[k]*2];
|
|
mesh.texcoords[k*2 + 1] = knot->tcoords[knot->triangles[k]*2 + 1];
|
|
}
|
|
|
|
par_shapes_free_mesh(knot);
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MESH: Failed to generate mesh: knot");
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate a mesh from heightmap
|
|
// NOTE: Vertex data is uploaded to GPU
|
|
Mesh GenMeshHeightmap(Image heightmap, Vector3 size)
|
|
{
|
|
#define GRAY_VALUE(c) ((float)(c.r + c.g + c.b)/3.0f)
|
|
|
|
Mesh mesh = { 0 };
|
|
|
|
int mapX = heightmap.width;
|
|
int mapZ = heightmap.height;
|
|
|
|
Color *pixels = LoadImageColors(heightmap);
|
|
|
|
// NOTE: One vertex per pixel
|
|
mesh.triangleCount = (mapX - 1)*(mapZ - 1)*2; // One quad every four pixels
|
|
|
|
mesh.vertexCount = mesh.triangleCount*3;
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.colors = NULL;
|
|
|
|
int vCounter = 0; // Used to count vertices float by float
|
|
int tcCounter = 0; // Used to count texcoords float by float
|
|
int nCounter = 0; // Used to count normals float by float
|
|
|
|
Vector3 scaleFactor = { size.x/(mapX - 1), size.y/255.0f, size.z/(mapZ - 1) };
|
|
|
|
Vector3 vA = { 0 };
|
|
Vector3 vB = { 0 };
|
|
Vector3 vC = { 0 };
|
|
Vector3 vN = { 0 };
|
|
|
|
for (int z = 0; z < mapZ-1; z++)
|
|
{
|
|
for (int x = 0; x < mapX-1; x++)
|
|
{
|
|
// Fill vertices array with data
|
|
//----------------------------------------------------------
|
|
|
|
// one triangle - 3 vertex
|
|
mesh.vertices[vCounter] = (float)x*scaleFactor.x;
|
|
mesh.vertices[vCounter + 1] = GRAY_VALUE(pixels[x + z*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 2] = (float)z*scaleFactor.z;
|
|
|
|
mesh.vertices[vCounter + 3] = (float)x*scaleFactor.x;
|
|
mesh.vertices[vCounter + 4] = GRAY_VALUE(pixels[x + (z + 1)*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 5] = (float)(z + 1)*scaleFactor.z;
|
|
|
|
mesh.vertices[vCounter + 6] = (float)(x + 1)*scaleFactor.x;
|
|
mesh.vertices[vCounter + 7] = GRAY_VALUE(pixels[(x + 1) + z*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 8] = (float)z*scaleFactor.z;
|
|
|
|
// Another triangle - 3 vertex
|
|
mesh.vertices[vCounter + 9] = mesh.vertices[vCounter + 6];
|
|
mesh.vertices[vCounter + 10] = mesh.vertices[vCounter + 7];
|
|
mesh.vertices[vCounter + 11] = mesh.vertices[vCounter + 8];
|
|
|
|
mesh.vertices[vCounter + 12] = mesh.vertices[vCounter + 3];
|
|
mesh.vertices[vCounter + 13] = mesh.vertices[vCounter + 4];
|
|
mesh.vertices[vCounter + 14] = mesh.vertices[vCounter + 5];
|
|
|
|
mesh.vertices[vCounter + 15] = (float)(x + 1)*scaleFactor.x;
|
|
mesh.vertices[vCounter + 16] = GRAY_VALUE(pixels[(x + 1) + (z + 1)*mapX])*scaleFactor.y;
|
|
mesh.vertices[vCounter + 17] = (float)(z + 1)*scaleFactor.z;
|
|
vCounter += 18; // 6 vertex, 18 floats
|
|
|
|
// Fill texcoords array with data
|
|
//--------------------------------------------------------------
|
|
mesh.texcoords[tcCounter] = (float)x/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 1] = (float)z/(mapZ - 1);
|
|
|
|
mesh.texcoords[tcCounter + 2] = (float)x/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 3] = (float)(z + 1)/(mapZ - 1);
|
|
|
|
mesh.texcoords[tcCounter + 4] = (float)(x + 1)/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 5] = (float)z/(mapZ - 1);
|
|
|
|
mesh.texcoords[tcCounter + 6] = mesh.texcoords[tcCounter + 4];
|
|
mesh.texcoords[tcCounter + 7] = mesh.texcoords[tcCounter + 5];
|
|
|
|
mesh.texcoords[tcCounter + 8] = mesh.texcoords[tcCounter + 2];
|
|
mesh.texcoords[tcCounter + 9] = mesh.texcoords[tcCounter + 3];
|
|
|
|
mesh.texcoords[tcCounter + 10] = (float)(x + 1)/(mapX - 1);
|
|
mesh.texcoords[tcCounter + 11] = (float)(z + 1)/(mapZ - 1);
|
|
tcCounter += 12; // 6 texcoords, 12 floats
|
|
|
|
// Fill normals array with data
|
|
//--------------------------------------------------------------
|
|
for (int i = 0; i < 18; i += 9)
|
|
{
|
|
vA.x = mesh.vertices[nCounter + i];
|
|
vA.y = mesh.vertices[nCounter + i + 1];
|
|
vA.z = mesh.vertices[nCounter + i + 2];
|
|
|
|
vB.x = mesh.vertices[nCounter + i + 3];
|
|
vB.y = mesh.vertices[nCounter + i + 4];
|
|
vB.z = mesh.vertices[nCounter + i + 5];
|
|
|
|
vC.x = mesh.vertices[nCounter + i + 6];
|
|
vC.y = mesh.vertices[nCounter + i + 7];
|
|
vC.z = mesh.vertices[nCounter + i + 8];
|
|
|
|
vN = Vector3Normalize(Vector3CrossProduct(Vector3Subtract(vB, vA), Vector3Subtract(vC, vA)));
|
|
|
|
mesh.normals[nCounter + i] = vN.x;
|
|
mesh.normals[nCounter + i + 1] = vN.y;
|
|
mesh.normals[nCounter + i + 2] = vN.z;
|
|
|
|
mesh.normals[nCounter + i + 3] = vN.x;
|
|
mesh.normals[nCounter + i + 4] = vN.y;
|
|
mesh.normals[nCounter + i + 5] = vN.z;
|
|
|
|
mesh.normals[nCounter + i + 6] = vN.x;
|
|
mesh.normals[nCounter + i + 7] = vN.y;
|
|
mesh.normals[nCounter + i + 8] = vN.z;
|
|
}
|
|
|
|
nCounter += 18; // 6 vertex, 18 floats
|
|
}
|
|
}
|
|
|
|
UnloadImageColors(pixels); // Unload pixels color data
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
|
|
// Generate a cubes mesh from pixel data
|
|
// NOTE: Vertex data is uploaded to GPU
|
|
Mesh GenMeshCubicmap(Image cubicmap, Vector3 cubeSize)
|
|
{
|
|
#define COLOR_EQUAL(col1, col2) ((col1.r == col2.r)&&(col1.g == col2.g)&&(col1.b == col2.b)&&(col1.a == col2.a))
|
|
|
|
Mesh mesh = { 0 };
|
|
|
|
Color *pixels = LoadImageColors(cubicmap);
|
|
|
|
// NOTE: Max possible number of triangles numCubes*(12 triangles by cube)
|
|
int maxTriangles = cubicmap.width*cubicmap.height*12;
|
|
|
|
int vCounter = 0; // Used to count vertices
|
|
int tcCounter = 0; // Used to count texcoords
|
|
int nCounter = 0; // Used to count normals
|
|
|
|
float w = cubeSize.x;
|
|
float h = cubeSize.z;
|
|
float h2 = cubeSize.y;
|
|
|
|
Vector3 *mapVertices = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
|
|
Vector2 *mapTexcoords = (Vector2 *)RL_MALLOC(maxTriangles*3*sizeof(Vector2));
|
|
Vector3 *mapNormals = (Vector3 *)RL_MALLOC(maxTriangles*3*sizeof(Vector3));
|
|
|
|
// Define the 6 normals of the cube, we will combine them accordingly later...
|
|
Vector3 n1 = { 1.0f, 0.0f, 0.0f };
|
|
Vector3 n2 = { -1.0f, 0.0f, 0.0f };
|
|
Vector3 n3 = { 0.0f, 1.0f, 0.0f };
|
|
Vector3 n4 = { 0.0f, -1.0f, 0.0f };
|
|
Vector3 n5 = { 0.0f, 0.0f, -1.0f };
|
|
Vector3 n6 = { 0.0f, 0.0f, 1.0f };
|
|
|
|
// NOTE: We use texture rectangles to define different textures for top-bottom-front-back-right-left (6)
|
|
typedef struct RectangleF {
|
|
float x;
|
|
float y;
|
|
float width;
|
|
float height;
|
|
} RectangleF;
|
|
|
|
RectangleF rightTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF leftTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF frontTexUV = { 0.0f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF backTexUV = { 0.5f, 0.0f, 0.5f, 0.5f };
|
|
RectangleF topTexUV = { 0.0f, 0.5f, 0.5f, 0.5f };
|
|
RectangleF bottomTexUV = { 0.5f, 0.5f, 0.5f, 0.5f };
|
|
|
|
for (int z = 0; z < cubicmap.height; ++z)
|
|
{
|
|
for (int x = 0; x < cubicmap.width; ++x)
|
|
{
|
|
// Define the 8 vertex of the cube, we will combine them accordingly later...
|
|
Vector3 v1 = { w*(x - 0.5f), h2, h*(z - 0.5f) };
|
|
Vector3 v2 = { w*(x - 0.5f), h2, h*(z + 0.5f) };
|
|
Vector3 v3 = { w*(x + 0.5f), h2, h*(z + 0.5f) };
|
|
Vector3 v4 = { w*(x + 0.5f), h2, h*(z - 0.5f) };
|
|
Vector3 v5 = { w*(x + 0.5f), 0, h*(z - 0.5f) };
|
|
Vector3 v6 = { w*(x - 0.5f), 0, h*(z - 0.5f) };
|
|
Vector3 v7 = { w*(x - 0.5f), 0, h*(z + 0.5f) };
|
|
Vector3 v8 = { w*(x + 0.5f), 0, h*(z + 0.5f) };
|
|
|
|
// We check pixel color to be WHITE -> draw full cube
|
|
if (COLOR_EQUAL(pixels[z*cubicmap.width + x], WHITE))
|
|
{
|
|
// Define triangles and checking collateral cubes
|
|
//------------------------------------------------
|
|
|
|
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
|
|
// WARNING: Not required for a WHITE cubes, created to allow seeing the map from outside
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v2;
|
|
mapVertices[vCounter + 2] = v3;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v3;
|
|
mapVertices[vCounter + 5] = v4;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n3;
|
|
mapNormals[nCounter + 1] = n3;
|
|
mapNormals[nCounter + 2] = n3;
|
|
mapNormals[nCounter + 3] = n3;
|
|
mapNormals[nCounter + 4] = n3;
|
|
mapNormals[nCounter + 5] = n3;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
|
|
tcCounter += 6;
|
|
|
|
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
|
|
mapVertices[vCounter] = v6;
|
|
mapVertices[vCounter + 1] = v8;
|
|
mapVertices[vCounter + 2] = v7;
|
|
mapVertices[vCounter + 3] = v6;
|
|
mapVertices[vCounter + 4] = v5;
|
|
mapVertices[vCounter + 5] = v8;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n4;
|
|
mapNormals[nCounter + 1] = n4;
|
|
mapNormals[nCounter + 2] = n4;
|
|
mapNormals[nCounter + 3] = n4;
|
|
mapNormals[nCounter + 4] = n4;
|
|
mapNormals[nCounter + 5] = n4;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
tcCounter += 6;
|
|
|
|
// Checking cube on bottom of current cube
|
|
if (((z < cubicmap.height - 1) && COLOR_EQUAL(pixels[(z + 1)*cubicmap.width + x], BLACK)) || (z == cubicmap.height - 1))
|
|
{
|
|
// Define front triangles (2 tris, 6 vertex) --> v2 v7 v3, v3 v7 v8
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v2;
|
|
mapVertices[vCounter + 1] = v7;
|
|
mapVertices[vCounter + 2] = v3;
|
|
mapVertices[vCounter + 3] = v3;
|
|
mapVertices[vCounter + 4] = v7;
|
|
mapVertices[vCounter + 5] = v8;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n6;
|
|
mapNormals[nCounter + 1] = n6;
|
|
mapNormals[nCounter + 2] = n6;
|
|
mapNormals[nCounter + 3] = n6;
|
|
mapNormals[nCounter + 4] = n6;
|
|
mapNormals[nCounter + 5] = n6;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ frontTexUV.x, frontTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ frontTexUV.x, frontTexUV.y + frontTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ frontTexUV.x + frontTexUV.width, frontTexUV.y + frontTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
|
|
// Checking cube on top of current cube
|
|
if (((z > 0) && COLOR_EQUAL(pixels[(z - 1)*cubicmap.width + x], BLACK)) || (z == 0))
|
|
{
|
|
// Define back triangles (2 tris, 6 vertex) --> v1 v5 v6, v1 v4 v5
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v5;
|
|
mapVertices[vCounter + 2] = v6;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v4;
|
|
mapVertices[vCounter + 5] = v5;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n5;
|
|
mapNormals[nCounter + 1] = n5;
|
|
mapNormals[nCounter + 2] = n5;
|
|
mapNormals[nCounter + 3] = n5;
|
|
mapNormals[nCounter + 4] = n5;
|
|
mapNormals[nCounter + 5] = n5;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y + backTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ backTexUV.x + backTexUV.width, backTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ backTexUV.x, backTexUV.y };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ backTexUV.x, backTexUV.y + backTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
|
|
// Checking cube on right of current cube
|
|
if (((x < cubicmap.width - 1) && COLOR_EQUAL(pixels[z*cubicmap.width + (x + 1)], BLACK)) || (x == cubicmap.width - 1))
|
|
{
|
|
// Define right triangles (2 tris, 6 vertex) --> v3 v8 v4, v4 v8 v5
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v3;
|
|
mapVertices[vCounter + 1] = v8;
|
|
mapVertices[vCounter + 2] = v4;
|
|
mapVertices[vCounter + 3] = v4;
|
|
mapVertices[vCounter + 4] = v8;
|
|
mapVertices[vCounter + 5] = v5;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n1;
|
|
mapNormals[nCounter + 1] = n1;
|
|
mapNormals[nCounter + 2] = n1;
|
|
mapNormals[nCounter + 3] = n1;
|
|
mapNormals[nCounter + 4] = n1;
|
|
mapNormals[nCounter + 5] = n1;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ rightTexUV.x, rightTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ rightTexUV.x, rightTexUV.y + rightTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ rightTexUV.x + rightTexUV.width, rightTexUV.y + rightTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
|
|
// Checking cube on left of current cube
|
|
if (((x > 0) && COLOR_EQUAL(pixels[z*cubicmap.width + (x - 1)], BLACK)) || (x == 0))
|
|
{
|
|
// Define left triangles (2 tris, 6 vertex) --> v1 v7 v2, v1 v6 v7
|
|
// NOTE: Collateral occluded faces are not generated
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v7;
|
|
mapVertices[vCounter + 2] = v2;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v6;
|
|
mapVertices[vCounter + 5] = v7;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n2;
|
|
mapNormals[nCounter + 1] = n2;
|
|
mapNormals[nCounter + 2] = n2;
|
|
mapNormals[nCounter + 3] = n2;
|
|
mapNormals[nCounter + 4] = n2;
|
|
mapNormals[nCounter + 5] = n2;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ leftTexUV.x, leftTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ leftTexUV.x, leftTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ leftTexUV.x, leftTexUV.y + leftTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ leftTexUV.x + leftTexUV.width, leftTexUV.y + leftTexUV.height };
|
|
tcCounter += 6;
|
|
}
|
|
}
|
|
// We check pixel color to be BLACK, we will only draw floor and roof
|
|
else if (COLOR_EQUAL(pixels[z*cubicmap.width + x], BLACK))
|
|
{
|
|
// Define top triangles (2 tris, 6 vertex --> v1-v2-v3, v1-v3-v4)
|
|
mapVertices[vCounter] = v1;
|
|
mapVertices[vCounter + 1] = v3;
|
|
mapVertices[vCounter + 2] = v2;
|
|
mapVertices[vCounter + 3] = v1;
|
|
mapVertices[vCounter + 4] = v4;
|
|
mapVertices[vCounter + 5] = v3;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n4;
|
|
mapNormals[nCounter + 1] = n4;
|
|
mapNormals[nCounter + 2] = n4;
|
|
mapNormals[nCounter + 3] = n4;
|
|
mapNormals[nCounter + 4] = n4;
|
|
mapNormals[nCounter + 5] = n4;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ topTexUV.x, topTexUV.y + topTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ topTexUV.x, topTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ topTexUV.x + topTexUV.width, topTexUV.y + topTexUV.height };
|
|
tcCounter += 6;
|
|
|
|
// Define bottom triangles (2 tris, 6 vertex --> v6-v8-v7, v6-v5-v8)
|
|
mapVertices[vCounter] = v6;
|
|
mapVertices[vCounter + 1] = v7;
|
|
mapVertices[vCounter + 2] = v8;
|
|
mapVertices[vCounter + 3] = v6;
|
|
mapVertices[vCounter + 4] = v8;
|
|
mapVertices[vCounter + 5] = v5;
|
|
vCounter += 6;
|
|
|
|
mapNormals[nCounter] = n3;
|
|
mapNormals[nCounter + 1] = n3;
|
|
mapNormals[nCounter + 2] = n3;
|
|
mapNormals[nCounter + 3] = n3;
|
|
mapNormals[nCounter + 4] = n3;
|
|
mapNormals[nCounter + 5] = n3;
|
|
nCounter += 6;
|
|
|
|
mapTexcoords[tcCounter] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 1] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 2] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 3] = (Vector2){ bottomTexUV.x + bottomTexUV.width, bottomTexUV.y };
|
|
mapTexcoords[tcCounter + 4] = (Vector2){ bottomTexUV.x, bottomTexUV.y + bottomTexUV.height };
|
|
mapTexcoords[tcCounter + 5] = (Vector2){ bottomTexUV.x, bottomTexUV.y };
|
|
tcCounter += 6;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Move data from mapVertices temp arrays to vertices float array
|
|
mesh.vertexCount = vCounter;
|
|
mesh.triangleCount = vCounter/3;
|
|
|
|
mesh.vertices = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.normals = (float *)RL_MALLOC(mesh.vertexCount*3*sizeof(float));
|
|
mesh.texcoords = (float *)RL_MALLOC(mesh.vertexCount*2*sizeof(float));
|
|
mesh.colors = NULL;
|
|
|
|
int fCounter = 0;
|
|
|
|
// Move vertices data
|
|
for (int i = 0; i < vCounter; i++)
|
|
{
|
|
mesh.vertices[fCounter] = mapVertices[i].x;
|
|
mesh.vertices[fCounter + 1] = mapVertices[i].y;
|
|
mesh.vertices[fCounter + 2] = mapVertices[i].z;
|
|
fCounter += 3;
|
|
}
|
|
|
|
fCounter = 0;
|
|
|
|
// Move normals data
|
|
for (int i = 0; i < nCounter; i++)
|
|
{
|
|
mesh.normals[fCounter] = mapNormals[i].x;
|
|
mesh.normals[fCounter + 1] = mapNormals[i].y;
|
|
mesh.normals[fCounter + 2] = mapNormals[i].z;
|
|
fCounter += 3;
|
|
}
|
|
|
|
fCounter = 0;
|
|
|
|
// Move texcoords data
|
|
for (int i = 0; i < tcCounter; i++)
|
|
{
|
|
mesh.texcoords[fCounter] = mapTexcoords[i].x;
|
|
mesh.texcoords[fCounter + 1] = mapTexcoords[i].y;
|
|
fCounter += 2;
|
|
}
|
|
|
|
RL_FREE(mapVertices);
|
|
RL_FREE(mapNormals);
|
|
RL_FREE(mapTexcoords);
|
|
|
|
UnloadImageColors(pixels); // Unload pixels color data
|
|
|
|
// Upload vertex data to GPU (static mesh)
|
|
UploadMesh(&mesh, false);
|
|
|
|
return mesh;
|
|
}
|
|
#endif // SUPPORT_MESH_GENERATION
|
|
|
|
// Compute mesh bounding box limits
|
|
// NOTE: minVertex and maxVertex should be transformed by model transform matrix
|
|
BoundingBox GetMeshBoundingBox(Mesh mesh)
|
|
{
|
|
// Get min and max vertex to construct bounds (AABB)
|
|
Vector3 minVertex = { 0 };
|
|
Vector3 maxVertex = { 0 };
|
|
|
|
if (mesh.vertices != NULL)
|
|
{
|
|
minVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
|
|
maxVertex = (Vector3){ mesh.vertices[0], mesh.vertices[1], mesh.vertices[2] };
|
|
|
|
for (int i = 1; i < mesh.vertexCount; i++)
|
|
{
|
|
minVertex = Vector3Min(minVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
|
|
maxVertex = Vector3Max(maxVertex, (Vector3){ mesh.vertices[i*3], mesh.vertices[i*3 + 1], mesh.vertices[i*3 + 2] });
|
|
}
|
|
}
|
|
|
|
// Create the bounding box
|
|
BoundingBox box = { 0 };
|
|
box.min = minVertex;
|
|
box.max = maxVertex;
|
|
|
|
return box;
|
|
}
|
|
|
|
// Compute mesh tangents
|
|
void GenMeshTangents(Mesh *mesh)
|
|
{
|
|
// Check if input mesh data is useful
|
|
if ((mesh == NULL) || (mesh->vertices == NULL) || (mesh->texcoords == NULL) || (mesh->normals == NULL))
|
|
{
|
|
TRACELOG(LOG_WARNING, "MESH: Tangents generation requires vertices, texcoords and normals vertex attribute data");
|
|
return;
|
|
}
|
|
|
|
// Allocate or reallocate tangents data
|
|
if (mesh->tangents == NULL) mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
|
|
else
|
|
{
|
|
RL_FREE(mesh->tangents);
|
|
mesh->tangents = (float *)RL_MALLOC(mesh->vertexCount*4*sizeof(float));
|
|
}
|
|
|
|
// Allocate temporary arrays for tangents calculation
|
|
Vector3 *tan1 = (Vector3 *)RL_CALLOC(mesh->vertexCount, sizeof(Vector3));
|
|
Vector3 *tan2 = (Vector3 *)RL_CALLOC(mesh->vertexCount, sizeof(Vector3));
|
|
|
|
if (tan1 == NULL || tan2 == NULL)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MESH: Failed to allocate temporary memory for tangent calculation");
|
|
if (tan1) RL_FREE(tan1);
|
|
if (tan2) RL_FREE(tan2);
|
|
return;
|
|
}
|
|
|
|
// Process all triangles of the mesh
|
|
// 'triangleCount' must be always valid
|
|
for (int t = 0; t < mesh->triangleCount; t++)
|
|
{
|
|
// Get triangle vertex indices
|
|
int i0, i1, i2;
|
|
|
|
if (mesh->indices != NULL)
|
|
{
|
|
// Use indices if available
|
|
i0 = mesh->indices[t*3 + 0];
|
|
i1 = mesh->indices[t*3 + 1];
|
|
i2 = mesh->indices[t*3 + 2];
|
|
}
|
|
else
|
|
{
|
|
// Sequential access for non-indexed mesh
|
|
i0 = t*3 + 0;
|
|
i1 = t*3 + 1;
|
|
i2 = t*3 + 2;
|
|
}
|
|
|
|
// Get triangle vertices position
|
|
Vector3 v1 = { mesh->vertices[i0*3 + 0], mesh->vertices[i0*3 + 1], mesh->vertices[i0*3 + 2] };
|
|
Vector3 v2 = { mesh->vertices[i1*3 + 0], mesh->vertices[i1*3 + 1], mesh->vertices[i1*3 + 2] };
|
|
Vector3 v3 = { mesh->vertices[i2*3 + 0], mesh->vertices[i2*3 + 1], mesh->vertices[i2*3 + 2] };
|
|
|
|
// Get triangle texcoords
|
|
Vector2 uv1 = { mesh->texcoords[i0*2 + 0], mesh->texcoords[i0*2 + 1] };
|
|
Vector2 uv2 = { mesh->texcoords[i1*2 + 0], mesh->texcoords[i1*2 + 1] };
|
|
Vector2 uv3 = { mesh->texcoords[i2*2 + 0], mesh->texcoords[i2*2 + 1] };
|
|
|
|
// Calculate triangle edges
|
|
float x1 = v2.x - v1.x;
|
|
float y1 = v2.y - v1.y;
|
|
float z1 = v2.z - v1.z;
|
|
float x2 = v3.x - v1.x;
|
|
float y2 = v3.y - v1.y;
|
|
float z2 = v3.z - v1.z;
|
|
|
|
// Calculate texture coordinate differences
|
|
float s1 = uv2.x - uv1.x;
|
|
float t1 = uv2.y - uv1.y;
|
|
float s2 = uv3.x - uv1.x;
|
|
float t2 = uv3.y - uv1.y;
|
|
|
|
// Calculate denominator and check for degenerate UV
|
|
float div = s1*t2 - s2*t1;
|
|
float r = (fabsf(div) < 0.0001f)? 0.0f : 1.0f/div;
|
|
|
|
// Calculate tangent and bitangent directions
|
|
Vector3 sdir = { (t2*x1 - t1*x2)*r, (t2*y1 - t1*y2)*r, (t2*z1 - t1*z2)*r };
|
|
Vector3 tdir = { (s1*x2 - s2*x1)*r, (s1*y2 - s2*y1)*r, (s1*z2 - s2*z1)*r };
|
|
|
|
// Accumulate tangents and bitangents for each vertex of the triangle
|
|
tan1[i0] = Vector3Add(tan1[i0], sdir);
|
|
tan1[i1] = Vector3Add(tan1[i1], sdir);
|
|
tan1[i2] = Vector3Add(tan1[i2], sdir);
|
|
|
|
tan2[i0] = Vector3Add(tan2[i0], tdir);
|
|
tan2[i1] = Vector3Add(tan2[i1], tdir);
|
|
tan2[i2] = Vector3Add(tan2[i2], tdir);
|
|
}
|
|
|
|
// Calculate final tangents for each vertex
|
|
for (int i = 0; i < mesh->vertexCount; i++)
|
|
{
|
|
Vector3 normal = { mesh->normals[i*3 + 0], mesh->normals[i*3 + 1], mesh->normals[i*3 + 2] };
|
|
Vector3 tangent = tan1[i];
|
|
|
|
// Handle zero tangent (can happen with degenerate UVs)
|
|
if (Vector3Length(tangent) < 0.0001f)
|
|
{
|
|
// Create a tangent perpendicular to the normal
|
|
if (fabsf(normal.z) > 0.707f) tangent = (Vector3){ 1.0f, 0.0f, 0.0f };
|
|
else tangent = Vector3Normalize((Vector3){ -normal.y, normal.x, 0.0f });
|
|
|
|
mesh->tangents[i*4 + 0] = tangent.x;
|
|
mesh->tangents[i*4 + 1] = tangent.y;
|
|
mesh->tangents[i*4 + 2] = tangent.z;
|
|
mesh->tangents[i*4 + 3] = 1.0f;
|
|
continue;
|
|
}
|
|
|
|
// Gram-Schmidt orthogonalization to make tangent orthogonal to normal
|
|
// T_prime = T - N*dot(N, T)
|
|
Vector3 orthogonalized = Vector3Subtract(tangent, Vector3Scale(normal, Vector3DotProduct(normal, tangent)));
|
|
|
|
// Handle cases where orthogonalized vector is too small
|
|
if (Vector3Length(orthogonalized) < 0.0001f)
|
|
{
|
|
// Create a tangent perpendicular to the normal
|
|
if (fabsf(normal.z) > 0.707f) orthogonalized = (Vector3){ 1.0f, 0.0f, 0.0f };
|
|
else orthogonalized = Vector3Normalize((Vector3){ -normal.y, normal.x, 0.0f });
|
|
}
|
|
else
|
|
{
|
|
// Normalize the orthogonalized tangent
|
|
orthogonalized = Vector3Normalize(orthogonalized);
|
|
}
|
|
|
|
// Store the calculated tangent
|
|
mesh->tangents[i*4 + 0] = orthogonalized.x;
|
|
mesh->tangents[i*4 + 1] = orthogonalized.y;
|
|
mesh->tangents[i*4 + 2] = orthogonalized.z;
|
|
|
|
// Calculate the handedness (w component)
|
|
mesh->tangents[i*4 + 3] = (Vector3DotProduct(Vector3CrossProduct(normal, orthogonalized), tan2[i]) < 0.0f)? -1.0f : 1.0f;
|
|
}
|
|
|
|
// Free temporary arrays
|
|
RL_FREE(tan1);
|
|
RL_FREE(tan2);
|
|
|
|
// Update vertex buffers if available
|
|
if (mesh->vboId != NULL)
|
|
{
|
|
if (mesh->vboId[SHADER_LOC_VERTEX_TANGENT] != 0)
|
|
{
|
|
// Update existing tangent vertex buffer
|
|
rlUpdateVertexBuffer(mesh->vboId[SHADER_LOC_VERTEX_TANGENT], mesh->tangents, mesh->vertexCount*4*sizeof(float), 0);
|
|
}
|
|
else
|
|
{
|
|
// Create new tangent vertex buffer
|
|
mesh->vboId[SHADER_LOC_VERTEX_TANGENT] = rlLoadVertexBuffer(mesh->tangents, mesh->vertexCount*4*sizeof(float), false);
|
|
}
|
|
|
|
// Set up vertex attributes for shader
|
|
rlEnableVertexArray(mesh->vaoId);
|
|
rlSetVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT, 4, RL_FLOAT, 0, 0, 0);
|
|
rlEnableVertexAttribute(RL_DEFAULT_SHADER_ATTRIB_LOCATION_TANGENT);
|
|
rlDisableVertexArray();
|
|
}
|
|
|
|
TRACELOG(LOG_INFO, "MESH: Tangents data computed and uploaded for provided mesh");
|
|
}
|
|
|
|
// Draw a model (with texture if set)
|
|
void DrawModel(Model model, Vector3 position, float scale, Color tint)
|
|
{
|
|
Vector3 vScale = { scale, scale, scale };
|
|
Vector3 rotationAxis = { 0.0f, 1.0f, 0.0f };
|
|
|
|
DrawModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
|
|
}
|
|
|
|
// Draw a model with extended parameters
|
|
void DrawModelEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
|
|
{
|
|
// Calculate transformation matrix from function parameters
|
|
// Get transform matrix (rotation -> scale -> translation)
|
|
Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
|
|
Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
|
|
Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
|
|
|
|
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
|
|
|
|
// Combine model transformation matrix (model.transform) with matrix generated by function parameters (matTransform)
|
|
model.transform = MatrixMultiply(model.transform, matTransform);
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
Color color = model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color;
|
|
|
|
Color colorTint = WHITE;
|
|
colorTint.r = (unsigned char)(((int)color.r*(int)tint.r)/255);
|
|
colorTint.g = (unsigned char)(((int)color.g*(int)tint.g)/255);
|
|
colorTint.b = (unsigned char)(((int)color.b*(int)tint.b)/255);
|
|
colorTint.a = (unsigned char)(((int)color.a*(int)tint.a)/255);
|
|
|
|
model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = colorTint;
|
|
DrawMesh(model.meshes[i], model.materials[model.meshMaterial[i]], model.transform);
|
|
model.materials[model.meshMaterial[i]].maps[MATERIAL_MAP_DIFFUSE].color = color;
|
|
}
|
|
}
|
|
|
|
// Draw a model wires (with texture if set)
|
|
void DrawModelWires(Model model, Vector3 position, float scale, Color tint)
|
|
{
|
|
rlEnableWireMode();
|
|
|
|
DrawModel(model, position, scale, tint);
|
|
|
|
rlDisableWireMode();
|
|
}
|
|
|
|
// Draw a model wires (with texture if set) with extended parameters
|
|
void DrawModelWiresEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
|
|
{
|
|
rlEnableWireMode();
|
|
|
|
DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
|
|
|
|
rlDisableWireMode();
|
|
}
|
|
|
|
// Draw a model points
|
|
// WARNING: OpenGL ES 2.0 does not support point mode drawing
|
|
// TODO: gate these properly for non es 2.0 versions only
|
|
void DrawModelPoints(Model model, Vector3 position, float scale, Color tint)
|
|
{
|
|
rlEnablePointMode();
|
|
rlDisableBackfaceCulling();
|
|
|
|
DrawModel(model, position, scale, tint);
|
|
|
|
rlEnableBackfaceCulling();
|
|
rlDisablePointMode();
|
|
}
|
|
|
|
// Draw a model points
|
|
// WARNING: OpenGL ES 2.0 does not support point mode drawing
|
|
void DrawModelPointsEx(Model model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
|
|
{
|
|
rlEnablePointMode();
|
|
rlDisableBackfaceCulling();
|
|
|
|
DrawModelEx(model, position, rotationAxis, rotationAngle, scale, tint);
|
|
|
|
rlEnableBackfaceCulling();
|
|
rlDisablePointMode();
|
|
}
|
|
|
|
// Draw a billboard
|
|
void DrawBillboard(Camera camera, Texture2D texture, Vector3 position, float scale, Color tint)
|
|
{
|
|
Rectangle source = { 0.0f, 0.0f, (float)texture.width, (float)texture.height };
|
|
|
|
DrawBillboardRec(camera, texture, source, position, (Vector2){ scale*fabsf((float)source.width/source.height), scale }, tint);
|
|
}
|
|
|
|
// Draw a billboard (part of a texture defined by a rectangle)
|
|
void DrawBillboardRec(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector2 size, Color tint)
|
|
{
|
|
// NOTE: Billboard locked on axis-Y
|
|
Vector3 up = { 0.0f, 1.0f, 0.0f };
|
|
|
|
DrawBillboardPro(camera, texture, source, position, up, size, Vector2Scale(size, 0.5), 0.0f, tint);
|
|
}
|
|
|
|
// Draw a billboard with additional parameters
|
|
void DrawBillboardPro(Camera camera, Texture2D texture, Rectangle source, Vector3 position, Vector3 up, Vector2 size, Vector2 origin, float rotation, Color tint)
|
|
{
|
|
// Compute the up vector and the right vector
|
|
Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up);
|
|
Vector3 right = { matView.m0, matView.m4, matView.m8 };
|
|
right = Vector3Scale(right, size.x);
|
|
up = Vector3Scale(up, size.y);
|
|
|
|
// Flip the content of the billboard while maintaining the counterclockwise edge rendering order
|
|
if (size.x < 0.0f)
|
|
{
|
|
source.x += size.x;
|
|
source.width *= -1.0;
|
|
right = Vector3Negate(right);
|
|
origin.x *= -1.0f;
|
|
}
|
|
if (size.y < 0.0f)
|
|
{
|
|
source.y += size.y;
|
|
source.height *= -1.0;
|
|
up = Vector3Negate(up);
|
|
origin.y *= -1.0f;
|
|
}
|
|
|
|
// Draw the texture region described by source on the following rectangle in 3D space:
|
|
//
|
|
// size.x <--.
|
|
// 3 ^---------------------------+ 2 \ rotation
|
|
// | | /
|
|
// | |
|
|
// | origin.x position |
|
|
// up |.............. | size.y
|
|
// | . |
|
|
// | . origin.y |
|
|
// | . |
|
|
// 0 +---------------------------> 1
|
|
// right
|
|
Vector3 forward;
|
|
if (rotation != 0.0) forward = Vector3CrossProduct(right, up);
|
|
|
|
Vector3 origin3D = Vector3Add(Vector3Scale(Vector3Normalize(right), origin.x), Vector3Scale(Vector3Normalize(up), origin.y));
|
|
|
|
Vector3 points[4];
|
|
points[0] = Vector3Zero();
|
|
points[1] = right;
|
|
points[2] = Vector3Add(up, right);
|
|
points[3] = up;
|
|
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
points[i] = Vector3Subtract(points[i], origin3D);
|
|
if (rotation != 0.0) points[i] = Vector3RotateByAxisAngle(points[i], forward, rotation*DEG2RAD);
|
|
points[i] = Vector3Add(points[i], position);
|
|
}
|
|
|
|
Vector2 texcoords[4];
|
|
texcoords[0] = (Vector2){ (float)source.x/texture.width, (float)(source.y + source.height)/texture.height };
|
|
texcoords[1] = (Vector2){ (float)(source.x + source.width)/texture.width, (float)(source.y + source.height)/texture.height };
|
|
texcoords[2] = (Vector2){ (float)(source.x + source.width)/texture.width, (float)source.y/texture.height };
|
|
texcoords[3] = (Vector2){ (float)source.x/texture.width, (float)source.y/texture.height };
|
|
|
|
rlSetTexture(texture.id);
|
|
rlBegin(RL_QUADS);
|
|
|
|
rlColor4ub(tint.r, tint.g, tint.b, tint.a);
|
|
for (int i = 0; i < 4; i++)
|
|
{
|
|
rlTexCoord2f(texcoords[i].x, texcoords[i].y);
|
|
rlVertex3f(points[i].x, points[i].y, points[i].z);
|
|
}
|
|
|
|
rlEnd();
|
|
rlSetTexture(0);
|
|
}
|
|
|
|
// Draw a bounding box with wires
|
|
void DrawBoundingBox(BoundingBox box, Color color)
|
|
{
|
|
Vector3 size = { 0 };
|
|
|
|
size.x = fabsf(box.max.x - box.min.x);
|
|
size.y = fabsf(box.max.y - box.min.y);
|
|
size.z = fabsf(box.max.z - box.min.z);
|
|
|
|
Vector3 center = { box.min.x + size.x/2.0f, box.min.y + size.y/2.0f, box.min.z + size.z/2.0f };
|
|
|
|
DrawCubeWires(center, size.x, size.y, size.z, color);
|
|
}
|
|
|
|
// Check collision between two spheres
|
|
bool CheckCollisionSpheres(Vector3 center1, float radius1, Vector3 center2, float radius2)
|
|
{
|
|
bool collision = false;
|
|
|
|
// Simple way to check for collision, just checking distance between two points
|
|
// Unfortunately, sqrtf() is a costly operation, so we avoid it with following solution
|
|
/*
|
|
float dx = center1.x - center2.x; // X distance between centers
|
|
float dy = center1.y - center2.y; // Y distance between centers
|
|
float dz = center1.z - center2.z; // Z distance between centers
|
|
|
|
float distance = sqrtf(dx*dx + dy*dy + dz*dz); // Distance between centers
|
|
|
|
if (distance <= (radius1 + radius2)) collision = true;
|
|
*/
|
|
|
|
// Check for distances squared to avoid sqrtf()
|
|
if (Vector3DotProduct(Vector3Subtract(center2, center1), Vector3Subtract(center2, center1)) <= (radius1 + radius2)*(radius1 + radius2)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check collision between two boxes
|
|
// NOTE: Boxes are defined by two points minimum and maximum
|
|
bool CheckCollisionBoxes(BoundingBox box1, BoundingBox box2)
|
|
{
|
|
bool collision = true;
|
|
|
|
if ((box1.max.x >= box2.min.x) && (box1.min.x <= box2.max.x))
|
|
{
|
|
if ((box1.max.y < box2.min.y) || (box1.min.y > box2.max.y)) collision = false;
|
|
if ((box1.max.z < box2.min.z) || (box1.min.z > box2.max.z)) collision = false;
|
|
}
|
|
else collision = false;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Check collision between box and sphere
|
|
bool CheckCollisionBoxSphere(BoundingBox box, Vector3 center, float radius)
|
|
{
|
|
bool collision = false;
|
|
|
|
float dmin = 0;
|
|
|
|
if (center.x < box.min.x) dmin += powf(center.x - box.min.x, 2);
|
|
else if (center.x > box.max.x) dmin += powf(center.x - box.max.x, 2);
|
|
|
|
if (center.y < box.min.y) dmin += powf(center.y - box.min.y, 2);
|
|
else if (center.y > box.max.y) dmin += powf(center.y - box.max.y, 2);
|
|
|
|
if (center.z < box.min.z) dmin += powf(center.z - box.min.z, 2);
|
|
else if (center.z > box.max.z) dmin += powf(center.z - box.max.z, 2);
|
|
|
|
if (dmin <= (radius*radius)) collision = true;
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision info between ray and sphere
|
|
RayCollision GetRayCollisionSphere(Ray ray, Vector3 center, float radius)
|
|
{
|
|
RayCollision collision = { 0 };
|
|
|
|
Vector3 raySpherePos = Vector3Subtract(center, ray.position);
|
|
float vector = Vector3DotProduct(raySpherePos, ray.direction);
|
|
float distance = Vector3Length(raySpherePos);
|
|
float d = radius*radius - (distance*distance - vector*vector);
|
|
|
|
collision.hit = d >= 0.0f;
|
|
|
|
// Check if ray origin is inside the sphere to calculate the correct collision point
|
|
if (distance < radius)
|
|
{
|
|
collision.distance = vector + sqrtf(d);
|
|
|
|
// Calculate collision point
|
|
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
|
|
|
|
// Calculate collision normal (pointing outwards)
|
|
collision.normal = Vector3Negate(Vector3Normalize(Vector3Subtract(collision.point, center)));
|
|
}
|
|
else
|
|
{
|
|
collision.distance = vector - sqrtf(d);
|
|
|
|
// Calculate collision point
|
|
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
|
|
|
|
// Calculate collision normal (pointing inwards)
|
|
collision.normal = Vector3Normalize(Vector3Subtract(collision.point, center));
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision info between ray and box
|
|
RayCollision GetRayCollisionBox(Ray ray, BoundingBox box)
|
|
{
|
|
RayCollision collision = { 0 };
|
|
|
|
// Note: If ray.position is inside the box, the distance is negative (as if the ray was reversed)
|
|
// Reversing ray.direction will give use the correct result
|
|
bool insideBox = (ray.position.x > box.min.x) && (ray.position.x < box.max.x) &&
|
|
(ray.position.y > box.min.y) && (ray.position.y < box.max.y) &&
|
|
(ray.position.z > box.min.z) && (ray.position.z < box.max.z);
|
|
|
|
if (insideBox) ray.direction = Vector3Negate(ray.direction);
|
|
|
|
float t[11] = { 0 };
|
|
|
|
t[8] = 1.0f/ray.direction.x;
|
|
t[9] = 1.0f/ray.direction.y;
|
|
t[10] = 1.0f/ray.direction.z;
|
|
|
|
t[0] = (box.min.x - ray.position.x)*t[8];
|
|
t[1] = (box.max.x - ray.position.x)*t[8];
|
|
t[2] = (box.min.y - ray.position.y)*t[9];
|
|
t[3] = (box.max.y - ray.position.y)*t[9];
|
|
t[4] = (box.min.z - ray.position.z)*t[10];
|
|
t[5] = (box.max.z - ray.position.z)*t[10];
|
|
t[6] = (float)fmax(fmax(fmin(t[0], t[1]), fmin(t[2], t[3])), fmin(t[4], t[5]));
|
|
t[7] = (float)fmin(fmin(fmax(t[0], t[1]), fmax(t[2], t[3])), fmax(t[4], t[5]));
|
|
|
|
collision.hit = !((t[7] < 0) || (t[6] > t[7]));
|
|
collision.distance = t[6];
|
|
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, collision.distance));
|
|
|
|
// Get box center point
|
|
collision.normal = Vector3Lerp(box.min, box.max, 0.5f);
|
|
// Get vector center point->hit point
|
|
collision.normal = Vector3Subtract(collision.point, collision.normal);
|
|
// Scale vector to unit cube
|
|
// NOTE: We use an additional .01 to fix numerical errors
|
|
collision.normal = Vector3Scale(collision.normal, 2.01f);
|
|
collision.normal = Vector3Divide(collision.normal, Vector3Subtract(box.max, box.min));
|
|
// The relevant elements of the vector are now slightly larger than 1.0f (or smaller than -1.0f)
|
|
// and the others are somewhere between -1.0 and 1.0 casting to int is exactly our wanted normal!
|
|
collision.normal.x = (float)((int)collision.normal.x);
|
|
collision.normal.y = (float)((int)collision.normal.y);
|
|
collision.normal.z = (float)((int)collision.normal.z);
|
|
|
|
collision.normal = Vector3Normalize(collision.normal);
|
|
|
|
if (insideBox)
|
|
{
|
|
// Reset ray.direction
|
|
ray.direction = Vector3Negate(ray.direction);
|
|
// Fix result
|
|
collision.distance *= -1.0f;
|
|
collision.normal = Vector3Negate(collision.normal);
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision info between ray and mesh
|
|
RayCollision GetRayCollisionMesh(Ray ray, Mesh mesh, Matrix transform)
|
|
{
|
|
RayCollision collision = { 0 };
|
|
|
|
// Check if mesh vertex data on CPU for testing
|
|
if (mesh.vertices != NULL)
|
|
{
|
|
int triangleCount = mesh.triangleCount;
|
|
|
|
// Test against all triangles in mesh
|
|
for (int i = 0; i < triangleCount; i++)
|
|
{
|
|
Vector3 a, b, c;
|
|
Vector3 *vertdata = (Vector3 *)mesh.vertices;
|
|
|
|
if (mesh.indices)
|
|
{
|
|
a = vertdata[mesh.indices[i*3 + 0]];
|
|
b = vertdata[mesh.indices[i*3 + 1]];
|
|
c = vertdata[mesh.indices[i*3 + 2]];
|
|
}
|
|
else
|
|
{
|
|
a = vertdata[i*3 + 0];
|
|
b = vertdata[i*3 + 1];
|
|
c = vertdata[i*3 + 2];
|
|
}
|
|
|
|
a = Vector3Transform(a, transform);
|
|
b = Vector3Transform(b, transform);
|
|
c = Vector3Transform(c, transform);
|
|
|
|
RayCollision triHitInfo = GetRayCollisionTriangle(ray, a, b, c);
|
|
|
|
if (triHitInfo.hit)
|
|
{
|
|
// Save the closest hit triangle
|
|
if ((!collision.hit) || (collision.distance > triHitInfo.distance)) collision = triHitInfo;
|
|
}
|
|
}
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision info between ray and triangle
|
|
// NOTE: The points are expected to be in counter-clockwise winding
|
|
// NOTE: Based on https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
|
|
RayCollision GetRayCollisionTriangle(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3)
|
|
{
|
|
#define EPSILON 0.000001f // A small number
|
|
|
|
RayCollision collision = { 0 };
|
|
Vector3 edge1 = { 0 };
|
|
Vector3 edge2 = { 0 };
|
|
Vector3 p, q, tv;
|
|
float det, invDet, u, v, t;
|
|
|
|
// Find vectors for two edges sharing V1
|
|
edge1 = Vector3Subtract(p2, p1);
|
|
edge2 = Vector3Subtract(p3, p1);
|
|
|
|
// Begin calculating determinant - also used to calculate u parameter
|
|
p = Vector3CrossProduct(ray.direction, edge2);
|
|
|
|
// If determinant is near zero, ray lies in plane of triangle or ray is parallel to plane of triangle
|
|
det = Vector3DotProduct(edge1, p);
|
|
|
|
// Avoid culling!
|
|
if ((det > -EPSILON) && (det < EPSILON)) return collision;
|
|
|
|
invDet = 1.0f/det;
|
|
|
|
// Calculate distance from V1 to ray origin
|
|
tv = Vector3Subtract(ray.position, p1);
|
|
|
|
// Calculate u parameter and test bound
|
|
u = Vector3DotProduct(tv, p)*invDet;
|
|
|
|
// The intersection lies outside the triangle
|
|
if ((u < 0.0f) || (u > 1.0f)) return collision;
|
|
|
|
// Prepare to test v parameter
|
|
q = Vector3CrossProduct(tv, edge1);
|
|
|
|
// Calculate V parameter and test bound
|
|
v = Vector3DotProduct(ray.direction, q)*invDet;
|
|
|
|
// The intersection lies outside the triangle
|
|
if ((v < 0.0f) || ((u + v) > 1.0f)) return collision;
|
|
|
|
t = Vector3DotProduct(edge2, q)*invDet;
|
|
|
|
if (t > EPSILON)
|
|
{
|
|
// Ray hit, get hit point and normal
|
|
collision.hit = true;
|
|
collision.distance = t;
|
|
collision.normal = Vector3Normalize(Vector3CrossProduct(edge1, edge2));
|
|
collision.point = Vector3Add(ray.position, Vector3Scale(ray.direction, t));
|
|
}
|
|
|
|
return collision;
|
|
}
|
|
|
|
// Get collision info between ray and quad
|
|
// NOTE: The points are expected to be in counter-clockwise winding
|
|
RayCollision GetRayCollisionQuad(Ray ray, Vector3 p1, Vector3 p2, Vector3 p3, Vector3 p4)
|
|
{
|
|
RayCollision collision = { 0 };
|
|
|
|
collision = GetRayCollisionTriangle(ray, p1, p2, p4);
|
|
|
|
if (!collision.hit) collision = GetRayCollisionTriangle(ray, p2, p3, p4);
|
|
|
|
return collision;
|
|
}
|
|
|
|
//----------------------------------------------------------------------------------
|
|
// Module Internal Functions Definition
|
|
//----------------------------------------------------------------------------------
|
|
#if defined(SUPPORT_FILEFORMAT_IQM) || defined(SUPPORT_FILEFORMAT_GLTF)
|
|
// Build pose from parent joints
|
|
// NOTE: Required for animations loading (required by IQM and GLTF)
|
|
static void BuildPoseFromParentJoints(BoneInfo *bones, int boneCount, Transform *transforms)
|
|
{
|
|
for (int i = 0; i < boneCount; i++)
|
|
{
|
|
if (bones[i].parent >= 0)
|
|
{
|
|
if (bones[i].parent > i)
|
|
{
|
|
TRACELOG(LOG_WARNING, "Assumes bones are toplogically sorted, but bone %d has parent %d. Skipping.", i, bones[i].parent);
|
|
continue;
|
|
}
|
|
transforms[i].rotation = QuaternionMultiply(transforms[bones[i].parent].rotation, transforms[i].rotation);
|
|
transforms[i].scale = Vector3Multiply(transforms[i].scale, transforms[bones[i].parent].scale);
|
|
transforms[i].translation = Vector3Multiply(transforms[i].translation, transforms[bones[i].parent].scale);
|
|
transforms[i].translation = Vector3RotateByQuaternion(transforms[i].translation, transforms[bones[i].parent].rotation);
|
|
transforms[i].translation = Vector3Add(transforms[i].translation, transforms[bones[i].parent].translation);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_OBJ)
|
|
// Load OBJ mesh data
|
|
//
|
|
// Keep the following information in mind when reading this
|
|
// - A mesh is created for every material present in the obj file
|
|
// - the model.meshCount is therefore the materialCount returned from tinyobj
|
|
// - the mesh is automatically triangulated by tinyobj
|
|
static Model LoadOBJ(const char *fileName)
|
|
{
|
|
tinyobj_attrib_t objAttributes = { 0 };
|
|
tinyobj_shape_t *objShapes = NULL;
|
|
unsigned int objShapeCount = 0;
|
|
|
|
tinyobj_material_t *objMaterials = NULL;
|
|
unsigned int objMaterialCount = 0;
|
|
|
|
Model model = { 0 };
|
|
model.transform = MatrixIdentity();
|
|
|
|
char *fileText = LoadFileText(fileName);
|
|
|
|
if (fileText == NULL)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Unable to read obj file", fileName);
|
|
return model;
|
|
}
|
|
|
|
char currentDir[1024] = { 0 };
|
|
strcpy(currentDir, GetWorkingDirectory()); // Save current working directory
|
|
const char *workingDir = GetDirectoryPath(fileName); // Switch to OBJ directory for material path correctness
|
|
if (CHDIR(workingDir) != 0) TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", workingDir);
|
|
|
|
unsigned int dataSize = (unsigned int)strlen(fileText);
|
|
|
|
unsigned int flags = TINYOBJ_FLAG_TRIANGULATE;
|
|
int ret = tinyobj_parse_obj(&objAttributes, &objShapes, &objShapeCount, &objMaterials, &objMaterialCount, fileText, dataSize, flags);
|
|
|
|
if (ret != TINYOBJ_SUCCESS)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: Unable to read obj data %s", fileName);
|
|
return model;
|
|
}
|
|
|
|
UnloadFileText(fileText);
|
|
|
|
unsigned int faceVertIndex = 0;
|
|
unsigned int nextShape = 1;
|
|
int lastMaterial = -1;
|
|
unsigned int meshIndex = 0;
|
|
|
|
// Count meshes
|
|
unsigned int nextShapeEnd = objAttributes.num_face_num_verts;
|
|
|
|
// See how many verts till the next shape
|
|
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
|
|
|
|
// Walk all the faces
|
|
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
|
|
{
|
|
if (faceId >= nextShapeEnd)
|
|
{
|
|
// Try to find the last vert in the next shape
|
|
nextShape++;
|
|
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
|
|
else nextShapeEnd = objAttributes.num_face_num_verts; // This is actually the total number of face verts in the file, not faces
|
|
meshIndex++;
|
|
}
|
|
else if ((lastMaterial != -1) && (objAttributes.material_ids[faceId] != lastMaterial))
|
|
{
|
|
meshIndex++; // If this is a new material, we need to allocate a new mesh
|
|
}
|
|
|
|
lastMaterial = objAttributes.material_ids[faceId];
|
|
faceVertIndex += objAttributes.face_num_verts[faceId];
|
|
}
|
|
|
|
// Allocate the base meshes and materials
|
|
model.meshCount = meshIndex + 1;
|
|
model.meshes = (Mesh *)MemAlloc(sizeof(Mesh)*model.meshCount);
|
|
|
|
if (objMaterialCount > 0)
|
|
{
|
|
model.materialCount = objMaterialCount;
|
|
model.materials = (Material *)MemAlloc(sizeof(Material)*objMaterialCount);
|
|
}
|
|
else // We must allocate at least one material
|
|
{
|
|
model.materialCount = 1;
|
|
model.materials = (Material *)MemAlloc(sizeof(Material)*1);
|
|
}
|
|
|
|
model.meshMaterial = (int *)MemAlloc(sizeof(int)*model.meshCount);
|
|
|
|
// See how many verts are in each mesh
|
|
unsigned int *localMeshVertexCounts = (unsigned int *)MemAlloc(sizeof(unsigned int)*model.meshCount);
|
|
|
|
faceVertIndex = 0;
|
|
nextShapeEnd = objAttributes.num_face_num_verts;
|
|
lastMaterial = -1;
|
|
meshIndex = 0;
|
|
unsigned int localMeshVertexCount = 0;
|
|
|
|
nextShape = 1;
|
|
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
|
|
|
|
// Walk all the faces
|
|
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
|
|
{
|
|
bool newMesh = false; // Do we need a new mesh?
|
|
if (faceId >= nextShapeEnd)
|
|
{
|
|
// Try to find the last vert in the next shape
|
|
nextShape++;
|
|
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
|
|
else nextShapeEnd = objAttributes.num_face_num_verts; // this is actually the total number of face verts in the file, not faces
|
|
|
|
newMesh = true;
|
|
}
|
|
else if ((lastMaterial != -1) && (objAttributes.material_ids[faceId] != lastMaterial))
|
|
{
|
|
newMesh = true;
|
|
}
|
|
|
|
lastMaterial = objAttributes.material_ids[faceId];
|
|
|
|
if (newMesh)
|
|
{
|
|
localMeshVertexCounts[meshIndex] = localMeshVertexCount;
|
|
|
|
localMeshVertexCount = 0;
|
|
meshIndex++;
|
|
}
|
|
|
|
faceVertIndex += objAttributes.face_num_verts[faceId];
|
|
localMeshVertexCount += objAttributes.face_num_verts[faceId];
|
|
}
|
|
|
|
localMeshVertexCounts[meshIndex] = localMeshVertexCount;
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
// Allocate the buffers for each mesh
|
|
unsigned int vertexCount = localMeshVertexCounts[i];
|
|
|
|
model.meshes[i].vertexCount = vertexCount;
|
|
model.meshes[i].triangleCount = vertexCount/3;
|
|
|
|
model.meshes[i].vertices = (float *)MemAlloc(sizeof(float)*vertexCount*3);
|
|
model.meshes[i].normals = (float *)MemAlloc(sizeof(float)*vertexCount*3);
|
|
model.meshes[i].texcoords = (float *)MemAlloc(sizeof(float)*vertexCount*2);
|
|
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
|
|
model.meshes[i].colors = (unsigned char *)MemAlloc(sizeof(unsigned char)*vertexCount*4);
|
|
#else
|
|
model.meshes[i].colors = NULL;
|
|
#endif
|
|
}
|
|
|
|
MemFree(localMeshVertexCounts);
|
|
localMeshVertexCounts = NULL;
|
|
|
|
// Fill meshes
|
|
faceVertIndex = 0;
|
|
|
|
nextShapeEnd = objAttributes.num_face_num_verts;
|
|
|
|
// See how many verts till the next shape
|
|
nextShape = 1;
|
|
if (objShapeCount > 1) nextShapeEnd = objShapes[nextShape].face_offset;
|
|
lastMaterial = -1;
|
|
meshIndex = 0;
|
|
localMeshVertexCount = 0;
|
|
|
|
// Walk all the faces
|
|
for (unsigned int faceId = 0; faceId < objAttributes.num_faces; faceId++)
|
|
{
|
|
bool newMesh = false; // Do we need a new mesh?
|
|
if (faceId >= nextShapeEnd)
|
|
{
|
|
// Try to find the last vert in the next shape
|
|
nextShape++;
|
|
if (nextShape < objShapeCount) nextShapeEnd = objShapes[nextShape].face_offset;
|
|
else nextShapeEnd = objAttributes.num_face_num_verts; // This is actually the total number of face verts in the file, not faces
|
|
newMesh = true;
|
|
}
|
|
|
|
// If this is a new material, we need to allocate a new mesh
|
|
if (lastMaterial != -1 && objAttributes.material_ids[faceId] != lastMaterial) newMesh = true;
|
|
lastMaterial = objAttributes.material_ids[faceId];
|
|
|
|
if (newMesh)
|
|
{
|
|
localMeshVertexCount = 0;
|
|
meshIndex++;
|
|
}
|
|
|
|
int matId = 0;
|
|
if ((lastMaterial >= 0) && (lastMaterial < (int)objMaterialCount)) matId = lastMaterial;
|
|
|
|
model.meshMaterial[meshIndex] = matId;
|
|
|
|
for (int f = 0; f < objAttributes.face_num_verts[faceId]; f++)
|
|
{
|
|
int vertIndex = objAttributes.faces[faceVertIndex].v_idx;
|
|
int normalIndex = objAttributes.faces[faceVertIndex].vn_idx;
|
|
int texcordIndex = objAttributes.faces[faceVertIndex].vt_idx;
|
|
|
|
for (int i = 0; i < 3; i++) model.meshes[meshIndex].vertices[localMeshVertexCount*3 + i] = objAttributes.vertices[vertIndex*3 + i];
|
|
|
|
if ((objAttributes.texcoords != NULL) && (texcordIndex != TINYOBJ_INVALID_INDEX) && (texcordIndex >= 0))
|
|
{
|
|
for (int i = 0; i < 2; i++) model.meshes[meshIndex].texcoords[localMeshVertexCount*2 + i] = objAttributes.texcoords[texcordIndex*2 + i];
|
|
model.meshes[meshIndex].texcoords[localMeshVertexCount*2 + 1] = 1.0f - model.meshes[meshIndex].texcoords[localMeshVertexCount*2 + 1];
|
|
}
|
|
else
|
|
{
|
|
model.meshes[meshIndex].texcoords[localMeshVertexCount*2 + 0] = 0.0f;
|
|
model.meshes[meshIndex].texcoords[localMeshVertexCount*2 + 1] = 0.0f;
|
|
}
|
|
|
|
if ((objAttributes.normals != NULL) && (normalIndex != TINYOBJ_INVALID_INDEX) && (normalIndex >= 0))
|
|
{
|
|
for (int i = 0; i < 3; i++) model.meshes[meshIndex].normals[localMeshVertexCount*3 + i] = objAttributes.normals[normalIndex*3 + i];
|
|
}
|
|
else
|
|
{
|
|
model.meshes[meshIndex].normals[localMeshVertexCount*3 + 0] = 0.0f;
|
|
model.meshes[meshIndex].normals[localMeshVertexCount*3 + 1] = 1.0f;
|
|
model.meshes[meshIndex].normals[localMeshVertexCount*3 + 2] = 0.0f;
|
|
}
|
|
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
|
|
for (int i = 0; i < 4; i++) model.meshes[meshIndex].colors[localMeshVertexCount*4 + i] = 255;
|
|
#endif
|
|
faceVertIndex++;
|
|
localMeshVertexCount++;
|
|
}
|
|
}
|
|
|
|
if (objMaterialCount > 0) ProcessMaterialsOBJ(model.materials, objMaterials, objMaterialCount);
|
|
else model.materials[0] = LoadMaterialDefault(); // Set default material for the mesh
|
|
|
|
tinyobj_attrib_free(&objAttributes);
|
|
tinyobj_shapes_free(objShapes, objShapeCount);
|
|
tinyobj_materials_free(objMaterials, objMaterialCount);
|
|
|
|
// Restore current working directory
|
|
if (CHDIR(currentDir) != 0)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to change working directory", currentDir);
|
|
}
|
|
|
|
return model;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_IQM)
|
|
// Load IQM mesh data
|
|
static Model LoadIQM(const char *fileName)
|
|
{
|
|
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
|
|
#define IQM_VERSION 2 // only IQM version 2 supported
|
|
|
|
#define BONE_NAME_LENGTH 32 // BoneInfo name string length
|
|
#define MESH_NAME_LENGTH 32 // Mesh name string length
|
|
#define MATERIAL_NAME_LENGTH 32 // Material name string length
|
|
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
unsigned char *fileDataPtr = fileData;
|
|
|
|
// IQM file structs
|
|
//-----------------------------------------------------------------------------------
|
|
typedef struct IQMHeader {
|
|
char magic[16];
|
|
unsigned int version;
|
|
unsigned int dataSize;
|
|
unsigned int flags;
|
|
unsigned int num_text, ofs_text;
|
|
unsigned int num_meshes, ofs_meshes;
|
|
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
|
|
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
|
|
unsigned int num_joints, ofs_joints;
|
|
unsigned int num_poses, ofs_poses;
|
|
unsigned int num_anims, ofs_anims;
|
|
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
|
|
unsigned int num_comment, ofs_comment;
|
|
unsigned int num_extensions, ofs_extensions;
|
|
} IQMHeader;
|
|
|
|
typedef struct IQMMesh {
|
|
unsigned int name;
|
|
unsigned int material;
|
|
unsigned int first_vertex, num_vertexes;
|
|
unsigned int first_triangle, num_triangles;
|
|
} IQMMesh;
|
|
|
|
typedef struct IQMTriangle {
|
|
unsigned int vertex[3];
|
|
} IQMTriangle;
|
|
|
|
typedef struct IQMJoint {
|
|
unsigned int name;
|
|
int parent;
|
|
float translate[3], rotate[4], scale[3];
|
|
} IQMJoint;
|
|
|
|
typedef struct IQMVertexArray {
|
|
unsigned int type;
|
|
unsigned int flags;
|
|
unsigned int format;
|
|
unsigned int size;
|
|
unsigned int offset;
|
|
} IQMVertexArray;
|
|
|
|
// NOTE: Below IQM structures are not used but listed for reference
|
|
/*
|
|
typedef struct IQMAdjacency {
|
|
unsigned int triangle[3];
|
|
} IQMAdjacency;
|
|
|
|
typedef struct IQMPose {
|
|
int parent;
|
|
unsigned int mask;
|
|
float channeloffset[10];
|
|
float channelscale[10];
|
|
} IQMPose;
|
|
|
|
typedef struct IQMAnim {
|
|
unsigned int name;
|
|
unsigned int first_frame, num_frames;
|
|
float framerate;
|
|
unsigned int flags;
|
|
} IQMAnim;
|
|
|
|
typedef struct IQMBounds {
|
|
float bbmin[3], bbmax[3];
|
|
float xyradius, radius;
|
|
} IQMBounds;
|
|
*/
|
|
//-----------------------------------------------------------------------------------
|
|
|
|
// IQM vertex data types
|
|
enum {
|
|
IQM_POSITION = 0,
|
|
IQM_TEXCOORD = 1,
|
|
IQM_NORMAL = 2,
|
|
IQM_TANGENT = 3, // NOTE: Tangents unused by default
|
|
IQM_BLENDINDEXES = 4,
|
|
IQM_BLENDWEIGHTS = 5,
|
|
IQM_COLOR = 6,
|
|
IQM_CUSTOM = 0x10 // NOTE: Custom vertex values unused by default
|
|
};
|
|
|
|
Model model = { 0 };
|
|
|
|
IQMMesh *imesh = NULL;
|
|
IQMTriangle *tri = NULL;
|
|
IQMVertexArray *va = NULL;
|
|
IQMJoint *ijoint = NULL;
|
|
|
|
float *vertex = NULL;
|
|
float *normal = NULL;
|
|
float *text = NULL;
|
|
char *blendi = NULL;
|
|
unsigned char *blendw = NULL;
|
|
unsigned char *color = NULL;
|
|
|
|
// In case file can not be read, return an empty model
|
|
if (fileDataPtr == NULL) return model;
|
|
|
|
const char *basePath = GetDirectoryPath(fileName);
|
|
|
|
// Read IQM header
|
|
IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
|
|
|
|
if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
|
|
UnloadFileData(fileData);
|
|
return model;
|
|
}
|
|
|
|
if (iqmHeader->version != IQM_VERSION)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
|
|
UnloadFileData(fileData);
|
|
return model;
|
|
}
|
|
|
|
//fileDataPtr += sizeof(IQMHeader); // Move file data pointer
|
|
|
|
// Meshes data processing
|
|
imesh = (IQMMesh *)RL_MALLOC(iqmHeader->num_meshes*sizeof(IQMMesh));
|
|
//fseek(iqmFile, iqmHeader->ofs_meshes, SEEK_SET);
|
|
//fread(imesh, sizeof(IQMMesh)*iqmHeader->num_meshes, 1, iqmFile);
|
|
memcpy(imesh, fileDataPtr + iqmHeader->ofs_meshes, iqmHeader->num_meshes*sizeof(IQMMesh));
|
|
|
|
model.meshCount = iqmHeader->num_meshes;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
|
|
model.materialCount = model.meshCount;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
|
|
char name[MESH_NAME_LENGTH] = { 0 };
|
|
char material[MATERIAL_NAME_LENGTH] = { 0 };
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
//fseek(iqmFile, iqmHeader->ofs_text + imesh[i].name, SEEK_SET);
|
|
//fread(name, sizeof(char), MESH_NAME_LENGTH, iqmFile);
|
|
memcpy(name, fileDataPtr + iqmHeader->ofs_text + imesh[i].name, MESH_NAME_LENGTH*sizeof(char));
|
|
|
|
//fseek(iqmFile, iqmHeader->ofs_text + imesh[i].material, SEEK_SET);
|
|
//fread(material, sizeof(char), MATERIAL_NAME_LENGTH, iqmFile);
|
|
memcpy(material, fileDataPtr + iqmHeader->ofs_text + imesh[i].material, MATERIAL_NAME_LENGTH*sizeof(char));
|
|
|
|
model.materials[i] = LoadMaterialDefault();
|
|
model.materials[i].maps[MATERIAL_MAP_ALBEDO].texture = LoadTexture(TextFormat("%s/%s", basePath, material));
|
|
|
|
model.meshMaterial[i] = i;
|
|
|
|
TRACELOG(LOG_DEBUG, "MODEL: [%s] mesh name (%s), material (%s)", fileName, name, material);
|
|
|
|
model.meshes[i].vertexCount = imesh[i].num_vertexes;
|
|
|
|
model.meshes[i].vertices = (float *)RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex positions
|
|
model.meshes[i].normals = (float *)RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float)); // Default vertex normals
|
|
model.meshes[i].texcoords = (float *)RL_CALLOC(model.meshes[i].vertexCount*2, sizeof(float)); // Default vertex texcoords
|
|
|
|
model.meshes[i].boneIds = (unsigned char *)RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(unsigned char)); // Up-to 4 bones supported!
|
|
model.meshes[i].boneWeights = (float *)RL_CALLOC(model.meshes[i].vertexCount*4, sizeof(float)); // Up-to 4 bones supported!
|
|
|
|
model.meshes[i].triangleCount = imesh[i].num_triangles;
|
|
model.meshes[i].indices = (unsigned short *)RL_CALLOC(model.meshes[i].triangleCount*3, sizeof(unsigned short));
|
|
|
|
// Animated vertex data, what we actually process for rendering
|
|
// NOTE: Animated vertex should be re-uploaded to GPU (if not using GPU skinning)
|
|
model.meshes[i].animVertices = (float *)RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
|
|
model.meshes[i].animNormals = (float *)RL_CALLOC(model.meshes[i].vertexCount*3, sizeof(float));
|
|
}
|
|
|
|
// Triangles data processing
|
|
tri = (IQMTriangle *)RL_MALLOC(iqmHeader->num_triangles*sizeof(IQMTriangle));
|
|
//fseek(iqmFile, iqmHeader->ofs_triangles, SEEK_SET);
|
|
//fread(tri, sizeof(IQMTriangle), iqmHeader->num_triangles, iqmFile);
|
|
memcpy(tri, fileDataPtr + iqmHeader->ofs_triangles, iqmHeader->num_triangles*sizeof(IQMTriangle));
|
|
|
|
for (int m = 0; m < model.meshCount; m++)
|
|
{
|
|
int tcounter = 0;
|
|
|
|
for (unsigned int i = imesh[m].first_triangle; i < (imesh[m].first_triangle + imesh[m].num_triangles); i++)
|
|
{
|
|
// IQM triangles indexes are stored in counter-clockwise, but raylib processes the index in linear order,
|
|
// expecting they point to the counter-clockwise vertex triangle, so we need to reverse triangle indexes
|
|
// NOTE: raylib renders vertex data in counter-clockwise order (standard convention) by default
|
|
model.meshes[m].indices[tcounter + 2] = tri[i].vertex[0] - imesh[m].first_vertex;
|
|
model.meshes[m].indices[tcounter + 1] = tri[i].vertex[1] - imesh[m].first_vertex;
|
|
model.meshes[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
|
|
tcounter += 3;
|
|
}
|
|
}
|
|
|
|
// Vertex arrays data processing
|
|
va = (IQMVertexArray *)RL_MALLOC(iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
|
|
//fseek(iqmFile, iqmHeader->ofs_vertexarrays, SEEK_SET);
|
|
//fread(va, sizeof(IQMVertexArray), iqmHeader->num_vertexarrays, iqmFile);
|
|
memcpy(va, fileDataPtr + iqmHeader->ofs_vertexarrays, iqmHeader->num_vertexarrays*sizeof(IQMVertexArray));
|
|
|
|
for (unsigned int i = 0; i < iqmHeader->num_vertexarrays; i++)
|
|
{
|
|
switch (va[i].type)
|
|
{
|
|
case IQM_POSITION:
|
|
{
|
|
vertex = (float *)RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
|
|
//fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
//fread(vertex, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
|
|
memcpy(vertex, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
|
|
|
|
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
|
|
{
|
|
int vCounter = 0;
|
|
for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
|
|
{
|
|
model.meshes[m].vertices[vCounter] = vertex[i];
|
|
model.meshes[m].animVertices[vCounter] = vertex[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_NORMAL:
|
|
{
|
|
normal = (float *)RL_MALLOC(iqmHeader->num_vertexes*3*sizeof(float));
|
|
//fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
//fread(normal, iqmHeader->num_vertexes*3*sizeof(float), 1, iqmFile);
|
|
memcpy(normal, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*3*sizeof(float));
|
|
|
|
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
|
|
{
|
|
int vCounter = 0;
|
|
for (unsigned int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
|
|
{
|
|
model.meshes[m].normals[vCounter] = normal[i];
|
|
model.meshes[m].animNormals[vCounter] = normal[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_TEXCOORD:
|
|
{
|
|
text = (float *)RL_MALLOC(iqmHeader->num_vertexes*2*sizeof(float));
|
|
//fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
//fread(text, iqmHeader->num_vertexes*2*sizeof(float), 1, iqmFile);
|
|
memcpy(text, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*2*sizeof(float));
|
|
|
|
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
|
|
{
|
|
int vCounter = 0;
|
|
for (unsigned int i = imesh[m].first_vertex*2; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*2; i++)
|
|
{
|
|
model.meshes[m].texcoords[vCounter] = text[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_BLENDINDEXES:
|
|
{
|
|
blendi = (char *)RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(char));
|
|
//fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
//fread(blendi, iqmHeader->num_vertexes*4*sizeof(char), 1, iqmFile);
|
|
memcpy(blendi, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(char));
|
|
|
|
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
|
|
{
|
|
int boneCounter = 0;
|
|
for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
|
|
{
|
|
model.meshes[m].boneIds[boneCounter] = blendi[i];
|
|
boneCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_BLENDWEIGHTS:
|
|
{
|
|
blendw = (unsigned char *)RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
|
|
//fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
//fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
|
|
memcpy(blendw, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
|
|
|
|
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
|
|
{
|
|
int boneCounter = 0;
|
|
for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
|
|
{
|
|
model.meshes[m].boneWeights[boneCounter] = blendw[i]/255.0f;
|
|
boneCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
case IQM_COLOR:
|
|
{
|
|
color = (unsigned char *)RL_MALLOC(iqmHeader->num_vertexes*4*sizeof(unsigned char));
|
|
//fseek(iqmFile, va[i].offset, SEEK_SET);
|
|
//fread(blendw, iqmHeader->num_vertexes*4*sizeof(unsigned char), 1, iqmFile);
|
|
memcpy(color, fileDataPtr + va[i].offset, iqmHeader->num_vertexes*4*sizeof(unsigned char));
|
|
|
|
for (unsigned int m = 0; m < iqmHeader->num_meshes; m++)
|
|
{
|
|
model.meshes[m].colors = (unsigned char *)RL_CALLOC(model.meshes[m].vertexCount*4, sizeof(unsigned char));
|
|
|
|
int vCounter = 0;
|
|
for (unsigned int i = imesh[m].first_vertex*4; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*4; i++)
|
|
{
|
|
model.meshes[m].colors[vCounter] = color[i];
|
|
vCounter++;
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// Bones (joints) data processing
|
|
ijoint = (IQMJoint *)RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
|
|
//fseek(iqmFile, iqmHeader->ofs_joints, SEEK_SET);
|
|
//fread(ijoint, sizeof(IQMJoint), iqmHeader->num_joints, iqmFile);
|
|
memcpy(ijoint, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
|
|
|
|
model.boneCount = iqmHeader->num_joints;
|
|
model.bones = (BoneInfo *)RL_MALLOC(iqmHeader->num_joints*sizeof(BoneInfo));
|
|
model.bindPose = (Transform *)RL_MALLOC(iqmHeader->num_joints*sizeof(Transform));
|
|
|
|
for (unsigned int i = 0; i < iqmHeader->num_joints; i++)
|
|
{
|
|
// Bones
|
|
model.bones[i].parent = ijoint[i].parent;
|
|
//fseek(iqmFile, iqmHeader->ofs_text + ijoint[i].name, SEEK_SET);
|
|
//fread(model.bones[i].name, sizeof(char), BONE_NAME_LENGTH, iqmFile);
|
|
memcpy(model.bones[i].name, fileDataPtr + iqmHeader->ofs_text + ijoint[i].name, BONE_NAME_LENGTH*sizeof(char));
|
|
|
|
// Bind pose (base pose)
|
|
model.bindPose[i].translation.x = ijoint[i].translate[0];
|
|
model.bindPose[i].translation.y = ijoint[i].translate[1];
|
|
model.bindPose[i].translation.z = ijoint[i].translate[2];
|
|
|
|
model.bindPose[i].rotation.x = ijoint[i].rotate[0];
|
|
model.bindPose[i].rotation.y = ijoint[i].rotate[1];
|
|
model.bindPose[i].rotation.z = ijoint[i].rotate[2];
|
|
model.bindPose[i].rotation.w = ijoint[i].rotate[3];
|
|
|
|
model.bindPose[i].scale.x = ijoint[i].scale[0];
|
|
model.bindPose[i].scale.y = ijoint[i].scale[1];
|
|
model.bindPose[i].scale.z = ijoint[i].scale[2];
|
|
}
|
|
|
|
BuildPoseFromParentJoints(model.bones, model.boneCount, model.bindPose);
|
|
|
|
for (int i = 0; i < model.meshCount; i++)
|
|
{
|
|
model.meshes[i].boneCount = model.boneCount;
|
|
model.meshes[i].boneMatrices = (Matrix *)RL_CALLOC(model.meshes[i].boneCount, sizeof(Matrix));
|
|
|
|
for (int j = 0; j < model.meshes[i].boneCount; j++)
|
|
{
|
|
model.meshes[i].boneMatrices[j] = MatrixIdentity();
|
|
}
|
|
}
|
|
|
|
UnloadFileData(fileData);
|
|
|
|
RL_FREE(imesh);
|
|
RL_FREE(tri);
|
|
RL_FREE(va);
|
|
RL_FREE(vertex);
|
|
RL_FREE(normal);
|
|
RL_FREE(text);
|
|
RL_FREE(blendi);
|
|
RL_FREE(blendw);
|
|
RL_FREE(ijoint);
|
|
RL_FREE(color);
|
|
|
|
return model;
|
|
}
|
|
|
|
// Load IQM animation data
|
|
static ModelAnimation *LoadModelAnimationsIQM(const char *fileName, int *animCount)
|
|
{
|
|
#define IQM_MAGIC "INTERQUAKEMODEL" // IQM file magic number
|
|
#define IQM_VERSION 2 // only IQM version 2 supported
|
|
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
unsigned char *fileDataPtr = fileData;
|
|
|
|
typedef struct IQMHeader {
|
|
char magic[16];
|
|
unsigned int version;
|
|
unsigned int dataSize;
|
|
unsigned int flags;
|
|
unsigned int num_text, ofs_text;
|
|
unsigned int num_meshes, ofs_meshes;
|
|
unsigned int num_vertexarrays, num_vertexes, ofs_vertexarrays;
|
|
unsigned int num_triangles, ofs_triangles, ofs_adjacency;
|
|
unsigned int num_joints, ofs_joints;
|
|
unsigned int num_poses, ofs_poses;
|
|
unsigned int num_anims, ofs_anims;
|
|
unsigned int num_frames, num_framechannels, ofs_frames, ofs_bounds;
|
|
unsigned int num_comment, ofs_comment;
|
|
unsigned int num_extensions, ofs_extensions;
|
|
} IQMHeader;
|
|
|
|
typedef struct IQMJoint {
|
|
unsigned int name;
|
|
int parent;
|
|
float translate[3], rotate[4], scale[3];
|
|
} IQMJoint;
|
|
|
|
typedef struct IQMPose {
|
|
int parent;
|
|
unsigned int mask;
|
|
float channeloffset[10];
|
|
float channelscale[10];
|
|
} IQMPose;
|
|
|
|
typedef struct IQMAnim {
|
|
unsigned int name;
|
|
unsigned int first_frame, num_frames;
|
|
float framerate;
|
|
unsigned int flags;
|
|
} IQMAnim;
|
|
|
|
// In case file can not be read, return an empty model
|
|
if (fileDataPtr == NULL) return NULL;
|
|
|
|
// Read IQM header
|
|
IQMHeader *iqmHeader = (IQMHeader *)fileDataPtr;
|
|
|
|
if (memcmp(iqmHeader->magic, IQM_MAGIC, sizeof(IQM_MAGIC)) != 0)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file is not a valid model", fileName);
|
|
UnloadFileData(fileData);
|
|
return NULL;
|
|
}
|
|
|
|
if (iqmHeader->version != IQM_VERSION)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] IQM file version not supported (%i)", fileName, iqmHeader->version);
|
|
UnloadFileData(fileData);
|
|
return NULL;
|
|
}
|
|
|
|
// Get bones data
|
|
IQMPose *poses = (IQMPose *)RL_MALLOC(iqmHeader->num_poses*sizeof(IQMPose));
|
|
//fseek(iqmFile, iqmHeader->ofs_poses, SEEK_SET);
|
|
//fread(poses, sizeof(IQMPose), iqmHeader->num_poses, iqmFile);
|
|
memcpy(poses, fileDataPtr + iqmHeader->ofs_poses, iqmHeader->num_poses*sizeof(IQMPose));
|
|
|
|
// Get animations data
|
|
*animCount = iqmHeader->num_anims;
|
|
IQMAnim *anim = (IQMAnim *)RL_MALLOC(iqmHeader->num_anims*sizeof(IQMAnim));
|
|
//fseek(iqmFile, iqmHeader->ofs_anims, SEEK_SET);
|
|
//fread(anim, sizeof(IQMAnim), iqmHeader->num_anims, iqmFile);
|
|
memcpy(anim, fileDataPtr + iqmHeader->ofs_anims, iqmHeader->num_anims*sizeof(IQMAnim));
|
|
|
|
ModelAnimation *animations = (ModelAnimation *)RL_MALLOC(iqmHeader->num_anims*sizeof(ModelAnimation));
|
|
|
|
// frameposes
|
|
unsigned short *framedata = (unsigned short *)RL_MALLOC(iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
|
|
//fseek(iqmFile, iqmHeader->ofs_frames, SEEK_SET);
|
|
//fread(framedata, sizeof(unsigned short), iqmHeader->num_frames*iqmHeader->num_framechannels, iqmFile);
|
|
memcpy(framedata, fileDataPtr + iqmHeader->ofs_frames, iqmHeader->num_frames*iqmHeader->num_framechannels*sizeof(unsigned short));
|
|
|
|
// joints
|
|
IQMJoint *joints = (IQMJoint *)RL_MALLOC(iqmHeader->num_joints*sizeof(IQMJoint));
|
|
memcpy(joints, fileDataPtr + iqmHeader->ofs_joints, iqmHeader->num_joints*sizeof(IQMJoint));
|
|
|
|
for (unsigned int a = 0; a < iqmHeader->num_anims; a++)
|
|
{
|
|
animations[a].frameCount = anim[a].num_frames;
|
|
animations[a].boneCount = iqmHeader->num_poses;
|
|
animations[a].bones = (BoneInfo *)RL_MALLOC(iqmHeader->num_poses*sizeof(BoneInfo));
|
|
animations[a].framePoses = (Transform **)RL_MALLOC(anim[a].num_frames*sizeof(Transform *));
|
|
memcpy(animations[a].name, fileDataPtr + iqmHeader->ofs_text + anim[a].name, 32); // I don't like this 32 here
|
|
TraceLog(LOG_INFO, "IQM Anim %s", animations[a].name);
|
|
// animations[a].framerate = anim.framerate; // TODO: Use animation framerate data?
|
|
|
|
for (unsigned int j = 0; j < iqmHeader->num_poses; j++)
|
|
{
|
|
// If animations and skeleton are in the same file, copy bone names to anim
|
|
if (iqmHeader->num_joints > 0)
|
|
memcpy(animations[a].bones[j].name, fileDataPtr + iqmHeader->ofs_text + joints[j].name, BONE_NAME_LENGTH*sizeof(char));
|
|
else
|
|
strcpy(animations[a].bones[j].name, "ANIMJOINTNAME"); // default bone name otherwise
|
|
animations[a].bones[j].parent = poses[j].parent;
|
|
}
|
|
|
|
for (unsigned int j = 0; j < anim[a].num_frames; j++) animations[a].framePoses[j] = (Transform *)RL_MALLOC(iqmHeader->num_poses*sizeof(Transform));
|
|
|
|
int dcounter = anim[a].first_frame*iqmHeader->num_framechannels;
|
|
|
|
for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
|
|
{
|
|
for (unsigned int i = 0; i < iqmHeader->num_poses; i++)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.x = poses[i].channeloffset[0];
|
|
|
|
if (poses[i].mask & 0x01)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.x += framedata[dcounter]*poses[i].channelscale[0];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].translation.y = poses[i].channeloffset[1];
|
|
|
|
if (poses[i].mask & 0x02)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.y += framedata[dcounter]*poses[i].channelscale[1];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].translation.z = poses[i].channeloffset[2];
|
|
|
|
if (poses[i].mask & 0x04)
|
|
{
|
|
animations[a].framePoses[frame][i].translation.z += framedata[dcounter]*poses[i].channelscale[2];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.x = poses[i].channeloffset[3];
|
|
|
|
if (poses[i].mask & 0x08)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.x += framedata[dcounter]*poses[i].channelscale[3];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.y = poses[i].channeloffset[4];
|
|
|
|
if (poses[i].mask & 0x10)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.y += framedata[dcounter]*poses[i].channelscale[4];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.z = poses[i].channeloffset[5];
|
|
|
|
if (poses[i].mask & 0x20)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.z += framedata[dcounter]*poses[i].channelscale[5];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation.w = poses[i].channeloffset[6];
|
|
|
|
if (poses[i].mask & 0x40)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation.w += framedata[dcounter]*poses[i].channelscale[6];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].scale.x = poses[i].channeloffset[7];
|
|
|
|
if (poses[i].mask & 0x80)
|
|
{
|
|
animations[a].framePoses[frame][i].scale.x += framedata[dcounter]*poses[i].channelscale[7];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].scale.y = poses[i].channeloffset[8];
|
|
|
|
if (poses[i].mask & 0x100)
|
|
{
|
|
animations[a].framePoses[frame][i].scale.y += framedata[dcounter]*poses[i].channelscale[8];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].scale.z = poses[i].channeloffset[9];
|
|
|
|
if (poses[i].mask & 0x200)
|
|
{
|
|
animations[a].framePoses[frame][i].scale.z += framedata[dcounter]*poses[i].channelscale[9];
|
|
dcounter++;
|
|
}
|
|
|
|
animations[a].framePoses[frame][i].rotation = QuaternionNormalize(animations[a].framePoses[frame][i].rotation);
|
|
}
|
|
}
|
|
|
|
// Build frameposes
|
|
for (unsigned int frame = 0; frame < anim[a].num_frames; frame++)
|
|
{
|
|
for (int i = 0; i < animations[a].boneCount; i++)
|
|
{
|
|
if (animations[a].bones[i].parent >= 0)
|
|
{
|
|
animations[a].framePoses[frame][i].rotation = QuaternionMultiply(animations[a].framePoses[frame][animations[a].bones[i].parent].rotation, animations[a].framePoses[frame][i].rotation);
|
|
animations[a].framePoses[frame][i].translation = Vector3RotateByQuaternion(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].rotation);
|
|
animations[a].framePoses[frame][i].translation = Vector3Add(animations[a].framePoses[frame][i].translation, animations[a].framePoses[frame][animations[a].bones[i].parent].translation);
|
|
animations[a].framePoses[frame][i].scale = Vector3Multiply(animations[a].framePoses[frame][i].scale, animations[a].framePoses[frame][animations[a].bones[i].parent].scale);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
UnloadFileData(fileData);
|
|
|
|
RL_FREE(joints);
|
|
RL_FREE(framedata);
|
|
RL_FREE(poses);
|
|
RL_FREE(anim);
|
|
|
|
return animations;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_GLTF)
|
|
// Load file data callback for cgltf
|
|
static cgltf_result LoadFileGLTFCallback(const struct cgltf_memory_options *memoryOptions, const struct cgltf_file_options *fileOptions, const char *path, cgltf_size *size, void **data)
|
|
{
|
|
int filesize;
|
|
unsigned char *filedata = LoadFileData(path, &filesize);
|
|
|
|
if (filedata == NULL) return cgltf_result_io_error;
|
|
|
|
*size = filesize;
|
|
*data = filedata;
|
|
|
|
return cgltf_result_success;
|
|
}
|
|
|
|
// Release file data callback for cgltf
|
|
static void ReleaseFileGLTFCallback(const struct cgltf_memory_options *memoryOptions, const struct cgltf_file_options *fileOptions, void *data)
|
|
{
|
|
UnloadFileData(data);
|
|
}
|
|
|
|
// Load image from different glTF provided methods (uri, path, buffer_view)
|
|
static Image LoadImageFromCgltfImage(cgltf_image *cgltfImage, const char *texPath)
|
|
{
|
|
Image image = { 0 };
|
|
|
|
if (cgltfImage == NULL) return image;
|
|
|
|
if (cgltfImage->uri != NULL) // Check if image data is provided as an uri (base64 or path)
|
|
{
|
|
if ((strlen(cgltfImage->uri) > 5) &&
|
|
(cgltfImage->uri[0] == 'd') &&
|
|
(cgltfImage->uri[1] == 'a') &&
|
|
(cgltfImage->uri[2] == 't') &&
|
|
(cgltfImage->uri[3] == 'a') &&
|
|
(cgltfImage->uri[4] == ':')) // Check if image is provided as base64 text data
|
|
{
|
|
// Data URI Format: data:<mediatype>;base64,<data>
|
|
|
|
// Find the comma
|
|
int i = 0;
|
|
while ((cgltfImage->uri[i] != ',') && (cgltfImage->uri[i] != 0)) i++;
|
|
|
|
if (cgltfImage->uri[i] == 0) TRACELOG(LOG_WARNING, "IMAGE: glTF data URI is not a valid image");
|
|
else
|
|
{
|
|
int base64Size = (int)strlen(cgltfImage->uri + i + 1);
|
|
while (cgltfImage->uri[i + base64Size] == '=') base64Size--; // Ignore optional paddings
|
|
int numberOfEncodedBits = base64Size*6 - (base64Size*6) % 8 ; // Encoded bits minus extra bits, so it becomes a multiple of 8 bits
|
|
int outSize = numberOfEncodedBits/8 ; // Actual encoded bytes
|
|
void *data = NULL;
|
|
|
|
cgltf_options options = { 0 };
|
|
options.file.read = LoadFileGLTFCallback;
|
|
options.file.release = ReleaseFileGLTFCallback;
|
|
cgltf_result result = cgltf_load_buffer_base64(&options, outSize, cgltfImage->uri + i + 1, &data);
|
|
|
|
if (result == cgltf_result_success)
|
|
{
|
|
image = LoadImageFromMemory(".png", (unsigned char *)data, outSize);
|
|
RL_FREE(data);
|
|
}
|
|
}
|
|
}
|
|
else // Check if image is provided as image path
|
|
{
|
|
image = LoadImage(TextFormat("%s/%s", texPath, cgltfImage->uri));
|
|
}
|
|
}
|
|
else if ((cgltfImage->buffer_view != NULL) && (cgltfImage->buffer_view->buffer->data != NULL)) // Check if image is provided as data buffer
|
|
{
|
|
unsigned char *data = (unsigned char *)RL_MALLOC(cgltfImage->buffer_view->size);
|
|
int offset = (int)cgltfImage->buffer_view->offset;
|
|
int stride = (int)cgltfImage->buffer_view->stride? (int)cgltfImage->buffer_view->stride : 1;
|
|
|
|
// Copy buffer data to memory for loading
|
|
for (unsigned int i = 0; i < cgltfImage->buffer_view->size; i++)
|
|
{
|
|
data[i] = ((unsigned char *)cgltfImage->buffer_view->buffer->data)[offset];
|
|
offset += stride;
|
|
}
|
|
|
|
// Check mime_type for image: (cgltfImage->mime_type == "image/png")
|
|
// NOTE: Detected that some models define mime_type as "image\\/png"
|
|
if ((strcmp(cgltfImage->mime_type, "image\\/png") == 0) || (strcmp(cgltfImage->mime_type, "image/png") == 0))
|
|
{
|
|
image = LoadImageFromMemory(".png", data, (int)cgltfImage->buffer_view->size);
|
|
}
|
|
else if ((strcmp(cgltfImage->mime_type, "image\\/jpeg") == 0) || (strcmp(cgltfImage->mime_type, "image/jpeg") == 0))
|
|
{
|
|
image = LoadImageFromMemory(".jpg", data, (int)cgltfImage->buffer_view->size);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: glTF image data MIME type not recognized", TextFormat("%s/%s", texPath, cgltfImage->uri));
|
|
|
|
RL_FREE(data);
|
|
}
|
|
|
|
return image;
|
|
}
|
|
|
|
// Load bone info from GLTF skin data
|
|
static BoneInfo *LoadBoneInfoGLTF(cgltf_skin skin, int *boneCount)
|
|
{
|
|
*boneCount = (int)skin.joints_count;
|
|
BoneInfo *bones = (BoneInfo *)RL_CALLOC(skin.joints_count, sizeof(BoneInfo));
|
|
|
|
for (unsigned int i = 0; i < skin.joints_count; i++)
|
|
{
|
|
cgltf_node node = *skin.joints[i];
|
|
if (node.name != NULL) strncpy(bones[i].name, node.name, sizeof(bones[i].name) - 1);
|
|
|
|
// Find parent bone index
|
|
int parentIndex = -1;
|
|
|
|
for (unsigned int j = 0; j < skin.joints_count; j++)
|
|
{
|
|
if (skin.joints[j] == node.parent)
|
|
{
|
|
parentIndex = (int)j;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bones[i].parent = parentIndex;
|
|
}
|
|
|
|
return bones;
|
|
}
|
|
|
|
// Load glTF file into model struct, .gltf and .glb supported
|
|
static Model LoadGLTF(const char *fileName)
|
|
{
|
|
/*********************************************************************************************
|
|
|
|
Function implemented by Wilhem Barbier(@wbrbr), with modifications by Tyler Bezera(@gamerfiend)
|
|
Transform handling implemented by Paul Melis (@paulmelis)
|
|
Reviewed by Ramon Santamaria (@raysan5)
|
|
|
|
FEATURES:
|
|
- Supports .gltf and .glb files
|
|
- Supports embedded (base64) or external textures
|
|
- Supports PBR metallic/roughness flow, loads material textures, values and colors
|
|
PBR specular/glossiness flow and extended texture flows not supported
|
|
- Supports multiple meshes per model (every primitives is loaded as a separate mesh)
|
|
- Supports basic animations
|
|
- Transforms, including parent-child relations, are applied on the mesh data,
|
|
but the hierarchy is not kept (as it can't be represented)
|
|
- Mesh instances in the glTF file (i.e. same mesh linked from multiple nodes)
|
|
are turned into separate raylib Meshes
|
|
|
|
RESTRICTIONS:
|
|
- Only triangle meshes supported
|
|
- Vertex attribute types and formats supported:
|
|
> Vertices (position): vec3: float
|
|
> Normals: vec3: float
|
|
> Texcoords: vec2: float
|
|
> Colors: vec4: u8, u16, f32 (normalized)
|
|
> Indices: u16, u32 (truncated to u16)
|
|
- Scenes defined in the glTF file are ignored. All nodes in the file are used
|
|
|
|
***********************************************************************************************/
|
|
|
|
// Macro to simplify attributes loading code
|
|
#define LOAD_ATTRIBUTE(accesor, numComp, srcType, dstPtr) LOAD_ATTRIBUTE_CAST(accesor, numComp, srcType, dstPtr, srcType)
|
|
|
|
#define LOAD_ATTRIBUTE_CAST(accesor, numComp, srcType, dstPtr, dstType) \
|
|
{ \
|
|
int n = 0; \
|
|
srcType *buffer = (srcType *)accesor->buffer_view->buffer->data + accesor->buffer_view->offset/sizeof(srcType) + accesor->offset/sizeof(srcType); \
|
|
for (unsigned int k = 0; k < accesor->count; k++) \
|
|
{\
|
|
for (int l = 0; l < numComp; l++) \
|
|
{\
|
|
dstPtr[numComp*k + l] = (dstType)buffer[n + l];\
|
|
}\
|
|
n += (int)(accesor->stride/sizeof(srcType));\
|
|
}\
|
|
}
|
|
|
|
Model model = { 0 };
|
|
|
|
// glTF file loading
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
|
|
if (fileData == NULL) return model;
|
|
|
|
// glTF data loading
|
|
cgltf_options options = { 0 };
|
|
options.file.read = LoadFileGLTFCallback;
|
|
options.file.release = ReleaseFileGLTFCallback;
|
|
cgltf_data *data = NULL;
|
|
cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
|
|
|
|
if (result == cgltf_result_success)
|
|
{
|
|
if (data->file_type == cgltf_file_type_glb) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glb) loaded successfully", fileName);
|
|
else if (data->file_type == cgltf_file_type_gltf) TRACELOG(LOG_INFO, "MODEL: [%s] Model basic data (glTF) loaded successfully", fileName);
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Model format not recognized", fileName);
|
|
|
|
TRACELOG(LOG_INFO, " > Meshes count: %i", data->meshes_count);
|
|
TRACELOG(LOG_INFO, " > Materials count: %i (+1 default)", data->materials_count);
|
|
TRACELOG(LOG_DEBUG, " > Buffers count: %i", data->buffers_count);
|
|
TRACELOG(LOG_DEBUG, " > Images count: %i", data->images_count);
|
|
TRACELOG(LOG_DEBUG, " > Textures count: %i", data->textures_count);
|
|
|
|
// Force reading data buffers (fills buffer_view->buffer->data)
|
|
// NOTE: If an uri is defined to base64 data or external path, it's automatically loaded
|
|
result = cgltf_load_buffers(&options, data, fileName);
|
|
if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load mesh/material buffers", fileName);
|
|
|
|
int primitivesCount = 0;
|
|
|
|
// NOTE: We will load every primitive in the glTF as a separate raylib Mesh
|
|
// Determine total number of meshes needed from the node hierarchy
|
|
for (unsigned int i = 0; i < data->nodes_count; i++)
|
|
{
|
|
cgltf_node *node = &(data->nodes[i]);
|
|
cgltf_mesh *mesh = node->mesh;
|
|
if (!mesh) continue;
|
|
|
|
for (unsigned int p = 0; p < mesh->primitives_count; p++)
|
|
{
|
|
if (mesh->primitives[p].type == cgltf_primitive_type_triangles) primitivesCount++;
|
|
}
|
|
}
|
|
TRACELOG(LOG_DEBUG, " > Primitives (triangles only) count based on hierarchy : %i", primitivesCount);
|
|
|
|
// Load our model data: meshes and materials
|
|
model.meshCount = primitivesCount;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
|
|
// NOTE: We keep an extra slot for default material, in case some mesh requires it
|
|
model.materialCount = (int)data->materials_count + 1;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.materials[0] = LoadMaterialDefault(); // Load default material (index: 0)
|
|
|
|
// Load mesh-material indices, by default all meshes are mapped to material index: 0
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
|
|
// Load materials data
|
|
//----------------------------------------------------------------------------------------------------
|
|
for (unsigned int i = 0, j = 1; i < data->materials_count; i++, j++)
|
|
{
|
|
model.materials[j] = LoadMaterialDefault();
|
|
const char *texPath = GetDirectoryPath(fileName);
|
|
|
|
// Check glTF material flow: PBR metallic/roughness flow
|
|
// NOTE: Alternatively, materials can follow PBR specular/glossiness flow
|
|
if (data->materials[i].has_pbr_metallic_roughness)
|
|
{
|
|
// Load base color texture (albedo)
|
|
if (data->materials[i].pbr_metallic_roughness.base_color_texture.texture)
|
|
{
|
|
Image imAlbedo = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.base_color_texture.texture->image, texPath);
|
|
if (imAlbedo.data != NULL)
|
|
{
|
|
model.materials[j].maps[MATERIAL_MAP_ALBEDO].texture = LoadTextureFromImage(imAlbedo);
|
|
UnloadImage(imAlbedo);
|
|
}
|
|
}
|
|
// Load base color factor (tint)
|
|
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.r = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[0]*255);
|
|
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.g = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[1]*255);
|
|
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.b = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[2]*255);
|
|
model.materials[j].maps[MATERIAL_MAP_ALBEDO].color.a = (unsigned char)(data->materials[i].pbr_metallic_roughness.base_color_factor[3]*255);
|
|
|
|
// Load metallic/roughness texture
|
|
if (data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture)
|
|
{
|
|
Image imMetallicRoughness = LoadImageFromCgltfImage(data->materials[i].pbr_metallic_roughness.metallic_roughness_texture.texture->image, texPath);
|
|
if (imMetallicRoughness.data != NULL)
|
|
{
|
|
Image imMetallic = { 0 };
|
|
Image imRoughness = { 0 };
|
|
|
|
imMetallic.data = RL_MALLOC(imMetallicRoughness.width*imMetallicRoughness.height);
|
|
imRoughness.data = RL_MALLOC(imMetallicRoughness.width*imMetallicRoughness.height);
|
|
|
|
imMetallic.width = imRoughness.width = imMetallicRoughness.width;
|
|
imMetallic.height = imRoughness.height = imMetallicRoughness.height;
|
|
|
|
imMetallic.format = imRoughness.format = PIXELFORMAT_UNCOMPRESSED_GRAYSCALE;
|
|
imMetallic.mipmaps = imRoughness.mipmaps = 1;
|
|
|
|
for (int x = 0; x < imRoughness.width; x++)
|
|
{
|
|
for (int y = 0; y < imRoughness.height; y++)
|
|
{
|
|
Color color = GetImageColor(imMetallicRoughness, x, y);
|
|
|
|
((unsigned char *)imRoughness.data)[y*imRoughness.width + x] = color.g; // Roughness color channel
|
|
((unsigned char *)imMetallic.data)[y*imMetallic.width + x] = color.b; // Metallic color channel
|
|
}
|
|
}
|
|
|
|
model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(imRoughness);
|
|
model.materials[j].maps[MATERIAL_MAP_METALNESS].texture = LoadTextureFromImage(imMetallic);
|
|
|
|
UnloadImage(imRoughness);
|
|
UnloadImage(imMetallic);
|
|
UnloadImage(imMetallicRoughness);
|
|
}
|
|
|
|
// Load metallic/roughness material properties
|
|
float roughness = data->materials[i].pbr_metallic_roughness.roughness_factor;
|
|
model.materials[j].maps[MATERIAL_MAP_ROUGHNESS].value = roughness;
|
|
|
|
float metallic = data->materials[i].pbr_metallic_roughness.metallic_factor;
|
|
model.materials[j].maps[MATERIAL_MAP_METALNESS].value = metallic;
|
|
}
|
|
|
|
// Load normal texture
|
|
if (data->materials[i].normal_texture.texture)
|
|
{
|
|
Image imNormal = LoadImageFromCgltfImage(data->materials[i].normal_texture.texture->image, texPath);
|
|
if (imNormal.data != NULL)
|
|
{
|
|
model.materials[j].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(imNormal);
|
|
UnloadImage(imNormal);
|
|
}
|
|
}
|
|
|
|
// Load ambient occlusion texture
|
|
if (data->materials[i].occlusion_texture.texture)
|
|
{
|
|
Image imOcclusion = LoadImageFromCgltfImage(data->materials[i].occlusion_texture.texture->image, texPath);
|
|
if (imOcclusion.data != NULL)
|
|
{
|
|
model.materials[j].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(imOcclusion);
|
|
UnloadImage(imOcclusion);
|
|
}
|
|
}
|
|
|
|
// Load emissive texture
|
|
if (data->materials[i].emissive_texture.texture)
|
|
{
|
|
Image imEmissive = LoadImageFromCgltfImage(data->materials[i].emissive_texture.texture->image, texPath);
|
|
if (imEmissive.data != NULL)
|
|
{
|
|
model.materials[j].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(imEmissive);
|
|
UnloadImage(imEmissive);
|
|
}
|
|
|
|
// Load emissive color factor
|
|
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.r = (unsigned char)(data->materials[i].emissive_factor[0]*255);
|
|
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.g = (unsigned char)(data->materials[i].emissive_factor[1]*255);
|
|
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.b = (unsigned char)(data->materials[i].emissive_factor[2]*255);
|
|
model.materials[j].maps[MATERIAL_MAP_EMISSION].color.a = 255;
|
|
}
|
|
}
|
|
|
|
// Other possible materials not supported by raylib pipeline:
|
|
// has_clearcoat, has_transmission, has_volume, has_ior, has specular, has_sheen
|
|
}
|
|
//----------------------------------------------------------------------------------------------------
|
|
|
|
// Load meshes data
|
|
//
|
|
// NOTE: Visit each node in the hierarchy and process any mesh linked from it
|
|
// - Each primitive within a glTF node becomes a raylib Mesh
|
|
// - The local-to-world transform of each node is used to transform the points/normals/tangents of the created Mesh(es)
|
|
// - Any glTF mesh linked from more than one Node (i.e. instancing) is turned into multiple Mesh's, as each Node will have its own transform applied
|
|
//
|
|
// WARNING: The code below disregards the scenes defined in the file, all nodes are used
|
|
//----------------------------------------------------------------------------------------------------
|
|
int meshIndex = 0;
|
|
for (unsigned int i = 0; i < data->nodes_count; i++)
|
|
{
|
|
cgltf_node *node = &(data->nodes[i]);
|
|
|
|
cgltf_mesh *mesh = node->mesh;
|
|
if (!mesh) continue;
|
|
|
|
cgltf_float worldTransform[16];
|
|
cgltf_node_transform_world(node, worldTransform);
|
|
|
|
Matrix worldMatrix = {
|
|
worldTransform[0], worldTransform[4], worldTransform[8], worldTransform[12],
|
|
worldTransform[1], worldTransform[5], worldTransform[9], worldTransform[13],
|
|
worldTransform[2], worldTransform[6], worldTransform[10], worldTransform[14],
|
|
worldTransform[3], worldTransform[7], worldTransform[11], worldTransform[15]
|
|
};
|
|
|
|
Matrix worldMatrixNormals = MatrixTranspose(MatrixInvert(worldMatrix));
|
|
|
|
for (unsigned int p = 0; p < mesh->primitives_count; p++)
|
|
{
|
|
// NOTE: We only support primitives defined by triangles
|
|
// Other alternatives: points, lines, line_strip, triangle_strip
|
|
if (mesh->primitives[p].type != cgltf_primitive_type_triangles) continue;
|
|
|
|
// NOTE: Attributes data could be provided in several data formats (8, 8u, 16u, 32...),
|
|
// Only some formats for each attribute type are supported, read info at the top of this function!
|
|
|
|
for (unsigned int j = 0; j < mesh->primitives[p].attributes_count; j++)
|
|
{
|
|
// Check the different attributes for every primitive
|
|
if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_position) // POSITION, vec3, float
|
|
{
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
// WARNING: SPECS: POSITION accessor MUST have its min and max properties defined
|
|
|
|
if (model.meshes[meshIndex].vertices != NULL) TRACELOG(LOG_WARNING, "MODEL: [%s] Vertices attribute data already loaded", fileName);
|
|
else
|
|
{
|
|
if ((attribute->type == cgltf_type_vec3) && (attribute->component_type == cgltf_component_type_r_32f))
|
|
{
|
|
// Init raylib mesh vertices to copy glTF attribute data
|
|
model.meshes[meshIndex].vertexCount = (int)attribute->count;
|
|
model.meshes[meshIndex].vertices = (float *)RL_MALLOC(attribute->count*3*sizeof(float));
|
|
|
|
// Load 3 components of float data type into mesh.vertices
|
|
LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].vertices)
|
|
|
|
// Transform the vertices
|
|
float *vertices = model.meshes[meshIndex].vertices;
|
|
for (unsigned int k = 0; k < attribute->count; k++)
|
|
{
|
|
Vector3 vt = Vector3Transform((Vector3){ vertices[3*k], vertices[3*k+1], vertices[3*k+2] }, worldMatrix);
|
|
vertices[3*k] = vt.x;
|
|
vertices[3*k+1] = vt.y;
|
|
vertices[3*k+2] = vt.z;
|
|
}
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Vertices attribute data format not supported, use vec3 float", fileName);
|
|
}
|
|
}
|
|
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_normal) // NORMAL, vec3, float
|
|
{
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
if (model.meshes[meshIndex].normals != NULL) TRACELOG(LOG_WARNING, "MODEL: [%s] Normals attribute data already loaded", fileName);
|
|
else
|
|
{
|
|
if ((attribute->type == cgltf_type_vec3) && (attribute->component_type == cgltf_component_type_r_32f))
|
|
{
|
|
// Init raylib mesh normals to copy glTF attribute data
|
|
model.meshes[meshIndex].normals = (float *)RL_MALLOC(attribute->count*3*sizeof(float));
|
|
|
|
// Load 3 components of float data type into mesh.normals
|
|
LOAD_ATTRIBUTE(attribute, 3, float, model.meshes[meshIndex].normals)
|
|
|
|
// Transform the normals
|
|
float *normals = model.meshes[meshIndex].normals;
|
|
for (unsigned int k = 0; k < attribute->count; k++)
|
|
{
|
|
Vector3 nt = Vector3Transform((Vector3){ normals[3*k], normals[3*k+1], normals[3*k+2] }, worldMatrixNormals);
|
|
normals[3*k] = nt.x;
|
|
normals[3*k+1] = nt.y;
|
|
normals[3*k+2] = nt.z;
|
|
}
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Normals attribute data format not supported, use vec3 float", fileName);
|
|
}
|
|
}
|
|
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_tangent) // TANGENT, vec4, float, w is tangent basis sign
|
|
{
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
if (model.meshes[meshIndex].tangents != NULL) TRACELOG(LOG_WARNING, "MODEL: [%s] Tangents attribute data already loaded", fileName);
|
|
else
|
|
{
|
|
if ((attribute->type == cgltf_type_vec4) && (attribute->component_type == cgltf_component_type_r_32f))
|
|
{
|
|
// Init raylib mesh tangent to copy glTF attribute data
|
|
model.meshes[meshIndex].tangents = (float *)RL_MALLOC(attribute->count*4*sizeof(float));
|
|
|
|
// Load 4 components of float data type into mesh.tangents
|
|
LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].tangents)
|
|
|
|
// Transform the tangents
|
|
float *tangents = model.meshes[meshIndex].tangents;
|
|
for (unsigned int k = 0; k < attribute->count; k++)
|
|
{
|
|
Vector3 tt = Vector3Transform((Vector3){ tangents[4*k], tangents[4*k+1], tangents[4*k+2] }, worldMatrix);
|
|
tangents[4*k] = tt.x;
|
|
tangents[4*k+1] = tt.y;
|
|
tangents[4*k+2] = tt.z;
|
|
}
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Tangents attribute data format not supported, use vec4 float", fileName);
|
|
}
|
|
}
|
|
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_texcoord) // TEXCOORD_n, vec2, float/u8n/u16n
|
|
{
|
|
// Support up to 2 texture coordinates attributes
|
|
float *texcoordPtr = NULL;
|
|
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
if (attribute->type == cgltf_type_vec2)
|
|
{
|
|
if (attribute->component_type == cgltf_component_type_r_32f) // vec2, float
|
|
{
|
|
// Init raylib mesh texcoords to copy glTF attribute data
|
|
texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float));
|
|
|
|
// Load 3 components of float data type into mesh.texcoords
|
|
LOAD_ATTRIBUTE(attribute, 2, float, texcoordPtr)
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_8u) // vec2, u8n
|
|
{
|
|
// Init raylib mesh texcoords to copy glTF attribute data
|
|
texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned char *temp = (unsigned char *)RL_MALLOC(attribute->count*2*sizeof(unsigned char));
|
|
LOAD_ATTRIBUTE(attribute, 2, unsigned char, temp);
|
|
|
|
// Convert data to raylib texcoord data type (float)
|
|
for (unsigned int t = 0; t < attribute->count*2; t++) texcoordPtr[t] = (float)temp[t]/255.0f;
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_16u) // vec2, u16n
|
|
{
|
|
// Init raylib mesh texcoords to copy glTF attribute data
|
|
texcoordPtr = (float *)RL_MALLOC(attribute->count*2*sizeof(float));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned short *temp = (unsigned short *)RL_MALLOC(attribute->count*2*sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE(attribute, 2, unsigned short, temp);
|
|
|
|
// Convert data to raylib texcoord data type (float)
|
|
for (unsigned int t = 0; t < attribute->count*2; t++) texcoordPtr[t] = (float)temp[t]/65535.0f;
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported", fileName);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Texcoords attribute data format not supported, use vec2 float", fileName);
|
|
|
|
int index = mesh->primitives[p].attributes[j].index;
|
|
if (index == 0) model.meshes[meshIndex].texcoords = texcoordPtr;
|
|
else if (index == 1) model.meshes[meshIndex].texcoords2 = texcoordPtr;
|
|
else
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] No more than 2 texture coordinates attributes supported", fileName);
|
|
if (texcoordPtr != NULL) RL_FREE(texcoordPtr);
|
|
}
|
|
}
|
|
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_color) // COLOR_n, vec3/vec4, float/u8n/u16n
|
|
{
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
// WARNING: SPECS: All components of each COLOR_n accessor element MUST be clamped to [0.0, 1.0] range
|
|
|
|
if (model.meshes[meshIndex].colors != NULL) TRACELOG(LOG_WARNING, "MODEL: [%s] Colors attribute data already loaded", fileName);
|
|
else
|
|
{
|
|
if (attribute->type == cgltf_type_vec3) // RGB
|
|
{
|
|
if (attribute->component_type == cgltf_component_type_r_8u)
|
|
{
|
|
// Init raylib mesh color to copy glTF attribute data
|
|
model.meshes[meshIndex].colors = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned char *temp = (unsigned char *)RL_MALLOC(attribute->count*3*sizeof(unsigned char));
|
|
LOAD_ATTRIBUTE(attribute, 3, unsigned char, temp);
|
|
|
|
// Convert data to raylib color data type (4 bytes)
|
|
for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3)
|
|
{
|
|
model.meshes[meshIndex].colors[c] = temp[k];
|
|
model.meshes[meshIndex].colors[c + 1] = temp[k + 1];
|
|
model.meshes[meshIndex].colors[c + 2] = temp[k + 2];
|
|
model.meshes[meshIndex].colors[c + 3] = 255;
|
|
}
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_16u)
|
|
{
|
|
// Init raylib mesh color to copy glTF attribute data
|
|
model.meshes[meshIndex].colors = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned short *temp = (unsigned short *)RL_MALLOC(attribute->count*3*sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE(attribute, 3, unsigned short, temp);
|
|
|
|
// Convert data to raylib color data type (4 bytes)
|
|
for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3)
|
|
{
|
|
model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[k]/65535.0f)*255.0f);
|
|
model.meshes[meshIndex].colors[c + 1] = (unsigned char)(((float)temp[k + 1]/65535.0f)*255.0f);
|
|
model.meshes[meshIndex].colors[c + 2] = (unsigned char)(((float)temp[k + 2]/65535.0f)*255.0f);
|
|
model.meshes[meshIndex].colors[c + 3] = 255;
|
|
}
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_32f)
|
|
{
|
|
// Init raylib mesh color to copy glTF attribute data
|
|
model.meshes[meshIndex].colors = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
float *temp = (float *)RL_MALLOC(attribute->count*3*sizeof(float));
|
|
LOAD_ATTRIBUTE(attribute, 3, float, temp);
|
|
|
|
// Convert data to raylib color data type (4 bytes)
|
|
for (unsigned int c = 0, k = 0; c < (attribute->count*4 - 3); c += 4, k += 3)
|
|
{
|
|
model.meshes[meshIndex].colors[c] = (unsigned char)(temp[k]*255.0f);
|
|
model.meshes[meshIndex].colors[c + 1] = (unsigned char)(temp[k + 1]*255.0f);
|
|
model.meshes[meshIndex].colors[c + 2] = (unsigned char)(temp[k + 2]*255.0f);
|
|
model.meshes[meshIndex].colors[c + 3] = 255;
|
|
}
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
|
|
}
|
|
else if (attribute->type == cgltf_type_vec4) // RGBA
|
|
{
|
|
if (attribute->component_type == cgltf_component_type_r_8u)
|
|
{
|
|
// Init raylib mesh color to copy glTF attribute data
|
|
model.meshes[meshIndex].colors = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
|
|
// Load 4 components of unsigned char data type into mesh.colors
|
|
LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].colors)
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_16u)
|
|
{
|
|
// Init raylib mesh color to copy glTF attribute data
|
|
model.meshes[meshIndex].colors = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned short *temp = (unsigned short *)RL_MALLOC(attribute->count*4*sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
|
|
|
|
// Convert data to raylib color data type (4 bytes)
|
|
for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(((float)temp[c]/65535.0f)*255.0f);
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_32f)
|
|
{
|
|
// Init raylib mesh color to copy glTF attribute data
|
|
model.meshes[meshIndex].colors = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
float *temp = (float *)RL_MALLOC(attribute->count*4*sizeof(float));
|
|
LOAD_ATTRIBUTE(attribute, 4, float, temp);
|
|
|
|
// Convert data to raylib color data type (4 bytes), we expect the color data normalized
|
|
for (unsigned int c = 0; c < attribute->count*4; c++) model.meshes[meshIndex].colors[c] = (unsigned char)(temp[c]*255.0f);
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Color attribute data format not supported", fileName);
|
|
}
|
|
}
|
|
|
|
// NOTE: Attributes related to animations data are processed after mesh data loading
|
|
}
|
|
|
|
// Load primitive indices data (if provided)
|
|
if ((mesh->primitives[p].indices != NULL) && (mesh->primitives[p].indices->buffer_view != NULL))
|
|
{
|
|
cgltf_accessor *attribute = mesh->primitives[p].indices;
|
|
|
|
model.meshes[meshIndex].triangleCount = (int)attribute->count/3;
|
|
|
|
if (model.meshes[meshIndex].indices != NULL) TRACELOG(LOG_WARNING, "MODEL: [%s] Indices attribute data already loaded", fileName);
|
|
else
|
|
{
|
|
if (attribute->component_type == cgltf_component_type_r_16u)
|
|
{
|
|
// Init raylib mesh indices to copy glTF attribute data
|
|
model.meshes[meshIndex].indices = (unsigned short *)RL_MALLOC(attribute->count*sizeof(unsigned short));
|
|
|
|
// Load unsigned short data type into mesh.indices
|
|
LOAD_ATTRIBUTE(attribute, 1, unsigned short, model.meshes[meshIndex].indices)
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_8u)
|
|
{
|
|
// Init raylib mesh indices to copy glTF attribute data
|
|
model.meshes[meshIndex].indices = (unsigned short *)RL_MALLOC(attribute->count*sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE_CAST(attribute, 1, unsigned char, model.meshes[meshIndex].indices, unsigned short)
|
|
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_32u)
|
|
{
|
|
// Init raylib mesh indices to copy glTF attribute data
|
|
model.meshes[meshIndex].indices = (unsigned short *)RL_MALLOC(attribute->count*sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE_CAST(attribute, 1, unsigned int, model.meshes[meshIndex].indices, unsigned short);
|
|
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data converted from u32 to u16, possible loss of data", fileName);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Indices data format not supported, use u16", fileName);
|
|
}
|
|
}
|
|
else model.meshes[meshIndex].triangleCount = model.meshes[meshIndex].vertexCount/3; // Unindexed mesh
|
|
|
|
// Assign to the primitive mesh the corresponding material index
|
|
// NOTE: If no material defined, mesh uses the already assigned default material (index: 0)
|
|
for (unsigned int m = 0; m < data->materials_count; m++)
|
|
{
|
|
// The primitive actually keeps the pointer to the corresponding material,
|
|
// raylib instead assigns to the mesh the by its index, as loaded in model.materials array
|
|
// To get the index, we check if material pointers match, and we assign the corresponding index,
|
|
// skipping index 0, the default material
|
|
if (&data->materials[m] == mesh->primitives[p].material)
|
|
{
|
|
model.meshMaterial[meshIndex] = m + 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
meshIndex++; // Move to next mesh
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------
|
|
|
|
// Load animation data
|
|
// REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skins
|
|
// REF: https://www.khronos.org/registry/glTF/specs/2.0/glTF-2.0.html#skinned-mesh-attributes
|
|
//
|
|
// LIMITATIONS:
|
|
// - Only supports 1 armature per file, and skips loading it if there are multiple armatures
|
|
// - Only supports linear interpolation (default method in Blender when checked "Always Sample Animations" when exporting a GLTF file)
|
|
// - Only supports translation/rotation/scale animation channel.path, weights not considered (i.e. morph targets)
|
|
//----------------------------------------------------------------------------------------------------
|
|
if (data->skins_count > 0)
|
|
{
|
|
cgltf_skin skin = data->skins[0];
|
|
model.bones = LoadBoneInfoGLTF(skin, &model.boneCount);
|
|
model.bindPose = (Transform *)RL_MALLOC(model.boneCount*sizeof(Transform));
|
|
|
|
for (int i = 0; i < model.boneCount; i++)
|
|
{
|
|
cgltf_node *node = skin.joints[i];
|
|
cgltf_float worldTransform[16];
|
|
cgltf_node_transform_world(node, worldTransform);
|
|
Matrix worldMatrix = {
|
|
worldTransform[0], worldTransform[4], worldTransform[8], worldTransform[12],
|
|
worldTransform[1], worldTransform[5], worldTransform[9], worldTransform[13],
|
|
worldTransform[2], worldTransform[6], worldTransform[10], worldTransform[14],
|
|
worldTransform[3], worldTransform[7], worldTransform[11], worldTransform[15]
|
|
};
|
|
MatrixDecompose(worldMatrix, &(model.bindPose[i].translation), &(model.bindPose[i].rotation), &(model.bindPose[i].scale));
|
|
}
|
|
|
|
if (data->skins_count > 1) TRACELOG(LOG_WARNING, "MODEL: [%s] can only load one skin (armature) per model, but gltf skins_count == %i", fileName, data->skins_count);
|
|
}
|
|
|
|
meshIndex = 0;
|
|
for (unsigned int i = 0; i < data->nodes_count; i++)
|
|
{
|
|
cgltf_node *node = &(data->nodes[i]);
|
|
|
|
cgltf_mesh *mesh = node->mesh;
|
|
if (!mesh) continue;
|
|
|
|
for (unsigned int p = 0; p < mesh->primitives_count; p++)
|
|
{
|
|
bool hasJoints = false;
|
|
|
|
// NOTE: We only support primitives defined by triangles
|
|
if (mesh->primitives[p].type != cgltf_primitive_type_triangles) continue;
|
|
|
|
for (unsigned int j = 0; j < mesh->primitives[p].attributes_count; j++)
|
|
{
|
|
// NOTE: JOINTS_1 + WEIGHT_1 will be used for +4 joints influencing a vertex -> Not supported by raylib
|
|
if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_joints) // JOINTS_n (vec4: 4 bones max per vertex / u8, u16)
|
|
{
|
|
hasJoints = true;
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
// NOTE: JOINTS_n can only be vec4 and u8/u16
|
|
// SPECS: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#meshes-overview
|
|
|
|
// WARNING: raylib only supports model.meshes[].boneIds as u8 (unsigned char),
|
|
// if data is provided in any other format, it is converted to supported format but
|
|
// it could imply data loss (a warning message is issued in that case)
|
|
|
|
if (attribute->type == cgltf_type_vec4)
|
|
{
|
|
if (attribute->component_type == cgltf_component_type_r_8u)
|
|
{
|
|
// Init raylib mesh boneIds to copy glTF attribute data
|
|
model.meshes[meshIndex].boneIds = (unsigned char *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char));
|
|
|
|
// Load attribute: vec4, u8 (unsigned char)
|
|
LOAD_ATTRIBUTE(attribute, 4, unsigned char, model.meshes[meshIndex].boneIds)
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_16u)
|
|
{
|
|
// Init raylib mesh boneIds to copy glTF attribute data
|
|
model.meshes[meshIndex].boneIds = (unsigned char *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned short *temp = (unsigned short *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
|
|
|
|
// Convert data to raylib color data type (4 bytes)
|
|
bool boneIdOverflowWarning = false;
|
|
for (int b = 0; b < model.meshes[meshIndex].vertexCount*4; b++)
|
|
{
|
|
if ((temp[b] > 255) && !boneIdOverflowWarning)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format (u16) overflow", fileName);
|
|
boneIdOverflowWarning = true;
|
|
}
|
|
|
|
// Despite the possible overflow, we convert data to unsigned char
|
|
model.meshes[meshIndex].boneIds[b] = (unsigned char)temp[b];
|
|
}
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported", fileName);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint attribute data format not supported", fileName);
|
|
}
|
|
else if (mesh->primitives[p].attributes[j].type == cgltf_attribute_type_weights) // WEIGHTS_n (vec4, u8n/u16n/f32)
|
|
{
|
|
cgltf_accessor *attribute = mesh->primitives[p].attributes[j].data;
|
|
|
|
if (attribute->type == cgltf_type_vec4)
|
|
{
|
|
if (attribute->component_type == cgltf_component_type_r_8u)
|
|
{
|
|
// Init raylib mesh bone weight to copy glTF attribute data
|
|
model.meshes[meshIndex].boneWeights = (float *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned char *temp = (unsigned char *)RL_MALLOC(attribute->count*4*sizeof(unsigned char));
|
|
LOAD_ATTRIBUTE(attribute, 4, unsigned char, temp);
|
|
|
|
// Convert data to raylib bone weight data type (4 bytes)
|
|
for (unsigned int b = 0; b < attribute->count*4; b++) model.meshes[meshIndex].boneWeights[b] = (float)temp[b]/255.0f;
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_16u)
|
|
{
|
|
// Init raylib mesh bone weight to copy glTF attribute data
|
|
model.meshes[meshIndex].boneWeights = (float *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
|
|
|
|
// Load data into a temp buffer to be converted to raylib data type
|
|
unsigned short *temp = (unsigned short *)RL_MALLOC(attribute->count*4*sizeof(unsigned short));
|
|
LOAD_ATTRIBUTE(attribute, 4, unsigned short, temp);
|
|
|
|
// Convert data to raylib bone weight data type
|
|
for (unsigned int b = 0; b < attribute->count*4; b++) model.meshes[meshIndex].boneWeights[b] = (float)temp[b]/65535.0f;
|
|
|
|
RL_FREE(temp);
|
|
}
|
|
else if (attribute->component_type == cgltf_component_type_r_32f)
|
|
{
|
|
// Init raylib mesh bone weight to copy glTF attribute data
|
|
model.meshes[meshIndex].boneWeights = (float *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
|
|
|
|
// Load 4 components of float data type into mesh.boneWeights
|
|
// for cgltf_attribute_type_weights we have:
|
|
|
|
// - data.meshes[0] (256 vertices)
|
|
// - 256 values, provided as cgltf_type_vec4 of float (4 byte per joint, stride 16)
|
|
LOAD_ATTRIBUTE(attribute, 4, float, model.meshes[meshIndex].boneWeights)
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Joint weight attribute data format not supported, use vec4 float", fileName);
|
|
}
|
|
}
|
|
|
|
// Check if we are animated, and the mesh was not given any bone assignments, but is the child of a bone node
|
|
// in this case we need to fully attach all the verts to the parent bone so it will animate with the bone
|
|
if (data->skins_count > 0 && !hasJoints && node->parent != NULL && node->parent->mesh == NULL)
|
|
{
|
|
int parentBoneId = -1;
|
|
for (int joint = 0; joint < model.boneCount; joint++)
|
|
{
|
|
if (data->skins[0].joints[joint] == node->parent)
|
|
{
|
|
parentBoneId = joint;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (parentBoneId >= 0)
|
|
{
|
|
model.meshes[meshIndex].boneIds = (unsigned char *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(unsigned char));
|
|
model.meshes[meshIndex].boneWeights = (float *)RL_CALLOC(model.meshes[meshIndex].vertexCount*4, sizeof(float));
|
|
|
|
for (int vertexIndex = 0; vertexIndex < model.meshes[meshIndex].vertexCount*4; vertexIndex += 4)
|
|
{
|
|
model.meshes[meshIndex].boneIds[vertexIndex] = (unsigned char)parentBoneId;
|
|
model.meshes[meshIndex].boneWeights[vertexIndex] = 1.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Animated vertex data
|
|
model.meshes[meshIndex].animVertices = (float *)RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float));
|
|
memcpy(model.meshes[meshIndex].animVertices, model.meshes[meshIndex].vertices, model.meshes[meshIndex].vertexCount*3*sizeof(float));
|
|
model.meshes[meshIndex].animNormals = (float *)RL_CALLOC(model.meshes[meshIndex].vertexCount*3, sizeof(float));
|
|
if (model.meshes[meshIndex].normals != NULL)
|
|
{
|
|
memcpy(model.meshes[meshIndex].animNormals, model.meshes[meshIndex].normals, model.meshes[meshIndex].vertexCount*3*sizeof(float));
|
|
}
|
|
|
|
// Bone Transform Matrices
|
|
model.meshes[meshIndex].boneCount = model.boneCount;
|
|
model.meshes[meshIndex].boneMatrices = (Matrix *)RL_CALLOC(model.meshes[meshIndex].boneCount, sizeof(Matrix));
|
|
|
|
for (int j = 0; j < model.meshes[meshIndex].boneCount; j++)
|
|
{
|
|
model.meshes[meshIndex].boneMatrices[j] = MatrixIdentity();
|
|
}
|
|
|
|
meshIndex++; // Move to next mesh
|
|
}
|
|
}
|
|
//----------------------------------------------------------------------------------------------------
|
|
|
|
// Free all cgltf loaded data
|
|
cgltf_free(data);
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
|
|
|
|
// WARNING: cgltf requires the file pointer available while reading data
|
|
UnloadFileData(fileData);
|
|
|
|
return model;
|
|
}
|
|
|
|
// Get interpolated pose for bone sampler at a specific time. Returns true on success
|
|
static bool GetPoseAtTimeGLTF(cgltf_interpolation_type interpolationType, cgltf_accessor *input, cgltf_accessor *output, float time, void *data)
|
|
{
|
|
if (interpolationType >= cgltf_interpolation_type_max_enum) return false;
|
|
|
|
// Input and output should have the same count
|
|
float tstart = 0.0f;
|
|
float tend = 0.0f;
|
|
int keyframe = 0; // Defaults to first pose
|
|
|
|
for (int i = 0; i < (int)input->count - 1; i++)
|
|
{
|
|
cgltf_bool r1 = cgltf_accessor_read_float(input, i, &tstart, 1);
|
|
if (!r1) return false;
|
|
|
|
cgltf_bool r2 = cgltf_accessor_read_float(input, i + 1, &tend, 1);
|
|
if (!r2) return false;
|
|
|
|
if ((tstart <= time) && (time < tend))
|
|
{
|
|
keyframe = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Constant animation, no need to interpolate
|
|
if (FloatEquals(tend, tstart)) return true;
|
|
|
|
float duration = fmaxf((tend - tstart), EPSILON);
|
|
float t = (time - tstart)/duration;
|
|
t = (t < 0.0f)? 0.0f : t;
|
|
t = (t > 1.0f)? 1.0f : t;
|
|
|
|
if (output->component_type != cgltf_component_type_r_32f) return false;
|
|
|
|
if (output->type == cgltf_type_vec3)
|
|
{
|
|
switch (interpolationType)
|
|
{
|
|
case cgltf_interpolation_type_step:
|
|
{
|
|
float tmp[3] = { 0.0f };
|
|
cgltf_accessor_read_float(output, keyframe, tmp, 3);
|
|
Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
|
|
Vector3 *r = data;
|
|
|
|
*r = v1;
|
|
} break;
|
|
case cgltf_interpolation_type_linear:
|
|
{
|
|
float tmp[3] = { 0.0f };
|
|
cgltf_accessor_read_float(output, keyframe, tmp, 3);
|
|
Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
|
|
cgltf_accessor_read_float(output, keyframe+1, tmp, 3);
|
|
Vector3 v2 = {tmp[0], tmp[1], tmp[2]};
|
|
Vector3 *r = data;
|
|
|
|
*r = Vector3Lerp(v1, v2, t);
|
|
} break;
|
|
case cgltf_interpolation_type_cubic_spline:
|
|
{
|
|
float tmp[3] = { 0.0f };
|
|
cgltf_accessor_read_float(output, 3*keyframe+1, tmp, 3);
|
|
Vector3 v1 = {tmp[0], tmp[1], tmp[2]};
|
|
cgltf_accessor_read_float(output, 3*keyframe+2, tmp, 3);
|
|
Vector3 tangent1 = {tmp[0], tmp[1], tmp[2]};
|
|
cgltf_accessor_read_float(output, 3*(keyframe+1)+1, tmp, 3);
|
|
Vector3 v2 = {tmp[0], tmp[1], tmp[2]};
|
|
cgltf_accessor_read_float(output, 3*(keyframe+1), tmp, 3);
|
|
Vector3 tangent2 = {tmp[0], tmp[1], tmp[2]};
|
|
Vector3 *r = data;
|
|
|
|
*r = Vector3CubicHermite(v1, tangent1, v2, tangent2, t);
|
|
} break;
|
|
default: break;
|
|
}
|
|
}
|
|
else if (output->type == cgltf_type_vec4)
|
|
{
|
|
// Only v4 is for rotations, so we know it's a quaternion
|
|
switch (interpolationType)
|
|
{
|
|
case cgltf_interpolation_type_step:
|
|
{
|
|
float tmp[4] = { 0.0f };
|
|
cgltf_accessor_read_float(output, keyframe, tmp, 4);
|
|
Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
|
|
Vector4 *r = data;
|
|
|
|
*r = v1;
|
|
} break;
|
|
case cgltf_interpolation_type_linear:
|
|
{
|
|
float tmp[4] = { 0.0f };
|
|
cgltf_accessor_read_float(output, keyframe, tmp, 4);
|
|
Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
|
|
cgltf_accessor_read_float(output, keyframe+1, tmp, 4);
|
|
Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]};
|
|
Vector4 *r = data;
|
|
|
|
*r = QuaternionSlerp(v1, v2, t);
|
|
} break;
|
|
case cgltf_interpolation_type_cubic_spline:
|
|
{
|
|
float tmp[4] = { 0.0f };
|
|
cgltf_accessor_read_float(output, 3*keyframe+1, tmp, 4);
|
|
Vector4 v1 = {tmp[0], tmp[1], tmp[2], tmp[3]};
|
|
cgltf_accessor_read_float(output, 3*keyframe+2, tmp, 4);
|
|
Vector4 outTangent1 = {tmp[0], tmp[1], tmp[2], 0.0f};
|
|
cgltf_accessor_read_float(output, 3*(keyframe+1)+1, tmp, 4);
|
|
Vector4 v2 = {tmp[0], tmp[1], tmp[2], tmp[3]};
|
|
cgltf_accessor_read_float(output, 3*(keyframe+1), tmp, 4);
|
|
Vector4 inTangent2 = {tmp[0], tmp[1], tmp[2], 0.0f};
|
|
Vector4 *r = data;
|
|
|
|
v1 = QuaternionNormalize(v1);
|
|
v2 = QuaternionNormalize(v2);
|
|
|
|
if (Vector4DotProduct(v1, v2) < 0.0f)
|
|
{
|
|
v2 = Vector4Negate(v2);
|
|
}
|
|
|
|
outTangent1 = Vector4Scale(outTangent1, duration);
|
|
inTangent2 = Vector4Scale(inTangent2, duration);
|
|
|
|
*r = QuaternionCubicHermiteSpline(v1, outTangent1, v2, inTangent2, t);
|
|
} break;
|
|
default: break;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#define GLTF_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms)
|
|
|
|
static ModelAnimation *LoadModelAnimationsGLTF(const char *fileName, int *animCount)
|
|
{
|
|
// glTF file loading
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
|
|
ModelAnimation *animations = NULL;
|
|
|
|
// glTF data loading
|
|
cgltf_options options = { 0 };
|
|
options.file.read = LoadFileGLTFCallback;
|
|
options.file.release = ReleaseFileGLTFCallback;
|
|
cgltf_data *data = NULL;
|
|
cgltf_result result = cgltf_parse(&options, fileData, dataSize, &data);
|
|
|
|
if (result != cgltf_result_success)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load glTF data", fileName);
|
|
*animCount = 0;
|
|
return NULL;
|
|
}
|
|
|
|
result = cgltf_load_buffers(&options, data, fileName);
|
|
if (result != cgltf_result_success) TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load animation buffers", fileName);
|
|
|
|
if (result == cgltf_result_success)
|
|
{
|
|
if (data->skins_count > 0)
|
|
{
|
|
cgltf_skin skin = data->skins[0];
|
|
*animCount = (int)data->animations_count;
|
|
animations = (ModelAnimation *)RL_CALLOC(data->animations_count, sizeof(ModelAnimation));
|
|
|
|
Transform worldTransform = { 0 };
|
|
cgltf_float cgltf_worldTransform[16] = { 0 };
|
|
cgltf_node *node = skin.joints[0];
|
|
cgltf_node_transform_world(node->parent, cgltf_worldTransform);
|
|
Matrix worldMatrix = {
|
|
cgltf_worldTransform[0], cgltf_worldTransform[4], cgltf_worldTransform[8], cgltf_worldTransform[12],
|
|
cgltf_worldTransform[1], cgltf_worldTransform[5], cgltf_worldTransform[9], cgltf_worldTransform[13],
|
|
cgltf_worldTransform[2], cgltf_worldTransform[6], cgltf_worldTransform[10], cgltf_worldTransform[14],
|
|
cgltf_worldTransform[3], cgltf_worldTransform[7], cgltf_worldTransform[11], cgltf_worldTransform[15]
|
|
};
|
|
MatrixDecompose(worldMatrix, &worldTransform.translation, &worldTransform.rotation, &worldTransform.scale);
|
|
|
|
for (unsigned int i = 0; i < data->animations_count; i++)
|
|
{
|
|
animations[i].bones = LoadBoneInfoGLTF(skin, &animations[i].boneCount);
|
|
|
|
cgltf_animation animData = data->animations[i];
|
|
|
|
struct Channels {
|
|
cgltf_animation_channel *translate;
|
|
cgltf_animation_channel *rotate;
|
|
cgltf_animation_channel *scale;
|
|
cgltf_interpolation_type interpolationType;
|
|
};
|
|
|
|
struct Channels *boneChannels = (struct Channels *)RL_CALLOC(animations[i].boneCount, sizeof(struct Channels));
|
|
float animDuration = 0.0f;
|
|
|
|
for (unsigned int j = 0; j < animData.channels_count; j++)
|
|
{
|
|
cgltf_animation_channel channel = animData.channels[j];
|
|
int boneIndex = -1;
|
|
|
|
for (unsigned int k = 0; k < skin.joints_count; k++)
|
|
{
|
|
if (animData.channels[j].target_node == skin.joints[k])
|
|
{
|
|
boneIndex = k;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (boneIndex == -1)
|
|
{
|
|
// Animation channel for a node not in the armature
|
|
continue;
|
|
}
|
|
|
|
boneChannels[boneIndex].interpolationType = animData.channels[j].sampler->interpolation;
|
|
|
|
if (animData.channels[j].sampler->interpolation != cgltf_interpolation_type_max_enum)
|
|
{
|
|
if (channel.target_path == cgltf_animation_path_type_translation)
|
|
{
|
|
boneChannels[boneIndex].translate = &animData.channels[j];
|
|
}
|
|
else if (channel.target_path == cgltf_animation_path_type_rotation)
|
|
{
|
|
boneChannels[boneIndex].rotate = &animData.channels[j];
|
|
}
|
|
else if (channel.target_path == cgltf_animation_path_type_scale)
|
|
{
|
|
boneChannels[boneIndex].scale = &animData.channels[j];
|
|
}
|
|
else
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Unsupported target_path on channel %d's sampler for animation %d. Skipping.", fileName, j, i);
|
|
}
|
|
}
|
|
else TRACELOG(LOG_WARNING, "MODEL: [%s] Invalid interpolation curve encountered for GLTF animation.", fileName);
|
|
|
|
float t = 0.0f;
|
|
cgltf_bool r = cgltf_accessor_read_float(channel.sampler->input, channel.sampler->input->count - 1, &t, 1);
|
|
|
|
if (!r)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load input time", fileName);
|
|
continue;
|
|
}
|
|
|
|
animDuration = (t > animDuration)? t : animDuration;
|
|
}
|
|
|
|
if (animData.name != NULL) strncpy(animations[i].name, animData.name, sizeof(animations[i].name) - 1);
|
|
|
|
animations[i].frameCount = (int)(animDuration*1000.0f/GLTF_ANIMDELAY) + 1;
|
|
animations[i].framePoses = (Transform **)RL_MALLOC(animations[i].frameCount*sizeof(Transform *));
|
|
|
|
for (int j = 0; j < animations[i].frameCount; j++)
|
|
{
|
|
animations[i].framePoses[j] = (Transform *)RL_MALLOC(animations[i].boneCount*sizeof(Transform));
|
|
float time = ((float) j*GLTF_ANIMDELAY)/1000.0f;
|
|
|
|
for (int k = 0; k < animations[i].boneCount; k++)
|
|
{
|
|
Vector3 translation = {skin.joints[k]->translation[0], skin.joints[k]->translation[1], skin.joints[k]->translation[2]};
|
|
Quaternion rotation = {skin.joints[k]->rotation[0], skin.joints[k]->rotation[1], skin.joints[k]->rotation[2], skin.joints[k]->rotation[3]};
|
|
Vector3 scale = {skin.joints[k]->scale[0], skin.joints[k]->scale[1], skin.joints[k]->scale[2]};
|
|
|
|
if (boneChannels[k].translate)
|
|
{
|
|
if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].translate->sampler->input, boneChannels[k].translate->sampler->output, time, &translation))
|
|
{
|
|
TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load translate pose data for bone %s", fileName, animations[i].bones[k].name);
|
|
}
|
|
}
|
|
|
|
if (boneChannels[k].rotate)
|
|
{
|
|
if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].rotate->sampler->input, boneChannels[k].rotate->sampler->output, time, &rotation))
|
|
{
|
|
TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load rotate pose data for bone %s", fileName, animations[i].bones[k].name);
|
|
}
|
|
}
|
|
|
|
if (boneChannels[k].scale)
|
|
{
|
|
if (!GetPoseAtTimeGLTF(boneChannels[k].interpolationType, boneChannels[k].scale->sampler->input, boneChannels[k].scale->sampler->output, time, &scale))
|
|
{
|
|
TRACELOG(LOG_INFO, "MODEL: [%s] Failed to load scale pose data for bone %s", fileName, animations[i].bones[k].name);
|
|
}
|
|
}
|
|
|
|
animations[i].framePoses[j][k] = (Transform){
|
|
.translation = translation,
|
|
.rotation = rotation,
|
|
.scale = scale
|
|
};
|
|
}
|
|
|
|
Transform* root = &animations[i].framePoses[j][0];
|
|
root->rotation = QuaternionMultiply(worldTransform.rotation, root->rotation);
|
|
root->scale = Vector3Multiply(root->scale, worldTransform.scale);
|
|
root->translation = Vector3Multiply(root->translation, worldTransform.scale);
|
|
root->translation = Vector3RotateByQuaternion(root->translation, worldTransform.rotation);
|
|
root->translation = Vector3Add(root->translation, worldTransform.translation);
|
|
|
|
BuildPoseFromParentJoints(animations[i].bones, animations[i].boneCount, animations[i].framePoses[j]);
|
|
}
|
|
|
|
TRACELOG(LOG_INFO, "MODEL: [%s] Loaded animation: %s (%d frames, %fs)", fileName, (animData.name != NULL)? animData.name : "NULL", animations[i].frameCount, animDuration);
|
|
RL_FREE(boneChannels);
|
|
}
|
|
}
|
|
|
|
if (data->skins_count > 1)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] expected exactly one skin to load animation data from, but found %i", fileName, data->skins_count);
|
|
}
|
|
|
|
cgltf_free(data);
|
|
}
|
|
UnloadFileData(fileData);
|
|
return animations;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_VOX)
|
|
// Load VOX (MagicaVoxel) mesh data
|
|
static Model LoadVOX(const char *fileName)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
int nbvertices = 0;
|
|
int meshescount = 0;
|
|
|
|
// Read vox file into buffer
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
|
|
if (fileData == 0)
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX file", fileName);
|
|
return model;
|
|
}
|
|
|
|
// Read and build voxarray description
|
|
VoxArray3D voxarray = { 0 };
|
|
int ret = Vox_LoadFromMemory(fileData, dataSize, &voxarray);
|
|
|
|
if (ret != VOX_SUCCESS)
|
|
{
|
|
// Error
|
|
UnloadFileData(fileData);
|
|
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load VOX data", fileName);
|
|
return model;
|
|
}
|
|
else
|
|
{
|
|
// Success: Compute meshes count
|
|
nbvertices = voxarray.vertices.used;
|
|
meshescount = 1 + (nbvertices/65536);
|
|
|
|
TRACELOG(LOG_INFO, "MODEL: [%s] VOX data loaded successfully : %i vertices/%i meshes", fileName, nbvertices, meshescount);
|
|
}
|
|
|
|
// Build models from meshes
|
|
model.transform = MatrixIdentity();
|
|
|
|
model.meshCount = meshescount;
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
|
|
model.materialCount = 1;
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount, sizeof(Material));
|
|
model.materials[0] = LoadMaterialDefault();
|
|
|
|
// Init model meshes
|
|
int verticesRemain = voxarray.vertices.used;
|
|
int verticesMax = 65532; // 5461 voxels x 12 vertices per voxel -> 65532 (must be inf 65536)
|
|
|
|
// 6*4 = 12 vertices per voxel
|
|
Vector3 *pvertices = (Vector3 *)voxarray.vertices.array;
|
|
Vector3 *pnormals = (Vector3 *)voxarray.normals.array;
|
|
Color *pcolors = (Color *)voxarray.colors.array;
|
|
|
|
unsigned short *pindices = voxarray.indices.array; // 5461*6*6 = 196596 indices max per mesh
|
|
|
|
int size = 0;
|
|
|
|
for (int i = 0; i < meshescount; i++)
|
|
{
|
|
Mesh *pmesh = &model.meshes[i];
|
|
memset(pmesh, 0, sizeof(Mesh));
|
|
|
|
// Copy vertices
|
|
pmesh->vertexCount = (int)fmin(verticesMax, verticesRemain);
|
|
|
|
size = pmesh->vertexCount*sizeof(float)*3;
|
|
pmesh->vertices = (float *)RL_MALLOC(size);
|
|
memcpy(pmesh->vertices, pvertices, size);
|
|
|
|
// Copy normals
|
|
pmesh->normals = (float *)RL_MALLOC(size);
|
|
memcpy(pmesh->normals, pnormals, size);
|
|
|
|
// Copy indices
|
|
size = voxarray.indices.used*sizeof(unsigned short);
|
|
pmesh->indices = (unsigned short *)RL_MALLOC(size);
|
|
memcpy(pmesh->indices, pindices, size);
|
|
|
|
pmesh->triangleCount = (pmesh->vertexCount/4)*2;
|
|
|
|
// Copy colors
|
|
size = pmesh->vertexCount*sizeof(Color);
|
|
pmesh->colors = (unsigned char *)RL_MALLOC(size);
|
|
memcpy(pmesh->colors, pcolors, size);
|
|
|
|
// First material index
|
|
model.meshMaterial[i] = 0;
|
|
|
|
verticesRemain -= verticesMax;
|
|
pvertices += verticesMax;
|
|
pnormals += verticesMax;
|
|
pcolors += verticesMax;
|
|
}
|
|
|
|
// Free buffers
|
|
Vox_FreeArrays(&voxarray);
|
|
UnloadFileData(fileData);
|
|
|
|
return model;
|
|
}
|
|
#endif
|
|
|
|
#if defined(SUPPORT_FILEFORMAT_M3D)
|
|
// Hook LoadFileData()/UnloadFileData() calls to M3D loaders
|
|
unsigned char *m3d_loaderhook(char *fn, unsigned int *len) { return LoadFileData((const char *)fn, (int *)len); }
|
|
void m3d_freehook(void *data) { UnloadFileData((unsigned char *)data); }
|
|
|
|
// Load M3D mesh data
|
|
static Model LoadM3D(const char *fileName)
|
|
{
|
|
Model model = { 0 };
|
|
|
|
m3d_t *m3d = NULL;
|
|
m3dp_t *prop = NULL;
|
|
int i, j, k, l, n, mi = -2, vcolor = 0;
|
|
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
|
|
if (fileData != NULL)
|
|
{
|
|
m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL);
|
|
|
|
if (!m3d || M3D_ERR_ISFATAL(m3d->errcode))
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d? m3d->errcode : -2);
|
|
if (m3d) m3d_free(m3d);
|
|
UnloadFileData(fileData);
|
|
return model;
|
|
}
|
|
else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i faces/%i materials", fileName, m3d->numface, m3d->nummaterial);
|
|
|
|
// no face? this is probably just a material library
|
|
if (!m3d->numface)
|
|
{
|
|
m3d_free(m3d);
|
|
UnloadFileData(fileData);
|
|
return model;
|
|
}
|
|
|
|
if (m3d->nummaterial > 0)
|
|
{
|
|
model.meshCount = model.materialCount = m3d->nummaterial;
|
|
TRACELOG(LOG_INFO, "MODEL: model has %i material meshes", model.materialCount);
|
|
}
|
|
else
|
|
{
|
|
model.meshCount = 1; model.materialCount = 0;
|
|
TRACELOG(LOG_INFO, "MODEL: No materials, putting all meshes in a default material");
|
|
}
|
|
|
|
// We always need a default material, so we add +1
|
|
model.materialCount++;
|
|
|
|
// Faces must be in non-decreasing materialid order. Verify that quickly, sorting them otherwise
|
|
// WARNING: Sorting is not needed, valid M3D model files should already be sorted
|
|
// Just keeping the sorting function for reference (Check PR #3363 #3385)
|
|
/*
|
|
for (i = 1; i < m3d->numface; i++)
|
|
{
|
|
if (m3d->face[i-1].materialid <= m3d->face[i].materialid) continue;
|
|
|
|
// face[i-1] > face[i]. slide face[i] lower
|
|
m3df_t slider = m3d->face[i];
|
|
j = i-1;
|
|
|
|
do
|
|
{ // face[j] > slider, face[j+1] is svailable vacant gap
|
|
m3d->face[j+1] = m3d->face[j];
|
|
j = j-1;
|
|
}
|
|
while (j >= 0 && m3d->face[j].materialid > slider.materialid);
|
|
|
|
m3d->face[j+1] = slider;
|
|
}
|
|
*/
|
|
|
|
model.meshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
model.meshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
model.materials = (Material *)RL_CALLOC(model.materialCount + 1, sizeof(Material));
|
|
|
|
// Map no material to index 0 with default shader, everything else materialid + 1
|
|
model.materials[0] = LoadMaterialDefault();
|
|
|
|
for (i = l = 0, k = -1; i < (int)m3d->numface; i++, l++)
|
|
{
|
|
// Materials are grouped together
|
|
if (mi != m3d->face[i].materialid)
|
|
{
|
|
// There should be only one material switch per material kind,
|
|
// but be bulletproof for non-optimal model files
|
|
if (k + 1 >= model.meshCount)
|
|
{
|
|
model.meshCount++;
|
|
|
|
// Create a second buffer for mesh re-allocation
|
|
Mesh *tempMeshes = (Mesh *)RL_CALLOC(model.meshCount, sizeof(Mesh));
|
|
memcpy(tempMeshes, model.meshes, (model.meshCount - 1)*sizeof(Mesh));
|
|
RL_FREE(model.meshes);
|
|
model.meshes = tempMeshes;
|
|
|
|
// Create a second buffer for material re-allocation
|
|
int *tempMeshMaterial = (int *)RL_CALLOC(model.meshCount, sizeof(int));
|
|
memcpy(tempMeshMaterial, model.meshMaterial, (model.meshCount - 1)*sizeof(int));
|
|
RL_FREE(model.meshMaterial);
|
|
model.meshMaterial = tempMeshMaterial;
|
|
}
|
|
|
|
k++;
|
|
mi = m3d->face[i].materialid;
|
|
|
|
// Only allocate colors VertexBuffer if there's a color vertex in the model for this material batch
|
|
// if all colors are fully transparent black for all verteces of this materal, then we assume no vertex colors
|
|
for (j = i, l = vcolor = 0; (j < (int)m3d->numface) && (mi == m3d->face[j].materialid); j++, l++)
|
|
{
|
|
if (!m3d->vertex[m3d->face[j].vertex[0]].color ||
|
|
!m3d->vertex[m3d->face[j].vertex[1]].color ||
|
|
!m3d->vertex[m3d->face[j].vertex[2]].color) vcolor = 1;
|
|
}
|
|
|
|
model.meshes[k].vertexCount = l*3;
|
|
model.meshes[k].triangleCount = l;
|
|
model.meshes[k].vertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
|
|
model.meshes[k].texcoords = (float *)RL_CALLOC(model.meshes[k].vertexCount*2, sizeof(float));
|
|
model.meshes[k].normals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
|
|
|
|
// If no map is provided, or we have colors defined, we allocate storage for vertex colors
|
|
// M3D specs only consider vertex colors if no material is provided, however raylib uses both and mixes the colors
|
|
if ((mi == M3D_UNDEF) || vcolor) model.meshes[k].colors = (unsigned char *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char));
|
|
|
|
// If no map is provided and we allocated vertex colors, set them to white
|
|
if ((mi == M3D_UNDEF) && (model.meshes[k].colors != NULL))
|
|
{
|
|
for (int c = 0; c < model.meshes[k].vertexCount*4; c++) model.meshes[k].colors[c] = 255;
|
|
}
|
|
|
|
if (m3d->numbone && m3d->numskin)
|
|
{
|
|
model.meshes[k].boneIds = (unsigned char *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(unsigned char));
|
|
model.meshes[k].boneWeights = (float *)RL_CALLOC(model.meshes[k].vertexCount*4, sizeof(float));
|
|
model.meshes[k].animVertices = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
|
|
model.meshes[k].animNormals = (float *)RL_CALLOC(model.meshes[k].vertexCount*3, sizeof(float));
|
|
}
|
|
|
|
model.meshMaterial[k] = mi + 1;
|
|
l = 0;
|
|
}
|
|
|
|
// Process meshes per material, add triangles
|
|
model.meshes[k].vertices[l*9 + 0] = m3d->vertex[m3d->face[i].vertex[0]].x*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 1] = m3d->vertex[m3d->face[i].vertex[0]].y*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 2] = m3d->vertex[m3d->face[i].vertex[0]].z*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 3] = m3d->vertex[m3d->face[i].vertex[1]].x*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 4] = m3d->vertex[m3d->face[i].vertex[1]].y*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 5] = m3d->vertex[m3d->face[i].vertex[1]].z*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 6] = m3d->vertex[m3d->face[i].vertex[2]].x*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 7] = m3d->vertex[m3d->face[i].vertex[2]].y*m3d->scale;
|
|
model.meshes[k].vertices[l*9 + 8] = m3d->vertex[m3d->face[i].vertex[2]].z*m3d->scale;
|
|
|
|
// Without vertex color (full transparency), we use the default color
|
|
if (model.meshes[k].colors != NULL)
|
|
{
|
|
if (m3d->vertex[m3d->face[i].vertex[0]].color & 0xff000000)
|
|
memcpy(&model.meshes[k].colors[l*12 + 0], &m3d->vertex[m3d->face[i].vertex[0]].color, 4);
|
|
if (m3d->vertex[m3d->face[i].vertex[1]].color & 0xff000000)
|
|
memcpy(&model.meshes[k].colors[l*12 + 4], &m3d->vertex[m3d->face[i].vertex[1]].color, 4);
|
|
if (m3d->vertex[m3d->face[i].vertex[2]].color & 0xff000000)
|
|
memcpy(&model.meshes[k].colors[l*12 + 8], &m3d->vertex[m3d->face[i].vertex[2]].color, 4);
|
|
}
|
|
|
|
if (m3d->face[i].texcoord[0] != M3D_UNDEF)
|
|
{
|
|
model.meshes[k].texcoords[l*6 + 0] = m3d->tmap[m3d->face[i].texcoord[0]].u;
|
|
model.meshes[k].texcoords[l*6 + 1] = 1.0f - m3d->tmap[m3d->face[i].texcoord[0]].v;
|
|
model.meshes[k].texcoords[l*6 + 2] = m3d->tmap[m3d->face[i].texcoord[1]].u;
|
|
model.meshes[k].texcoords[l*6 + 3] = 1.0f - m3d->tmap[m3d->face[i].texcoord[1]].v;
|
|
model.meshes[k].texcoords[l*6 + 4] = m3d->tmap[m3d->face[i].texcoord[2]].u;
|
|
model.meshes[k].texcoords[l*6 + 5] = 1.0f - m3d->tmap[m3d->face[i].texcoord[2]].v;
|
|
}
|
|
|
|
if (m3d->face[i].normal[0] != M3D_UNDEF)
|
|
{
|
|
model.meshes[k].normals[l*9 + 0] = m3d->vertex[m3d->face[i].normal[0]].x;
|
|
model.meshes[k].normals[l*9 + 1] = m3d->vertex[m3d->face[i].normal[0]].y;
|
|
model.meshes[k].normals[l*9 + 2] = m3d->vertex[m3d->face[i].normal[0]].z;
|
|
model.meshes[k].normals[l*9 + 3] = m3d->vertex[m3d->face[i].normal[1]].x;
|
|
model.meshes[k].normals[l*9 + 4] = m3d->vertex[m3d->face[i].normal[1]].y;
|
|
model.meshes[k].normals[l*9 + 5] = m3d->vertex[m3d->face[i].normal[1]].z;
|
|
model.meshes[k].normals[l*9 + 6] = m3d->vertex[m3d->face[i].normal[2]].x;
|
|
model.meshes[k].normals[l*9 + 7] = m3d->vertex[m3d->face[i].normal[2]].y;
|
|
model.meshes[k].normals[l*9 + 8] = m3d->vertex[m3d->face[i].normal[2]].z;
|
|
}
|
|
|
|
// Add skin (vertex / bone weight pairs)
|
|
if (m3d->numbone && m3d->numskin)
|
|
{
|
|
for (n = 0; n < 3; n++)
|
|
{
|
|
int skinid = m3d->vertex[m3d->face[i].vertex[n]].skinid;
|
|
|
|
// Check if there is a skin for this mesh, should be, just failsafe
|
|
if ((skinid != M3D_UNDEF) && (skinid < (int)m3d->numskin))
|
|
{
|
|
for (j = 0; j < 4; j++)
|
|
{
|
|
model.meshes[k].boneIds[l*12 + n*4 + j] = m3d->skin[skinid].boneid[j];
|
|
model.meshes[k].boneWeights[l*12 + n*4 + j] = m3d->skin[skinid].weight[j];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// raylib does not handle boneless meshes with skeletal animations, so
|
|
// we put all vertices without a bone into a special "no bone" bone
|
|
model.meshes[k].boneIds[l*12 + n*4] = m3d->numbone;
|
|
model.meshes[k].boneWeights[l*12 + n*4] = 1.0f;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load materials
|
|
for (i = 0; i < (int)m3d->nummaterial; i++)
|
|
{
|
|
model.materials[i + 1] = LoadMaterialDefault();
|
|
|
|
for (j = 0; j < m3d->material[i].numprop; j++)
|
|
{
|
|
prop = &m3d->material[i].prop[j];
|
|
|
|
switch (prop->type)
|
|
{
|
|
case m3dp_Kd:
|
|
{
|
|
memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].color, &prop->value.color, 4);
|
|
model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].value = 0.0f;
|
|
} break;
|
|
case m3dp_Ks:
|
|
{
|
|
memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].color, &prop->value.color, 4);
|
|
} break;
|
|
case m3dp_Ns:
|
|
{
|
|
model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].value = prop->value.fnum;
|
|
} break;
|
|
case m3dp_Ke:
|
|
{
|
|
memcpy(&model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].color, &prop->value.color, 4);
|
|
model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].value = 0.0f;
|
|
} break;
|
|
case m3dp_Pm:
|
|
{
|
|
model.materials[i + 1].maps[MATERIAL_MAP_METALNESS].value = prop->value.fnum;
|
|
} break;
|
|
case m3dp_Pr:
|
|
{
|
|
model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].value = prop->value.fnum;
|
|
} break;
|
|
case m3dp_Ps:
|
|
{
|
|
model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].color = WHITE;
|
|
model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].value = prop->value.fnum;
|
|
} break;
|
|
default:
|
|
{
|
|
if (prop->type >= 128)
|
|
{
|
|
Image image = { 0 };
|
|
image.data = m3d->texture[prop->value.textureid].d;
|
|
image.width = m3d->texture[prop->value.textureid].w;
|
|
image.height = m3d->texture[prop->value.textureid].h;
|
|
image.mipmaps = 1;
|
|
image.format = (m3d->texture[prop->value.textureid].f == 4)? PIXELFORMAT_UNCOMPRESSED_R8G8B8A8 :
|
|
((m3d->texture[prop->value.textureid].f == 3)? PIXELFORMAT_UNCOMPRESSED_R8G8B8 :
|
|
((m3d->texture[prop->value.textureid].f == 2)? PIXELFORMAT_UNCOMPRESSED_GRAY_ALPHA : PIXELFORMAT_UNCOMPRESSED_GRAYSCALE));
|
|
|
|
switch (prop->type)
|
|
{
|
|
case m3dp_map_Kd: model.materials[i + 1].maps[MATERIAL_MAP_DIFFUSE].texture = LoadTextureFromImage(image); break;
|
|
case m3dp_map_Ks: model.materials[i + 1].maps[MATERIAL_MAP_SPECULAR].texture = LoadTextureFromImage(image); break;
|
|
case m3dp_map_Ke: model.materials[i + 1].maps[MATERIAL_MAP_EMISSION].texture = LoadTextureFromImage(image); break;
|
|
case m3dp_map_Km: model.materials[i + 1].maps[MATERIAL_MAP_NORMAL].texture = LoadTextureFromImage(image); break;
|
|
case m3dp_map_Ka: model.materials[i + 1].maps[MATERIAL_MAP_OCCLUSION].texture = LoadTextureFromImage(image); break;
|
|
case m3dp_map_Pm: model.materials[i + 1].maps[MATERIAL_MAP_ROUGHNESS].texture = LoadTextureFromImage(image); break;
|
|
default: break;
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Load bones
|
|
if (m3d->numbone)
|
|
{
|
|
model.boneCount = m3d->numbone + 1;
|
|
model.bones = (BoneInfo *)RL_CALLOC(model.boneCount, sizeof(BoneInfo));
|
|
model.bindPose = (Transform *)RL_CALLOC(model.boneCount, sizeof(Transform));
|
|
|
|
for (i = 0; i < (int)m3d->numbone; i++)
|
|
{
|
|
model.bones[i].parent = m3d->bone[i].parent;
|
|
strncpy(model.bones[i].name, m3d->bone[i].name, sizeof(model.bones[i].name) - 1);
|
|
model.bindPose[i].translation.x = m3d->vertex[m3d->bone[i].pos].x*m3d->scale;
|
|
model.bindPose[i].translation.y = m3d->vertex[m3d->bone[i].pos].y*m3d->scale;
|
|
model.bindPose[i].translation.z = m3d->vertex[m3d->bone[i].pos].z*m3d->scale;
|
|
model.bindPose[i].rotation.x = m3d->vertex[m3d->bone[i].ori].x;
|
|
model.bindPose[i].rotation.y = m3d->vertex[m3d->bone[i].ori].y;
|
|
model.bindPose[i].rotation.z = m3d->vertex[m3d->bone[i].ori].z;
|
|
model.bindPose[i].rotation.w = m3d->vertex[m3d->bone[i].ori].w;
|
|
|
|
// TODO: If the orientation quaternion is not normalized, then that's encoding scaling
|
|
model.bindPose[i].rotation = QuaternionNormalize(model.bindPose[i].rotation);
|
|
model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f;
|
|
|
|
// Child bones are stored in parent bone relative space, convert that into model space
|
|
if (model.bones[i].parent >= 0)
|
|
{
|
|
model.bindPose[i].rotation = QuaternionMultiply(model.bindPose[model.bones[i].parent].rotation, model.bindPose[i].rotation);
|
|
model.bindPose[i].translation = Vector3RotateByQuaternion(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].rotation);
|
|
model.bindPose[i].translation = Vector3Add(model.bindPose[i].translation, model.bindPose[model.bones[i].parent].translation);
|
|
model.bindPose[i].scale = Vector3Multiply(model.bindPose[i].scale, model.bindPose[model.bones[i].parent].scale);
|
|
}
|
|
}
|
|
|
|
// Add a special "no bone" bone
|
|
model.bones[i].parent = -1;
|
|
strcpy(model.bones[i].name, "NO BONE");
|
|
model.bindPose[i].translation.x = 0.0f;
|
|
model.bindPose[i].translation.y = 0.0f;
|
|
model.bindPose[i].translation.z = 0.0f;
|
|
model.bindPose[i].rotation.x = 0.0f;
|
|
model.bindPose[i].rotation.y = 0.0f;
|
|
model.bindPose[i].rotation.z = 0.0f;
|
|
model.bindPose[i].rotation.w = 1.0f;
|
|
model.bindPose[i].scale.x = model.bindPose[i].scale.y = model.bindPose[i].scale.z = 1.0f;
|
|
}
|
|
|
|
// Load bone-pose default mesh into animation vertices. These will be updated when UpdateModelAnimation gets
|
|
// called, but not before, however DrawMesh uses these if they exist (so not good if they are left empty)
|
|
if (m3d->numbone && m3d->numskin)
|
|
{
|
|
for (i = 0; i < model.meshCount; i++)
|
|
{
|
|
memcpy(model.meshes[i].animVertices, model.meshes[i].vertices, model.meshes[i].vertexCount*3*sizeof(float));
|
|
memcpy(model.meshes[i].animNormals, model.meshes[i].normals, model.meshes[i].vertexCount*3*sizeof(float));
|
|
|
|
model.meshes[i].boneCount = model.boneCount;
|
|
model.meshes[i].boneMatrices = (Matrix *)RL_CALLOC(model.meshes[i].boneCount, sizeof(Matrix));
|
|
for (j = 0; j < model.meshes[i].boneCount; j++)
|
|
{
|
|
model.meshes[i].boneMatrices[j] = MatrixIdentity();
|
|
}
|
|
}
|
|
}
|
|
|
|
m3d_free(m3d);
|
|
UnloadFileData(fileData);
|
|
}
|
|
|
|
return model;
|
|
}
|
|
|
|
#define M3D_ANIMDELAY 17 // Animation frames delay, (~1000 ms/60 FPS = 16.666666* ms)
|
|
|
|
// Load M3D animation data
|
|
static ModelAnimation *LoadModelAnimationsM3D(const char *fileName, int *animCount)
|
|
{
|
|
ModelAnimation *animations = NULL;
|
|
|
|
m3d_t *m3d = NULL;
|
|
int i = 0, j = 0;
|
|
*animCount = 0;
|
|
|
|
int dataSize = 0;
|
|
unsigned char *fileData = LoadFileData(fileName, &dataSize);
|
|
|
|
if (fileData != NULL)
|
|
{
|
|
m3d = m3d_load(fileData, m3d_loaderhook, m3d_freehook, NULL);
|
|
|
|
if (!m3d || M3D_ERR_ISFATAL(m3d->errcode))
|
|
{
|
|
TRACELOG(LOG_WARNING, "MODEL: [%s] Failed to load M3D data, error code %d", fileName, m3d? m3d->errcode : -2);
|
|
UnloadFileData(fileData);
|
|
return NULL;
|
|
}
|
|
else TRACELOG(LOG_INFO, "MODEL: [%s] M3D data loaded successfully: %i animations, %i bones, %i skins", fileName,
|
|
m3d->numaction, m3d->numbone, m3d->numskin);
|
|
|
|
// No animation or bone+skin?
|
|
if (!m3d->numaction || !m3d->numbone || !m3d->numskin)
|
|
{
|
|
m3d_free(m3d);
|
|
UnloadFileData(fileData);
|
|
return NULL;
|
|
}
|
|
|
|
animations = (ModelAnimation *)RL_CALLOC(m3d->numaction, sizeof(ModelAnimation));
|
|
*animCount = m3d->numaction;
|
|
|
|
for (unsigned int a = 0; a < m3d->numaction; a++)
|
|
{
|
|
animations[a].frameCount = m3d->action[a].durationmsec/M3D_ANIMDELAY;
|
|
animations[a].boneCount = m3d->numbone + 1;
|
|
animations[a].bones = (BoneInfo *)RL_MALLOC((m3d->numbone + 1)*sizeof(BoneInfo));
|
|
animations[a].framePoses = (Transform **)RL_MALLOC(animations[a].frameCount*sizeof(Transform *));
|
|
strncpy(animations[a].name, m3d->action[a].name, sizeof(animations[a].name) - 1);
|
|
|
|
TRACELOG(LOG_INFO, "MODEL: [%s] animation #%i: %i msec, %i frames", fileName, a, m3d->action[a].durationmsec, animations[a].frameCount);
|
|
|
|
for (i = 0; i < (int)m3d->numbone; i++)
|
|
{
|
|
animations[a].bones[i].parent = m3d->bone[i].parent;
|
|
strncpy(animations[a].bones[i].name, m3d->bone[i].name, sizeof(animations[a].bones[i].name) - 1);
|
|
}
|
|
|
|
// A special, never transformed "no bone" bone, used for boneless vertices
|
|
animations[a].bones[i].parent = -1;
|
|
strcpy(animations[a].bones[i].name, "NO BONE");
|
|
|
|
// M3D stores frames at arbitrary intervals with sparse skeletons. We need full skeletons at
|
|
// regular intervals, so let the M3D SDK do the heavy lifting and calculate interpolated bones
|
|
for (i = 0; i < animations[a].frameCount; i++)
|
|
{
|
|
animations[a].framePoses[i] = (Transform *)RL_MALLOC((m3d->numbone + 1)*sizeof(Transform));
|
|
|
|
m3db_t *pose = m3d_pose(m3d, a, i*M3D_ANIMDELAY);
|
|
|
|
if (pose != NULL)
|
|
{
|
|
for (j = 0; j < (int)m3d->numbone; j++)
|
|
{
|
|
animations[a].framePoses[i][j].translation.x = m3d->vertex[pose[j].pos].x*m3d->scale;
|
|
animations[a].framePoses[i][j].translation.y = m3d->vertex[pose[j].pos].y*m3d->scale;
|
|
animations[a].framePoses[i][j].translation.z = m3d->vertex[pose[j].pos].z*m3d->scale;
|
|
animations[a].framePoses[i][j].rotation.x = m3d->vertex[pose[j].ori].x;
|
|
animations[a].framePoses[i][j].rotation.y = m3d->vertex[pose[j].ori].y;
|
|
animations[a].framePoses[i][j].rotation.z = m3d->vertex[pose[j].ori].z;
|
|
animations[a].framePoses[i][j].rotation.w = m3d->vertex[pose[j].ori].w;
|
|
animations[a].framePoses[i][j].rotation = QuaternionNormalize(animations[a].framePoses[i][j].rotation);
|
|
animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f;
|
|
|
|
// Child bones are stored in parent bone relative space, convert that into model space
|
|
if (animations[a].bones[j].parent >= 0)
|
|
{
|
|
animations[a].framePoses[i][j].rotation = QuaternionMultiply(animations[a].framePoses[i][animations[a].bones[j].parent].rotation, animations[a].framePoses[i][j].rotation);
|
|
animations[a].framePoses[i][j].translation = Vector3RotateByQuaternion(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].rotation);
|
|
animations[a].framePoses[i][j].translation = Vector3Add(animations[a].framePoses[i][j].translation, animations[a].framePoses[i][animations[a].bones[j].parent].translation);
|
|
animations[a].framePoses[i][j].scale = Vector3Multiply(animations[a].framePoses[i][j].scale, animations[a].framePoses[i][animations[a].bones[j].parent].scale);
|
|
}
|
|
}
|
|
|
|
// Default transform for the "no bone" bone
|
|
animations[a].framePoses[i][j].translation.x = 0.0f;
|
|
animations[a].framePoses[i][j].translation.y = 0.0f;
|
|
animations[a].framePoses[i][j].translation.z = 0.0f;
|
|
animations[a].framePoses[i][j].rotation.x = 0.0f;
|
|
animations[a].framePoses[i][j].rotation.y = 0.0f;
|
|
animations[a].framePoses[i][j].rotation.z = 0.0f;
|
|
animations[a].framePoses[i][j].rotation.w = 1.0f;
|
|
animations[a].framePoses[i][j].scale.x = animations[a].framePoses[i][j].scale.y = animations[a].framePoses[i][j].scale.z = 1.0f;
|
|
RL_FREE(pose);
|
|
}
|
|
}
|
|
}
|
|
|
|
m3d_free(m3d);
|
|
UnloadFileData(fileData);
|
|
}
|
|
|
|
return animations;
|
|
}
|
|
#endif
|
|
|
|
#endif // SUPPORT_MODULE_RMODELS
|