Compare commits

...

14 Commits

Author SHA1 Message Date
Ben Visness
e210d8729b Add HMM_RotateV2 2023-11-03 11:34:49 -05:00
dev_dwarf
a1c84320f9 Style tweaks to RotateV3Q + axis angle variant 2023-10-31 13:09:20 -06:00
Olivier Perret
8df5da57f5 Clean trailing whitespace in HandmadeMath.h 2023-10-29 18:33:31 +01:00
Olivier Perret
149c18d449 Add HMM_RotateQV3(), for rotating a vec3 by a quaternion 2023-10-29 18:32:09 +01:00
Olivier Perret
98748f702c Provide const versions of operator[] (#166)
This makes it possible use to do something like

const HMM_Vec3 v{1,2,3};
float val = v[1];
2023-10-27 13:15:58 -05:00
Logan Forman
6cf6226c57 remove most references from operators (#164) 2023-08-05 12:57:56 -04:00
Ben Visness
aaa767bf0b Update README.md 2023-02-20 13:29:24 -06:00
Ben Visness
422bc588e9 Fix inverse perspective 2023-02-20 13:03:46 -06:00
Ben Visness
beb837a3c6 Tweak docs, add tests, find bugs 2023-02-02 19:18:24 -06:00
Ben Visness
50ab55b3bc Rewrite the update tool in Python
Less than 200 lines, properly cross platform, actually outputs error
messages if things break, better flag handling. Everyone has
Python anyway.
2023-01-27 03:39:38 -06:00
Ben Visness
22d743ce3d Change naming convention for NO/ZO (the update tool needs updating) 2023-01-26 22:27:09 -06:00
Logan Forman
d4918a514e Drop Projection Matrix Config; Make explicit. (#154)
* Add N0/Z0 projection

Remove configuration macro

* Update update_hmm.c

Co-authored-by: Ben Visness <bvisness@users.noreply.github.com>
2023-01-26 21:01:31 -06:00
Logan Forman
37aa3fa6a0 Unroll sse (#153)
* Unroll loops and SSE consistency

* Fix tranposes
2023-01-26 20:56:28 -06:00
dev_dwarf
7e493a5481 Fix LH perspective matrix
Off by a sign before.
2023-01-26 19:55:21 -06:00
12 changed files with 918 additions and 1165 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,36 +1,43 @@
# Handmade Math
A single-file, cross-platform, public domain game math library for both C and C++. Supports vectors, matrices, quaternions, and all the utilities you'd expect.
A single-file, cross-platform, public domain graphics math library for both C and C++. Supports vectors, matrices, quaternions, and all the utilities you'd expect.
To get started, go download [the latest release](https://github.com/HandmadeMath/HandmadeMath/releases).
> If you are upgrading to version 2 of Handmade Math, save yourself some time and use our [automatic update tool](./update).
> If you are upgrading to Handmade Math 2.0, save yourself some time and use our [automatic update tool](./update).
Here's what sets Handmade Math apart:
- **A simple single-header library.** Just `#include "HandmadeMath.h"`.
- **Supports both C and C++.** While libraries like GLM only support C++, Handmade Math supports both C and C++, with convenient overloads wherever possible. For example, C++ codebases get operator overloading, and C11 codebases get `_Generic` versions of common operations.
- **Supports all graphics APIs.** Handmade Math has left- and right-handed versions of each operation, as well as support for zero-to-one and negative-one-to-one NDC conventions.
- **Swizzling, sort of.** Handmade Math's vector types use unions to provide several ways of accessing the same underlying data. For example, the components of an `HMM_Vec3` can be accessed as `XYZ`, `RGB`, or `UVW` - or subsets can be accessed like `.XY` and `.YZ`.
- **Your choice of angle unit.** While Handmade Math uses radians by default, you can configure it to use degrees or [turns](https://www.computerenhance.com/p/turns-are-better-than-radians) instead.
## Usage
Simply `#include "HandmadeMath.h"`. All functions are `static inline`, so no need for an "implementation" file as with some other single-header libraries.
Simply `#include "HandmadeMath.h"`. All functions are `static inline`, so there is no need for an "implementation" file as with some other single-header libraries.
A few config options are available. See the header comment in [the source](./HandmadeMath.h) for details.
## FAQ
**What conventions does HMM use, e.g. row vs. column major, handedness, etc.?**
Handmade Math's matrices are column-major, i.e. data is stored by columns, then rows. It also assumes column vectors, i.e. vectors are written vertically and matrix-vector multiplication is `M * V` instead of `V * M`. For more information, see [this issue](https://github.com/HandmadeMath/HandmadeMath/issues/124#issuecomment-775737253).
For other properties, we provide variants for each common convention. Functions that care about handedness have left-handed (`LH`) and right-handed (`RH`) variants. Projection functions have zero-to-one (`ZO`) and negative-one-to-one (`NO`) variants for different NDC conventions.
**What if I don't want the `HMM_` prefix?**
Do a find and replace in the library source.
**What's the license?**
This library is in the public domain. You can do whatever you want with it.
**Where can I contact you to ask questions?**
Feel free to make Github issues for any questions, concerns, or problems you encounter.
**What if I don't want the `HMM_` prefix?**
Do a find and replace in the library source.
Feel free to make GitHub issues for any questions, concerns, or problems you encounter.

View File

@@ -148,25 +148,35 @@ INITIALIZER(_HMT_COVERCASE_FUNCNAME_INIT(name)) { \
} \
} \
#define HMT_EXPECT_FLOAT_EQ(_actual, _expected) { \
#define HMT_EXPECT_FLOAT_EQ_MSG(_actual, _expected, _msg) { \
_HMT_CASE_START(); \
float actual = (_actual); \
float diff = actual - (_expected); \
if (diff < -FLT_EPSILON || FLT_EPSILON < diff) { \
_HMT_CASE_FAIL(); \
printf("Expected %f, got %f", (_expected), actual); \
if ((_msg)[0] == 0) { \
printf("Expected %f, got %f (error: %.9g)", (_expected), actual, diff); \
} else { \
printf("%s: Expected %f, got %f (error: %.9g)", (_msg), (_expected), actual, diff); \
} \
} \
} \
}
#define HMT_EXPECT_FLOAT_EQ(_actual, _expected) HMT_EXPECT_FLOAT_EQ_MSG(_actual, _expected, "");
#define HMT_EXPECT_NEAR(_actual, _expected, _epsilon) { \
#define HMT_EXPECT_NEAR_MSG(_actual, _expected, _epsilon, _msg) { \
_HMT_CASE_START(); \
float actual = (_actual); \
float diff = actual - (_expected); \
if (diff < -(_epsilon) || (_epsilon) < diff) { \
_HMT_CASE_FAIL(); \
printf("Expected %f, got %f", (_expected), actual); \
if ((_msg)[0] == 0) { \
printf("Expected %f, got %f", (_expected), actual); \
} else { \
printf("%s: Expected %f, got %f", (_msg), (_expected), actual); \
} \
} \
} \
}
#define HMT_EXPECT_NEAR(_actual, _expected, _epsilon) HMT_EXPECT_NEAR_MSG(_actual, _expected, _epsilon, "");
#define HMT_EXPECT_LT(_actual, _expected) { \
_HMT_CASE_START(); \
@@ -192,7 +202,46 @@ INITIALIZER(_HMT_COVERCASE_FUNCNAME_INIT(name)) { \
#define EXPECT_TRUE(_actual) HMT_EXPECT_TRUE(_actual)
#define EXPECT_FALSE(_actual) HMT_EXPECT_FALSE(_actual)
#define EXPECT_FLOAT_EQ(_actual, _expected) HMT_EXPECT_FLOAT_EQ(_actual, _expected)
#define EXPECT_V4_EQ(_actual, _expected) \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.X, _expected.X, "incorrect X"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Y, _expected.Y, "incorrect Y"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Z, _expected.Z, "incorrect Z"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.W, _expected.W, "incorrect W");
#define EXPECT_M4_EQ(_actual, _expected) \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[0][0], _expected.Elements[0][0], "incorrect [0][0]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[0][1], _expected.Elements[0][1], "incorrect [0][1]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[0][2], _expected.Elements[0][2], "incorrect [0][2]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[0][3], _expected.Elements[0][3], "incorrect [0][3]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[1][0], _expected.Elements[1][0], "incorrect [1][0]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[1][1], _expected.Elements[1][1], "incorrect [1][1]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[1][2], _expected.Elements[1][2], "incorrect [1][2]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[1][3], _expected.Elements[1][3], "incorrect [1][3]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[2][0], _expected.Elements[2][0], "incorrect [2][0]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[2][1], _expected.Elements[2][1], "incorrect [2][1]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[2][2], _expected.Elements[2][2], "incorrect [2][2]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[2][3], _expected.Elements[2][3], "incorrect [2][3]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[3][0], _expected.Elements[3][0], "incorrect [3][0]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[3][1], _expected.Elements[3][1], "incorrect [3][1]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[3][2], _expected.Elements[3][2], "incorrect [3][2]"); \
HMT_EXPECT_FLOAT_EQ_MSG(_actual.Elements[3][3], _expected.Elements[3][3], "incorrect [3][3]");
#define EXPECT_NEAR(_actual, _expected, _epsilon) HMT_EXPECT_NEAR(_actual, _expected, _epsilon)
#define EXPECT_M4_NEAR(_actual, _expected, _epsilon) \
HMT_EXPECT_NEAR_MSG(_actual.Elements[0][0], _expected.Elements[0][0], _epsilon, "incorrect [0][0]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[0][1], _expected.Elements[0][1], _epsilon, "incorrect [0][1]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[0][2], _expected.Elements[0][2], _epsilon, "incorrect [0][2]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[0][3], _expected.Elements[0][3], _epsilon, "incorrect [0][3]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[1][0], _expected.Elements[1][0], _epsilon, "incorrect [1][0]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[1][1], _expected.Elements[1][1], _epsilon, "incorrect [1][1]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[1][2], _expected.Elements[1][2], _epsilon, "incorrect [1][2]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[1][3], _expected.Elements[1][3], _epsilon, "incorrect [1][3]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[2][0], _expected.Elements[2][0], _epsilon, "incorrect [2][0]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[2][1], _expected.Elements[2][1], _epsilon, "incorrect [2][1]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[2][2], _expected.Elements[2][2], _epsilon, "incorrect [2][2]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[2][3], _expected.Elements[2][3], _epsilon, "incorrect [2][3]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[3][0], _expected.Elements[3][0], _epsilon, "incorrect [3][0]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[3][1], _expected.Elements[3][1], _epsilon, "incorrect [3][1]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[3][2], _expected.Elements[3][2], _epsilon, "incorrect [3][2]"); \
HMT_EXPECT_NEAR_MSG(_actual.Elements[3][3], _expected.Elements[3][3], _epsilon, "incorrect [3][3]");
#define EXPECT_LT(_actual, _expected) HMT_EXPECT_LT(_actual, _expected)
#define EXPECT_GT(_actual, _expected) HMT_EXPECT_GT(_actual, _expected)
#endif // HMT_SAFE_MACROS

View File

@@ -129,22 +129,22 @@ TEST(InvMatrix, InvGeneral)
float Det = HMM_DeterminantM4(Matrix);
EXPECT_FLOAT_EQ(Det, -80.0f);
EXPECT_FLOAT_EQ(Result.Elements[0][0], Expect.Elements[0][0]);
EXPECT_FLOAT_EQ(Result.Elements[0][1], Expect.Elements[0][1]);
EXPECT_FLOAT_EQ(Result.Elements[0][2], Expect.Elements[0][2]);
EXPECT_FLOAT_EQ(Result.Elements[0][3], Expect.Elements[0][3]);
EXPECT_FLOAT_EQ(Result.Elements[1][0], Expect.Elements[1][0]);
EXPECT_FLOAT_EQ(Result.Elements[1][1], Expect.Elements[1][1]);
EXPECT_FLOAT_EQ(Result.Elements[1][2], Expect.Elements[1][2]);
EXPECT_FLOAT_EQ(Result.Elements[1][3], Expect.Elements[1][3]);
EXPECT_FLOAT_EQ(Result.Elements[2][0], Expect.Elements[2][0]);
EXPECT_FLOAT_EQ(Result.Elements[2][1], Expect.Elements[2][1]);
EXPECT_FLOAT_EQ(Result.Elements[2][2], Expect.Elements[2][2]);
EXPECT_FLOAT_EQ(Result.Elements[2][3], Expect.Elements[2][3]);
EXPECT_FLOAT_EQ(Result.Elements[3][0], Expect.Elements[3][0]);
EXPECT_FLOAT_EQ(Result.Elements[3][1], Expect.Elements[3][1]);
EXPECT_FLOAT_EQ(Result.Elements[3][2], Expect.Elements[3][2]);
EXPECT_FLOAT_EQ(Result.Elements[3][3], Expect.Elements[3][3]);
EXPECT_NEAR(Result.Elements[0][0], Expect.Elements[0][0], 0.00001f);
EXPECT_NEAR(Result.Elements[0][1], Expect.Elements[0][1], 0.00001f);
EXPECT_NEAR(Result.Elements[0][2], Expect.Elements[0][2], 0.00001f);
EXPECT_NEAR(Result.Elements[0][3], Expect.Elements[0][3], 0.00001f);
EXPECT_NEAR(Result.Elements[1][0], Expect.Elements[1][0], 0.00001f);
EXPECT_NEAR(Result.Elements[1][1], Expect.Elements[1][1], 0.00001f);
EXPECT_NEAR(Result.Elements[1][2], Expect.Elements[1][2], 0.00001f);
EXPECT_NEAR(Result.Elements[1][3], Expect.Elements[1][3], 0.00001f);
EXPECT_NEAR(Result.Elements[2][0], Expect.Elements[2][0], 0.00001f);
EXPECT_NEAR(Result.Elements[2][1], Expect.Elements[2][1], 0.00001f);
EXPECT_NEAR(Result.Elements[2][2], Expect.Elements[2][2], 0.00001f);
EXPECT_NEAR(Result.Elements[2][3], Expect.Elements[2][3], 0.00001f);
EXPECT_NEAR(Result.Elements[3][0], Expect.Elements[3][0], 0.00001f);
EXPECT_NEAR(Result.Elements[3][1], Expect.Elements[3][1], 0.00001f);
EXPECT_NEAR(Result.Elements[3][2], Expect.Elements[3][2], 0.00001f);
EXPECT_NEAR(Result.Elements[3][3], Expect.Elements[3][3], 0.00001f);
#ifdef __cplusplus
Inverse = HMM_InvGeneral(Matrix);
@@ -153,22 +153,22 @@ TEST(InvMatrix, InvGeneral)
Det = HMM_Determinant(Matrix);
EXPECT_FLOAT_EQ(Det, -80.0f);
EXPECT_FLOAT_EQ(Result.Elements[0][0], Expect.Elements[0][0]);
EXPECT_FLOAT_EQ(Result.Elements[0][1], Expect.Elements[0][1]);
EXPECT_FLOAT_EQ(Result.Elements[0][2], Expect.Elements[0][2]);
EXPECT_FLOAT_EQ(Result.Elements[0][3], Expect.Elements[0][3]);
EXPECT_FLOAT_EQ(Result.Elements[1][0], Expect.Elements[1][0]);
EXPECT_FLOAT_EQ(Result.Elements[1][1], Expect.Elements[1][1]);
EXPECT_FLOAT_EQ(Result.Elements[1][2], Expect.Elements[1][2]);
EXPECT_FLOAT_EQ(Result.Elements[1][3], Expect.Elements[1][3]);
EXPECT_FLOAT_EQ(Result.Elements[2][0], Expect.Elements[2][0]);
EXPECT_FLOAT_EQ(Result.Elements[2][1], Expect.Elements[2][1]);
EXPECT_FLOAT_EQ(Result.Elements[2][2], Expect.Elements[2][2]);
EXPECT_FLOAT_EQ(Result.Elements[2][3], Expect.Elements[2][3]);
EXPECT_FLOAT_EQ(Result.Elements[3][0], Expect.Elements[3][0]);
EXPECT_FLOAT_EQ(Result.Elements[3][1], Expect.Elements[3][1]);
EXPECT_FLOAT_EQ(Result.Elements[3][2], Expect.Elements[3][2]);
EXPECT_FLOAT_EQ(Result.Elements[3][3], Expect.Elements[3][3]);
EXPECT_NEAR(Result.Elements[0][0], Expect.Elements[0][0], 0.00001f);
EXPECT_NEAR(Result.Elements[0][1], Expect.Elements[0][1], 0.00001f);
EXPECT_NEAR(Result.Elements[0][2], Expect.Elements[0][2], 0.00001f);
EXPECT_NEAR(Result.Elements[0][3], Expect.Elements[0][3], 0.00001f);
EXPECT_NEAR(Result.Elements[1][0], Expect.Elements[1][0], 0.00001f);
EXPECT_NEAR(Result.Elements[1][1], Expect.Elements[1][1], 0.00001f);
EXPECT_NEAR(Result.Elements[1][2], Expect.Elements[1][2], 0.00001f);
EXPECT_NEAR(Result.Elements[1][3], Expect.Elements[1][3], 0.00001f);
EXPECT_NEAR(Result.Elements[2][0], Expect.Elements[2][0], 0.00001f);
EXPECT_NEAR(Result.Elements[2][1], Expect.Elements[2][1], 0.00001f);
EXPECT_NEAR(Result.Elements[2][2], Expect.Elements[2][2], 0.00001f);
EXPECT_NEAR(Result.Elements[2][3], Expect.Elements[2][3], 0.00001f);
EXPECT_NEAR(Result.Elements[3][0], Expect.Elements[3][0], 0.00001f);
EXPECT_NEAR(Result.Elements[3][1], Expect.Elements[3][1], 0.00001f);
EXPECT_NEAR(Result.Elements[3][2], Expect.Elements[3][2], 0.00001f);
EXPECT_NEAR(Result.Elements[3][3], Expect.Elements[3][3], 0.00001f);
#endif
}
@@ -246,60 +246,56 @@ TEST(InvMatrix, InvGeneral)
}
}
TEST(InvMatrix, Mat4Inverses)
TEST(InvMatrix, InvOrthographic)
{
{
HMM_Mat4 Matrix = HMM_Orthographic_RH(-160+100, 160+100, -90+200, 90+200, 10, 10000);
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Matrix = HMM_Orthographic_RH_NO(-160+100, 160+100, -90+200, 90+200, 10, 10000);
HMM_Mat4 Inverse = HMM_InvOrthographic(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_FLOAT_EQ(Result.Elements[0][0], Expect.Elements[0][0]);
EXPECT_FLOAT_EQ(Result.Elements[0][1], Expect.Elements[0][1]);
EXPECT_FLOAT_EQ(Result.Elements[0][2], Expect.Elements[0][2]);
EXPECT_FLOAT_EQ(Result.Elements[0][3], Expect.Elements[0][3]);
EXPECT_FLOAT_EQ(Result.Elements[1][0], Expect.Elements[1][0]);
EXPECT_FLOAT_EQ(Result.Elements[1][1], Expect.Elements[1][1]);
EXPECT_FLOAT_EQ(Result.Elements[1][2], Expect.Elements[1][2]);
EXPECT_FLOAT_EQ(Result.Elements[1][3], Expect.Elements[1][3]);
EXPECT_FLOAT_EQ(Result.Elements[2][0], Expect.Elements[2][0]);
EXPECT_FLOAT_EQ(Result.Elements[2][1], Expect.Elements[2][1]);
EXPECT_FLOAT_EQ(Result.Elements[2][2], Expect.Elements[2][2]);
EXPECT_FLOAT_EQ(Result.Elements[2][3], Expect.Elements[2][3]);
EXPECT_FLOAT_EQ(Result.Elements[3][0], Expect.Elements[3][0]);
EXPECT_FLOAT_EQ(Result.Elements[3][1], Expect.Elements[3][1]);
EXPECT_FLOAT_EQ(Result.Elements[3][2], Expect.Elements[3][2]);
EXPECT_FLOAT_EQ(Result.Elements[3][3], Expect.Elements[3][3]);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
{
HMM_Mat4 Matrix = HMM_Perspective_RH(HMM_AngleDeg(120), 16.0/9.0, 10, 10000);
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvPerspective(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_FLOAT_EQ(Result.Elements[0][0], Expect.Elements[0][0]);
EXPECT_FLOAT_EQ(Result.Elements[0][1], Expect.Elements[0][1]);
EXPECT_FLOAT_EQ(Result.Elements[0][2], Expect.Elements[0][2]);
EXPECT_FLOAT_EQ(Result.Elements[0][3], Expect.Elements[0][3]);
EXPECT_FLOAT_EQ(Result.Elements[1][0], Expect.Elements[1][0]);
EXPECT_FLOAT_EQ(Result.Elements[1][1], Expect.Elements[1][1]);
EXPECT_FLOAT_EQ(Result.Elements[1][2], Expect.Elements[1][2]);
EXPECT_FLOAT_EQ(Result.Elements[1][3], Expect.Elements[1][3]);
EXPECT_FLOAT_EQ(Result.Elements[2][0], Expect.Elements[2][0]);
EXPECT_FLOAT_EQ(Result.Elements[2][1], Expect.Elements[2][1]);
EXPECT_FLOAT_EQ(Result.Elements[2][2], Expect.Elements[2][2]);
EXPECT_FLOAT_EQ(Result.Elements[2][3], Expect.Elements[2][3]);
EXPECT_FLOAT_EQ(Result.Elements[3][0], Expect.Elements[3][0]);
EXPECT_FLOAT_EQ(Result.Elements[3][1], Expect.Elements[3][1]);
EXPECT_FLOAT_EQ(Result.Elements[3][2], Expect.Elements[3][2]);
EXPECT_FLOAT_EQ(Result.Elements[3][3], Expect.Elements[3][3]);
HMM_Mat4 Matrix = HMM_Orthographic_RH_ZO(-160+100, 160+100, -90+200, 90+200, 10, 10000);
HMM_Mat4 Inverse = HMM_InvOrthographic(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
{
HMM_Mat4 Matrix = HMM_Orthographic_LH_NO(-160+100, 160+100, -90+200, 90+200, 10, 10000);
HMM_Mat4 Inverse = HMM_InvOrthographic(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
{
HMM_Mat4 Matrix = HMM_Orthographic_LH_ZO(-160+100, 160+100, -90+200, 90+200, 10, 10000);
HMM_Mat4 Inverse = HMM_InvOrthographic(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
}
TEST(InvMatrix, InvPerspective)
{
{
HMM_Mat4 Matrix = HMM_Perspective_RH_NO(HMM_AngleDeg(120), 16.0/9.0, 10, 10000);
HMM_Mat4 Inverse = HMM_InvPerspective_RH(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
{
HMM_Mat4 Matrix = HMM_Perspective_RH_ZO(HMM_AngleDeg(120), 16.0/9.0, 10, 10000);
HMM_Mat4 Inverse = HMM_InvPerspective_RH(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
{
HMM_Mat4 Matrix = HMM_Perspective_LH_NO(HMM_AngleDeg(120), 16.0/9.0, 10, 10000);
HMM_Mat4 Inverse = HMM_InvPerspective_LH(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
{
HMM_Mat4 Matrix = HMM_Perspective_LH_ZO(HMM_AngleDeg(120), 16.0/9.0, 10, 10000);
HMM_Mat4 Inverse = HMM_InvPerspective_LH(Matrix);
EXPECT_M4_EQ(HMM_MulM4(Matrix, Inverse), HMM_M4D(1.0f));
}
}
TEST(InvMatrix, InvLookAt)
{
{
HMM_Vec3 Eye = {10.0f, 10.0f, 10.0f};
HMM_Vec3 Center = {100.0f, 200.0f, 30.0f};
@@ -308,106 +304,56 @@ TEST(InvMatrix, Mat4Inverses)
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvLookAt(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_NEAR(Result.Elements[0][0], Expect.Elements[0][0], 0.001f);
EXPECT_NEAR(Result.Elements[0][1], Expect.Elements[0][1], 0.001f);
EXPECT_NEAR(Result.Elements[0][2], Expect.Elements[0][2], 0.001f);
EXPECT_NEAR(Result.Elements[0][3], Expect.Elements[0][3], 0.001f);
EXPECT_NEAR(Result.Elements[1][0], Expect.Elements[1][0], 0.001f);
EXPECT_NEAR(Result.Elements[1][1], Expect.Elements[1][1], 0.001f);
EXPECT_NEAR(Result.Elements[1][2], Expect.Elements[1][2], 0.001f);
EXPECT_NEAR(Result.Elements[1][3], Expect.Elements[1][3], 0.001f);
EXPECT_NEAR(Result.Elements[2][0], Expect.Elements[2][0], 0.001f);
EXPECT_NEAR(Result.Elements[2][1], Expect.Elements[2][1], 0.001f);
EXPECT_NEAR(Result.Elements[2][2], Expect.Elements[2][2], 0.001f);
EXPECT_NEAR(Result.Elements[2][3], Expect.Elements[2][3], 0.001f);
EXPECT_NEAR(Result.Elements[3][0], Expect.Elements[3][0], 0.001f);
EXPECT_NEAR(Result.Elements[3][1], Expect.Elements[3][1], 0.001f);
EXPECT_NEAR(Result.Elements[3][2], Expect.Elements[3][2], 0.001f);
EXPECT_NEAR(Result.Elements[3][3], Expect.Elements[3][3], 0.001f);
EXPECT_M4_NEAR(Result, Expect, 0.001f);
}
{
HMM_Vec3 Eye = {10.0f, 10.0f, 10.0f};
HMM_Vec3 Center = {100.0f, 200.0f, 30.0f};
HMM_Vec3 Up = {0.0f, 0.0f, 1.0f};
HMM_Mat4 Matrix = HMM_LookAt_LH(Eye, Center, Up);
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvLookAt(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_M4_NEAR(Result, Expect, 0.001f);
}
}
TEST(InvMatrix, InvRotate)
{
{
HMM_Vec3 Axis = {1.0f, -1.0f, 0.5f};
HMM_Mat4 Matrix = HMM_Rotate_RH(HMM_AngleDeg(30), HMM_NormV3(Axis));
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvRotate(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_NEAR(Result.Elements[0][0], Expect.Elements[0][0], 0.001f);
EXPECT_NEAR(Result.Elements[0][1], Expect.Elements[0][1], 0.001f);
EXPECT_NEAR(Result.Elements[0][2], Expect.Elements[0][2], 0.001f);
EXPECT_NEAR(Result.Elements[0][3], Expect.Elements[0][3], 0.001f);
EXPECT_NEAR(Result.Elements[1][0], Expect.Elements[1][0], 0.001f);
EXPECT_NEAR(Result.Elements[1][1], Expect.Elements[1][1], 0.001f);
EXPECT_NEAR(Result.Elements[1][2], Expect.Elements[1][2], 0.001f);
EXPECT_NEAR(Result.Elements[1][3], Expect.Elements[1][3], 0.001f);
EXPECT_NEAR(Result.Elements[2][0], Expect.Elements[2][0], 0.001f);
EXPECT_NEAR(Result.Elements[2][1], Expect.Elements[2][1], 0.001f);
EXPECT_NEAR(Result.Elements[2][2], Expect.Elements[2][2], 0.001f);
EXPECT_NEAR(Result.Elements[2][3], Expect.Elements[2][3], 0.001f);
EXPECT_NEAR(Result.Elements[3][0], Expect.Elements[3][0], 0.001f);
EXPECT_NEAR(Result.Elements[3][1], Expect.Elements[3][1], 0.001f);
EXPECT_NEAR(Result.Elements[3][2], Expect.Elements[3][2], 0.001f);
EXPECT_NEAR(Result.Elements[3][3], Expect.Elements[3][3], 0.001f);
EXPECT_M4_NEAR(Result, Expect, 0.001f);
}
{
HMM_Vec3 Scale = {1.0f, -1.0f, 0.5f};
HMM_Mat4 Matrix = HMM_Scale(Scale);
HMM_Vec3 Axis = {1.0f, -1.0f, 0.5f};
HMM_Mat4 Matrix = HMM_Rotate_LH(HMM_AngleDeg(30), HMM_NormV3(Axis));
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvScale(Matrix);
HMM_Mat4 Inverse = HMM_InvRotate(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_FLOAT_EQ(Result.Elements[0][0], Expect.Elements[0][0]);
EXPECT_FLOAT_EQ(Result.Elements[0][1], Expect.Elements[0][1]);
EXPECT_FLOAT_EQ(Result.Elements[0][2], Expect.Elements[0][2]);
EXPECT_FLOAT_EQ(Result.Elements[0][3], Expect.Elements[0][3]);
EXPECT_FLOAT_EQ(Result.Elements[1][0], Expect.Elements[1][0]);
EXPECT_FLOAT_EQ(Result.Elements[1][1], Expect.Elements[1][1]);
EXPECT_FLOAT_EQ(Result.Elements[1][2], Expect.Elements[1][2]);
EXPECT_FLOAT_EQ(Result.Elements[1][3], Expect.Elements[1][3]);
EXPECT_FLOAT_EQ(Result.Elements[2][0], Expect.Elements[2][0]);
EXPECT_FLOAT_EQ(Result.Elements[2][1], Expect.Elements[2][1]);
EXPECT_FLOAT_EQ(Result.Elements[2][2], Expect.Elements[2][2]);
EXPECT_FLOAT_EQ(Result.Elements[2][3], Expect.Elements[2][3]);
EXPECT_FLOAT_EQ(Result.Elements[3][0], Expect.Elements[3][0]);
EXPECT_FLOAT_EQ(Result.Elements[3][1], Expect.Elements[3][1]);
EXPECT_FLOAT_EQ(Result.Elements[3][2], Expect.Elements[3][2]);
EXPECT_FLOAT_EQ(Result.Elements[3][3], Expect.Elements[3][3]);
EXPECT_M4_NEAR(Result, Expect, 0.001f);
}
{
HMM_Vec3 Move = {1.0f, -1.0f, 0.5f};
HMM_Mat4 Matrix = HMM_Translate(Move);
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvTranslate(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_FLOAT_EQ(Result.Elements[0][0], Expect.Elements[0][0]);
EXPECT_FLOAT_EQ(Result.Elements[0][1], Expect.Elements[0][1]);
EXPECT_FLOAT_EQ(Result.Elements[0][2], Expect.Elements[0][2]);
EXPECT_FLOAT_EQ(Result.Elements[0][3], Expect.Elements[0][3]);
EXPECT_FLOAT_EQ(Result.Elements[1][0], Expect.Elements[1][0]);
EXPECT_FLOAT_EQ(Result.Elements[1][1], Expect.Elements[1][1]);
EXPECT_FLOAT_EQ(Result.Elements[1][2], Expect.Elements[1][2]);
EXPECT_FLOAT_EQ(Result.Elements[1][3], Expect.Elements[1][3]);
EXPECT_FLOAT_EQ(Result.Elements[2][0], Expect.Elements[2][0]);
EXPECT_FLOAT_EQ(Result.Elements[2][1], Expect.Elements[2][1]);
EXPECT_FLOAT_EQ(Result.Elements[2][2], Expect.Elements[2][2]);
EXPECT_FLOAT_EQ(Result.Elements[2][3], Expect.Elements[2][3]);
EXPECT_FLOAT_EQ(Result.Elements[3][0], Expect.Elements[3][0]);
EXPECT_FLOAT_EQ(Result.Elements[3][1], Expect.Elements[3][1]);
EXPECT_FLOAT_EQ(Result.Elements[3][2], Expect.Elements[3][2]);
EXPECT_FLOAT_EQ(Result.Elements[3][3], Expect.Elements[3][3]);
}
}
TEST(InvMatrix, InvScale)
{
HMM_Vec3 Scale = {1.0f, -1.0f, 0.5f};
HMM_Mat4 Matrix = HMM_Scale(Scale);
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvScale(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_M4_EQ(Result, Expect);
}
TEST(InvMatrix, InvTranslate)
{
HMM_Vec3 Move = {1.0f, -1.0f, 0.5f};
HMM_Mat4 Matrix = HMM_Translate(Move);
HMM_Mat4 Expect = HMM_M4D(1.0f);
HMM_Mat4 Inverse = HMM_InvTranslate(Matrix);
HMM_Mat4 Result = HMM_MulM4(Matrix, Inverse);
EXPECT_M4_EQ(Result, Expect);
}

View File

@@ -2,48 +2,84 @@
TEST(Projection, Orthographic)
{
#define ORTHO_BOUNDS -8.0f, 12.0f, 5.0f, 10.0f, 1.0f, 100.0f
// Right-handed
{
HMM_Mat4 projection = HMM_Orthographic_RH(-10.0f, 10.0f, -5.0f, 5.0f, 0.0f, -10.0f);
// Near and far distances correspond to negative Z, hence the Z coordinates here are negative.
HMM_Vec4 minCorner = HMM_V4(-8.0f, 5.0f, -1.0f, 1.0);
HMM_Vec4 maxCorner = HMM_V4(12.0f, 10.0f, -100.0f, 1.0);
HMM_Vec3 original = HMM_V3(5.0f, 5.0f, -5.0f);
HMM_Vec4 projected = HMM_MulM4V4(projection, HMM_V4V(original, 1));
// Z from -1 to 1 (GL convention)
{
HMM_Mat4 projection = HMM_Orthographic_RH_NO(ORTHO_BOUNDS);
EXPECT_V4_EQ(HMM_MulM4V4(projection, minCorner), HMM_V4(-1.0f, -1.0f, -1.0f, 1.0f));
EXPECT_V4_EQ(HMM_MulM4V4(projection, maxCorner), HMM_V4(1.0f, 1.0f, 1.0f, 1.0f));
}
EXPECT_FLOAT_EQ(projected.X, 0.5f);
EXPECT_FLOAT_EQ(projected.Y, 1.0f);
EXPECT_FLOAT_EQ(projected.Z, -2.0f);
EXPECT_FLOAT_EQ(projected.W, 1.0f);
// Z from 0 to 1 (DX convention)
{
HMM_Mat4 projection = HMM_Orthographic_RH_ZO(ORTHO_BOUNDS);
EXPECT_V4_EQ(HMM_MulM4V4(projection, minCorner), HMM_V4(-1.0f, -1.0f, 0.0f, 1.0f));
EXPECT_V4_EQ(HMM_MulM4V4(projection, maxCorner), HMM_V4(1.0f, 1.0f, 1.0f, 1.0f));
}
}
// Left-handed
{
HMM_Mat4 projection = HMM_Orthographic_LH(-10.0f, 10.0f, -5.0f, 5.0f, 0.0f, 10.0f);
// Near and far distances correspond to positive Z, hence the Z coordinates here are positive.
HMM_Vec4 minCorner = HMM_V4(-8.0f, 5.0f, 1.0f, 1.0);
HMM_Vec4 maxCorner = HMM_V4(12.0f, 10.0f, 100.0f, 1.0);
HMM_Vec3 original = HMM_V3(5.0f, 5.0f, -5.0f);
HMM_Vec4 projected = HMM_MulM4V4(projection, HMM_V4V(original, 1));
// Z from -1 to 1 (GL convention)
{
HMM_Mat4 projection = HMM_Orthographic_LH_NO(ORTHO_BOUNDS);
EXPECT_V4_EQ(HMM_MulM4V4(projection, minCorner), HMM_V4(-1.0f, -1.0f, -1.0f, 1.0f));
EXPECT_V4_EQ(HMM_MulM4V4(projection, maxCorner), HMM_V4(1.0f, 1.0f, 1.0f, 1.0f));
}
EXPECT_FLOAT_EQ(projected.X, 0.5f);
EXPECT_FLOAT_EQ(projected.Y, 1.0f);
EXPECT_FLOAT_EQ(projected.Z, -2.0f);
EXPECT_FLOAT_EQ(projected.W, 1.0f);
// Z from 0 to 1 (DX convention)
{
HMM_Mat4 projection = HMM_Orthographic_LH_ZO(ORTHO_BOUNDS);
EXPECT_V4_EQ(HMM_MulM4V4(projection, minCorner), HMM_V4(-1.0f, -1.0f, 0.0f, 1.0f));
EXPECT_V4_EQ(HMM_MulM4V4(projection, maxCorner), HMM_V4(1.0f, 1.0f, 1.0f, 1.0f));
}
}
}
TEST(Projection, Perspective)
{
// Right-handed
{
HMM_Mat4 projection = HMM_Perspective_RH(HMM_AngleDeg(90.0f), 2.0f, 5.0f, 15.0f);
HMM_Vec3 original = HMM_V3(5.0f, 5.0f, -15.0f);
HMM_Vec4 projected = HMM_MulM4V4(projection, HMM_V4V(original, 1));
EXPECT_FLOAT_EQ(projected.X, 2.5f);
EXPECT_FLOAT_EQ(projected.Y, 5.0f);
EXPECT_FLOAT_EQ(projected.Z, 15.0f);
EXPECT_FLOAT_EQ(projected.W, 15.0f);
// Z from -1 to 1 (GL convention)
{
HMM_Mat4 projection = HMM_Perspective_RH_NO(HMM_AngleDeg(90.0f), 2.0f, 1.0f, 15.0f);
HMM_Vec4 original = HMM_V4(5.0f, 5.0f, -1.0f, 1.0f);
EXPECT_V4_EQ(HMM_MulM4V4(projection, original), HMM_V4(2.5f, 5.0f, -1.0f, 1.0f));
}
// Z from 0 to 1 (DX convention)
{
HMM_Mat4 projection = HMM_Perspective_RH_ZO(HMM_AngleDeg(90.0f), 2.0f, 1.0f, 15.0f);
HMM_Vec4 original = HMM_V4(5.0f, 5.0f, -1.0f, 1.0f);
EXPECT_V4_EQ(HMM_MulM4V4(projection, original), HMM_V4(2.5f, 5.0f, 0.0f, 1.0f));
}
}
// Left-handed
{
HMM_Mat4 projection = HMM_Perspective_LH(HMM_AngleDeg(90.0f), 2.0f, 5.0f, 15.0f);
HMM_Vec3 original = HMM_V3(5.0f, 5.0f, -15.0f);
HMM_Vec4 projected = HMM_MulM4V4(projection, HMM_V4V(original, 1));
EXPECT_FLOAT_EQ(projected.X, 2.5f);
EXPECT_FLOAT_EQ(projected.Y, 5.0f);
EXPECT_FLOAT_EQ(projected.Z, 15.0f);
EXPECT_FLOAT_EQ(projected.W, -15.0f);
// Z from -1 to 1 (GL convention)
{
HMM_Mat4 projection = HMM_Perspective_LH_NO(HMM_AngleDeg(90.0f), 2.0f, 1.0f, 15.0f);
HMM_Vec4 original = HMM_V4(5.0f, 5.0f, 1.0f, 1.0f);
EXPECT_V4_EQ(HMM_MulM4V4(projection, original), HMM_V4(2.5f, 5.0f, -1.0f, 1.0f));
}
// Z from 0 to 1 (DX convention)
{
HMM_Mat4 projection = HMM_Perspective_LH_ZO(HMM_AngleDeg(90.0f), 2.0f, 1.0f, 15.0f);
HMM_Vec4 original = HMM_V4(5.0f, 5.0f, 1.0f, 1.0f);
EXPECT_V4_EQ(HMM_MulM4V4(projection, original), HMM_V4(2.5f, 5.0f, 0.0f, 1.0f));
}
}
}

View File

@@ -254,23 +254,22 @@ TEST(QuaternionOps, Mat4ToQuat)
}
}
TEST(QuaternionOps, FromAxisAngle)
TEST(QuaternionOps, RotateVectorAxisAngle)
{
HMM_Vec3 axis = HMM_V3(1.0f, 0.0f, 0.0f);
float angle = HMM_PI32 / 2.0f;
{
HMM_Quat result = HMM_QFromAxisAngle_RH(axis, angle);
EXPECT_NEAR(result.X, 0.707107f, 0.001f);
HMM_Vec3 axis = HMM_V3(0.0f, 1.0f, 0.0f);
float angle = HMM_AngleTurn(1.0/4);
HMM_Vec3 result = HMM_RotateV3AxisAngle_LH(HMM_V3(1.0f, 0.0f, 0.0f), axis, angle);
EXPECT_NEAR(result.X, 0.0f, 0.001f);
EXPECT_NEAR(result.Y, 0.0f, 0.001f);
EXPECT_NEAR(result.Z, 0.0f, 0.001f);
EXPECT_NEAR(result.W, 0.707107f, 0.001f);
EXPECT_NEAR(result.Z, 1.0f, 0.001f);
}
{
HMM_Quat result = HMM_QFromAxisAngle_LH(axis, angle);
EXPECT_NEAR(result.X, -0.707107f, 0.001f);
EXPECT_NEAR(result.Y, 0.0f, 0.001f);
EXPECT_NEAR(result.Z, 0.0f, 0.001f);
EXPECT_NEAR(result.W, 0.707107f, 0.001f);
HMM_Vec3 axis = HMM_V3(1.0f, 0.0f, 0.0f);
float angle = HMM_AngleTurn(1.0/8);
HMM_Vec3 result = HMM_RotateV3AxisAngle_RH(HMM_V3(0.0f, 0.0f, 1.0f), axis, angle);
EXPECT_NEAR(result.X, 0.0f, 0.001f);
EXPECT_NEAR(result.Y, -0.707170f, 0.001f);
EXPECT_NEAR(result.Z, 0.707170f, 0.001f);
}
}

View File

@@ -63,7 +63,8 @@ TEST(Transformations, LookAt)
{
const float abs_error = 0.001f;
{ HMM_Mat4 result = HMM_LookAt_RH(HMM_V3(1.0f, 0.0f, 0.0f), HMM_V3(0.0f, 2.0f, 1.0f), HMM_V3(2.0f, 1.0f, 1.0f));
{
HMM_Mat4 result = HMM_LookAt_RH(HMM_V3(1.0f, 0.0f, 0.0f), HMM_V3(0.0f, 2.0f, 1.0f), HMM_V3(2.0f, 1.0f, 1.0f));
EXPECT_NEAR(result.Elements[0][0], 0.169031f, abs_error);
EXPECT_NEAR(result.Elements[0][1], 0.897085f, abs_error);
@@ -103,3 +104,30 @@ TEST(Transformations, LookAt)
EXPECT_NEAR(result.Elements[3][3], 1.0f, abs_error);
}
}
TEST(Transformations, RotateV2)
{
HMM_Vec2 v2 = HMM_V2(1, 2);
float epsilon = 0.000001f;
{
HMM_Vec2 res = HMM_RotateV2(v2, HMM_AngleDeg(90));
EXPECT_NEAR(res.X, -2.0f, epsilon);
EXPECT_NEAR(res.Y, 1.0f, epsilon);
}
{
HMM_Vec2 res = HMM_RotateV2(v2, HMM_AngleDeg(180));
EXPECT_NEAR(res.X, -1.0f, epsilon);
EXPECT_NEAR(res.Y, -2.0f, epsilon);
}
{
HMM_Vec2 res = HMM_RotateV2(v2, HMM_AngleDeg(270));
EXPECT_NEAR(res.X, 2.0f, epsilon);
EXPECT_NEAR(res.Y, -1.0f, epsilon);
}
{
HMM_Vec2 res = HMM_RotateV2(v2, HMM_AngleDeg(360));
EXPECT_NEAR(res.X, 1.0f, epsilon);
EXPECT_NEAR(res.Y, 2.0f, epsilon);
}
}

View File

@@ -1,36 +1,24 @@
# Handmade Math 2.0 Update Tool
Due to the large number of breaking naming changes in Handmade Math 2, we provide a small tool to update your programs automatically. It's a C program that takes a list of files and updates their text, along with some scripts to recursively run the program on all code in a directory.
Due to the large number of breaking naming changes in Handmade Math 2, we provide a small Python script to update your programs automatically. It can run on individual files or on all files in a directory (recursively).
You can compile the tool yourself with any C/C++ compiler:
**Warning!** This tool is not very smart! Please ensure that your work is committed and backed up, in case you have to revert this tool's changes.
```bash
# MSVC (Windows)
cl update_hmm.c
# gcc
gcc update_hmm.c -o update_hmm
# clang
clang update_hmm.c -o update_hmm
```
# see usage info and options
> python3 update_hmm.py -h
usage: update_hmm [-h] [--exts .foo [.foo ...]] filename [filename ...]
...
Once built, the tool can be run on any C or C++ files:
# run on individual files
> python3 update_hmm.py MyPlatformLayer.c MyPlatformLayer.h
Updating: MyPlatformLayer.c
Updating: MyPlatformLayer.h
Updated 2 files with 0 warnings.
```bash
# Windows
update_hmm.exe MyGame.cpp MyPlatformLayer.cpp
# Other platforms
update_hmm MyGame.cpp MyPlatformLayer.cpp
```
Or, update all C/C++ files in a directory by running one of the provided shell scripts:
```bash
# Windows
update_hmm_all.bat "path\to\project"
# Other platforms
update_hmm_all.sh path/to/project
# run on a whole directory
> python3 update_hmm.py projects/MyCoolGame
Updating: projects/MyCoolGame/src/MyPlatformLayer.c
Updating: projects/MyCoolGame/include/MyPlatformLayer.h
...
```

View File

@@ -1,562 +0,0 @@
/* Compile:
Windows (MSVC): cl update_hmm.c
Linux (GCC): gcc update_hmm.c -o update_hmm
*/
/** LCF stuff **/
/* I used my personally library when writing this so I am dumping the necessary things here
so that it's all in one file. */
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Types */
#define global static
#define internal static
typedef int32_t s32; global s32 s32_MAX = 0x7FFFFFFF; global s32 s32_MIN = -1 - 0x7FFFFFFF;
typedef int64_t s64; global s64 s64_MAX = 0x7FFFFFFFFFFFFFFF; global s64 s64_MIN = -1 - 0x7FFFFFFFFFFFFFFF;
typedef uint32_t u32; global u32 u32_MAX = 0xFFFFFFFF; global u32 u32_MIN = 0;
typedef uint64_t u64; global u64 u64_MAX = 0xFFFFFFFFFFFFFFFF; global u64 u64_MIN = 0;
typedef u32 b32;
typedef u64 b64;
#define MIN(a,b) (((a)<(b))?(a):(b))
#define CLAMPTOP(a,b) MIN(a,b)
/* Memory */
struct lcf_Arena {
u64 pos;
u64 size;
u64 alignment;
u64 commited_pos;
};
typedef struct lcf_Arena Arena;
#define KB(x) ((x) << 10)
#define GB(x) ((x) << 30)
Arena* Arena_create(u64 size);
void* Arena_take(Arena *a, u64 size);
void* Arena_take_custom(Arena *a, u64 size, u64 alignment);
#define Arena_take_array(a, type, count) ((type*) Arena_take(a, sizeof(type)*count))
void Arena_reset_all(Arena *a);
#define LCF_MEMORY_PROVIDE_MEMORY "stdlib"
#define LCF_MEMORY_RESERVE_MEMORY(name) void* name(u64 size)
#define LCF_MEMORY_COMMIT_MEMORY(name) b32 name(void* memory, u64 size)
#define LCF_MEMORY_DECOMMIT_MEMORY(name) void name(void* memory, u64 size)
#define LCF_MEMORY_FREE_MEMORY(name) void name(void* memory, u64 size)
/* This implementation of an arena doesn't take advantage of virtual memory at all.
It's just convenient to have something portable so I can use the Arena API I'm used to. */
internal LCF_MEMORY_RESERVE_MEMORY(_lcf_memory_default_reserve) {
return malloc(size);
}
internal LCF_MEMORY_COMMIT_MEMORY(_lcf_memory_default_commit) {
(void) size, memory;
return 1; /* malloc commits memory automatically */
}
internal LCF_MEMORY_DECOMMIT_MEMORY(_lcf_memory_default_decommit) {
(void) size, memory;
return;
}
internal LCF_MEMORY_FREE_MEMORY(_lcf_memory_default_free) {
(void) size;
free(memory);
}
#define LCF_MEMORY_reserve _lcf_memory_default_reserve
#define LCF_MEMORY_commit _lcf_memory_default_commit
#define LCF_MEMORY_decommit _lcf_memory_default_decommit
#define LCF_MEMORY_free _lcf_memory_default_free
#define LCF_MEMORY_RESERVE_SIZE GB(1)
#define LCF_MEMORY_COMMIT_SIZE KB(4)
#define LCF_MEMORY_ALIGNMENT (sizeof(void*))
Arena* Arena_create(u64 size) {
Arena* a = (Arena*) LCF_MEMORY_reserve(size);
LCF_MEMORY_commit(a, LCF_MEMORY_COMMIT_SIZE);
a->size = size;
a->pos = sizeof(Arena);
a->commited_pos = LCF_MEMORY_COMMIT_SIZE;
a->alignment = LCF_MEMORY_ALIGNMENT;
return a;
}
#define B_PTR(p) (u8*)(p)
internal b32 is_power_of_2(u64 x) {
return ((x & (x-1)) == 0);
}
internal u64 next_alignment(u64 ptr, u64 alignment) {
/* Fast replacement for mod because alignment is power of 2 */
u64 modulo = ptr & (alignment-1);
if (modulo != 0) {
ptr += alignment - modulo;
}
return ptr;
}
void* Arena_take_custom(Arena *a, u64 size, u64 alignment) {
void* result = 0;
/* Align pos pointer to check if "size" can fit */
u64 mem = (u64) a;
u64 aligned_pos = next_alignment(mem + a->pos, alignment) - mem;
u64 new_pos = aligned_pos + size;
/* Check that there is space */
if (new_pos < a->size) {
u64 commited_pos = a->commited_pos;
/* Commit memory if needed */
if (new_pos > commited_pos) {
u64 new_commited_pos = next_alignment(mem + new_pos, LCF_MEMORY_COMMIT_SIZE)-mem;
if (LCF_MEMORY_commit(a, new_commited_pos)) {
a->commited_pos = commited_pos = new_commited_pos;
}
}
/* If enough memory is commited, set result and pos. */
if (new_pos <= commited_pos) {
result = (void*)(mem + aligned_pos);
a->pos = new_pos;
}
}
return result;
}
void* Arena_take(Arena *a, u64 size) {
return Arena_take_custom(a, size, LCF_MEMORY_ALIGNMENT);
}
void Arena_reset_all(Arena *a) {
a->pos = 0;
}
/* String */
typedef char chr8;
struct str8 {
u64 len;
chr8 *str;
};
typedef struct str8 str8;
#define str8_PRINTF_ARGS(s) (int)(s).len, (s).str
#define str8_lit(s) str8_from((chr8*)(s),(u64)sizeof(s)-1) /* -1 to exclude null character */
#define str8_is_empty(s) ((b32)((s).len == 0))
#define LCF_STRING_NO_MATCH 0x8000000000000000
#define str8_iter_custom(s, i, c) \
s64 i = 0; \
chr8 c = s.str[i]; \
for (; (i < (s64) s.len); i++, c = s.str[i])
#define str8_iter(s) str8_iter_custom(s, i, c)
str8 str8_from(chr8* s, u64 len);
str8 str8_from_cstring(chr8 *cstr);
str8 str8_first(str8 s, u64 len);
str8 str8_skip(str8 s, u64 len);
b32 chr8_is_whitespace(chr8 c);
b32 str8_contains_char(str8 s, chr8 c);
u64 str8_char_location(str8 s, chr8 c);
#define RET_STR8(s,l) \
str8 _str8; \
_str8.str = (s); \
_str8.len = (l); \
return _str8
str8 str8_from(chr8* s, u64 len) {
RET_STR8(s, len);
}
str8 str8_from_cstring(chr8 *cstr) {
chr8* p2 = cstr;
while(*p2 != 0)
p2++;
RET_STR8(cstr, (u64)(p2 - cstr));
}
str8 str8_first(str8 s, u64 len) {
u64 len_clamped = CLAMPTOP(len, s.len);
RET_STR8(s.str, len_clamped);
}
str8 str8_skip(str8 s, u64 len) {
u64 len_clamped = CLAMPTOP(len, s.len);
RET_STR8(s.str + len_clamped, s.len - len_clamped);
}
b32 chr8_is_whitespace(chr8 c) {
switch (c) {
case ' ':
case '\n':
case '\t':
case '\r':
return 1;
default:
return 0;
}
}
b32 str8_contains_char(str8 s, chr8 find) {
return str8_char_location(s,find) != LCF_STRING_NO_MATCH;
}
u64 str8_char_location(str8 s, chr8 find) {
str8_iter(s) {
if (c == find) {
return i;
}
}
return LCF_STRING_NO_MATCH;
}
#undef RET_STR8
struct Str8Node {
struct Str8Node *next;
struct str8 str;
};
struct Str8List {
struct Str8Node *first;
struct Str8Node *last;
u64 count;
u64 total_len;
};
typedef struct Str8Node Str8Node;
typedef struct Str8List Str8List;
void Str8List_add_node(Str8List *list, Str8Node *n);
void Str8List_add(Arena *arena, Str8List *list, str8 str);
void Str8List_add_node(Str8List *list, Str8Node *n) {
if (list->last) {
list->last->next = n;
} else {
list->first = n;
}
list->last = n;
list->count++;
list->total_len += n->str.len;
}
void Str8List_add(Arena *arena, Str8List *list, str8 str) {
Str8Node *n = Arena_take_array(arena, Str8Node, 1);
n->str = str;
n->next = 0;
Str8List_add_node(list, n);
}
/* CRT - stdio */
str8 stdio_load_entire_file(Arena *arena, str8 filepath);
b32 stdio_write_file(str8 filepath, Str8List text);
str8 stdio_load_entire_file(Arena *arena, str8 filepath) {
str8 file_content = {0};
FILE *file = fopen(filepath.str, "rb");
if (file != 0) {
fseek(file, 0, SEEK_END);
u64 file_len = ftell(file);
fseek(file, 0, SEEK_SET);
file_content.str = (chr8*) Arena_take(arena, file_len+1);
if (file_content.str != 0) {
file_content.len = file_len;
fread(file_content.str, 1, file_len, file);
file_content.str[file_content.len] = 0;
}
fclose(file);
}
return file_content;
}
b32 stdio_write_file(str8 filepath, Str8List text) {
u64 bytes_written = 0;
FILE *file = fopen(filepath.str, "wb");
if (file != 0) {
Str8Node* n = text.first;
for (s64 i = 0; i < text.count; i++, n = n->next) {
if (!fwrite(n->str.str, n->str.len, 1, file)) {
break;
}
bytes_written += n->str.len;
}
fclose(file);
}
return bytes_written == text.total_len;
}
/** HMM2.0 Update Tool **/
enum Targets {
/* hmm_ and HMM_ prefixes */
PREFIX_TYPE, PREFIX_FUNCTION,
PREFIXES_Size,
/* Struct/Union types */
TYPE_VEC, TYPE_MAT, TYPE_QUATERNION, TYPE_BOOL,
TYPE_INTERNAL_ELEMENTS_SSE,
TYPES_Size,
/* Types in Function Names */
FUN_VEC, FUN_MAT, FUN_QUATERNION,
/* Function Names for Common Operations */
FUN_EQUALS, FUN_SUBTRACT, FUN_MULTIPLY, FUN_DIVIDE,
FUN_INVERSE, FUN_R_SQUARE_ROOT, FUN_SQUARE_ROOT,
FUN_LENGTH_SQUARED, FUN_LENGTH, FUN_FAST_NORM, FUN_NORM,
FUN_SLERP, FUN_BY,
FUN_LINEAR_COMBINE_SSE, FUN_TRANSPOSE,
FUNCTIONS_Size,
/* Handedness */
HAND_PERSPECTIVE, HAND_ROTATE,
HAND_ORTHO, HAND_LOOK_AT, HAND_QUAT_AXIS_ANGLE, HAND_MAT_TO_QUAT,
HAND_Size,
};
Str8List update_file_content(Arena* arena, str8 file_content) {
Str8List out = {0};
str8 Find[HAND_Size];
str8 Repl[HAND_Size];
{ /* NOTE: Initialization */
Find[PREFIX_TYPE] = str8_lit("hmm_");
Find[PREFIX_FUNCTION] = str8_lit("HMM_");
Repl[PREFIX_TYPE] = Find[PREFIX_FUNCTION];
Find[TYPE_VEC] = str8_lit("vec");
Repl[TYPE_VEC] = str8_lit("Vec");
Find[TYPE_MAT] = str8_lit("mat");
Repl[TYPE_MAT] = str8_lit("Mat");
Find[TYPE_QUATERNION] = str8_lit("quaternion");
Repl[TYPE_QUATERNION] = str8_lit("Quat");
Find[TYPE_BOOL] = str8_lit("bool");
Repl[TYPE_BOOL] = str8_lit("Bool");
Find[TYPE_INTERNAL_ELEMENTS_SSE] = str8_lit(".InternalElementsSSE");
Repl[TYPE_INTERNAL_ELEMENTS_SSE] = str8_lit(".SSE");
Find[FUN_VEC] = str8_lit("Vec");
Repl[FUN_VEC] = str8_lit("V");
Find[FUN_MAT] = str8_lit("Mat");
Repl[FUN_MAT] = str8_lit("M");
Find[FUN_QUATERNION] = str8_lit("Quaternion");
Repl[FUN_QUATERNION] = str8_lit("Q");
Find[FUN_EQUALS] = str8_lit("Equals");
Repl[FUN_EQUALS] = str8_lit("Eq");
Find[FUN_SUBTRACT] = str8_lit("Subtract");
Repl[FUN_SUBTRACT] = str8_lit("Sub");
Find[FUN_MULTIPLY] = str8_lit("Multiply");
Repl[FUN_MULTIPLY] = str8_lit("Mul");
Find[FUN_DIVIDE] = str8_lit("Divide");
Repl[FUN_DIVIDE] = str8_lit("Div");
Find[FUN_INVERSE] = str8_lit("Inverse");
Repl[FUN_INVERSE] = str8_lit("Inv");
Find[FUN_R_SQUARE_ROOT] = str8_lit("RSquareRoot");
Repl[FUN_R_SQUARE_ROOT] = str8_lit("InvSqrt");
Find[FUN_SQUARE_ROOT] = str8_lit("SquareRoot");
Repl[FUN_SQUARE_ROOT] = str8_lit("Sqrt");
Find[FUN_LENGTH_SQUARED] = str8_lit("Squared");
Repl[FUN_LENGTH_SQUARED] = str8_lit("Sqr"); /* FIXME: not working for some reason */
Find[FUN_LENGTH] = str8_lit("Length");
Repl[FUN_LENGTH] = str8_lit("Len");
Find[FUN_SLERP] = str8_lit("Slerp");
Repl[FUN_SLERP] = str8_lit("SLerp");
Find[FUN_BY] = str8_lit("By");
Repl[FUN_BY] = str8_lit("");
Find[FUN_LINEAR_COMBINE_SSE] = str8_lit("LinearCombineSSE"); /* TODO: emit warning */
Repl[FUN_LINEAR_COMBINE_SSE] = str8_lit("LinearCombineV4M4");
Find[FUN_TRANSPOSE] = str8_lit("Transpose");
Repl[FUN_TRANSPOSE] = str8_lit("TransposeM4");
Find[FUN_FAST_NORM] = str8_lit("Fast"); /* TODO: emit warning, lower precision. */
Repl[FUN_FAST_NORM] = str8_lit("");
Find[FUN_NORM] = str8_lit("Normalize");
Repl[FUN_NORM] = str8_lit("Norm");
Find[HAND_PERSPECTIVE] = str8_lit("Perspective");
Find[HAND_ROTATE] = str8_lit("Rotate");
Find[HAND_ORTHO] = str8_lit("Orthographic");
Find[HAND_LOOK_AT] = str8_lit("LookAt");
Find[HAND_QUAT_AXIS_ANGLE] = str8_lit("FromAxisAngle");
Find[HAND_MAT_TO_QUAT] = str8_lit("ToQuaternion");
}
/* Match with a bunch of sliding windows, skipping when there can't be a match */
u64 MatchProgress[HAND_Size] = {0};
b32 FoundTypePrefix = 0;
b32 FoundFunctionPrefix = 0;
u32 Line = 1;
str8_iter(file_content) {
if (c == '\n') {
Line++;
}
if (FoundTypePrefix || FoundFunctionPrefix) {
if (chr8_is_whitespace(c)
|| str8_contains_char(str8_lit("(){}[]:;,.<>~?!@#$%^&+-*/'\""), c)) {
FoundTypePrefix = 0;
FoundFunctionPrefix = 0;
}
}
for (u32 t = 0; t < PREFIXES_Size; t++) {
if (c == Find[t].str[MatchProgress[t]]) {
MatchProgress[t]++;
if (MatchProgress[t] == Find[t].len) {
if (t == PREFIX_TYPE) {
FoundTypePrefix = 1;
} else if (t == PREFIX_FUNCTION) {
FoundFunctionPrefix = 1;
}
MatchProgress[t] = 0;
}
} else {
MatchProgress[t] = 0;
}
}
/* Replace hmm_ types */
if (FoundTypePrefix) {
for (u32 t = PREFIXES_Size+1; t < TYPES_Size; t++) {
if (c == Find[t].str[MatchProgress[t]]) {
MatchProgress[t]++;
if (MatchProgress[t] == Find[t].len) {
MatchProgress[t] = 0;
printf("\t[%u]: Find: %.*s, Repl: %.*s.\n", Line, str8_PRINTF_ARGS(Find[t]), str8_PRINTF_ARGS(Repl[t]));
Str8List_add(arena, &out,
str8_first(file_content,
i + 1 - (Find[t].len + Find[PREFIX_TYPE].len)));
Str8List_add(arena, &out, Repl[PREFIX_TYPE]);
Str8List_add(arena, &out, Repl[t]);
file_content = str8_skip(file_content, i+1);
i = -1;
}
} else {
MatchProgress[t] = 0;
}
}
}
/* If in a HMM_ function, do function name replacements */
if (FoundFunctionPrefix) {
for (u32 t = TYPES_Size+1; t < FUNCTIONS_Size; t++) {
if (c == Find[t].str[MatchProgress[t]]) {
MatchProgress[t]++;
if (MatchProgress[t] == Find[t].len) {
MatchProgress[t] = 0;
printf("\t[%u]: Find: %.*s, Repl: %.*s.\n", Line, str8_PRINTF_ARGS(Find[t]), str8_PRINTF_ARGS(Repl[t]));
Str8List_add(arena, &out, str8_first(file_content, i + 1 - Find[t].len));
Str8List_add(arena, &out, Repl[t]);
file_content = str8_skip(file_content, i+1);
i = -1;
/* NOTE(lcf): Special case because Find[] overlaps here */
if (t == FUN_R_SQUARE_ROOT) {
MatchProgress[FUN_SQUARE_ROOT] = 0;
}
if (t == FUN_LINEAR_COMBINE_SSE) {
printf("\t[%u]: HMM_LinearCombineSSE is now HMM_LinearCombineV4M4, and will now use a fallback method when SSE is not available. \n\tYou no longer need to check for the availability of SSE.\n", Line);
}
if (t == FUN_VEC) {
/* NOTE(lcf): if pattern is Vec2i, this is now i */
c = file_content.str[1];
if (c == 'i') {
Str8List_add(arena, &out, str8_first(file_content, 1));
Str8List_add(arena, &out, str8_lit("I"));
file_content = str8_skip(file_content, 2);
} else if (c == 'v') {
Str8List_add(arena, &out, str8_first(file_content, 1));
Str8List_add(arena, &out, str8_lit("V"));
file_content = str8_skip(file_content, 2);
} else if (c == 'f') {
Str8List_add(arena, &out, str8_first(file_content, 1));
Str8List_add(arena, &out, str8_lit("F"));
file_content = str8_skip(file_content, 2);
}
} else if (t == FUN_MAT) {
/* if pattern is Mat4d, this is now d */
c = file_content.str[1];
if (c == 'd') {
Str8List_add(arena, &out, str8_first(file_content, 1));
Str8List_add(arena, &out, str8_lit("D"));
file_content = str8_skip(file_content, 2);
} else if (c == 'f') {
Str8List_add(arena, &out, str8_first(file_content, 1));
Str8List_add(arena, &out, str8_lit("F"));
file_content = str8_skip(file_content, 2);
}
}
}
} else {
MatchProgress[t] = 0;
}
}
}
/* Handedness cases. */
if (FoundFunctionPrefix) {
for (u32 t = FUNCTIONS_Size+1; t < HAND_Size; t++) {
if (c == Find[t].str[MatchProgress[t]]) {
MatchProgress[t]++;
if (MatchProgress[t] == Find[t].len) {
MatchProgress[t] = 0;
chr8 check = file_content.str[i+1];
if (check == '(') {
printf("\t[%u]: Find: %.*s, Appending: _RH for old default handedness.\n", Line, str8_PRINTF_ARGS(Find[t]));
Str8List_add(arena, &out, str8_first(file_content, i + 1));
Str8List_add(arena, &out, str8_lit("_RH("));
file_content = str8_skip(file_content, i+2);
i = -1;
if (t == HAND_PERSPECTIVE || t == HAND_ROTATE) {
printf("\t[%u]: ", Line);
if (t == HAND_PERSPECTIVE) {
printf("HMM_Perspective_RH()");
} else {
printf("HMM_Rotate_RH()");
}
printf(" now takes Radians. Wrapping Degrees with HMM_AngleDeg()\n");
u64 end_arg = str8_char_location(file_content, ',');
if (end_arg != LCF_STRING_NO_MATCH) {
Str8List_add(arena, &out, str8_lit("HMM_AngleDeg("));
Str8List_add(arena, &out, str8_first(file_content, end_arg));
Str8List_add(arena, &out, str8_lit(")"));
file_content = str8_skip(file_content, end_arg);
}
}
}
}
} else {
MatchProgress[t] = 0;
}
}
}
}
Str8List_add(arena, &out, file_content);
return out;
}
void print_usage() {
printf("Updates C and C++ source code to use Handmade Math version 2.\n");
#ifdef _WIN32
printf("Usage: update_hmm.exe <filename> [<filename>...]\n");
#else
printf("Usage: update_hmm <filename> [<filename>...]\n");
#endif
}
int main(int argc, char* argv[]) {
Arena *tempa = Arena_create(GB(1));
if (argc == 1) {
print_usage();
return 1;
}
s32 argi = 1;
str8 arg = str8_from_cstring(argv[argi]);
if (arg.len == 2 && (arg.str[1] == 'h' || arg.str[1] == '?')) {
print_usage();
return 0;
}
for (; argi < argc; argi++) {
arg = str8_from_cstring(argv[argi]);
str8 file_content = stdio_load_entire_file(tempa, arg);
if (str8_is_empty(file_content)) {
printf("X - Invalid file name: %.*s\n\n", str8_PRINTF_ARGS(arg));
continue;
}
printf("O - Updating file: %.*s -------------------\n", str8_PRINTF_ARGS(arg));
Str8List result = update_file_content(tempa, file_content);
printf("\n");
stdio_write_file(arg, result);
Arena_reset_all(tempa);
}
return 0;
}

166
update/update_hmm.py Executable file
View File

@@ -0,0 +1,166 @@
#!/usr/bin/env python3
import argparse
import os
import re
typeReplacements = [
('hmm_', 'HMM_'),
('vec', 'Vec'),
('mat', 'Mat'),
('quaternion', 'Quaternion'),
('bool', 'Bool'),
('.InternalElementsSSE', '.SSE'),
]
funcReplacements = [
('HMM_', 'HMM_'),
('Vec', 'V'),
('Mat', 'M'),
('Quaternion', 'Q'),
('Equals', 'Eq'),
('Subtract', 'Sub'),
('Multiply', 'Mul'),
('Divide', 'Div'),
('Inverse', 'Inv'),
('RSquareRoot', 'InvSqrt'),
('SquareRoot', 'Sqrt'),
('Squared', 'Sqr'),
('Length', 'Len'),
('Slerp', 'SLerp'),
('By', ''),
('LinearCombineSSE', 'LinearCombineV4M4'),
('Transpose', 'TransposeM4'),
('Fast', ''), # TODO(port): emit warning, lower precision
('Normalize', 'Norm'),
('ToRadians', 'ToRad')
]
handedFuncs = [
'Perspective',
'Rotate',
'Orthographic',
'LookAt',
'FromAxisAngle',
'ToQuaternion',
]
projectionFuncs = [
'Perspective',
'Orthographic',
]
numFiles = 0
numWarnings = 0
def printWarning(msg):
global numWarnings
numWarnings += 1
print('WARNING: {}'.format(msg))
def updateFile(filename):
global numFiles
print('Updating: {}'.format(filename))
numFiles += 1
result = ''
with open(filename, 'r', newline='') as f:
for lineNo, line in enumerate(f):
updatedLine = line
def printLineWarning(msg):
printWarning(' Line {}: {}'.format(lineNo + 1, msg))
def replaceName(m):
name = m.group()
if name.startswith('hmm_'):
# do type replacements
for before, after in typeReplacements:
if before not in name:
continue
name = name.replace(before, after)
else:
# do func replacements
for before, after in funcReplacements:
if before not in name:
continue
name = name.replace(before, after)
if after == 'LinearCombineV4M4':
printLineWarning('HMM_LinearCombineSSE is now HMM_LinearCombineV4M4, and will now use a fallback method when SSE is not available. You no longer need to check for the availability of SSE.')
if after == 'V' or after == 'M':
# uppercase the modifier, if any
name = re.sub(
r'[VM]\d[ivfd]?',
lambda m: m.group().upper(),
name
)
# and also nuke the integer constructors
vecIntMatch = re.search(r'(V\d)I', name)
if vecIntMatch:
name = name.replace(vecIntMatch.group(), vecIntMatch.group(1))
# add handedness / NDC modifiers
if not any(x in name for x in ['RH', 'LH', 'NO', 'ZO']):
for handedFunc in handedFuncs:
suffixed = handedFunc + '_RH'
if handedFunc in projectionFuncs:
suffixed += '_NO'
name = name.replace(handedFunc, suffixed)
return name
def wrapDegrees(m):
name = m.group('name')
arg = m.group('arg')
if '(' in arg:
# all bets are off, don't wrap the argument
printLineWarning('{} now takes radians, but we were unable to automatically wrap the first argument with HMM_AngleDeg().'.format(name))
return m.group()
return '{}(HMM_AngleDeg({}),'.format(name, arg)
updatedLine = re.sub(r'(hmm_|HMM_)\w+', replaceName, updatedLine)
updatedLine = re.sub(r'(?P<name>HMM_Perspective_RH_NO|HMM_Rotate_RH)\((?P<arg>.*?),', wrapDegrees, updatedLine)
result += updatedLine
with open(filename, 'w', newline='') as f:
f.write(result)
parser = argparse.ArgumentParser(
prog = 'update_hmm',
description = 'Updates C and C++ source code to use Handmade Math 2.0.',
)
parser.add_argument(
'filename', nargs='+',
help='A file or directory to update to HMM 2.0. If a directory, all files with extensions from --exts will be processed.',
)
parser.add_argument(
'--exts', nargs='+', default=['.c', '.cpp', '.h', '.hpp'],
help='File extensions to run the script on, when targeting a directory. Default: .c, .cpp, .h, .hpp.',
metavar='.foo',
)
args = parser.parse_args()
for path in args.filename:
filenames = []
if os.path.isfile(path):
filenames = [path]
else:
for root, dirs, files in os.walk(path):
for file in files:
if file == 'HandmadeMath.h':
printWarning('HandmadeMath.h will not be replaced by this script.')
elif file.endswith(tuple(args.exts)):
filenames.append(os.path.join(root, file))
for filename in filenames:
try:
updateFile(filename)
except UnicodeDecodeError:
pass
print('Updated {} files with {} warnings.'.format(numFiles, numWarnings))

View File

@@ -1,12 +0,0 @@
@REM Batch script to run update_hmm.exe on all your code files.
@REM Example:
@REM "update_hmm_all.bat Code\Project\" -> Recursively update all files/folders in .\Code\Project\
for /r %1 %%v in (*.c) do update_hmm.exe "%%v"
for /r %1 %%v in (*.h) do update_hmm.exe "%%v"
for /r %1 %%v in (*.cpp) do update_hmm.exe "%%v"
for /r %1 %%v in (*.hpp) do update_hmm.exe "%%v"
@REM @REM Uncomment for sokol-samples
@REM for /r %1 %%v in (*.glsl) do update_hmm.exe "%%v"
@REM for /r %1 %%v in (*.hlsl) do update_hmm.exe "%%v"

View File

@@ -1,12 +0,0 @@
# Bash script to run update_hmm on all your code files.
# Example:
# "update_hmm_all Code/Project/" -> Recursively update all files/folders in ./Code/Project/
echo $1
for file in "$1"/*.{c,h,cpp,hpp} "$1"/**/*.{c,h,cpp,hpp} ; do
./update_hmm "$file"
done
# # Uncomment for sokol-samples
# for file in "$1"/*.{glsl,hlsl} "$1"/**/*.{glsl,hlsl} ; do
# ./update_hmm "$file"
# done