Files
HandmadeMath/example/src/main.cpp

163 lines
5.1 KiB
C++

#include <stdio.h>
#include <chrono>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <HandmadeMath.h>
#include "shaders.h"
#include "Entity.h"
#include "Cube.h"
#include "MeshRenderComponent.h"
#include "FollowCam.h"
void TickTree(Entity *e, float deltaSeconds);
void ComputeModelMatrices(Entity *ep, hmm_mat4 parentModelMatrix);
using std::chrono::high_resolution_clock;
int main()
{
// Initialise GLFW
glewExperimental = true; // Needed for core profile
if (!glfwInit()) {
fprintf( stderr, "Failed to initialize GLFW\n" );
return -1;
}
glfwWindowHint(GLFW_SAMPLES, 4); // 4x antialiasing
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); // We want OpenGL 3.3
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); // We don't want the old OpenGL
// Open a window and create its OpenGL context
GLFWwindow* window; // (In the accompanying source code, this variable is global for simplicity)
window = glfwCreateWindow( 1024, 768, "Tutorial 01", NULL, NULL);
if (window == NULL) {
fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.\n" );
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window); // Initialize GLEW
glewExperimental=true; // Needed in core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW\n");
return -1;
}
// Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Create and compile our GLSL program from the shaders
GLuint programID = LoadShaders("src/vertex.glsl", "src/fragment.glsl");
if (!programID) {
return 1;
}
// Get a handle for our "MVP" uniform
// Only during the initialisation
GLuint uniformID_M = glGetUniformLocation(programID, "M");
GLuint uniformID_V = glGetUniformLocation(programID, "V");
GLuint uniformID_MVP = glGetUniformLocation(programID, "MVP");
// Enable depth test
glEnable(GL_DEPTH_TEST);
// Accept fragment if it closer to the camera than the former one
glDepthFunc(GL_LESS);
Cube c1 = Cube();
Entity monkey = Entity();
monkey.position = HMM_Vec3(2.1f, 0.0f, 0.0f);
monkey.renderComponent = new MeshRenderComponent("MonkeySmooth.obj");
FollowCam cam = FollowCam(&monkey);
// cam.position = HMM_Vec3(3.0f, 3.0f, 4.0f);
cam.position = HMM_Vec3(3.0f, 3.0f, 5.0f);
// cam.rotation = HMM_QuaternionFromAxisAngle(HMM_Vec3(0.0f, 1.0f, 0.0f), HMM_ToRadians(90.0f));
// Cube c = Cube();
// monkey.position = HMM_Vec3(2.1f, 0.0f, 0.0f);
// monkey.AddChild(&c);
c1.AddChild(&monkey);
Entity root = Entity();
root.AddChild(&c1);
root.AddChild(&cam);
bool hasTicked = false;
high_resolution_clock::time_point lastTickTime;
do {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Tick
auto now = high_resolution_clock::now();
if (hasTicked) {
auto elapsedNanoseconds = std::chrono::duration_cast<std::chrono::nanoseconds>(now - lastTickTime).count();
float elapsedSeconds = elapsedNanoseconds / 1000000000.0f;
TickTree(&root, elapsedSeconds);
}
lastTickTime = now;
hasTicked = true;
// Compute model positions for rendering
ComputeModelMatrices(&root, HMM_Mat4d(1.0f));
// Render!
hmm_mat4 projection = cam.projectionMatrix();
hmm_mat4 view = cam.viewMatrix();
hmm_mat4 vp = projection * view;
auto it = EntityIterator(&root);
while (it.HasNext()) {
Entity *e = it.Next();
if (e->renderComponent) {
// Use our shader
glUseProgram(programID);
// Send uniforms
glUniformMatrix4fv(uniformID_M, 1, GL_FALSE, &e->modelMatrix.Elements[0][0]);
glUniformMatrix4fv(uniformID_V, 1, GL_FALSE, &view.Elements[0][0]);
hmm_mat4 mvp = vp * e->modelMatrix;
glUniformMatrix4fv(uniformID_MVP, 1, GL_FALSE, &mvp.Elements[0][0]);
e->renderComponent->Draw();
}
}
// Swap buffers
glfwSwapBuffers(window);
glfwPollEvents();
} while (
// Check if the ESC key was pressed or the window was closed
glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS
&& glfwWindowShouldClose(window) == 0
);
}
void TickTree(Entity *e, float deltaSeconds) {
e->Tick(deltaSeconds);
for (auto child : e->children) {
TickTree(child, deltaSeconds);
}
}
void ComputeModelMatrices(Entity *e, hmm_mat4 parentModelMatrix) {
e->parentModelMatrix = parentModelMatrix;
e->modelMatrix = parentModelMatrix * HMM_Translate(e->position) * HMM_QuaternionToMat4(e->rotation) * HMM_Scale(e->scale);
for (int i = 0; i < e->children.size(); i++) {
ComputeModelMatrices(e->children[i], e->modelMatrix);
}
}