mirror of
https://github.com/nim-lang/Nim.git
synced 2026-02-11 22:08:54 +00:00
Fixed a mixed bag of stuff poly and numeric
This commit is contained in:
@@ -10,15 +10,16 @@
|
||||
|
||||
type TOneVarFunction* =proc (x:float):float
|
||||
|
||||
proc brent*(xmin,xmax:float ,function:TOneVarFunction, rootx,rooty:var float,tol:float,maxiter=1000):bool=
|
||||
proc brent*(xmin,xmax:float ,function:TOneVarFunction, tol:float,maxiter=1000):
|
||||
tuple[rootx, rooty: float, success: bool]=
|
||||
## Searches `function` for a root between `xmin` and `xmax`
|
||||
## using brents method. If the function value at `xmin`and `xmax` has the
|
||||
## same sign, `rootx`/`rooty` is set too the extrema value closest to x-axis
|
||||
## and false is returned.
|
||||
## Otherwise there exists at least one root and true is always returned.
|
||||
## and succes is set to false.
|
||||
## Otherwise there exists at least one root and success is set to true.
|
||||
## This root is searched for at most `maxiter` iterations.
|
||||
## If `tol` tolerance is reached within `maxiter` iterations
|
||||
## the root refinement stops and true is returned.
|
||||
## the root refinement stops and success=true.
|
||||
|
||||
# see http://en.wikipedia.org/wiki/Brent%27s_method
|
||||
var
|
||||
@@ -37,13 +38,9 @@ proc brent*(xmin,xmax:float ,function:TOneVarFunction, rootx,rooty:var float,tol
|
||||
|
||||
if fa*fb>=0:
|
||||
if abs(fa)<abs(fb):
|
||||
rootx=a
|
||||
rooty=fa
|
||||
return false
|
||||
return (a,fa,false)
|
||||
else:
|
||||
rootx=b
|
||||
rooty=fb
|
||||
return false
|
||||
return (b,fb,false)
|
||||
|
||||
if abs(fa)<abs(fb):
|
||||
swap(fa,fb)
|
||||
@@ -55,13 +52,13 @@ proc brent*(xmin,xmax:float ,function:TOneVarFunction, rootx,rooty:var float,tol
|
||||
else: #secant rule
|
||||
s = b - fb * (b - a) / (fb - fa)
|
||||
tmp2 = (3.0 * a + b) / 4.0
|
||||
if (not(((s > tmp2) and (s < b)) or ((s < tmp2) and (s > b)))) or
|
||||
(mflag and (abs(s - b) >= (abs(b - c) / 2.0))) or
|
||||
(not mflag and (abs(s - b) >= (abs(c - d) / 2.0))):
|
||||
if not((s > tmp2 and s < b) or (s < tmp2 and s > b)) or
|
||||
(mflag and abs(s - b) >= (abs(b - c) / 2.0)) or
|
||||
(not mflag and abs(s - b) >= abs(c - d) / 2.0):
|
||||
s=(a+b)/2.0
|
||||
mflag=true
|
||||
else:
|
||||
if ((mflag and (abs(b - c) < tol)) or (not mflag and (abs(c - d) < tol))):
|
||||
if (mflag and (abs(b - c) < tol)) or (not mflag and (abs(c - d) < tol)):
|
||||
s=(a+b)/2.0
|
||||
mflag=true
|
||||
else:
|
||||
@@ -83,6 +80,4 @@ proc brent*(xmin,xmax:float ,function:TOneVarFunction, rootx,rooty:var float,tol
|
||||
if i>maxiter:
|
||||
break
|
||||
|
||||
rootx=b
|
||||
rooty=fb
|
||||
return true
|
||||
return (b,fb,true)
|
||||
|
||||
@@ -53,11 +53,9 @@ proc `[]=` *(p:var TPoly;idx:int,v:float)=
|
||||
## p[2] set the quadric term, p[3] the cubic etc.
|
||||
## If index is out of range for the coefficients,
|
||||
## the polynomial grows to the smallest needed degree.
|
||||
if idx<0:
|
||||
return
|
||||
assert(idx>=0)
|
||||
|
||||
if idx>p.degree: #polynomial must grow
|
||||
echo("GROW!")
|
||||
var oldlen=p.cofs.len
|
||||
p.cofs.setLen(idx+1)
|
||||
for q in oldlen.. <high(p.cofs):
|
||||
@@ -66,7 +64,7 @@ proc `[]=` *(p:var TPoly;idx:int,v:float)=
|
||||
p.cofs[idx]=v
|
||||
|
||||
|
||||
iterator coefficients*(p:TPoly):float=
|
||||
iterator items*(p:TPoly):float=
|
||||
## Iterates through the corfficients of the polynomial.
|
||||
var i=p.degree
|
||||
while i>=0:
|
||||
@@ -94,7 +92,7 @@ proc `$` *(p:TPoly):string =
|
||||
var first=true #might skip + sign if first coefficient
|
||||
|
||||
for idx in countdown(p.degree,0):
|
||||
var a=p[idx]
|
||||
let a=p[idx]
|
||||
|
||||
if a==0.0:
|
||||
continue
|
||||
@@ -104,7 +102,7 @@ proc `$` *(p:TPoly):string =
|
||||
first=false
|
||||
|
||||
if a!=1.0 or idx==0:
|
||||
result=result & formatFloat(a,ffDefault,0)
|
||||
result.add(formatFloat(a,ffDefault,0))
|
||||
if idx>=2:
|
||||
result.add("x^" & $idx)
|
||||
elif idx==1:
|
||||
@@ -248,7 +246,7 @@ proc `-` *(p1:TPoly,p2:TPoly):TPoly=
|
||||
result.clean # drop zero coefficients in remainder
|
||||
|
||||
proc `/`*(p:TPoly,f:float):TPoly=
|
||||
## Divides polynomial `p`with real number `f`
|
||||
## Divides polynomial `p` with a real number `f`
|
||||
result=initPolyFromDegree(p.degree)
|
||||
for i in 0..high(p.cofs):
|
||||
result[i]=p.cofs[i]/f
|
||||
@@ -260,7 +258,7 @@ proc `/` *(p,q:TPoly):TPoly=
|
||||
p.divMod(q,result,dummy)
|
||||
|
||||
proc `mod` *(p,q:TPoly):TPoly=
|
||||
## computes the polynomial modulo operation,
|
||||
## Computes the polynomial modulo operation,
|
||||
## that is the remainder op `p`/`q`
|
||||
var dummy:TPoly
|
||||
p.divMod(q,dummy,result)
|
||||
@@ -277,9 +275,7 @@ proc normalize*(p:var TPoly)=
|
||||
proc solveQuadric*(a,b,c:float;zerotol=0.0):seq[float]=
|
||||
## Solves the quadric equation `ax^2+bx+c`, with a possible
|
||||
## tolerance `zerotol` to find roots of curves just 'touching'
|
||||
## the x axis. Returns sequence with 1 or 2 solutions, or nil
|
||||
## in case of no real solution.
|
||||
result=nil
|
||||
## the x axis. Returns sequence with 0,1 or 2 solutions.
|
||||
|
||||
var p,q,d:float
|
||||
|
||||
@@ -288,7 +284,7 @@ proc solveQuadric*(a,b,c:float;zerotol=0.0):seq[float]=
|
||||
if p==inf or p==neginf: #linear equation..
|
||||
var linrt= -c/b
|
||||
if linrt==inf or linrt==neginf: #constant only
|
||||
return nil
|
||||
return @[]
|
||||
return @[linrt]
|
||||
|
||||
q=c/a
|
||||
@@ -298,12 +294,12 @@ proc solveQuadric*(a,b,c:float;zerotol=0.0):seq[float]=
|
||||
#check for inside zerotol range for neg. roots
|
||||
var err=a*p*p-b*p+c #evaluate error at parabola center axis
|
||||
if(err<=zerotol): return @[-p]
|
||||
return nil
|
||||
return @[]
|
||||
else:
|
||||
var sr=sqrt(d)
|
||||
result= @[-sr-p,sr-p]
|
||||
|
||||
proc getRangeForRoots(p:TPoly;xmin,xmax:var float)=
|
||||
proc getRangeForRoots(p:TPoly):tuple[xmin,xmax:float]=
|
||||
## helper function for `roots` function
|
||||
## quickly computes a range, guaranteed to contain
|
||||
## all the real roots of the polynomial
|
||||
@@ -319,36 +315,36 @@ proc getRangeForRoots(p:TPoly;xmin,xmax:var float)=
|
||||
bound2=bound2+c
|
||||
|
||||
bound2=max(1.0,bound2)
|
||||
xmax=min(bound1,bound2)
|
||||
xmin= -xmax
|
||||
result.xmax=min(bound1,bound2)
|
||||
result.xmin= -result.xmax
|
||||
|
||||
|
||||
proc addRoot(p:TPoly,res:var seq[float],xp0,xp1,tol,zerotol,mergetol:float)=
|
||||
proc addRoot(p:TPoly,res:var seq[float],xp0,xp1,tol,zerotol,mergetol:float,maxiter:int)=
|
||||
## helper function for `roots` function
|
||||
## try to do a numeric search for a single root in range xp0-xp1,
|
||||
## adding it to `res` (allocating `res` if nil)
|
||||
var rootx,rooty:float
|
||||
|
||||
if brent(xp0,xp1, proc(x:float):float=p.eval(x),rootx,rooty,tol):
|
||||
if res==nil: res= @[rootx]
|
||||
elif rootx>=res[high(res)]+mergetol: res.add(rootx) #dont add equal roots.
|
||||
var br=brent(xp0,xp1, proc(x:float):float=p.eval(x),tol)
|
||||
if br.success:
|
||||
if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots.
|
||||
res.add(br.rootx)
|
||||
else:
|
||||
#this might be a 'touching' case, check function value against
|
||||
#zero tolerance
|
||||
if abs(rooty)<=zerotol:
|
||||
if res==nil: res= @[rootx]
|
||||
elif rootx>=res[high(res)]+mergetol: res.add(rootx) #dont add equal roots.
|
||||
if abs(br.rooty)<=zerotol:
|
||||
if res.len==0 or br.rootx>=res[high(res)]+mergetol: #dont add equal roots.
|
||||
res.add(br.rootx)
|
||||
|
||||
|
||||
proc roots*(p:TPoly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12):seq[float]=
|
||||
proc roots*(p:TPoly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12,maxiter=1000):seq[float]=
|
||||
## Computes the real roots of the polynomial `p`
|
||||
## `tol` is the tolerance use to break searching for each root when reached.
|
||||
## `zerotol` is the tolerance, which is 'close enough' to zero to be considered a root
|
||||
## and is used to find roots for curves that only 'touch' the x-axis.
|
||||
## `mergetol` is the tolerance, of which two x-values are considered beeing the same root.
|
||||
## Returns a sequence with the solutions, or nil in case of no solutions.
|
||||
## `maxiter` can be used to limit the number of iterations for each root.
|
||||
## Returns a (possibly empty) sorted sequence with the solutions.
|
||||
var deg=p.degree
|
||||
var res:seq[float]=nil
|
||||
result= @[]
|
||||
if deg<=0:
|
||||
return nil
|
||||
elif p.degree==1:
|
||||
@@ -361,13 +357,13 @@ proc roots*(p:TPoly,tol=1.0e-9,zerotol=1.0e-6,mergetol=1.0e-12):seq[float]=
|
||||
else:
|
||||
# degree >=3 , find min/max points of polynomial with recursive
|
||||
# derivative and do a numerical search for root between each min/max
|
||||
var x0,x1:float
|
||||
p.getRangeForRoots(x0,x1)
|
||||
var range=p.getRangeForRoots()
|
||||
var minmax=p.derivative.roots(tol,zerotol,mergetol)
|
||||
if minmax!=nil: #ie. we have minimas/maximas in this function
|
||||
for x in minmax.items:
|
||||
addRoot(p,res,x0,x,tol,zerotol,mergetol)
|
||||
x0=x
|
||||
addRoot(p,res,x0,x1,tol,zerotol,mergetol)
|
||||
addRoot(p,result,range.xmin,x,tol,zerotol,mergetol,maxiter)
|
||||
range.xmin=x
|
||||
addRoot(p,result,range.xmin,range.xmax,tol,zerotol,mergetol,maxiter)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
Reference in New Issue
Block a user