better docs for algorithm module (#9192)

* better docs for `algorithm` module

* address the comments

* small first letter in the first sentence
* last argument is reverted to be `int`
* `rotateLeft` keeps `discardable` pragma, as discussed on IRC

* another small correction
This commit is contained in:
Miran
2018-10-09 21:36:51 +02:00
committed by Andreas Rumpf
parent 27e4825c62
commit 47828efe32

View File

@@ -10,14 +10,17 @@
## This module implements some common generic algorithms.
type
SortOrder* = enum ## sort order
SortOrder* = enum
Descending, Ascending
proc `*`*(x: int, order: SortOrder): int {.inline.} =
## flips `x` if ``order == Descending``;
## if ``order == Ascending`` then `x` is returned.
## `x` is supposed to be the result of a comparator, ie ``< 0`` for
## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
## flips ``x`` if ``order == Descending``.
## If ``order == Ascending`` then ``x`` is returned.
##
## ``x`` is supposed to be the result of a comparator, i.e.
## | ``< 0`` for *less than*,
## | ``== 0`` for *equal*,
## | ``> 0`` for *greater than*.
var y = order.ord - 1
result = (x xor y) - y
@@ -28,16 +31,28 @@ template fillImpl[T](a: var openArray[T], first, last: int, value: T) =
inc(x)
proc fill*[T](a: var openArray[T], first, last: Natural, value: T) =
## fills the array ``a[first..last]`` with `value`.
## fills the slice ``a[first..last]`` with ``value``.
runnableExamples:
var a: array[6, int]
a.fill(1, 3, 9)
doAssert a == [0, 9, 9, 9, 0, 0]
fillImpl(a, first, last, value)
proc fill*[T](a: var openArray[T], value: T) =
## fills the array `a` with `value`.
## fills the container ``a`` with ``value``.
runnableExamples:
var a: array[6, int]
a.fill(9)
doAssert a == [9, 9, 9, 9, 9, 9]
fillImpl(a, 0, a.high, value)
proc reverse*[T](a: var openArray[T], first, last: Natural) =
## reverses the array ``a[first..last]``.
## reverses the slice ``a[first..last]``.
runnableExamples:
var a = [1, 2, 3, 4, 5, 6]
a.reverse(1, 3)
doAssert a == [1, 4, 3, 2, 5, 6]
var x = first
var y = last
while x < y:
@@ -46,11 +61,20 @@ proc reverse*[T](a: var openArray[T], first, last: Natural) =
inc(x)
proc reverse*[T](a: var openArray[T]) =
## reverses the array `a`.
## reverses the contents of the container ``a``.
runnableExamples:
var a = [1, 2, 3, 4, 5, 6]
a.reverse()
doAssert a == [6, 5, 4, 3, 2, 1]
reverse(a, 0, max(0, a.high))
proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] =
## returns the reverse of the array `a[first..last]`.
## returns the reverse of the slice ``a[first..last]``.
runnableExamples:
let
a = [1, 2, 3, 4, 5, 6]
b = reversed(a, 1, 3)
doAssert b == @[4, 3, 2]
assert last >= first-1
var i = last - first
var x = first.int
@@ -61,14 +85,19 @@ proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] =
inc(x)
proc reversed*[T](a: openArray[T]): seq[T] =
## returns the reverse of the array `a`.
## returns the reverse of the container ``a``.
runnableExamples:
let
a = [1, 2, 3, 4, 5, 6]
b = reversed(a)
doAssert b == @[6, 5, 4, 3, 2, 1]
reversed(a, 0, a.high)
proc binarySearch*[T, K](a: openArray[T], key: K,
cmp: proc (x: T, y: K): int {.closure.}): int =
## binary search for `key` in `a`. Returns -1 if not found.
## Binary search for ``key`` in ``a``. Returns -1 if not found.
##
## `cmp` is the comparator function to use, the expected return values are
## ``cmp`` is the comparator function to use, the expected return values are
## the same as that of system.cmp.
if a.len == 0:
return -1
@@ -111,7 +140,7 @@ proc binarySearch*[T, K](a: openArray[T], key: K,
if result >= len or cmp(a[result], key) != 0: result = -1
proc binarySearch*[T](a: openArray[T], key: T): int =
## binary search for `key` in `a`. Returns -1 if not found.
## Binary search for ``key`` in ``a``. Returns -1 if not found.
binarySearch(a, key, cmp[T])
proc smartBinarySearch*[T](a: openArray[T], key: T): int {.deprecated.} =
@@ -122,16 +151,17 @@ const
onlySafeCode = true
proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int =
## Returns a position to the first element in the `a` that is greater than `key`, or last
## if no such element is found. In other words if you have a sorted sequence and you call
## insert(thing, elm, lowerBound(thing, elm))
## returns a position to the first element in the ``a`` that is greater than
## ``key``, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## ``insert(thing, elm, lowerBound(thing, elm))``
## the sequence will still be sorted.
##
## The first version uses `cmp` to compare the elements. The expected return values are
## the same as that of system.cmp.
## The second version uses the default comparison function `cmp`.
## The first version uses ``cmp`` to compare the elements.
## The expected return values are the same as that of ``system.cmp``.
## The second version uses the default comparison function ``cmp``.
##
## example::
## .. code-block:: nim
##
## var arr = @[1,2,3,5,6,7,8,9]
## arr.insert(4, arr.lowerBound(4))
@@ -151,17 +181,17 @@ proc lowerBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.clo
proc lowerBound*[T](a: openArray[T], key: T): int = lowerBound(a, key, cmp[T])
proc upperBound*[T, K](a: openArray[T], key: K, cmp: proc(x: T, k: K): int {.closure.}): int =
## Returns a position to the first element in the `a` that is not less
## (i.e. greater or equal to) than `key`, or last if no such element is found.
## returns a position to the first element in the ``a`` that is not less
## (i.e. greater or equal to) than ``key``, or last if no such element is found.
## In other words if you have a sorted sequence and you call
## insert(thing, elm, upperBound(thing, elm))
## ``insert(thing, elm, upperBound(thing, elm))``
## the sequence will still be sorted.
##
## The first version uses `cmp` to compare the elements. The expected return values are
## the same as that of system.cmp.
## The second version uses the default comparison function `cmp`.
## The first version uses ``cmp`` to compare the elements. The expected
## return values are the same as that of ``system.cmp``.
## The second version uses the default comparison function ``cmp``.
##
## example::
## .. code-block:: nim
##
## var arr = @[1,2,3,4,6,7,8,9]
## arr.insert(5, arr.upperBound(4))
@@ -268,7 +298,7 @@ func sort*[T](a: var openArray[T],
s = s*2
func sort*[T](a: var openArray[T], order = SortOrder.Ascending) =
## Sort an openarray in-place with a default lexicographical ordering.
## sorts an openarray in-place with a default lexicographical ordering.
runnableExamples:
var s = @[1,3,2,5,4]
s.sort
@@ -277,14 +307,21 @@ func sort*[T](a: var openArray[T], order = SortOrder.Ascending) =
func sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
order = SortOrder.Ascending): seq[T] =
## Returns `a` sorted by `cmp` in the specified `order`.
## returns ``a`` sorted by ``cmp`` in the specified ``order``.
runnableExamples:
let
a = [2, 3, 1, 5, 4]
b = sorted(a, system.cmp)
c = sorted(a, system.cmp, Descending)
doAssert b == @[1, 2, 3, 4, 5]
doAssert c == @[5, 4, 3, 2, 1]
result = newSeq[T](a.len)
for i in 0 .. a.high:
result[i] = a[i]
sort(result, cmp, order)
func sorted*[T](a: openArray[T], order = SortOrder.Ascending): seq[T] =
## Returns `a` sorted with default lexicographical ordering
## returns ``a`` sorted with default lexicographical ordering.
runnableExamples:
let orig = @[2,3,1,2]
let copy = orig.sorted()
@@ -328,16 +365,16 @@ template sortedByIt*(seq1, op: untyped): untyped =
func isSorted*[T](a: openArray[T],
cmp: proc(x, y: T): int {.closure.},
order = SortOrder.Ascending): bool =
## Checks to see whether `a` is already sorted in `order`
## using `cmp` for the comparison. Parameters identical
## to `sort`
## checks to see whether ``a`` is already sorted in ``order``
## using ``cmp`` for the comparison. Parameters identical
## to ``sort``.
result = true
for i in 0..<len(a)-1:
if cmp(a[i],a[i+1]) * order > 0:
return false
func isSorted*[T](a: openArray[T], order = SortOrder.Ascending): bool =
## Checks whether `a` is sorted with a default lexicographical ordering
## checks whether ``a`` is sorted with a default lexicographical ordering.
runnableExamples:
let test = @[1,1,2,3,5,8]
doAssert test.isSorted()
@@ -377,7 +414,7 @@ proc product*[T](x: openArray[seq[T]]): seq[seq[T]] =
indexes[index] -= 1
proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
## Calculates the next lexicographic permutation, directly modifying ``x``.
## calculates the next lexicographic permutation, directly modifying ``x``.
## The result is whether a permutation happened, otherwise we have reached
## the last-ordered permutation.
##
@@ -406,8 +443,8 @@ proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} =
result = true
proc prevPermutation*[T](x: var openarray[T]): bool {.discardable.} =
## Calculates the previous lexicographic permutation, directly modifying
## ``x``. The result is whether a permutation happened, otherwise we have
## calculates the previous lexicographic permutation, directly modifying
## ``x``. The result is whether a permutation happened, otherwise we have
## reached the first-ordered permutation.
##
## .. code-block:: nim
@@ -517,48 +554,56 @@ proc rotatedInternal[T](arg: openarray[T]; first, middle, last: int): seq[T] =
for i in last ..< arg.len:
result[i] = arg[i]
proc rotateLeft*[T](arg: var openarray[T]; slice: HSlice[int, int]; dist: int): int =
## Performs a left rotation on a range of elements. If you want to rotate right, use a negative ``dist``.
## Specifically, ``rotateLeft`` rotates the elements at ``slice`` by ``dist`` positions.
## The element at index ``slice.a + dist`` will be at index ``slice.a``.
## The element at index ``slice.b`` will be at ``slice.a + dist -1``.
## The element at index ``slice.a`` will be at ``slice.b + 1 - dist``.
## The element at index ``slice.a + dist - 1`` will be at ``slice.b``.
#
## Elements outsize of ``slice`` will be left unchanged.
proc rotateLeft*[T](arg: var openarray[T]; slice: HSlice[int, int]; dist: int): int {.discardable.} =
## performs a left rotation on a range of elements. If you want to rotate
## right, use a negative ``dist``. Specifically, ``rotateLeft`` rotates
## the elements at ``slice`` by ``dist`` positions.
##
## | The element at index ``slice.a + dist`` will be at index ``slice.a``.
## | The element at index ``slice.b`` will be at ``slice.a + dist -1``.
## | The element at index ``slice.a`` will be at ``slice.b + 1 - dist``.
## | The element at index ``slice.a + dist - 1`` will be at ``slice.b``.
##
## Elements outside of ``slice`` will be left unchanged.
## The time complexity is linear to ``slice.b - slice.a + 1``.
##
## ``slice``
## the indices of the element range that should be rotated.
## The indices of the element range that should be rotated.
##
## ``dist``
## the distance in amount of elements that the data should be rotated. Can be negative, can be any number.
## The distance in amount of elements that the data should be rotated.
## Can be negative, can be any number.
##
## .. code-block:: nim
## var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
## list.rotateLeft(1 .. 8, 3)
## doAssert list == [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10]
##
## var list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
## list.rotateLeft(1 .. 8, 3)
## doAssert list == [0, 4, 5, 6, 7, 8, 1, 2, 3, 9, 10]
let sliceLen = slice.b + 1 - slice.a
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
arg.rotateInternal(slice.a, slice.a+distLeft, slice.b + 1)
proc rotateLeft*[T](arg: var openarray[T]; dist: int): int =
## default arguments for slice, so that this procedure operates on the entire
proc rotateLeft*[T](arg: var openarray[T]; dist: int): int {.discardable.} =
## Default arguments for slice, so that this procedure operates on the entire
## ``arg``, and not just on a part of it.
runnableExamples:
var a = [1, 2, 3, 4, 5]
a.rotateLeft(2)
doAssert a == [3, 4, 5, 1, 2]
let arglen = arg.len
let distLeft = ((dist mod arglen) + arglen) mod arglen
arg.rotateInternal(0, distLeft, arglen)
proc rotatedLeft*[T](arg: openarray[T]; slice: HSlice[int, int], dist: int): seq[T] =
## same as ``rotateLeft``, just with the difference that it does
## not modify the argument. It creates a new ``seq`` instead
## Same as ``rotateLeft``, just with the difference that it does
## not modify the argument. It creates a new ``seq`` instead.
let sliceLen = slice.b + 1 - slice.a
let distLeft = ((dist mod sliceLen) + sliceLen) mod sliceLen
arg.rotatedInternal(slice.a, slice.a+distLeft, slice.b+1)
proc rotatedLeft*[T](arg: openarray[T]; dist: int): seq[T] =
## same as ``rotateLeft``, just with the difference that it does
## not modify the argument. It creates a new ``seq`` instead
## Same as ``rotateLeft``, just with the difference that it does
## not modify the argument. It creates a new ``seq`` instead.
let arglen = arg.len
let distLeft = ((dist mod arglen) + arglen) mod arglen
arg.rotatedInternal(0, distLeft, arg.len)