Improve the heapqueue module (#17034)

Improve documentation
Optimize toHeapQueue
Rename siftup and siftdown
Add tests for the heap property
This commit is contained in:
konsumlamm
2021-02-15 13:57:15 +01:00
committed by GitHub
parent 8f54d3b792
commit 56f5010fa4
2 changed files with 165 additions and 89 deletions

View File

@@ -8,31 +8,27 @@
## The `heapqueue` module implements a
## `heap data structure<https://en.wikipedia.org/wiki/Heap_(data_structure)>`_
## that can be used as a
## `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
## Heaps are arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]` for
## all `k`, counting elements from 0. The interesting property of a heap is that
## `binary heap data structure<https://en.wikipedia.org/wiki/Binary_heap>`_
## that can be used as a `priority queue<https://en.wikipedia.org/wiki/Priority_queue>`_.
## They are represented as arrays for which `a[k] <= a[2*k+1]` and `a[k] <= a[2*k+2]`
## for all indices `k` (counting elements from 0). The interesting property of a heap is that
## `a[0]` is always its smallest element.
##
## Basic usage
## -----------
##
runnableExamples:
var heap = initHeapQueue[int]()
heap.push(8)
heap.push(2)
var heap = [8, 2].toHeapQueue
heap.push(5)
# The first element is the lowest element
# the first element is the lowest element
assert heap[0] == 2
# Remove and return the lowest element
# remove and return the lowest element
assert heap.pop() == 2
# The lowest element remaining is 5
# the lowest element remaining is 5
assert heap[0] == 5
## Usage with custom object
## ------------------------
## Usage with custom objects
## -------------------------
## To use a `HeapQueue` with a custom object, the `<` operator must be
## implemented.
@@ -48,6 +44,7 @@ runnableExamples:
assert jobs[0].priority == 1
import std/private/since
type HeapQueue*[T] = object
@@ -57,27 +54,33 @@ type HeapQueue*[T] = object
proc initHeapQueue*[T](): HeapQueue[T] =
## Creates a new empty heap.
##
## See also:
## Heaps are initialized by default, so it is not necessary to call
## this function explicitly.
##
## **See also:**
## * `toHeapQueue proc <#toHeapQueue,openArray[T]>`_
discard
proc len*[T](heap: HeapQueue[T]): int {.inline.} =
## Returns the number of elements of `heap`.
runnableExamples:
let heap = [9, 5, 8].toHeapQueue
assert heap.len == 3
heap.data.len
proc `[]`*[T](heap: HeapQueue[T], i: Natural): lent T {.inline.} =
## Accesses the i-th element of `heap`.
heap.data[i]
proc heapCmp[T](x, y: T): bool {.inline.} =
return (x < y)
proc heapCmp[T](x, y: T): bool {.inline.} = x < y
proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
## 'heap' is a heap at all indices >= startpos, except possibly for `pos`. `pos`
proc siftup[T](heap: var HeapQueue[T], startpos, p: int) =
## `heap` is a heap at all indices >= `startpos`, except possibly for `p`. `p`
## is the index of a leaf with a possibly out-of-order value. Restores the
## heap invariant.
var pos = p
var newitem = heap[pos]
let newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
@@ -90,13 +93,14 @@ proc siftdown[T](heap: var HeapQueue[T], startpos, p: int) =
break
heap.data[pos] = newitem
proc siftup[T](heap: var HeapQueue[T], p: int) =
proc siftdownToBottom[T](heap: var HeapQueue[T], p: int) =
# This is faster when the element should be close to the bottom.
let endpos = len(heap)
var pos = p
let startpos = pos
let newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
var childpos = 2*pos + 1 # leftmost child position
var childpos = 2 * pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
let rightpos = childpos + 1
@@ -105,52 +109,71 @@ proc siftup[T](heap: var HeapQueue[T], p: int) =
# Move the smaller child up.
heap.data[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
childpos = 2 * pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap.data[pos] = newitem
siftdown(heap, startpos, pos)
siftup(heap, startpos, pos)
proc siftdown[T](heap: var HeapQueue[T], p: int) =
let endpos = len(heap)
var pos = p
let newitem = heap[pos]
var childpos = 2 * pos + 1
while childpos < endpos:
let rightpos = childpos + 1
if rightpos < endpos and not heapCmp(heap[childpos], heap[rightpos]):
childpos = rightpos
if not heapCmp(heap[childpos], newitem):
break
heap.data[pos] = heap[childpos]
pos = childpos
childpos = 2 * pos + 1
heap.data[pos] = newitem
proc push*[T](heap: var HeapQueue[T], item: sink T) =
## Pushes `item` onto heap, maintaining the heap invariant.
## Pushes `item` onto `heap`, maintaining the heap invariant.
heap.data.add(item)
siftdown(heap, 0, len(heap)-1)
siftup(heap, 0, len(heap) - 1)
proc toHeapQueue*[T](x: openArray[T]): HeapQueue[T] {.since: (1, 3).} =
## Creates a new HeapQueue that contains the elements of `x`.
##
## See also:
## **See also:**
## * `initHeapQueue proc <#initHeapQueue>`_
runnableExamples:
var heap = toHeapQueue([9, 5, 8])
var heap = [9, 5, 8].toHeapQueue
assert heap.pop() == 5
assert heap[0] == 8
result = initHeapQueue[T]()
for item in items(x):
result.push(item)
# see https://en.wikipedia.org/wiki/Binary_heap#Building_a_heap
result.data = @x
for i in countdown(x.len div 2 - 1, 0):
siftdown(result, i)
proc pop*[T](heap: var HeapQueue[T]): T =
## Pops and returns the smallest item from `heap`,
## maintaining the heap invariant.
runnableExamples:
var heap = toHeapQueue([9, 5, 8])
var heap = [9, 5, 8].toHeapQueue
assert heap.pop() == 5
let lastelt = heap.data.pop()
if heap.len > 0:
result = heap[0]
heap.data[0] = lastelt
siftup(heap, 0)
siftdownToBottom(heap, 0)
else:
result = lastelt
proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
## Linear scan to find index of item ``x`` or -1 if not found.
## Linear scan to find the index of the item `x` or -1 if not found.
runnableExamples:
var heap = toHeapQueue([9, 5, 8])
let heap = [9, 5, 8].toHeapQueue
assert heap.find(5) == 0
assert heap.find(9) == 1
assert heap.find(777) == -1
result = -1
for i in 0 ..< heap.len:
if heap[i] == x: return i
@@ -158,65 +181,69 @@ proc find*[T](heap: HeapQueue[T], x: T): int {.since: (1, 3).} =
proc del*[T](heap: var HeapQueue[T], index: Natural) =
## Removes the element at `index` from `heap`, maintaining the heap invariant.
runnableExamples:
var heap = toHeapQueue([9, 5, 8])
var heap = [9, 5, 8].toHeapQueue
heap.del(1)
assert heap[0] == 5
assert heap[1] == 8
swap(heap.data[^1], heap.data[index])
let newLen = heap.len - 1
heap.data.setLen(newLen)
if index < newLen:
heap.siftup(index)
siftdownToBottom(heap, index)
proc replace*[T](heap: var HeapQueue[T], item: sink T): T =
## Pops and returns the current smallest value, and add the new item.
## This is more efficient than pop() followed by push(), and can be
## This is more efficient than `pop()` followed by `push()`, and can be
## more appropriate when using a fixed-size heap. Note that the value
## returned may be larger than item! That constrains reasonable uses of
## this routine unless written as part of a conditional replacement:
## returned may be larger than `item`! That constrains reasonable uses of
## this routine unless written as part of a conditional replacement.
##
## **See also:**
## * `pushpop proc <#pushpop,HeapQueue[T],sinkT>`_
runnableExamples:
var heap = initHeapQueue[int]()
heap.push(5)
heap.push(12)
var heap = [5, 12].toHeapQueue
assert heap.replace(6) == 5
assert heap.len == 2
assert heap[0] == 6
assert heap.replace(4) == 6
result = heap[0]
heap.data[0] = item
siftup(heap, 0)
siftdown(heap, 0)
proc pushpop*[T](heap: var HeapQueue[T], item: sink T): T =
## Fast version of a push followed by a pop.
## Fast version of a `push()` followed by a `pop()`.
##
## **See also:**
## * `replace proc <#replace,HeapQueue[T],sinkT>`_
runnableExamples:
var heap = initHeapQueue[int]()
heap.push(5)
heap.push(12)
var heap = [5, 12].toHeapQueue
assert heap.pushpop(6) == 5
assert heap.len == 2
assert heap[0] == 6
assert heap.pushpop(4) == 4
result = item
if heap.len > 0 and heapCmp(heap.data[0], result):
swap(result, heap.data[0])
siftup(heap, 0)
siftdown(heap, 0)
proc clear*[T](heap: var HeapQueue[T]) =
## Removes all elements from `heap`, making it empty.
runnableExamples:
var heap = initHeapQueue[int]()
heap.push(1)
var heap = [9, 5, 8].toHeapQueue
heap.clear()
assert heap.len == 0
heap.data.setLen(0)
proc `$`*[T](heap: HeapQueue[T]): string =
## Turns a heap into its string representation.
runnableExamples:
var heap = initHeapQueue[int]()
heap.push(1)
heap.push(2)
let heap = [1, 2].toHeapQueue
assert $heap == "[1, 2]"
result = "["
for x in heap.data:
if result.len > 1: result.add(", ")

View File

@@ -1,4 +1,4 @@
import heapqueue
import std/heapqueue
proc toSortedSeq[T](h: HeapQueue[T]): seq[T] =
@@ -7,47 +7,96 @@ proc toSortedSeq[T](h: HeapQueue[T]): seq[T] =
while tmp.len > 0:
result.add(pop(tmp))
block: # Simple sanity test
var heap = initHeapQueue[int]()
let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
for item in data:
push(heap, item)
doAssert(heap == data.toHeapQueue)
doAssert(heap[0] == 0)
doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
proc heapProperty[T](h: HeapQueue[T]): bool =
for k in 0 .. h.len - 2: # the last element is always a leaf
let left = 2 * k + 1
if left < h.len and h[left] < h[k]:
return false
let right = left + 1
if right < h.len and h[right] < h[k]:
return false
true
block: # Test del
var heap = initHeapQueue[int]()
let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
for item in data: push(heap, item)
template main() =
block: # simple sanity test
var heap = initHeapQueue[int]()
let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
for item in data:
push(heap, item)
doAssert(heap == data.toHeapQueue)
doAssert(heap[0] == 0)
doAssert(heap.toSortedSeq == @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
heap.del(0)
doAssert(heap[0] == 1)
block: # test del
var heap = initHeapQueue[int]()
let data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
for item in data: push(heap, item)
heap.del(heap.find(7))
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9])
heap.del(0)
doAssert(heap[0] == 1)
heap.del(heap.find(5))
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9])
heap.del(heap.find(7))
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 5, 6, 8, 9])
heap.del(heap.find(6))
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9])
heap.del(heap.find(5))
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 6, 8, 9])
heap.del(heap.find(2))
doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9])
heap.del(heap.find(6))
doAssert(heap.toSortedSeq == @[1, 2, 3, 4, 8, 9])
doAssert(heap.find(2) == -1)
heap.del(heap.find(2))
doAssert(heap.toSortedSeq == @[1, 3, 4, 8, 9])
block: # Test del last
var heap = initHeapQueue[int]()
let data = [1, 2, 3]
for item in data: push(heap, item)
doAssert(heap.find(2) == -1)
heap.del(2)
doAssert(heap.toSortedSeq == @[1, 2])
block: # test del last
var heap = initHeapQueue[int]()
let data = [1, 2, 3]
for item in data: push(heap, item)
heap.del(1)
doAssert(heap.toSortedSeq == @[1])
heap.del(2)
doAssert(heap.toSortedSeq == @[1, 2])
heap.del(0)
doAssert(heap.toSortedSeq == @[])
heap.del(1)
doAssert(heap.toSortedSeq == @[1])
heap.del(0)
doAssert(heap.toSortedSeq == @[])
block: # testing the heap proeprty
var heap = [1, 4, 2, 5].toHeapQueue
doAssert heapProperty(heap)
heap.push(42)
doAssert heapProperty(heap)
heap.push(0)
doAssert heapProperty(heap)
heap.push(3)
doAssert heapProperty(heap)
heap.push(3)
doAssert heapProperty(heap)
# [0, 3, 1, 4, 42, 2, 3, 5]
discard heap.pop()
doAssert heapProperty(heap)
discard heap.pop()
doAssert heapProperty(heap)
heap.del(2)
doAssert heapProperty(heap)
# [2, 3, 5, 4, 42]
discard heap.replace(12)
doAssert heapProperty(heap)
discard heap.replace(1)
doAssert heapProperty(heap)
discard heap.pushpop(2)
doAssert heapProperty(heap)
discard heap.pushpop(0)
doAssert heapProperty(heap)
static: main()
main()