Refactor injectdestructors (#12295)

One improvement over #devel is visible in the transformation of getEnv. With this approach we move to result whenever possible.
This commit is contained in:
Clyybber
2019-10-01 14:09:24 +02:00
committed by Andreas Rumpf
parent 64d5e25821
commit 5f5879dc4c
7 changed files with 257 additions and 577 deletions

View File

@@ -291,10 +291,6 @@ type
const
sfNoInit* = sfMainModule # don't generate code to init the variable
sfCursor* = sfDispatcher
# local variable has been computed to be a "cursor".
# see cursors.nim for details about what that means.
sfAllUntyped* = sfVolatile # macro or template is immediately expanded \
# in a generic context

View File

@@ -1,72 +0,0 @@
#
#
# The Nim Compiler
# (c) Copyright 2019 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import
intsets, ast, astalgo, msgs, renderer, magicsys, types, idents, trees,
strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
lineinfos, parampatterns
##[
This module implements "cursor" detection. A cursor is a local variable
that is used for navigation in a datastructure, it does not "own" the
data it aliases but it might update the underlying datastructure.
Two primary examples for cursors that I have in mind and that are critical
for optimization:
1. Local string variable introduced by ``for x in a``::
var i = 0
while i < a.len:
let cursor = a[i]
use cursor
inc i
2. Local ``ref`` variable for navigation::
var cursor = listHead
while cursor != nil:
use cursor
cursor = cursor.next
Cursors are very interesting for the optimizer because they can be copyMem'ed
and don't need a destructor.
More formally, a cursor is a variable that is set on all paths to
a *location* or a proc call that produced a ``lent/var`` type. All statements
that come after these assignments MUST not mutate what the cursor aliases.
Mutations *through* the cursor are allowed if the cursor has ref semantics.
Look at this complex real world example taken from the compiler itself:
.. code-block:: Nim
proc getTypeName(m: BModule; typ: PType; sig: SigHash): Rope =
var t = typ
while true:
if t.sym != nil and {sfImportc, sfExportc} * t.sym.flags != {}:
return t.sym.loc.r
if t.kind in irrelevantForBackend:
t = t.lastSon
else:
break
let typ = if typ.kind in {tyAlias, tySink, tyOwned}: typ.lastSon else: typ
if typ.loc.r == nil:
typ.loc.r = typ.typeName & $sig
result = typ.loc.r
if result == nil: internalError(m.config, "getTypeName: " & $typ.kind)
Here `t` is a cursor but without a control flow based analysis we are unlikely
to detect it.
]##
# Araq: I owe you an implementation. For now use the .cursor pragma. :-/

View File

@@ -11,136 +11,14 @@
## an optimizer that optimizes copies to moves. This is implemented as an
## AST to AST transformation so that every backend benefits from it.
## Rules for destructor injections:
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## foo( (tmpX = X(); tmpY = Y(); tmpBar = bar(tmpX, tmpY);
## destroy(tmpX); destroy(tmpY);
## tmpBar))
## destroy(tmpBar)
##
## var x = f()
## body
##
## is the same as:
##
## var x;
## try:
## move(x, f())
## finally:
## destroy(x)
##
## But this really just an optimization that tries to avoid to
## introduce too many temporaries, the 'destroy' is caused by
## the 'f()' call. No! That is not true for 'result = f()'!
##
## x = y where y is read only once
## is the same as: move(x, y)
##
## Actually the more general rule is: The *last* read of ``y``
## can become a move if ``y`` is the result of a construction.
##
## We also need to keep in mind here that the number of reads is
## control flow dependent:
## let x = foo()
## while true:
## y = x # only one read, but the 2nd iteration will fail!
## This also affects recursions! Only usages that do not cross
## a loop boundary (scope) and are not used in function calls
## are safe.
##
##
## x = f() is the same as: move(x, f())
##
## x = y
## is the same as: copy(x, y)
##
## Reassignment works under this scheme:
## var x = f()
## x = y
##
## is the same as:
##
## var x;
## try:
## move(x, f())
## copy(x, y)
## finally:
## destroy(x)
##
## result = f() must not destroy 'result'!
##
## The produced temporaries clutter up the code and might lead to
## inefficiencies. A better strategy is to collect all the temporaries
## in a single object that we put into a single try-finally that
## surrounds the proc body. This means the code stays quite efficient
## when compiled to C. In fact, we do the same for variables, so
## destructors are called when the proc returns, not at scope exit!
## This makes certains idioms easier to support. (Taking the slice
## of a temporary object.)
##
## foo(bar(X(), Y()))
## X and Y get destroyed after bar completes:
##
## var tmp: object
## foo( (move tmp.x, X(); move tmp.y, Y(); tmp.bar = bar(tmpX, tmpY);
## tmp.bar))
## destroy(tmp.bar)
## destroy(tmp.x); destroy(tmp.y)
##
## See doc/destructors.rst for a spec of the implemented rewrite rules
#[
From https://github.com/nim-lang/Nim/wiki/Destructors
Rule Pattern Transformed into
---- ------- ----------------
1.1 var x: T; stmts var x: T; try stmts
finally: `=destroy`(x)
2 x = f() `=sink`(x, f())
3 x = lastReadOf z `=sink`(x, z); wasMoved(z)
3.2 x = path z; body ``x = bitwiseCopy(path z);``
do not emit `=destroy(x)`. Note: body
must not mutate ``z`` nor ``x``. All
assignments to ``x`` must be of the form
``path z`` but the ``z`` can differ.
Neither ``z`` nor ``x`` can have the
flag ``sfAddrTaken`` to ensure no other
aliasing is going on.
4.1 y = sinkParam `=sink`(y, sinkParam)
4.2 x = y `=`(x, y) # a copy
5.1 f_sink(g()) f_sink(g())
5.2 f_sink(y) f_sink(copy y); # copy unless we can see it's the last read
5.3 f_sink(move y) f_sink(y); wasMoved(y) # explicit moves empties 'y'
5.4 f_noSink(g()) var tmp = bitwiseCopy(g()); f(tmp); `=destroy`(tmp)
Rule 3.2 describes a "cursor" variable, a variable that is only used as a
view into some data structure. See ``compiler/cursors.nim`` for details.
Note: In order to avoid the very common combination ``reset(x); =sink(x, y)`` for
variable definitions we must turn "the first sink/assignment" operation into a
copyMem. This is harder than it looks:
while true:
try:
if cond: break # problem if we run destroy(x) here :-/
var x = f()
finally:
destroy(x)
And the C++ optimizers don't sweat to optimize it for us, so we don't have
to do it.
]#
import
intsets, ast, astalgo, msgs, renderer, magicsys, types, idents,
strutils, options, dfa, lowerings, tables, modulegraphs, msgs,
lineinfos, parampatterns, sighashes
const
InterestingSyms = {skVar, skResult, skLet, skForVar, skTemp}
type
Con = object
owner: PSym
@@ -217,43 +95,6 @@ proc isLastRead(n: PNode; c: var Con): bool =
dbg:
echo "ugh ", c.otherRead.isNil, " ", result
when false:
let s = n.sym
var pcs: seq[int] = @[instr+1]
var takenGotos: IntSet
var takenForks = initIntSet()
while pcs.len > 0:
var pc = pcs.pop
takenGotos = initIntSet()
while pc < c.g.len:
case c.g[pc].kind
of def:
if c.g[pc].sym == s:
# the path lead to a redefinition of 's' --> abandon it.
break
inc pc
of use:
if c.g[pc].sym == s:
c.otherRead = c.g[pc].n
return false
inc pc
of goto:
# we must leave endless loops eventually:
if not takenGotos.containsOrIncl(pc):
pc = pc + c.g[pc].dest
else:
inc pc
of fork:
# we follow the next instruction but push the dest onto our "work" stack:
if not takenForks.containsOrIncl(pc):
pcs.add pc + c.g[pc].dest
inc pc
of InstrKind.join:
inc pc
#echo c.graph.config $ n.info, " last read here!"
return true
proc initialized(code: ControlFlowGraph; pc: int,
init, uninit: var IntSet; comesFrom: int): int =
## Computes the set of definitely initialized variables across all code paths
@@ -290,9 +131,6 @@ proc initialized(code: ControlFlowGraph; pc: int,
inc pc
return pc
template interestingSym(s: PSym): bool =
s.owner == c.owner and s.kind in InterestingSyms and hasDestructor(s.typ)
template isUnpackedTuple(s: PSym): bool =
## we move out all elements of unpacked tuples,
## hence unpacked tuples themselves don't need to be destroyed
@@ -353,8 +191,8 @@ proc canBeMoved(t: PType): bool {.inline.} =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
result = t.kind != tyRef and t.attachedOps[attachedSink] != nil
proc genSink(c: Con; t: PType; dest, ri: PNode): PNode =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
proc genSink(c: Con; dest, ri: PNode): PNode =
let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
let k = if t.attachedOps[attachedSink] != nil: attachedSink
else: attachedAsgn
if t.attachedOps[k] != nil:
@@ -365,20 +203,20 @@ proc genSink(c: Con; t: PType; dest, ri: PNode): PNode =
# we generate a fast assignment in this case:
result = newTree(nkFastAsgn, dest)
proc genCopy(c: var Con; t: PType; dest, ri: PNode): PNode =
proc genCopyNoCheck(c: Con; dest, ri: PNode): PNode =
let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
result = genOp(c, t, attachedAsgn, dest, ri)
proc genCopy(c: var Con; dest, ri: PNode): PNode =
let t = dest.typ
if tfHasOwned in t.flags:
# try to improve the error message here:
if c.otherRead == nil: discard isLastRead(ri, c)
checkForErrorPragma(c, t, ri, "=")
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
result = genOp(c, t, attachedAsgn, dest, ri)
genCopyNoCheck(c, dest, ri)
proc genCopyNoCheck(c: Con; t: PType; dest, ri: PNode): PNode =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
result = genOp(c, t, attachedAsgn, dest, ri)
proc genDestroy(c: Con; t: PType; dest: PNode): PNode =
let t = t.skipTypes({tyGenericInst, tyAlias, tySink})
proc genDestroy(c: Con; dest: PNode): PNode =
let t = dest.typ.skipTypes({tyGenericInst, tyAlias, tySink})
result = genOp(c, t, attachedDestructor, dest, nil)
proc addTopVar(c: var Con; v: PNode) =
@@ -390,20 +228,10 @@ proc getTemp(c: var Con; typ: PType; info: TLineInfo): PNode =
result = newSymNode(sym)
c.addTopVar(result)
proc p(n: PNode; c: var Con): PNode
template recurse(n, dest) =
for i in 0..<n.len:
dest.add p(n[i], c)
proc genMagicCall(n: PNode; c: var Con; magicname: string; m: TMagic): PNode =
result = newNodeI(nkCall, n.info)
result.add(newSymNode(createMagic(c.graph, magicname, m)))
result.add n
proc genWasMoved(n: PNode; c: var Con): PNode =
# The mWasMoved builtin does not take the address.
result = genMagicCall(n, c, "wasMoved", mWasMoved)
result = newNodeI(nkCall, n.info)
result.add(newSymNode(createMagic(c.graph, "wasMoved", mWasMoved)))
result.add n #mWasMoved does not take the address
proc genDefaultCall(t: PType; c: Con; info: TLineInfo): PNode =
result = newNodeI(nkCall, info)
@@ -422,9 +250,9 @@ proc destructiveMoveVar(n: PNode; c: var Con): PNode =
let tempAsNode = newSymNode(temp)
var vpart = newNodeI(nkIdentDefs, tempAsNode.info, 3)
vpart.sons[0] = tempAsNode
vpart.sons[1] = c.emptyNode
vpart.sons[2] = n
vpart[0] = tempAsNode
vpart[1] = c.emptyNode
vpart[2] = n
add(v, vpart)
result.add v
@@ -437,6 +265,10 @@ proc sinkParamIsLastReadCheck(c: var Con, s: PNode) =
localError(c.graph.config, c.otherRead.info, "sink parameter `" & $s.sym.name.s &
"` is already consumed at " & toFileLineCol(c. graph.config, s.info))
proc p(n: PNode; c: var Con): PNode
proc pArg(arg: PNode; c: var Con; isSink: bool): PNode
proc moveOrCopy(dest, ri: PNode; c: var Con): PNode
proc passCopyToSink(n: PNode; c: var Con): PNode =
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
let tmp = getTemp(c, n.typ, n.info)
@@ -444,7 +276,7 @@ proc passCopyToSink(n: PNode; c: var Con): PNode =
# out of loops we need to mark it as 'wasMoved'.
result.add genWasMoved(tmp, c)
if hasDestructor(n.typ):
var m = genCopy(c, n.typ, tmp, n)
var m = genCopy(c, tmp, n)
m.add p(n, c)
result.add m
if isLValue(n):
@@ -457,7 +289,7 @@ proc passCopyToSink(n: PNode; c: var Con): PNode =
proc isDangerousSeq(t: PType): bool {.inline.} =
let t = t.skipTypes(abstractInst)
result = t.kind == tySequence and tfHasOwned notin t.sons[0].flags
result = t.kind == tySequence and tfHasOwned notin t[0].flags
proc containsConstSeq(n: PNode): bool =
if n.kind == nkBracket and n.len > 0 and n.typ != nil and isDangerousSeq(n.typ):
@@ -467,19 +299,66 @@ proc containsConstSeq(n: PNode): bool =
of nkExprEqExpr, nkExprColonExpr, nkHiddenStdConv, nkHiddenSubConv:
result = containsConstSeq(n[1])
of nkObjConstr, nkClosure:
for i in 1 ..< n.len:
for i in 1..<n.len:
if containsConstSeq(n[i]): return true
of nkCurly, nkBracket, nkPar, nkTupleConstr:
for i in 0 ..< n.len:
if containsConstSeq(n[i]): return true
for son in n:
if containsConstSeq(son): return true
else: discard
proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
template pArgIfTyped(argPart: PNode): PNode =
# typ is nil if we are in if/case expr branch with noreturn
if argPart.typ == nil: p(argPart, c)
else: pArg(argPart, c, isSink)
template handleNested(n: untyped, processCall: untyped) =
case n.kind
of nkStmtList, nkStmtListExpr:
if n.len == 0: return n
result = copyNode(n)
for i in 0..<n.len-1:
result.add p(n[i], c)
template node: untyped = n[^1]
result.add processCall
of nkBlockStmt, nkBlockExpr:
result = copyNode(n)
result.add n[0]
template node: untyped = n[1]
result.add processCall
of nkIfStmt, nkIfExpr:
result = copyNode(n)
for son in n:
var branch = copyNode(son)
if son.kind in {nkElifBranch, nkElifExpr}:
template node: untyped = son[1]
branch.add p(son[0], c) #The condition
branch.add if node.typ == nil: p(node, c) #noreturn
else: processCall
else:
template node: untyped = son[0]
branch.add if node.typ == nil: p(node, c) #noreturn
else: processCall
result.add branch
of nkCaseStmt:
result = copyNode(n)
result.add p(n[0], c)
for i in 1..<n.len:
var branch: PNode
if n[i].kind == nkOfBranch:
branch = n[i] # of branch conditions are constants
template node: untyped = n[i][^1]
branch[^1] = if node.typ == nil: p(node, c) #noreturn
else: processCall
elif n[i].kind in {nkElifBranch, nkElifExpr}:
branch = copyNode(n[i])
branch.add p(n[i][0], c) #The condition
template node: untyped = n[i][1]
branch.add if node.typ == nil: p(node, c) #noreturn
else: processCall
else:
branch = copyNode(n[i])
template node: untyped = n[i][0]
branch.add if node.typ == nil: p(node, c) #noreturn
else: processCall
result.add branch
else: assert(false)
proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
if isSink:
if arg.kind in nkCallKinds:
# recurse but skip the call expression in order to prevent
@@ -495,8 +374,8 @@ proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
# sink parameter (bug #11524). Note that the string implementation is
# different and can deal with 'const string sunk into var'.
result = passCopyToSink(arg, c)
elif arg.kind in {nkBracket, nkObjConstr, nkTupleConstr, nkCharLit..nkTripleStrLit}:
discard "object construction to sink parameter: nothing to do"
elif arg.kind in {nkBracket, nkObjConstr, nkTupleConstr} + nkLiterals:
# object construction to sink parameter: nothing to do
result = arg
elif arg.kind == nkSym and isSinkParam(arg.sym):
# Sinked params can be consumed only once. We need to reset the memory
@@ -507,202 +386,216 @@ proc pArg(arg: PNode; c: var Con; isSink: bool): PNode =
# it is the last read, can be sinked. We need to reset the memory
# to disable the destructor which we have not elided
result = destructiveMoveVar(arg, c)
elif arg.kind in {nkBlockExpr, nkBlockStmt}:
result = copyNode(arg)
result.add arg[0]
result.add pArg(arg[1], c, isSink)
elif arg.kind == nkStmtListExpr:
result = copyNode(arg)
for i in 0..arg.len-2:
result.add p(arg[i], c)
result.add pArg(arg[^1], c, isSink)
elif arg.kind in {nkIfExpr, nkIfStmt}:
result = copyNode(arg)
for i in 0..<arg.len:
var branch = copyNode(arg[i])
if arg[i].kind in {nkElifBranch, nkElifExpr}:
branch.add p(arg[i][0], c)
branch.add pArgIfTyped(arg[i][1])
else:
branch.add pArgIfTyped(arg[i][0])
result.add branch
elif arg.kind == nkCaseStmt:
result = copyNode(arg)
result.add p(arg[0], c)
for i in 1..<arg.len:
var branch: PNode
if arg[i].kind == nkOfBranch:
branch = arg[i] # of branch conditions are constants
branch[^1] = pArgIfTyped(arg[i][^1])
elif arg[i].kind in {nkElifBranch, nkElifExpr}:
branch = copyNode(arg[i])
branch.add p(arg[i][0], c)
branch.add pArgIfTyped(arg[i][1])
else:
branch = copyNode(arg[i])
branch.add pArgIfTyped(arg[i][0])
result.add branch
elif arg.kind in {nkStmtListExpr, nkBlockExpr, nkBlockStmt, nkIfExpr, nkIfStmt, nkCaseStmt}:
handleNested(arg): pArg(node, c, isSink)
else:
# an object that is not temporary but passed to a 'sink' parameter
# results in a copy.
result = passCopyToSink(arg, c)
elif arg.kind == nkBracket:
# Treat `f([...])` like `f(...)`
result = copyNode(arg)
for son in arg:
result.add pArg(son, c, isSinkTypeForParam(son.typ))
elif arg.kind in nkCallKinds and arg.typ != nil and hasDestructor(arg.typ):
# produce temp creation
result = newNodeIT(nkStmtListExpr, arg.info, arg.typ)
let tmp = getTemp(c, arg.typ, arg.info)
let res = p(arg, c)
var sinkExpr = genSink(c, tmp, res)
sinkExpr.add res
result.add sinkExpr
result.add tmp
c.destroys.add genDestroy(c, tmp)
else:
result = p(arg, c)
proc p(n: PNode; c: var Con): PNode =
case n.kind
of nkCallKinds:
let parameters = n[0].typ
let L = if parameters != nil: parameters.len else: 0
for i in 1..<n.len:
n[i] = pArg(n[i], c, i < L and isSinkTypeForParam(parameters[i]))
result = n
of nkDiscardStmt: #Small optimization
if n[0].kind != nkEmpty:
n[0] = pArg(n[0], c, false)
result = n
of nkBracket:
result = copyTree(n)
for i in 0..<n.len:
# everything that is passed to an array constructor is consumed,
# so these all act like 'sink' parameters:
result[i] = pArg(n[i], c, isSink = true)
of nkObjConstr:
result = copyTree(n)
for i in 1..<n.len:
# everything that is passed to an object constructor is consumed,
# so these all act like 'sink' parameters:
result[i][1] = pArg(n[i][1], c, isSink = true)
of nkTupleConstr, nkClosure:
result = copyTree(n)
for i in ord(n.kind == nkClosure)..<n.len:
# everything that is passed to an tuple constructor is consumed,
# so these all act like 'sink' parameters:
if n[i].kind == nkExprColonExpr:
result[i][1] = pArg(n[i][1], c, isSink = true)
else:
result[i] = pArg(n[i], c, isSink = true)
of nkVarSection, nkLetSection:
# transform; var x = y to var x; x op y where op is a move or copy
result = newNodeI(nkStmtList, n.info)
for it in n:
var ri = it[^1]
if it.kind == nkVarTuple and hasDestructor(ri.typ):
let x = lowerTupleUnpacking(c.graph, it, c.owner)
result.add p(x, c)
elif it.kind == nkIdentDefs and hasDestructor(it[0].typ):
for j in 0..<it.len-2:
let v = it[j]
if v.kind == nkSym:
if sfCompileTime in v.sym.flags: continue
# move the variable declaration to the top of the frame:
c.addTopVar v
# make sure it's destroyed at the end of the proc:
if not isUnpackedTuple(it[0].sym):
c.destroys.add genDestroy(c, v)
if ri.kind == nkEmpty and c.inLoop > 0:
ri = genDefaultCall(v.typ, c, v.info)
if ri.kind != nkEmpty:
let r = moveOrCopy(v, ri, c)
result.add r
else: # keep the var but transform 'ri':
var v = copyNode(n)
var itCopy = copyNode(it)
for j in 0..<it.len-1:
itCopy.add it[j]
itCopy.add p(it[^1], c)
v.add itCopy
result.add v
of nkAsgn, nkFastAsgn:
if hasDestructor(n[0].typ) and n[1].kind notin {nkProcDef, nkDo, nkLambda}:
# rule (self-assignment-removal):
if n[1].kind == nkSym and n[0].kind == nkSym and n[0].sym == n[1].sym:
result = newNodeI(nkEmpty, n.info)
else:
result = moveOrCopy(n[0], n[1], c)
else:
result = copyNode(n)
result.add n[0]
result.add p(n[1], c)
of nkRaiseStmt:
if optNimV2 in c.graph.config.globalOptions and n[0].kind != nkEmpty:
if n[0].kind in nkCallKinds:
let call = p(n[0], c)
result = copyNode(n)
result.add call
else:
let tmp = getTemp(c, n[0].typ, n.info)
var m = genCopyNoCheck(c, tmp, n[0])
m.add p(n[0], c)
result = newTree(nkStmtList, genWasMoved(tmp, c), m)
var toDisarm = n[0]
if toDisarm.kind == nkStmtListExpr: toDisarm = toDisarm.lastSon
if toDisarm.kind == nkSym and toDisarm.sym.owner == c.owner:
result.add genWasMoved(toDisarm, c)
result.add newTree(nkRaiseStmt, tmp)
else:
result = copyNode(n)
result.add p(n[0], c)
of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef,
nkConstSection, nkConstDef, nkIncludeStmt, nkImportStmt, nkExportStmt,
nkPragma, nkCommentStmt, nkBreakStmt:
result = n
of nkWhileStmt:
result = copyNode(n)
inc c.inLoop
result.add p(n[0], c)
result.add p(n[1], c)
dec c.inLoop
of nkWhen: # This should be a "when nimvm" node.
result = copyTree(n)
result[1][0] = p(result[1][0], c)
of nkStmtList, nkStmtListExpr, nkBlockStmt, nkBlockExpr, nkIfStmt, nkIfExpr, nkCaseStmt:
handleNested(n): p(node, c)
else:
result = shallowCopy(n)
for i in 0..<n.len:
result[i] = p(n[i], c)
proc moveOrCopy(dest, ri: PNode; c: var Con): PNode =
# unfortunately, this needs to be kept consistent with the cases
# we handle in the 'case of' statement below:
const movableNodeKinds = (nkCallKinds + {nkSym, nkTupleConstr, nkObjConstr,
nkBracket, nkBracketExpr, nkNilLit})
template moveOrCopyIfTyped(riPart: PNode): PNode =
# typ is nil if we are in if/case expr branch with noreturn
if riPart.typ == nil: p(riPart, c)
else: moveOrCopy(dest, riPart, c)
case ri.kind
of nkCallKinds:
result = genSink(c, dest.typ, dest, ri)
# watch out and no not transform 'ri' twice if it's a call:
let ri2 = copyNode(ri)
let parameters = ri[0].typ
let L = if parameters != nil: parameters.len else: 0
ri2.add ri[0]
for i in 1..<ri.len:
ri2.add pArg(ri[i], c, i < L and isSinkTypeForParam(parameters[i]))
#recurse(ri, ri2)
result.add ri2
result = genSink(c, dest, ri)
result.add p(ri, c)
of nkBracketExpr:
if ri[0].kind == nkSym and isUnpackedTuple(ri[0].sym):
# unpacking of tuple: move out the elements
result = genSink(c, dest.typ, dest, ri)
result = genSink(c, dest, ri)
result.add p(ri, c)
elif isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c):
# Rule 3: `=sink`(x, z); wasMoved(z)
var snk = genSink(c, dest.typ, dest, ri)
var snk = genSink(c, dest, ri)
snk.add ri
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
else:
result = genCopy(c, dest.typ, dest, ri)
result = genCopy(c, dest, ri)
result.add p(ri, c)
of nkStmtListExpr:
result = newNodeI(nkStmtList, ri.info)
for i in 0..ri.len-2:
result.add p(ri[i], c)
result.add moveOrCopy(dest, ri[^1], c)
of nkBlockExpr, nkBlockStmt:
result = newNodeI(nkBlockStmt, ri.info)
result.add ri[0] ## add label
result.add moveOrCopy(dest, ri[1], c)
of nkIfExpr, nkIfStmt:
result = newNodeI(nkIfStmt, ri.info)
for i in 0..<ri.len:
var branch = copyNode(ri[i])
if ri[i].kind in {nkElifBranch, nkElifExpr}:
branch.add p(ri[i][0], c)
branch.add moveOrCopyIfTyped(ri[i][1])
else:
branch.add moveOrCopyIfTyped(ri[i][0])
result.add branch
of nkCaseStmt:
result = newNodeI(nkCaseStmt, ri.info)
result.add p(ri[0], c)
for i in 1..<ri.len:
var branch: PNode
if ri[i].kind == nkOfBranch:
branch = ri[i] # of branch conditions are constants
branch[^1] = moveOrCopyIfTyped(ri[i][^1])
elif ri[i].kind in {nkElifBranch, nkElifExpr}:
branch = copyNode(ri[i])
branch.add p(ri[i][0], c)
branch.add moveOrCopyIfTyped(ri[i][1])
else:
branch = copyNode(ri[i])
branch.add moveOrCopyIfTyped(ri[i][0])
result.add branch
of nkBracket:
# array constructor
if ri.len > 0 and isDangerousSeq(ri.typ):
result = genCopy(c, dest.typ, dest, ri)
result = genCopy(c, dest, ri)
else:
result = genSink(c, dest.typ, dest, ri)
let ri2 = copyTree(ri)
for i in 0..<ri.len:
# everything that is passed to an array constructor is consumed,
# so these all act like 'sink' parameters:
ri2[i] = pArg(ri[i], c, isSink = true)
result.add ri2
of nkObjConstr:
result = genSink(c, dest.typ, dest, ri)
let ri2 = copyTree(ri)
for i in 1..<ri.len:
# everything that is passed to an object constructor is consumed,
# so these all act like 'sink' parameters:
ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
result.add ri2
of nkTupleConstr, nkClosure:
result = genSink(c, dest.typ, dest, ri)
let ri2 = copyTree(ri)
for i in ord(ri.kind == nkClosure)..<ri.len:
# everything that is passed to an tuple constructor is consumed,
# so these all act like 'sink' parameters:
if ri[i].kind == nkExprColonExpr:
ri2[i].sons[1] = pArg(ri[i][1], c, isSink = true)
else:
ri2[i] = pArg(ri[i], c, isSink = true)
result.add ri2
of nkNilLit:
result = genSink(c, dest.typ, dest, ri)
result.add ri
result = genSink(c, dest, ri)
result.add p(ri, c)
of nkObjConstr, nkTupleConstr, nkClosure, nkCharLit..nkNilLit:
result = genSink(c, dest, ri)
result.add p(ri, c)
of nkSym:
if isSinkParam(ri.sym):
# Rule 3: `=sink`(x, z); wasMoved(z)
sinkParamIsLastReadCheck(c, ri)
var snk = genSink(c, dest.typ, dest, ri)
var snk = genSink(c, dest, ri)
snk.add ri
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
elif ri.sym.kind != skParam and ri.sym.owner == c.owner and
isLastRead(ri, c) and canBeMoved(dest.typ):
# Rule 3: `=sink`(x, z); wasMoved(z)
var snk = genSink(c, dest.typ, dest, ri)
var snk = genSink(c, dest, ri)
snk.add ri
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
else:
result = genCopy(c, dest.typ, dest, ri)
result.add p(ri, c)
of nkHiddenSubConv, nkHiddenStdConv:
if sameType(ri.typ, ri[1].typ):
result = moveOrCopy(dest, ri[1], c)
elif ri[1].kind in movableNodeKinds:
result = moveOrCopy(dest, ri[1], c)
var b = newNodeIT(ri.kind, ri.info, ri.typ)
b.add ri[0] # add empty node
let L = result.len-1
b.add result[L]
result[L] = b
else:
result = genCopy(c, dest.typ, dest, ri)
result = genCopy(c, dest, ri)
result.add p(ri, c)
of nkHiddenSubConv, nkHiddenStdConv, nkConv:
result = moveOrCopy(dest, ri[1], c)
if not sameType(ri.typ, ri[1].typ):
let copyRi = copyTree(ri)
copyRi[1] = result[^1]
result[^1] = copyRi
of nkObjDownConv, nkObjUpConv:
if ri[0].kind in movableNodeKinds:
result = moveOrCopy(dest, ri[0], c)
var b = newNodeIT(ri.kind, ri.info, ri.typ)
let L = result.len-1
b.add result[L]
result[L] = b
else:
result = genCopy(c, dest.typ, dest, ri)
result.add p(ri, c)
result = moveOrCopy(dest, ri[0], c)
let copyRi = copyTree(ri)
copyRi[0] = result[^1]
result[^1] = copyRi
of nkStmtListExpr, nkBlockExpr, nkIfExpr, nkCaseStmt:
handleNested(ri): moveOrCopy(dest, node, c)
else:
if isAnalysableFieldAccess(ri, c.owner) and isLastRead(ri, c) and
canBeMoved(dest.typ):
# Rule 3: `=sink`(x, z); wasMoved(z)
var snk = genSink(c, dest.typ, dest, ri)
var snk = genSink(c, dest, ri)
snk.add ri
result = newTree(nkStmtList, snk, genWasMoved(ri, c))
else:
# XXX At least string literals can be moved?
result = genCopy(c, dest.typ, dest, ri)
result = genCopy(c, dest, ri)
result.add p(ri, c)
proc computeUninit(c: var Con) =
@@ -715,17 +608,14 @@ proc computeUninit(c: var Con) =
proc injectDefaultCalls(n: PNode, c: var Con) =
case n.kind
of nkVarSection, nkLetSection:
for i in 0..<n.len:
let it = n[i]
let L = it.len-1
let ri = it[L]
if it.kind == nkIdentDefs and ri.kind == nkEmpty:
for it in n:
if it.kind == nkIdentDefs and it[^1].kind == nkEmpty:
computeUninit(c)
for j in 0..L-2:
for j in 0..<it.len-2:
let v = it[j]
doAssert v.kind == nkSym
if c.uninit.contains(v.sym.id):
it[L] = genDefaultCall(v.sym.typ, c, v.info)
it[^1] = genDefaultCall(v.sym.typ, c, v.info)
break
of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
@@ -734,130 +624,16 @@ proc injectDefaultCalls(n: PNode, c: var Con) =
for i in 0..<safeLen(n):
injectDefaultCalls(n[i], c)
proc isCursor(n: PNode): bool {.inline.} =
result = n.kind == nkSym and sfCursor in n.sym.flags
proc keepVar(n, it: PNode, c: var Con): PNode =
# keep the var but transform 'ri':
result = copyNode(n)
var itCopy = copyNode(it)
for j in 0..it.len-2:
itCopy.add it[j]
itCopy.add p(it[it.len-1], c)
result.add itCopy
proc p(n: PNode; c: var Con): PNode =
case n.kind
of nkVarSection, nkLetSection:
discard "transform; var x = y to var x; x op y where op is a move or copy"
result = newNodeI(nkStmtList, n.info)
for i in 0..<n.len:
let it = n[i]
let L = it.len
var ri = it[L-1]
if it.kind == nkVarTuple and hasDestructor(ri.typ):
let x = lowerTupleUnpacking(c.graph, it, c.owner)
result.add p(x, c)
elif it.kind == nkIdentDefs and hasDestructor(it[0].typ) and not isCursor(it[0]):
for j in 0..L-3:
let v = it[j]
if v.kind == nkSym:
if sfCompileTime in v.sym.flags: continue
# move the variable declaration to the top of the frame:
c.addTopVar v
# make sure it's destroyed at the end of the proc:
if not isUnpackedTuple(it[0].sym):
c.destroys.add genDestroy(c, v.typ, v)
if ri.kind == nkEmpty and c.inLoop > 0:
ri = genDefaultCall(v.typ, c, v.info)
if ri.kind != nkEmpty:
let r = moveOrCopy(v, ri, c)
result.add r
else:
result.add keepVar(n, it, c)
of nkCallKinds:
let parameters = n[0].typ
let L = if parameters != nil: parameters.len else: 0
for i in 1 ..< n.len:
n.sons[i] = pArg(n[i], c, i < L and isSinkTypeForParam(parameters[i]))
if n.typ != nil and hasDestructor(n.typ):
discard "produce temp creation"
result = newNodeIT(nkStmtListExpr, n.info, n.typ)
let tmp = getTemp(c, n.typ, n.info)
var sinkExpr = genSink(c, n.typ, tmp, n)
sinkExpr.add n
result.add sinkExpr
result.add tmp
c.destroys.add genDestroy(c, n.typ, tmp)
else:
result = n
of nkAsgn, nkFastAsgn:
if hasDestructor(n[0].typ) and n[1].kind notin {nkProcDef, nkDo, nkLambda}:
# rule (self-assignment-removal):
if n[1].kind == nkSym and n[0].kind == nkSym and n[0].sym == n[1].sym:
result = newNodeI(nkEmpty, n.info)
else:
result = moveOrCopy(n[0], n[1], c)
else:
result = copyNode(n)
recurse(n, result)
of nkNone..nkNilLit, nkTypeSection, nkProcDef, nkConverterDef, nkMethodDef,
nkIteratorDef, nkMacroDef, nkTemplateDef, nkLambda, nkDo, nkFuncDef:
result = n
of nkCast, nkHiddenStdConv, nkHiddenSubConv, nkConv:
result = copyNode(n)
# Destination type
result.add n[0]
# Analyse the inner expression
result.add p(n[1], c)
of nkWhen:
# This should be a "when nimvm" node.
result = copyTree(n)
result[1][0] = p(result[1][0], c)
of nkRaiseStmt:
if optNimV2 in c.graph.config.globalOptions and n[0].kind != nkEmpty:
if n[0].kind in nkCallKinds:
let call = copyNode(n[0])
recurse(n[0], call)
result = copyNode(n)
result.add call
else:
let t = n[0].typ
let tmp = getTemp(c, t, n.info)
var m = genCopyNoCheck(c, t, tmp, n[0])
m.add p(n[0], c)
result = newTree(nkStmtList, genWasMoved(tmp, c), m)
var toDisarm = n[0]
if toDisarm.kind == nkStmtListExpr: toDisarm = toDisarm.lastSon
if toDisarm.kind == nkSym and toDisarm.sym.owner == c.owner:
result.add genWasMoved(toDisarm, c)
result.add newTree(nkRaiseStmt, tmp)
else:
result = copyNode(n)
recurse(n, result)
of nkForStmt, nkParForStmt, nkWhileStmt:
inc c.inLoop
result = copyNode(n)
recurse(n, result)
dec c.inLoop
else:
result = copyNode(n)
recurse(n, result)
proc extractDestroysForTemporaries(c: Con, destroys: PNode): PNode =
result = newNodeI(nkStmtList, destroys.info)
for i in 0 ..< destroys.len:
for i in 0..<destroys.len:
if destroys[i][1][0].sym.kind == skTemp:
result.add destroys[i]
destroys[i] = c.emptyNode
proc reverseDestroys(destroys: PNode) =
var reversed: seq[PNode]
proc reverseDestroys(destroys: seq[PNode]): seq[PNode] =
for i in countdown(destroys.len - 1, 0):
reversed.add(destroys[i])
destroys.sons = reversed
result.add destroys[i]
proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
if sfGeneratedOp in owner.flags or isInlineIterator(owner): return n
@@ -874,14 +650,15 @@ proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
if c.g[i].kind in {goto, fork}:
c.jumpTargets.incl(i+c.g[i].dest)
dbg:
echo "injecting into ", n
echo "\n### ", owner.name.s, ":\nCFG:"
echoCfg(c.g)
echo n
if owner.kind in {skProc, skFunc, skMethod, skIterator, skConverter}:
let params = owner.typ.n
for i in 1 ..< params.len:
let param = params[i].sym
if isSinkTypeForParam(param.typ) and hasDestructor(param.typ.skipTypes({tySink})):
c.destroys.add genDestroy(c, param.typ.skipTypes({tyGenericInst, tyAlias, tySink}), params[i])
for i in 1..<params.len:
let t = params[i].sym.typ
if isSinkTypeForParam(t) and hasDestructor(t.skipTypes({tySink})):
c.destroys.add genDestroy(c, params[i])
#if optNimV2 in c.graph.config.globalOptions:
# injectDefaultCalls(n, c)
@@ -890,7 +667,7 @@ proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
if c.topLevelVars.len > 0:
result.add c.topLevelVars
if c.destroys.len > 0:
reverseDestroys(c.destroys)
c.destroys.sons = reverseDestroys(c.destroys.sons)
if owner.kind == skModule:
result.add newTryFinally(body, extractDestroysForTemporaries(c, c.destroys))
g.globalDestructors.add c.destroys
@@ -898,8 +675,6 @@ proc injectDestructorCalls*(g: ModuleGraph; owner: PSym; n: PNode): PNode =
result.add newTryFinally(body, c.destroys)
else:
result.add body
dbg:
echo "------------------------------------"
echo owner.name.s, " transformed to: "
echo ">---------transformed-to--------->"
echo result

View File

@@ -66,7 +66,7 @@ const
varPragmas* = declPragmas + {wVolatile, wRegister, wThreadVar,
wMagic, wHeader, wCompilerProc, wCore, wDynlib,
wNoInit, wCompileTime, wGlobal,
wGensym, wInject, wCodegenDecl, wGuard, wGoto, wCursor}
wGensym, wInject, wCodegenDecl, wGuard, wGoto}
constPragmas* = declPragmas + {wHeader, wMagic,
wGensym, wInject,
wIntDefine, wStrDefine, wBoolDefine, wCompilerProc, wCore}
@@ -1103,11 +1103,6 @@ proc singlePragma(c: PContext, sym: PSym, n: PNode, i: var int,
invalidPragma(c, it)
else:
sym.flags.incl sfGoto
of wCursor:
if sym == nil or sym.kind notin {skVar, skLet}:
invalidPragma(c, it)
else:
sym.flags.incl sfCursor
of wExportNims:
if sym == nil: invalidPragma(c, it)
else: magicsys.registerNimScriptSymbol(c.graph, sym)

View File

@@ -663,7 +663,6 @@ proc transformFor(c: PTransf, n: PNode): PTransNode =
t = arg.typ
# generate a temporary and produce an assignment statement:
var temp = newTemp(c, t, formal.info)
#temp.sym.flags.incl sfCursor
addVar(v, temp)
add(stmtList, newAsgnStmt(c, nkFastAsgn, temp, arg.PTransNode))
idNodeTablePut(newC.mapping, formal, temp)

View File

@@ -37,8 +37,6 @@ type
wMagic, wThread, wFinal, wProfiler, wMemTracker, wObjChecks,
wIntDefine, wStrDefine, wBoolDefine
wCursor,
wImmediate, wConstructor, wDestructor, wDelegator, wOverride,
wImportCpp, wImportObjC,
wImportCompilerProc,
@@ -125,8 +123,6 @@ const
"magic", "thread", "final", "profiler", "memtracker", "objchecks",
"intdefine", "strdefine", "booldefine",
"cursor",
"immediate", "constructor", "destructor", "delegator", "override",
"importcpp", "importobjc",
"importcompilerproc", "importc", "importjs", "exportc", "exportcpp", "exportnims",

View File

@@ -483,7 +483,6 @@ number information are given if the program crashes or an uncaught exception
is raised.
DynlibOverride
==============
@@ -497,14 +496,6 @@ on Linux::
nim c --dynlibOverride:lua --passL:liblua.lib program.nim
Cursor pragma
=============
The ``.cursor`` pragma is a temporary tool for optimization purposes
and this property will be computed by Nim's optimizer eventually. Thus it
remains undocumented.
Backend language options
========================