Merge pull request #3415 from jlp765/rationals2

rationals add toRational(float) conversion
This commit is contained in:
Dominik Picheta
2015-10-04 22:17:45 +01:00

View File

@@ -39,6 +39,63 @@ proc toRational*[T:SomeInteger](x: T): Rational[T] =
result.num = x
result.den = 1
proc toRationalSub(x: float, n: int): Rational[int] =
var
a = 0
b, c, d = 1
result = 0 // 1 # rational 0
while b <= n and d <= n:
let ac = (a+c)
let bd = (b+d)
# scale by 1000 so not overflow for high precision
let mediant = (ac/1000) / (bd/1000)
if x == mediant:
if bd <= n:
result.num = ac
result.den = bd
return result
elif d > b:
result.num = c
result.den = d
return result
else:
result.num = a
result.den = b
return result
elif x > mediant:
a = ac
b = bd
else:
c = ac
d = bd
if (b > n):
return initRational(c, d)
return initRational(a, b)
proc toRational*(x: float, n: int = high(int)): Rational[int] =
## Calculate the best rational numerator and denominator
## that approximates to `x`, where the denominator is
## smaller than `n` (default is the largest possible
## int to give maximum resolution)
##
## The algorithm is based on the Farey sequence named
## after John Farey
##
## .. code-block:: Nim
## import math, rationals
## for i in 1..10:
## let t = (10 ^ (i+3)).int
## let x = toRational(PI, t)
## let newPI = x.num / x.den
## echo x, " ", newPI, " error: ", PI - newPI, " ", t
if x > 1:
result = toRationalSub(1.0/x, n)
swap(result.num, result.den)
elif x == 1.0:
result = 1 // 1
else:
result = toRationalSub(x, n)
proc toFloat*[T](x: Rational[T]): float =
## Convert a rational number `x` to a float.
x.num / x.den
@@ -288,3 +345,8 @@ when isMainModule:
assert toRational(5) == 5//1
assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7
assert toInt(z) == 0
assert toRational(0.98765432) == 12345679 // 12500000
assert toRational(0.1, 1000000) == 1 // 10
assert toRational(0.9, 1000000) == 9 // 10
assert toRational(PI) == 80143857 // 25510582