mirror of
https://github.com/nim-lang/Nim.git
synced 2026-01-05 04:27:44 +00:00
Merge pull request #3415 from jlp765/rationals2
rationals add toRational(float) conversion
This commit is contained in:
@@ -39,6 +39,63 @@ proc toRational*[T:SomeInteger](x: T): Rational[T] =
|
||||
result.num = x
|
||||
result.den = 1
|
||||
|
||||
proc toRationalSub(x: float, n: int): Rational[int] =
|
||||
var
|
||||
a = 0
|
||||
b, c, d = 1
|
||||
result = 0 // 1 # rational 0
|
||||
while b <= n and d <= n:
|
||||
let ac = (a+c)
|
||||
let bd = (b+d)
|
||||
# scale by 1000 so not overflow for high precision
|
||||
let mediant = (ac/1000) / (bd/1000)
|
||||
if x == mediant:
|
||||
if bd <= n:
|
||||
result.num = ac
|
||||
result.den = bd
|
||||
return result
|
||||
elif d > b:
|
||||
result.num = c
|
||||
result.den = d
|
||||
return result
|
||||
else:
|
||||
result.num = a
|
||||
result.den = b
|
||||
return result
|
||||
elif x > mediant:
|
||||
a = ac
|
||||
b = bd
|
||||
else:
|
||||
c = ac
|
||||
d = bd
|
||||
if (b > n):
|
||||
return initRational(c, d)
|
||||
return initRational(a, b)
|
||||
|
||||
proc toRational*(x: float, n: int = high(int)): Rational[int] =
|
||||
## Calculate the best rational numerator and denominator
|
||||
## that approximates to `x`, where the denominator is
|
||||
## smaller than `n` (default is the largest possible
|
||||
## int to give maximum resolution)
|
||||
##
|
||||
## The algorithm is based on the Farey sequence named
|
||||
## after John Farey
|
||||
##
|
||||
## .. code-block:: Nim
|
||||
## import math, rationals
|
||||
## for i in 1..10:
|
||||
## let t = (10 ^ (i+3)).int
|
||||
## let x = toRational(PI, t)
|
||||
## let newPI = x.num / x.den
|
||||
## echo x, " ", newPI, " error: ", PI - newPI, " ", t
|
||||
if x > 1:
|
||||
result = toRationalSub(1.0/x, n)
|
||||
swap(result.num, result.den)
|
||||
elif x == 1.0:
|
||||
result = 1 // 1
|
||||
else:
|
||||
result = toRationalSub(x, n)
|
||||
|
||||
proc toFloat*[T](x: Rational[T]): float =
|
||||
## Convert a rational number `x` to a float.
|
||||
x.num / x.den
|
||||
@@ -288,3 +345,8 @@ when isMainModule:
|
||||
assert toRational(5) == 5//1
|
||||
assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7
|
||||
assert toInt(z) == 0
|
||||
|
||||
assert toRational(0.98765432) == 12345679 // 12500000
|
||||
assert toRational(0.1, 1000000) == 1 // 10
|
||||
assert toRational(0.9, 1000000) == 9 // 10
|
||||
assert toRational(PI) == 80143857 // 25510582
|
||||
|
||||
Reference in New Issue
Block a user