Documentation improved for math module (#9266)

This commit is contained in:
eqperes
2018-10-10 14:25:39 +02:00
committed by Andreas Rumpf
parent 16a941a642
commit 6620b5dc8d

View File

@@ -24,7 +24,10 @@ include "system/inclrtl"
import bitops
proc binom*(n, k: int): int {.noSideEffect.} =
## Computes the binomial coefficient
## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
##
## .. code-block:: nim
## echo binom(6, 2) ## 15
if k <= 0: return 1
if 2*k > n: return binom(n, n-k)
result = n
@@ -37,7 +40,10 @@ proc createFactTable[N: static[int]]: array[N, int] =
result[i] = result[i - 1] * i
proc fac*(n: int): int =
## Computes the faculty/factorial function.
## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of a non-negative integer ``n``
##
## .. code-block:: nim
## echo fac(4) ## 24
const factTable =
when sizeof(int) == 4:
createFactTable[13]()
@@ -81,8 +87,13 @@ type
fcNegInf ## value is negative infinity
proc classify*(x: float): FloatClass =
## Classifies a floating point value. Returns `x`'s class as specified by
## Classifies a floating point value. Returns ``x``'s class as specified by
## `FloatClass`.
##
## .. code-block:: nim
## echo classify(0.3) ## fcNormal
## echo classify(0.0) ## fcZero
## echo classify(0.3/0.0) ## fcInf
# JavaScript and most C compilers have no classify:
if x == 0.0:
@@ -98,13 +109,21 @@ proc classify*(x: float): FloatClass =
# XXX: fcSubnormal is not detected!
proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
## Returns true, if `x` is a power of two, false otherwise.
## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
## Zero and negative numbers are not a power of two.
##
## .. code-block:: nim
## echo isPowerOfTwo(5) ## false
## echo isPowerOfTwo(8) ## true
return (x > 0) and ((x and (x - 1)) == 0)
proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
## Returns `x` rounded up to the nearest power of two.
## Returns ``x`` rounded up to the nearest power of two.
## Zero and negative numbers get rounded up to 1.
##
## .. code-block:: nim
## echo nextPowerOfTwo(8) ## 8
## echo nextPowerOfTwo(9) ## 16
result = x - 1
when defined(cpu64):
result = result or (result shr 32)
@@ -118,20 +137,29 @@ proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
result += 1 + ord(x<=0)
proc countBits32*(n: int32): int {.noSideEffect.} =
## Counts the set bits in `n`.
## Counts the set bits in ``n``.
##
## .. code-block:: nim
## echo countBits32(13'i32) ## 3
var v = n
v = v -% ((v shr 1'i32) and 0x55555555'i32)
v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
result = ((v +% (v shr 4'i32) and 0xF0F0F0F'i32) *% 0x1010101'i32) shr 24'i32
proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
## Computes the sum of the elements in `x`.
## If `x` is empty, 0 is returned.
## Computes the sum of the elements in ``x``.
## If ``x`` is empty, 0 is returned.
##
## .. code-block:: nim
## echo sum([1.0, 2.5, -3.0, 4.3]) ## 4.8
for i in items(x): result = result + i
proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
## Computes the product of the elements in ``x``.
## If ``x`` is empty, 1 is returned.
##
## .. code-block:: nim
## echo prod([1.0, 3.0, -0.2]) ## -0.6
result = 1.T
for i in items(x): result = result * i
@@ -139,14 +167,19 @@ proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
when not defined(JS): # C
proc sqrt*(x: float32): float32 {.importc: "sqrtf", header: "<math.h>".}
proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
## Computes the square root of `x`.
## Computes the square root of ``x``.
## .. code-block:: nim
## echo sqrt(1.44) ## 1.2
proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
## Computes the cubic root of `x`
## Computes the cubic root of ``x``.
## .. code-block:: nim
## echo cbrt(2.197) ## 1.3
proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
## Computes the natural log of `x`
## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ of ``x``.
## .. code-block:: nim
## echo ln(exp(4.0)) ## 4.0
else: # JS
proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
@@ -155,62 +188,89 @@ else: # JS
proc ln*(x: float64): float64 {.importc: "Math.log", nodecl.}
proc log*[T: SomeFloat](x, base: T): T =
## Computes the logarithm ``base`` of ``x``
## Computes the logarithm of ``x`` to base ``base``.
## .. code-block:: nim
## echo log(9.0, 3.0) ## 2.0
ln(x) / ln(base)
when not defined(JS): # C
proc log10*(x: float32): float32 {.importc: "log10f", header: "<math.h>".}
proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
## Computes the common logarithm (base 10) of `x`
## Computes the common logarithm (base 10) of ``x``.
## .. code-block:: nim
## echo log10(100.0) ## 2.0
proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
## Computes the exponential function of `x` (pow(E, x))
## Computes the exponential function of ``x`` (pow(E, x)).
## .. code-block:: nim
## echo exp(1.0) ## 2.718281828459045
## echo ln(exp(4.0)) ## 4.0
proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
## Computes the sine of `x`
## Computes the sine of ``x``.
## .. code-block:: nim
## echo sin(PI / 6) ## 0.4999999999999999
## echo sin(degToRad(90.0)) ## 1.0
proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
## Computes the cosine of `x`
## Computes the cosine of ``x``.
## .. code-block:: nim
## echo cos(2 * PI) ## 1.0
## echo cos(degToRad(60.0)) ## 0.5000000000000001
proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
## Computes the tangent of `x`
## Computes the tangent of ``x``.
## .. code-block:: nim
## echo tan(degToRad(45.0)) ## 0.9999999999999999
## echo tan(PI / 4) ## 0.9999999999999999
proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
## Computes the hyperbolic sine of `x`
## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
## .. code-block:: nim
## echo sinh(1.0) ## 1.175201193643801
proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
## Computes the hyperbolic cosine of `x`
## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
## .. code-block:: nim
## echo cosh(1.0) ## 1.543080634815244
proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
## Computes the hyperbolic tangent of `x`
## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
## .. code-block:: nim
## echo tanh(1.0) ## 0.7615941559557649
proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
## Computes the arc cosine of `x`
## Computes the arc cosine of ``x``.
## .. code-block:: nim
## echo arccos(1.0) ## 0.0
proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
## Computes the arc sine of `x`
## Computes the arc sine of ``x``.
proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
## Calculate the arc tangent of `y` / `x`
## Calculate the arc tangent of ``x``.
## .. code-block:: nim
## echo arctan(1.0) ## 0.7853981633974483
## echo radToDeg(arctan(1.0)) ## 45.0
proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
## Calculate the arc tangent of `y` / `x`.
## `atan2` returns the arc tangent of `y` / `x`; it produces correct
## Calculate the arc tangent of ``y`` / ``x``.
## `arctan2` returns the arc tangent of ``y`` / ``x``; it produces correct
## results even when the resulting angle is near pi/2 or -pi/2
## (`x` near 0).
## (``x`` near 0).
## .. code-block:: nim
## echo arctan2(1.0, 0.0) ## 1.570796326794897
## echo radToDeg(arctan2(1.0, 0.0)) ## 90.0
proc arcsinh*(x: float32): float32 {.importc: "asinhf", header: "<math.h>".}
proc arcsinh*(x: float64): float64 {.importc: "asinh", header: "<math.h>".}
## Computes the inverse hyperbolic sine of `x`
## Computes the inverse hyperbolic sine of ``x``.
proc arccosh*(x: float32): float32 {.importc: "acoshf", header: "<math.h>".}
proc arccosh*(x: float64): float64 {.importc: "acosh", header: "<math.h>".}
## Computes the inverse hyperbolic cosine of `x`
## Computes the inverse hyperbolic cosine of ``x``.
proc arctanh*(x: float32): float32 {.importc: "atanhf", header: "<math.h>".}
proc arctanh*(x: float64): float64 {.importc: "atanh", header: "<math.h>".}
## Computes the inverse hyperbolic tangent of `x`
## Computes the inverse hyperbolic tangent of ``x``.
else: # JS
proc log10*(x: float32): float32 {.importc: "Math.log10", nodecl.}
@@ -238,59 +298,61 @@ else: # JS
proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
## Computes the cotangent of `x`
## Computes the cotangent of ``x``.
proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
## Computes the secant of `x`.
## Computes the secant of ``x``.
proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
## Computes the cosecant of `x`
## Computes the cosecant of ``x``.
proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
## Computes the hyperbolic cotangent of `x`
## Computes the hyperbolic cotangent of ``x``.
proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
## Computes the hyperbolic secant of `x`
## Computes the hyperbolic secant of ``x``.
proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
## Computes the hyperbolic cosecant of `x`
## Computes the hyperbolic cosecant of ``x``.
proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
## Computes the inverse cotangent of `x`
## Computes the inverse cotangent of ``x``.
proc arcsec*[T: float32|float64](x: T): T = arccos(1.0 / x)
## Computes the inverse secant of `x`
## Computes the inverse secant of ``x``.
proc arccsc*[T: float32|float64](x: T): T = arcsin(1.0 / x)
## Computes the inverse cosecant of `x`
## Computes the inverse cosecant of ``x``.
proc arccoth*[T: float32|float64](x: T): T = arctanh(1.0 / x)
## Computes the inverse hyperbolic cotangent of `x`
## Computes the inverse hyperbolic cotangent of ``x``.
proc arcsech*[T: float32|float64](x: T): T = arccosh(1.0 / x)
## Computes the inverse hyperbolic secant of `x`
## Computes the inverse hyperbolic secant of ``x``.
proc arccsch*[T: float32|float64](x: T): T = arcsinh(1.0 / x)
## Computes the inverse hyperbolic cosecant of `x`
## Computes the inverse hyperbolic cosecant of ``x``.
const windowsCC89 = defined(windows) and defined(bcc)
when not defined(JS): # C
proc hypot*(x, y: float32): float32 {.importc: "hypotf", header: "<math.h>".}
proc hypot*(x, y: float64): float64 {.importc: "hypot", header: "<math.h>".}
## Computes the hypotenuse of a right-angle triangle with `x` and
## `y` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
## Computes the hypotenuse of a right-angle triangle with ``x`` and
## ``y`` as its base and height. Equivalent to ``sqrt(x*x + y*y)``.
## .. code-block:: nim
## echo hypot(4.0, 3.0) ## 5.0
proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
## computes x to power raised of y.
##
## To compute power between integers, use `^` e.g. 2 ^ 6
## To compute power between integers, use ``^`` e.g. 2 ^ 6
## .. code-block:: nim
## echo pow(16.0, 0.5) ## 4.0
# TODO: add C89 version on windows
when not windowsCC89:
proc erf*(x: float32): float32 {.importc: "erff", header: "<math.h>".}
proc erf*(x: float64): float64 {.importc: "erf", header: "<math.h>".}
## The error function
## Computes the `error function <https://en.wikipedia.org/wiki/Error_function>`_ for ``x``.
proc erfc*(x: float32): float32 {.importc: "erfcf", header: "<math.h>".}
proc erfc*(x: float64): float64 {.importc: "erfc", header: "<math.h>".}
## The complementary error function
## Computes the `complementary error function <https://en.wikipedia.org/wiki/Error_function#Complementary_error_function>`_ for ``x``.
proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
## The gamma function
## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
proc tgamma*(x: float32): float32
{.deprecated: "use gamma instead", importc: "tgammaf", header: "<math.h>".}
proc tgamma*(x: float64): float64
@@ -299,18 +361,18 @@ when not defined(JS): # C
## **Deprecated since version 0.19.0**: Use ``gamma`` instead.
proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
## Natural log of the gamma function
## Computes the natural log of the gamma function for ``x``.
proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
## Computes the floor function (i.e., the largest integer not greater than `x`)
## Computes the floor function (i.e., the largest integer not greater than ``x``).
##
## .. code-block:: nim
## echo floor(-3.5) ## -4.0
proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
## Computes the ceiling function (i.e., the smallest integer not less than `x`)
## Computes the ceiling function (i.e., the smallest integer not less than ``x``).
##
## .. code-block:: nim
## echo ceil(-2.1) ## -2.0
@@ -378,21 +440,23 @@ when not defined(JS): # C
proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
## Truncates `x` to the decimal point
## Truncates ``x`` to the decimal point.
##
## .. code-block:: nim
## echo trunc(PI) # 3.0
## echo trunc(-1.85) # -1.0
proc fmod*(x, y: float32): float32 {.deprecated: "use mod instead", importc: "fmodf", header: "<math.h>".}
proc fmod*(x, y: float64): float64 {.deprecated: "use mod instead", importc: "fmod", header: "<math.h>".}
## Computes the remainder of `x` divided by `y`
##
## .. code-block:: nim
## echo fmod(-2.5, 0.3) ## -0.1
## Computes the remainder of ``x`` divided by ``y``.
## **Deprecated since version 0.19.0**: Use the ``mod`` operator instead.
proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
## Computes the modulo operation for float operators.
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
##
## .. code-block:: nim
## echo 2.5 mod 0.3 ## 0.1
else: # JS
proc hypot*[T: float32|float64](x, y: T): T = return sqrt(x*x + y*y)
proc pow*(x, y: float32): float32 {.importC: "Math.pow", nodecl.}
@@ -407,19 +471,22 @@ else: # JS
proc `mod`*(x, y: float32): float32 {.importcpp: "# % #".}
proc `mod`*(x, y: float64): float64 {.importcpp: "# % #".}
## Computes the modulo operation for float operators.
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
##
## .. code-block:: nim
## echo 2.5 mod 0.3 ## 0.1
proc round*[T: float32|float64](x: T, places: int): T {.deprecated: "use format instead".} =
## Decimal rounding on a binary floating point number.
##
## This function is NOT reliable. Floating point numbers cannot hold
## non integer decimals precisely. If `places` is 0 (or omitted),
## non integer decimals precisely. If ``places`` is 0 (or omitted),
## round to the nearest integral value following normal mathematical
## rounding rules (e.g. `round(54.5) -> 55.0`). If `places` is
## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
## greater than 0, round to the given number of decimal places,
## e.g. `round(54.346, 2) -> 54.350000000000001421...`. If `places` is negative, round
## to the left of the decimal place, e.g. `round(537.345, -1) ->
## 540.0`
## e.g. ``round(54.346, 2) -> 54.350000000000001421...``. If ``places`` is negative, round
## to the left of the decimal place, e.g. ``round(537.345, -1) ->
## 540.0``
if places == 0:
result = round(x)
else:
@@ -431,13 +498,19 @@ proc floorDiv*[T: SomeInteger](x, y: T): T =
## This is different from the ``div`` operator, which is defined
## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
## rounds down.
## .. code-block:: nim
## echo floorDiv(13, 3) # 4
## echo floorDiv(-13, 3) # -5
result = x div y
let r = x mod y
if (r > 0 and y < 0) or (r < 0 and y > 0): result.dec 1
proc floorMod*[T: SomeNumber](x, y: T): T =
## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y).
## This proc behaves the same as the ``%`` operator in python.
## This proc behaves the same as the ``%`` operator in Python.
## .. code-block:: nim
## echo floorMod(13, 3) # 1
## echo floorMod(-13, 3) # 2
result = x mod y
if (result > 0 and y < 0) or (result < 0 and y > 0): result += y
@@ -448,10 +521,14 @@ when not defined(JS):
importc: "frexp", header: "<math.h>".}
proc frexp*[T, U](x: T, exponent: var U): T =
## Split a number into mantissa and exponent.
## `frexp` calculates the mantissa m (a float greater than or equal to 0.5
## and less than 1) and the integer value n such that `x` (the original
## float value) equals m * 2**n. frexp stores n in `exponent` and returns
## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
## and less than 1) and the integer value n such that ``x`` (the original
## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
## m.
## .. code-block:: nim
## var x : int
## echo frexp(5.0, x) # 0.625
## echo x # 3
var exp: int32
result = c_frexp(x, exp)
exponent = exp
@@ -475,7 +552,7 @@ when not defined(JS):
else:
proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
## Computes the binary logarithm (base 2) of `x`
## Computes the binary logarithm (base 2) of ``x``
else:
proc frexp*[T: float32|float64](x: T, exponent: var int): T =
@@ -495,13 +572,15 @@ else:
result = 0.99999999999999988898
proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
## Breaks `x` into an integral and a fractional part.
## Breaks ``x`` into an integer and a fractional part.
##
## Returns a tuple containing intpart and floatpart representing
## Returns a tuple containing ``intpart`` and ``floatpart`` representing
## the integer part and the fractional part respectively.
##
## Both parts have the same sign as `x`. Analogous to the `modf`
## Both parts have the same sign as ``x``. Analogous to the ``modf``
## function in C.
## .. code-block:: nim
## echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25)
var
absolute: T
absolute = abs(x)
@@ -515,16 +594,23 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
proc degToRad*[T: float32|float64](d: T): T {.inline.} =
## Convert from degrees to radians
## .. code-block:: nim
## echo degToRad(180.0) # 3.141592653589793
result = T(d) * RadPerDeg
proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
## Convert from radians to degrees
## .. code-block:: nim
## echo degToRad(2 * PI) # 360.0
result = T(d) / RadPerDeg
proc sgn*[T: SomeNumber](x: T): int {.inline.} =
## Sign function. Returns -1 for negative numbers and `NegInf`, 1 for
## positive numbers and `Inf`, and 0 for positive zero, negative zero and
## `NaN`.
## Sign function. Returns -1 for negative numbers and ``NegInf``, 1 for
## positive numbers and ``Inf``, and 0 for positive zero, negative zero and
## ``NaN``.
## .. code-block:: nim
## echo sgn(-5) # 1
## echo sgn(-4.1) # -1
ord(T(0) < x) - ord(x < T(0))
{.pop.}
@@ -533,6 +619,8 @@ proc sgn*[T: SomeNumber](x: T): int {.inline.} =
proc `^`*[T](x: T, y: Natural): T =
## Computes ``x`` to the power ``y``. ``x`` must be non-negative, use
## `pow <#pow,float,float>`_ for negative exponents.
## .. code-block:: nim
## echo 2 ^ 3 # 8
when compiles(y >= T(0)):
assert y >= T(0)
else:
@@ -562,6 +650,8 @@ proc gcd*[T](x, y: T): T =
proc gcd*(x, y: SomeInteger): SomeInteger =
## Computes the greatest common (positive) divisor of ``x`` and ``y``.
## Using binary GCD (aka Stein's) algorithm.
## .. code-block:: nim
## echo gcd(24, 30) # 6
when x is SomeSignedInt:
var x = abs(x)
else:
@@ -587,6 +677,8 @@ proc gcd*(x, y: SomeInteger): SomeInteger =
proc lcm*[T](x, y: T): T =
## Computes the least common multiple of ``x`` and ``y``.
## .. code-block:: nim
## echo lcm(24, 30) # 120
x div gcd(x, y) * y
when isMainModule and not defined(JS) and not windowsCC89: