Add for easier intialization of rationals

This commit is contained in:
def
2015-02-27 20:38:53 +01:00
parent 3bfcfeb0cf
commit 75959a0fb3

View File

@@ -22,6 +22,12 @@ proc initRational*[T](num, den: T): Rational[T] =
result.num = num
result.den = den
proc `//`*[T](num, den: T): Rational[T] = initRational[T](num, den)
## A friendlier version of `initRational`. Example usage:
##
## .. code-block:: nim
## var x = 1//3 + 1//5
proc toRational*[T](x: SomeInteger): Rational[T] =
## Convert some integer `x` to a rational number.
result.num = x
@@ -200,26 +206,26 @@ when isMainModule:
z = Rational[int](num: 0, den: 1)
o = initRational(num=1, den=1)
a = initRational(1, 2)
b = initRational(-1, -2)
m1 = initRational(-1, 1)
tt = initRational(10, 2)
b = -1 // -2
m1 = -1 // 1
tt = 10 // 2
assert( a == a )
assert( (a-a) == z )
assert( (a+b) == o )
assert( (a/b) == o )
assert( (a*b) == initRational(1, 4) )
assert( (3/a) == initRational(6,1) )
assert( (a/3) == initRational(1,6) )
assert( a*b == initRational(1,4) )
assert( (a*b) == 1 // 4 )
assert( (3/a) == 6 // 1 )
assert( (a/3) == 1 // 6 )
assert( a*b == 1 // 4 )
assert( tt*z == z )
assert( 10*a == tt )
assert( a*10 == tt )
assert( tt/10 == a )
assert( a-m1 == initRational(3, 2) )
assert( a+m1 == initRational(-1, 2) )
assert( m1+tt == initRational(16, 4) )
assert( m1-tt == initRational(6, -1) )
assert( a-m1 == 3 // 2 )
assert( a+m1 == -1 // 2 )
assert( m1+tt == 16 // 4 )
assert( m1-tt == 6 // -1 )
assert( z < o )
assert( z <= o )
@@ -238,28 +244,28 @@ when isMainModule:
assert( not(b > a) )
assert( cmp(a, b) == 0 )
var x = initRational(1,3)
var x = 1//3
x *= initRational(5,1)
assert( x == initRational(5,3) )
x += initRational(2,9)
assert( x == initRational(17,9) )
x -= initRational(9,18)
assert( x == initRational(25,18) )
x /= initRational(1,2)
assert( x == initRational(50,18) )
x *= 5//1
assert( x == 5//3 )
x += 2 // 9
assert( x == 17//9 )
x -= 9//18
assert( x == 25//18 )
x /= 1//2
assert( x == 50//18 )
var y = initRational(1,3)
var y = 1//3
y *= 4
assert( y == initRational(4,3) )
assert( y == 4//3 )
y += 5
assert( y == initRational(19,3) )
assert( y == 19//3 )
y -= 2
assert( y == initRational(13,3) )
assert( y == 13//3 )
y /= 9
assert( y == initRational(13,27) )
assert( y == 13//27 )
assert toRational[int, int](5) == initRational(5,1)
assert toRational[int, int](5) == 5//1
assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7
assert toInt(z) == 0