mirror of
https://github.com/nim-lang/Nim.git
synced 2026-01-08 05:53:22 +00:00
Add for easier intialization of rationals
This commit is contained in:
@@ -22,6 +22,12 @@ proc initRational*[T](num, den: T): Rational[T] =
|
||||
result.num = num
|
||||
result.den = den
|
||||
|
||||
proc `//`*[T](num, den: T): Rational[T] = initRational[T](num, den)
|
||||
## A friendlier version of `initRational`. Example usage:
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## var x = 1//3 + 1//5
|
||||
|
||||
proc toRational*[T](x: SomeInteger): Rational[T] =
|
||||
## Convert some integer `x` to a rational number.
|
||||
result.num = x
|
||||
@@ -200,26 +206,26 @@ when isMainModule:
|
||||
z = Rational[int](num: 0, den: 1)
|
||||
o = initRational(num=1, den=1)
|
||||
a = initRational(1, 2)
|
||||
b = initRational(-1, -2)
|
||||
m1 = initRational(-1, 1)
|
||||
tt = initRational(10, 2)
|
||||
b = -1 // -2
|
||||
m1 = -1 // 1
|
||||
tt = 10 // 2
|
||||
|
||||
assert( a == a )
|
||||
assert( (a-a) == z )
|
||||
assert( (a+b) == o )
|
||||
assert( (a/b) == o )
|
||||
assert( (a*b) == initRational(1, 4) )
|
||||
assert( (3/a) == initRational(6,1) )
|
||||
assert( (a/3) == initRational(1,6) )
|
||||
assert( a*b == initRational(1,4) )
|
||||
assert( (a*b) == 1 // 4 )
|
||||
assert( (3/a) == 6 // 1 )
|
||||
assert( (a/3) == 1 // 6 )
|
||||
assert( a*b == 1 // 4 )
|
||||
assert( tt*z == z )
|
||||
assert( 10*a == tt )
|
||||
assert( a*10 == tt )
|
||||
assert( tt/10 == a )
|
||||
assert( a-m1 == initRational(3, 2) )
|
||||
assert( a+m1 == initRational(-1, 2) )
|
||||
assert( m1+tt == initRational(16, 4) )
|
||||
assert( m1-tt == initRational(6, -1) )
|
||||
assert( a-m1 == 3 // 2 )
|
||||
assert( a+m1 == -1 // 2 )
|
||||
assert( m1+tt == 16 // 4 )
|
||||
assert( m1-tt == 6 // -1 )
|
||||
|
||||
assert( z < o )
|
||||
assert( z <= o )
|
||||
@@ -238,28 +244,28 @@ when isMainModule:
|
||||
assert( not(b > a) )
|
||||
assert( cmp(a, b) == 0 )
|
||||
|
||||
var x = initRational(1,3)
|
||||
var x = 1//3
|
||||
|
||||
x *= initRational(5,1)
|
||||
assert( x == initRational(5,3) )
|
||||
x += initRational(2,9)
|
||||
assert( x == initRational(17,9) )
|
||||
x -= initRational(9,18)
|
||||
assert( x == initRational(25,18) )
|
||||
x /= initRational(1,2)
|
||||
assert( x == initRational(50,18) )
|
||||
x *= 5//1
|
||||
assert( x == 5//3 )
|
||||
x += 2 // 9
|
||||
assert( x == 17//9 )
|
||||
x -= 9//18
|
||||
assert( x == 25//18 )
|
||||
x /= 1//2
|
||||
assert( x == 50//18 )
|
||||
|
||||
var y = initRational(1,3)
|
||||
var y = 1//3
|
||||
|
||||
y *= 4
|
||||
assert( y == initRational(4,3) )
|
||||
assert( y == 4//3 )
|
||||
y += 5
|
||||
assert( y == initRational(19,3) )
|
||||
assert( y == 19//3 )
|
||||
y -= 2
|
||||
assert( y == initRational(13,3) )
|
||||
assert( y == 13//3 )
|
||||
y /= 9
|
||||
assert( y == initRational(13,27) )
|
||||
assert( y == 13//27 )
|
||||
|
||||
assert toRational[int, int](5) == initRational(5,1)
|
||||
assert toRational[int, int](5) == 5//1
|
||||
assert abs(toFloat(y) - 0.4814814814814815) < 1.0e-7
|
||||
assert toInt(z) == 0
|
||||
|
||||
Reference in New Issue
Block a user