mirror of
https://github.com/nim-lang/Nim.git
synced 2026-01-10 06:54:16 +00:00
Merge pull request #3519 from jlp765/stats1
stats.nim pure library (moved from math lib to new lib)
This commit is contained in:
@@ -3,7 +3,7 @@
|
||||
# the standard deviation of its columns.
|
||||
# The CSV file can have a header which is then used for the output.
|
||||
|
||||
import os, streams, parsecsv, strutils, math
|
||||
import os, streams, parsecsv, strutils, math, stats
|
||||
|
||||
if paramCount() < 1:
|
||||
quit("Usage: statcsv filename[.csv]")
|
||||
|
||||
@@ -118,26 +118,6 @@ proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
|
||||
## If `x` is empty, 0 is returned.
|
||||
for i in items(x): result = result + i
|
||||
|
||||
template toFloat(f: float): float = f
|
||||
|
||||
proc mean*[T](x: openArray[T]): float {.noSideEffect.} =
|
||||
## Computes the mean of the elements in `x`, which are first converted to floats.
|
||||
## If `x` is empty, NaN is returned.
|
||||
## ``toFloat(x: T): float`` must be defined.
|
||||
for i in items(x): result = result + toFloat(i)
|
||||
result = result / toFloat(len(x))
|
||||
|
||||
proc variance*[T](x: openArray[T]): float {.noSideEffect.} =
|
||||
## Computes the variance of the elements in `x`.
|
||||
## If `x` is empty, NaN is returned.
|
||||
## ``toFloat(x: T): float`` must be defined.
|
||||
result = 0.0
|
||||
var m = mean(x)
|
||||
for i in items(x):
|
||||
var diff = toFloat(i) - m
|
||||
result = result + diff*diff
|
||||
result = result / toFloat(len(x))
|
||||
|
||||
proc random*(max: int): int {.benign.}
|
||||
## Returns a random number in the range 0..max-1. The sequence of
|
||||
## random number is always the same, unless `randomize` is called
|
||||
@@ -376,48 +356,6 @@ proc random*[T](a: openArray[T]): T =
|
||||
## returns a random element from the openarray `a`.
|
||||
result = a[random(a.low..a.len)]
|
||||
|
||||
type
|
||||
RunningStat* = object ## an accumulator for statistical data
|
||||
n*: int ## number of pushed data
|
||||
sum*, min*, max*, mean*: float ## self-explaining
|
||||
oldM, oldS, newS: float
|
||||
|
||||
{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}
|
||||
|
||||
proc push*(s: var RunningStat, x: float) =
|
||||
## pushes a value `x` for processing
|
||||
inc(s.n)
|
||||
# See Knuth TAOCP vol 2, 3rd edition, page 232
|
||||
if s.n == 1:
|
||||
s.min = x
|
||||
s.max = x
|
||||
s.oldM = x
|
||||
s.mean = x
|
||||
s.oldS = 0.0
|
||||
else:
|
||||
if s.min > x: s.min = x
|
||||
if s.max < x: s.max = x
|
||||
s.mean = s.oldM + (x - s.oldM)/toFloat(s.n)
|
||||
s.newS = s.oldS + (x - s.oldM)*(x - s.mean)
|
||||
|
||||
# set up for next iteration:
|
||||
s.oldM = s.mean
|
||||
s.oldS = s.newS
|
||||
s.sum = s.sum + x
|
||||
|
||||
proc push*(s: var RunningStat, x: int) =
|
||||
## pushes a value `x` for processing. `x` is simply converted to ``float``
|
||||
## and the other push operation is called.
|
||||
push(s, toFloat(x))
|
||||
|
||||
proc variance*(s: RunningStat): float =
|
||||
## computes the current variance of `s`
|
||||
if s.n > 1: result = s.newS / (toFloat(s.n - 1))
|
||||
|
||||
proc standardDeviation*(s: RunningStat): float =
|
||||
## computes the current standard deviation of `s`
|
||||
result = sqrt(variance(s))
|
||||
|
||||
{.pop.}
|
||||
{.pop.}
|
||||
|
||||
|
||||
348
lib/pure/stats.nim
Normal file
348
lib/pure/stats.nim
Normal file
@@ -0,0 +1,348 @@
|
||||
#
|
||||
#
|
||||
# Nim's Runtime Library
|
||||
# (c) Copyright 2015 Andreas Rumpf
|
||||
#
|
||||
# See the file "copying.txt", included in this
|
||||
# distribution, for details about the copyright.
|
||||
#
|
||||
## Statistical analysis framework for performing
|
||||
## basic statistical analysis of data.
|
||||
## The data is analysed in a single pass, when a data value
|
||||
## is pushed to the ``RunningStat`` or ``RunningRegress`` objects
|
||||
##
|
||||
## ``RunningStat`` calculates for a single data set
|
||||
## - n (data count)
|
||||
## - min (smallest value)
|
||||
## - max (largest value)
|
||||
## - sum
|
||||
## - mean
|
||||
## - variance
|
||||
## - varianceS (sample var)
|
||||
## - standardDeviation
|
||||
## - standardDeviationS (sample stddev)
|
||||
## - skewness (the third statistical moment)
|
||||
## - kurtosis (the fourth statistical moment)
|
||||
##
|
||||
## ``RunningRegress`` calculates for two sets of data
|
||||
## - n
|
||||
## - slope
|
||||
## - intercept
|
||||
## - correlation
|
||||
##
|
||||
## Procs have been provided to calculate statistics on arrays and sequences.
|
||||
##
|
||||
## However, if more than a single statistical calculation is required, it is more
|
||||
## efficient to push the data once to the RunningStat object, and
|
||||
## call the numerous statistical procs for the RunningStat object.
|
||||
##
|
||||
## .. code-block:: Nim
|
||||
##
|
||||
## var rs: RunningStat
|
||||
## rs.push(MySeqOfData)
|
||||
## rs.mean()
|
||||
## rs.variance()
|
||||
## rs.skewness()
|
||||
## rs.kurtosis()
|
||||
|
||||
from math import FloatClass, sqrt, pow, round
|
||||
|
||||
{.push debugger:off .} # the user does not want to trace a part
|
||||
# of the standard library!
|
||||
{.push checks:off, line_dir:off, stack_trace:off.}
|
||||
|
||||
type
|
||||
RunningStat* = object ## an accumulator for statistical data
|
||||
n*: int ## number of pushed data
|
||||
min*, max*, sum*: float ## self-explaining
|
||||
mom1, mom2, mom3, mom4: float ## statistical moments, mom1 is mean
|
||||
|
||||
|
||||
RunningRegress* = object ## an accumulator for regression calculations
|
||||
n*: int ## number of pushed data
|
||||
x_stats*: RunningStat ## stats for first set of data
|
||||
y_stats*: RunningStat ## stats for second set of data
|
||||
s_xy: float ## accumulated data for combined xy
|
||||
|
||||
{.deprecated: [TFloatClass: FloatClass, TRunningStat: RunningStat].}
|
||||
|
||||
# ----------- RunningStat --------------------------
|
||||
proc clear*(s: var RunningStat) =
|
||||
## reset `s`
|
||||
s.n = 0
|
||||
s.min = toBiggestFloat(int.high)
|
||||
s.max = 0.0
|
||||
s.sum = 0.0
|
||||
s.mom1 = 0.0
|
||||
s.mom2 = 0.0
|
||||
s.mom3 = 0.0
|
||||
s.mom4 = 0.0
|
||||
|
||||
proc push*(s: var RunningStat, x: float) =
|
||||
## pushes a value `x` for processing
|
||||
if s.n == 0: s.min = x
|
||||
inc(s.n)
|
||||
# See Knuth TAOCP vol 2, 3rd edition, page 232
|
||||
if s.min > x: s.min = x
|
||||
if s.max < x: s.max = x
|
||||
s.sum += x
|
||||
let n = toFloat(s.n)
|
||||
let delta = x - s.mom1
|
||||
let delta_n = delta / toFloat(s.n)
|
||||
let delta_n2 = delta_n * delta_n
|
||||
let term1 = delta * delta_n * toFloat(s.n - 1)
|
||||
s.mom4 += term1 * delta_n2 * (n*n - 3*n + 3) +
|
||||
6*delta_n2*s.mom2 - 4*delta_n*s.mom3
|
||||
s.mom3 += term1 * delta_n * (n - 2) - 3*delta_n*s.mom2
|
||||
s.mom2 += term1
|
||||
s.mom1 += delta_n
|
||||
|
||||
proc push*(s: var RunningStat, x: int) =
|
||||
## pushes a value `x` for processing.
|
||||
##
|
||||
## `x` is simply converted to ``float``
|
||||
## and the other push operation is called.
|
||||
s.push(toFloat(x))
|
||||
|
||||
proc push*(s: var RunningStat, x: openarray[float|int]) =
|
||||
## pushes all values of `x` for processing.
|
||||
##
|
||||
## Int values of `x` are simply converted to ``float`` and
|
||||
## the other push operation is called.
|
||||
for val in x:
|
||||
s.push(val)
|
||||
|
||||
proc mean*(s: RunningStat): float =
|
||||
## computes the current mean of `s`
|
||||
result = s.mom1
|
||||
|
||||
proc variance*(s: RunningStat): float =
|
||||
## computes the current population variance of `s`
|
||||
result = s.mom2 / toFloat(s.n)
|
||||
|
||||
proc varianceS*(s: RunningStat): float =
|
||||
## computes the current sample variance of `s`
|
||||
if s.n > 1: result = s.mom2 / toFloat(s.n - 1)
|
||||
|
||||
proc standardDeviation*(s: RunningStat): float =
|
||||
## computes the current population standard deviation of `s`
|
||||
result = sqrt(variance(s))
|
||||
|
||||
proc standardDeviationS*(s: RunningStat): float =
|
||||
## computes the current sample standard deviation of `s`
|
||||
result = sqrt(varianceS(s))
|
||||
|
||||
proc skewness*(s: RunningStat): float =
|
||||
## computes the current population skewness of `s`
|
||||
result = sqrt(toFloat(s.n)) * s.mom3 / pow(s.mom2, 1.5)
|
||||
|
||||
proc skewnessS*(s: RunningStat): float =
|
||||
## computes the current sample skewness of `s`
|
||||
let s2 = skewness(s)
|
||||
result = sqrt(toFloat(s.n*(s.n-1)))*s2 / toFloat(s.n-2)
|
||||
|
||||
proc kurtosis*(s: RunningStat): float =
|
||||
## computes the current population kurtosis of `s`
|
||||
result = toFloat(s.n) * s.mom4 / (s.mom2 * s.mom2) - 3.0
|
||||
|
||||
proc kurtosisS*(s: RunningStat): float =
|
||||
## computes the current sample kurtosis of `s`
|
||||
result = toFloat(s.n-1) / toFloat((s.n-2)*(s.n-3)) *
|
||||
(toFloat(s.n+1)*kurtosis(s) + 6)
|
||||
|
||||
proc `+`*(a, b: RunningStat): RunningStat =
|
||||
## combine two RunningStats.
|
||||
##
|
||||
## Useful if performing parallel analysis of data series
|
||||
## and need to re-combine parallel result sets
|
||||
result.clear()
|
||||
result.n = a.n + b.n
|
||||
|
||||
let delta = b.mom1 - a.mom1
|
||||
let delta2 = delta*delta
|
||||
let delta3 = delta*delta2
|
||||
let delta4 = delta2*delta2
|
||||
let n = toFloat(result.n)
|
||||
|
||||
result.mom1 = (a.n.float*a.mom1 + b.n.float*b.mom1) / n
|
||||
result.mom2 = a.mom2 + b.mom2 + delta2 * a.n.float * b.n.float / n
|
||||
result.mom3 = a.mom3 + b.mom3 +
|
||||
delta3 * a.n.float * b.n.float * (a.n.float - b.n.float)/(n*n);
|
||||
result.mom3 += 3.0*delta * (a.n.float*b.mom2 - b.n.float*a.mom2) / n
|
||||
result.mom4 = a.mom4 + b.mom4 +
|
||||
delta4*a.n.float*b.n.float * toFloat(a.n*a.n - a.n*b.n + b.n*b.n) /
|
||||
(n*n*n)
|
||||
result.mom4 += 6.0*delta2 * (a.n.float*a.n.float*b.mom2 + b.n.float*b.n.float*a.mom2) /
|
||||
(n*n) +
|
||||
4.0*delta*(a.n.float*b.mom3 - b.n.float*a.mom3) / n
|
||||
result.max = max(a.max, b.max)
|
||||
result.min = max(a.min, b.min)
|
||||
|
||||
proc `+=`*(a: var RunningStat, b: RunningStat) {.inline.} =
|
||||
## add a second RunningStats `b` to `a`
|
||||
a = a + b
|
||||
# ---------------------- standalone array/seq stats ---------------------
|
||||
proc mean*[T](x: openArray[T]): float =
|
||||
## computes the mean of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.mean()
|
||||
|
||||
proc variance*[T](x: openArray[T]): float =
|
||||
## computes the population variance of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.variance()
|
||||
|
||||
proc varianceS*[T](x: openArray[T]): float =
|
||||
## computes the sample variance of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.varianceS()
|
||||
|
||||
proc standardDeviation*[T](x: openArray[T]): float =
|
||||
## computes the population standardDeviation of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.standardDeviation()
|
||||
|
||||
proc standardDeviationS*[T](x: openArray[T]): float =
|
||||
## computes the sanple standardDeviation of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.standardDeviationS()
|
||||
|
||||
proc skewness*[T](x: openArray[T]): float =
|
||||
## computes the population skewness of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.skewness()
|
||||
|
||||
proc skewnessS*[T](x: openArray[T]): float =
|
||||
## computes the sample skewness of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.skewnessS()
|
||||
|
||||
proc kurtosis*[T](x: openArray[T]): float =
|
||||
## computes the population kurtosis of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.kurtosis()
|
||||
|
||||
proc kurtosisS*[T](x: openArray[T]): float =
|
||||
## computes the sample kurtosis of `x`
|
||||
var rs: RunningStat
|
||||
rs.push(x)
|
||||
result = rs.kurtosisS()
|
||||
|
||||
# ---------------------- Running Regression -----------------------------
|
||||
|
||||
proc clear*(r: var RunningRegress) =
|
||||
## reset `r`
|
||||
r.x_stats.clear()
|
||||
r.y_stats.clear()
|
||||
r.s_xy = 0.0
|
||||
r.n = 0
|
||||
|
||||
proc push*(r: var RunningRegress, x, y: float) =
|
||||
## pushes two values `x` and `y` for processing
|
||||
r.s_xy += (r.x_stats.mean() - x)*(r.y_stats.mean() - y)*
|
||||
toFloat(r.n) / toFloat(r.n + 1)
|
||||
r.x_stats.push(x)
|
||||
r.y_stats.push(y)
|
||||
inc(r.n)
|
||||
|
||||
proc push*(r: var RunningRegress, x, y: int) {.inline.} =
|
||||
## pushes two values `x` and `y` for processing.
|
||||
##
|
||||
## `x` and `y` are converted to ``float``
|
||||
## and the other push operation is called.
|
||||
r.push(toFloat(x), toFloat(y))
|
||||
|
||||
proc push*(r: var RunningRegress, x, y: openarray[float|int]) =
|
||||
## pushes two sets of values `x` and `y` for processing.
|
||||
assert(x.len == y.len)
|
||||
for i in 0..<x.len:
|
||||
r.push(x[i], y[i])
|
||||
|
||||
proc slope*(r: RunningRegress): float =
|
||||
## computes the current slope of `r`
|
||||
let s_xx = r.x_stats.varianceS()*toFloat(r.n - 1)
|
||||
result = r.s_xy / s_xx
|
||||
|
||||
proc intercept*(r: RunningRegress): float =
|
||||
## computes the current intercept of `r`
|
||||
result = r.y_stats.mean() - r.slope()*r.x_stats.mean()
|
||||
|
||||
proc correlation*(r: RunningRegress): float =
|
||||
## computes the current correlation of the two data
|
||||
## sets pushed into `r`
|
||||
let t = r.x_stats.standardDeviation() * r.y_stats.standardDeviation()
|
||||
result = r.s_xy / ( toFloat(r.n) * t )
|
||||
|
||||
proc `+`*(a, b: RunningRegress): RunningRegress =
|
||||
## combine two `RunningRegress` objects.
|
||||
##
|
||||
## Useful if performing parallel analysis of data series
|
||||
## and need to re-combine parallel result sets
|
||||
result.clear()
|
||||
result.x_stats = a.x_stats + b.x_stats
|
||||
result.y_stats = a.y_stats + b.y_stats
|
||||
result.n = a.n + b.n
|
||||
|
||||
let delta_x = b.x_stats.mean() - a.x_stats.mean()
|
||||
let delta_y = b.y_stats.mean() - a.y_stats.mean()
|
||||
result.s_xy = a.s_xy + b.s_xy +
|
||||
toFloat(a.n*b.n)*delta_x*delta_y/toFloat(result.n)
|
||||
|
||||
proc `+=`*(a: var RunningRegress, b: RunningRegress) =
|
||||
## add RunningRegress `b` to `a`
|
||||
a = a + b
|
||||
|
||||
{.pop.}
|
||||
{.pop.}
|
||||
|
||||
when isMainModule:
|
||||
proc clean(x: float): float =
|
||||
result = round(1.0e8*x).float * 1.0e-8
|
||||
|
||||
var rs: RunningStat
|
||||
rs.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
|
||||
doAssert(rs.n == 8)
|
||||
doAssert(clean(rs.mean) == 2.0)
|
||||
doAssert(clean(rs.variance()) == 1.5)
|
||||
doAssert(clean(rs.varianceS()) == 1.71428571)
|
||||
doAssert(clean(rs.skewness()) == 0.81649658)
|
||||
doAssert(clean(rs.skewnessS()) == 1.01835015)
|
||||
doAssert(clean(rs.kurtosis()) == -1.0)
|
||||
doAssert(clean(rs.kurtosisS()) == -0.7000000000000001)
|
||||
|
||||
var rs1, rs2: RunningStat
|
||||
rs1.push(@[1.0, 2.0, 1.0, 4.0])
|
||||
rs2.push(@[1.0, 4.0, 1.0, 2.0])
|
||||
let rs3 = rs1 + rs2
|
||||
doAssert(clean(rs3.mom2) == clean(rs.mom2))
|
||||
doAssert(clean(rs3.mom3) == clean(rs.mom3))
|
||||
doAssert(clean(rs3.mom4) == clean(rs.mom4))
|
||||
rs1 += rs2
|
||||
doAssert(clean(rs1.mom2) == clean(rs.mom2))
|
||||
doAssert(clean(rs1.mom3) == clean(rs.mom3))
|
||||
doAssert(clean(rs1.mom4) == clean(rs.mom4))
|
||||
rs1.clear()
|
||||
rs1.push(@[1.0, 2.2, 1.4, 4.9])
|
||||
doAssert(rs1.sum == 9.5)
|
||||
doAssert(rs1.mean() == 2.375)
|
||||
|
||||
var rr: RunningRegress
|
||||
rr.push(@[0.0,1.0,2.8,3.0,4.0], @[0.0,1.0,2.3,3.0,4.0])
|
||||
doAssert(rr.slope() == 0.9695585996955861)
|
||||
doAssert(rr.intercept() == -0.03424657534246611)
|
||||
doAssert(rr.correlation() == 0.9905100362239381)
|
||||
var rr1, rr2: RunningRegress
|
||||
rr1.push(@[0.0,1.0], @[0.0,1.0])
|
||||
rr2.push(@[2.8,3.0,4.0], @[2.3,3.0,4.0])
|
||||
let rr3 = rr1 + rr2
|
||||
doAssert(rr3.correlation() == rr.correlation())
|
||||
doAssert(clean(rr3.slope()) == clean(rr.slope()))
|
||||
doAssert(clean(rr3.intercept()) == clean(rr.intercept()))
|
||||
Reference in New Issue
Block a user