make the docs of arithmetics better (#16510)

* fix

* Update lib/system/arithmetics.nim

Co-authored-by: Timothee Cour <timothee.cour2@gmail.com>

* Apply suggestions from code review

Co-authored-by: Timothee Cour <timothee.cour2@gmail.com>

* Apply suggestions from code review

Co-authored-by: Timothee Cour <timothee.cour2@gmail.com>

Co-authored-by: Timothee Cour <timothee.cour2@gmail.com>
This commit is contained in:
flywind
2020-12-30 10:30:43 -06:00
committed by GitHub
parent 805917768d
commit b42e7c0ef9

View File

@@ -1,48 +1,44 @@
proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.}
## Returns the ``y``-th successor (default: 1) of the value ``x``.
## ``T`` has to be an `ordinal type <#Ordinal>`_.
proc succ*[T: Ordinal](x: T, y = 1): T {.magic: "Succ", noSideEffect.} =
## Returns the `y`-th successor (default: 1) of the value `x`.
##
## If such a value does not exist, ``OverflowDefect`` is raised
## If such a value does not exist, `OverflowDefect` is raised
## or a compile time error occurs.
##
## .. code-block:: Nim
## let x = 5
## echo succ(5) # => 6
## echo succ(5, 3) # => 8
runnableExamples:
assert succ(5) == 6
assert succ(5, 3) == 8
proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.}
## Returns the ``y``-th predecessor (default: 1) of the value ``x``.
## ``T`` has to be an `ordinal type <#Ordinal>`_.
proc pred*[T: Ordinal](x: T, y = 1): T {.magic: "Pred", noSideEffect.} =
## Returns the `y`-th predecessor (default: 1) of the value `x`.
##
## If such a value does not exist, ``OverflowDefect`` is raised
## If such a value does not exist, `OverflowDefect` is raised
## or a compile time error occurs.
##
## .. code-block:: Nim
## let x = 5
## echo pred(5) # => 4
## echo pred(5, 3) # => 2
runnableExamples:
assert pred(5) == 4
assert pred(5, 3) == 2
proc inc*[T: Ordinal](x: var T, y = 1) {.magic: "Inc", noSideEffect.}
## Increments the ordinal ``x`` by ``y``.
proc inc*[T: Ordinal](x: var T, y = 1) {.magic: "Inc", noSideEffect.} =
## Increments the ordinal `x` by `y`.
##
## If such a value does not exist, ``OverflowDefect`` is raised or a compile
## time error occurs. This is a short notation for: ``x = succ(x, y)``.
##
## .. code-block:: Nim
## var i = 2
## inc(i) # i <- 3
## inc(i, 3) # i <- 6
## If such a value does not exist, `OverflowDefect` is raised or a compile
## time error occurs. This is a short notation for: `x = succ(x, y)`.
runnableExamples:
var i = 2
inc(i)
assert i == 3
inc(i, 3)
assert i == 6
proc dec*[T: Ordinal](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
## Decrements the ordinal ``x`` by ``y``.
proc dec*[T: Ordinal](x: var T, y = 1) {.magic: "Dec", noSideEffect.} =
## Decrements the ordinal `x` by `y`.
##
## If such a value does not exist, ``OverflowDefect`` is raised or a compile
## time error occurs. This is a short notation for: ``x = pred(x, y)``.
##
## .. code-block:: Nim
## var i = 2
## dec(i) # i <- 1
## dec(i, 3) # i <- -2
## If such a value does not exist, `OverflowDefect` is raised or a compile
## time error occurs. This is a short notation for: `x = pred(x, y)`.
runnableExamples:
var i = 2
dec(i)
assert i == 1
dec(i, 3)
assert i == -2
@@ -51,38 +47,38 @@ proc dec*[T: Ordinal](x: var T, y = 1) {.magic: "Dec", noSideEffect.}
when defined(nimNoZeroExtendMagic):
proc ze*(x: int8): int {.deprecated.} =
## zero extends a smaller integer type to ``int``. This treats `x` as
## zero extends a smaller integer type to `int`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int](uint(cast[uint8](x)))
proc ze*(x: int16): int {.deprecated.} =
## zero extends a smaller integer type to ``int``. This treats `x` as
## zero extends a smaller integer type to `int`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int](uint(cast[uint16](x)))
proc ze64*(x: int8): int64 {.deprecated.} =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint8](x)))
proc ze64*(x: int16): int64 {.deprecated.} =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint16](x)))
proc ze64*(x: int32): int64 {.deprecated.} =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint32](x)))
proc ze64*(x: int): int64 {.deprecated.} =
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned. Does nothing if the size of an `int` is the same as `int64`.
## (This is the case on 64 bit processors.)
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int64](uint64(cast[uint](x)))
@@ -94,46 +90,46 @@ when defined(nimNoZeroExtendMagic):
cast[int8](x)
proc toU16*(x: int): int16 {.deprecated.} =
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## treats `x` as unsigned and converts it to an `int16` by taking the last
## 16 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int16](x)
proc toU32*(x: int64): int32 {.deprecated.} =
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## treats `x` as unsigned and converts it to an `int32` by taking the
## last 32 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
cast[int32](x)
elif not defined(js):
proc ze*(x: int8): int {.magic: "Ze8ToI", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## zero extends a smaller integer type to `int`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze*(x: int16): int {.magic: "Ze16ToI", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int``. This treats `x` as
## zero extends a smaller integer type to `int`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int8): int64 {.magic: "Ze8ToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int16): int64 {.magic: "Ze16ToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int32): int64 {.magic: "Ze32ToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc ze64*(x: int): int64 {.magic: "ZeIToI64", noSideEffect, deprecated.}
## zero extends a smaller integer type to ``int64``. This treats `x` as
## unsigned. Does nothing if the size of an ``int`` is the same as ``int64``.
## zero extends a smaller integer type to `int64`. This treats `x` as
## unsigned. Does nothing if the size of an `int` is the same as `int64`.
## (This is the case on 64 bit processors.)
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
@@ -143,12 +139,12 @@ elif not defined(js):
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc toU16*(x: int): int16 {.magic: "ToU16", noSideEffect, deprecated.}
## treats `x` as unsigned and converts it to an ``int16`` by taking the last
## treats `x` as unsigned and converts it to an `int16` by taking the last
## 16 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
proc toU32*(x: int64): int32 {.magic: "ToU32", noSideEffect, deprecated.}
## treats `x` as unsigned and converts it to an ``int32`` by taking the
## treats `x` as unsigned and converts it to an `int32` by taking the
## last 32 bits from `x`.
## **Deprecated since version 0.19.9**: Use unsigned integers instead.
@@ -167,20 +163,13 @@ proc `-`*(x: int16): int16 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int32): int32 {.magic: "UnaryMinusI", noSideEffect.}
proc `-`*(x: int64): int64 {.magic: "UnaryMinusI64", noSideEffect.}
proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int): int {.magic: "BitnotI", noSideEffect.} =
## Computes the `bitwise complement` of the integer `x`.
##
## .. code-block:: Nim
## var
## a = 0'u8
## b = 0'i8
## c = 1000'u16
## d = 1000'i16
##
## echo not a # => 255
## echo not b # => -1
## echo not c # => 64535
## echo not d # => -1001
runnableExamples:
assert not 0'u8 == 255
assert not 0'i8 == -1
assert not 1000'u16 == 64535
assert not 1000'i16 == -1001
proc `not`*(x: int8): int8 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int16): int16 {.magic: "BitnotI", noSideEffect.}
proc `not`*(x: int32): int32 {.magic: "BitnotI", noSideEffect.}
@@ -207,34 +196,32 @@ proc `*`*(x, y: int16): int16 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int32): int32 {.magic: "MulI", noSideEffect.}
proc `*`*(x, y: int64): int64 {.magic: "MulI", noSideEffect.}
proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int): int {.magic: "DivI", noSideEffect.} =
## Computes the integer division.
##
## This is roughly the same as ``trunc(x/y)``.
##
## .. code-block:: Nim
## ( 1 div 2) == 0
## ( 2 div 2) == 1
## ( 3 div 2) == 1
## ( 7 div 3) == 2
## (-7 div 3) == -2
## ( 7 div -3) == -2
## (-7 div -3) == 2
## This is roughly the same as `math.trunc(x/y).int`.
runnableExamples:
assert (1 div 2) == 0
assert (2 div 2) == 1
assert (3 div 2) == 1
assert (7 div 3) == 2
assert (-7 div 3) == -2
assert (7 div -3) == -2
assert (-7 div -3) == 2
proc `div`*(x, y: int8): int8 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int16): int16 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int32): int32 {.magic: "DivI", noSideEffect.}
proc `div`*(x, y: int64): int64 {.magic: "DivI", noSideEffect.}
proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int): int {.magic: "ModI", noSideEffect.} =
## Computes the integer modulo operation (remainder).
##
## This is the same as ``x - (x div y) * y``.
##
## .. code-block:: Nim
## ( 7 mod 5) == 2
## (-7 mod 5) == -2
## ( 7 mod -5) == 2
## (-7 mod -5) == -2
## This is the same as `x - (x div y) * y`.
runnableExamples:
assert (7 mod 5) == 2
assert (-7 mod 5) == -2
assert (7 mod -5) == 2
assert (-7 mod -5) == -2
proc `mod`*(x, y: int8): int8 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int16): int16 {.magic: "ModI", noSideEffect.}
proc `mod`*(x, y: int32): int32 {.magic: "ModI", noSideEffect.}
@@ -248,7 +235,7 @@ when defined(nimOldShiftRight) or not defined(nimAshr):
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "ShrI", noSideEffect, deprecated: shrDepMessage.}
else:
proc `shr`*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.} =
## Computes the `shift right` operation of `x` and `y`, filling
## vacant bit positions with the sign bit.
##
@@ -256,38 +243,36 @@ else:
## is different than in *C*.
##
## See also:
## * `ashr proc <#ashr,int,SomeInteger>`_ for arithmetic shift right
##
## .. code-block:: Nim
## 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
## 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
## 0b1000_0000'i8 shr 4 == 0b1111_1000'i8
## -1 shr 5 == -1
## 1 shr 5 == 0
## 16 shr 2 == 4
## -16 shr 2 == -4
## * `ashr func<#ashr,int,SomeInteger>`_ for arithmetic shift right
runnableExamples:
assert 0b0001_0000'i8 shr 2 == 0b0000_0100'i8
assert 0b0000_0001'i8 shr 1 == 0b0000_0000'i8
assert 0b1000_0000'i8 shr 4 == 0b1111_1000'i8
assert -1 shr 5 == -1
assert 1 shr 5 == 0
assert 16 shr 2 == 4
assert -16 shr 2 == -4
proc `shr`*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
proc `shr`*(x: int64, y: SomeInteger): int64 {.magic: "AshrI", noSideEffect.}
proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int, y: SomeInteger): int {.magic: "ShlI", noSideEffect.} =
## Computes the `shift left` operation of `x` and `y`.
##
## **Note**: `Operator precedence <manual.html#syntax-precedence>`_
## is different than in *C*.
##
## .. code-block:: Nim
## 1'i32 shl 4 == 0x0000_0010
## 1'i64 shl 4 == 0x0000_0000_0000_0010
runnableExamples:
assert 1'i32 shl 4 == 0x0000_0010
assert 1'i64 shl 4 == 0x0000_0000_0000_0010
proc `shl`*(x: int8, y: SomeInteger): int8 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int16, y: SomeInteger): int16 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int32, y: SomeInteger): int32 {.magic: "ShlI", noSideEffect.}
proc `shl`*(x: int64, y: SomeInteger): int64 {.magic: "ShlI", noSideEffect.}
when defined(nimAshr):
proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int, y: SomeInteger): int {.magic: "AshrI", noSideEffect.} =
## Shifts right by pushing copies of the leftmost bit in from the left,
## and let the rightmost bits fall off.
##
@@ -295,12 +280,11 @@ when defined(nimAshr):
## call syntax for it.
##
## See also:
## * `shr proc <#shr,int,SomeInteger>`_
##
## .. code-block:: Nim
## ashr(0b0001_0000'i8, 2) == 0b0000_0100'i8
## ashr(0b1000_0000'i8, 8) == 0b1111_1111'i8
## ashr(0b1000_0000'i8, 1) == 0b1100_0000'i8
## * `shr func<#shr,int,SomeInteger>`_
runnableExamples:
assert ashr(0b0001_0000'i8, 2) == 0b0000_0100'i8
assert ashr(0b1000_0000'i8, 8) == 0b1111_1111'i8
assert ashr(0b1000_0000'i8, 1) == 0b1100_0000'i8
proc ashr*(x: int8, y: SomeInteger): int8 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int16, y: SomeInteger): int16 {.magic: "AshrI", noSideEffect.}
proc ashr*(x: int32, y: SomeInteger): int32 {.magic: "AshrI", noSideEffect.}
@@ -309,34 +293,31 @@ else:
# used for bootstrapping the compiler
proc ashr*[T](x: T, y: SomeInteger): T = discard
proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int): int {.magic: "BitandI", noSideEffect.} =
## Computes the `bitwise and` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0b0011 and 0b0101) == 0b0001
## (0b0111 and 0b1100) == 0b0100
runnableExamples:
assert (0b0011 and 0b0101) == 0b0001
assert (0b0111 and 0b1100) == 0b0100
proc `and`*(x, y: int8): int8 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int16): int16 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int32): int32 {.magic: "BitandI", noSideEffect.}
proc `and`*(x, y: int64): int64 {.magic: "BitandI", noSideEffect.}
proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int): int {.magic: "BitorI", noSideEffect.} =
## Computes the `bitwise or` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0b0011 or 0b0101) == 0b0111
## (0b0111 or 0b1100) == 0b1111
runnableExamples:
assert (0b0011 or 0b0101) == 0b0111
assert (0b0111 or 0b1100) == 0b1111
proc `or`*(x, y: int8): int8 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int16): int16 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int32): int32 {.magic: "BitorI", noSideEffect.}
proc `or`*(x, y: int64): int64 {.magic: "BitorI", noSideEffect.}
proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int): int {.magic: "BitxorI", noSideEffect.} =
## Computes the `bitwise xor` of numbers `x` and `y`.
##
## .. code-block:: Nim
## (0b0011 xor 0b0101) == 0b0110
## (0b0111 xor 0b1100) == 0b1011
runnableExamples:
assert (0b0011 xor 0b0101) == 0b0110
assert (0b0111 xor 0b1100) == 0b1011
proc `xor`*(x, y: int8): int8 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int16): int16 {.magic: "BitxorI", noSideEffect.}
proc `xor`*(x, y: int32): int32 {.magic: "BitxorI", noSideEffect.}