mirror of
https://github.com/nim-lang/Nim.git
synced 2026-02-14 23:33:28 +00:00
Merge pull request #10318 (Better docs for four modules)
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -7,7 +7,7 @@
|
||||
# distribution, for details about the copyright.
|
||||
#
|
||||
|
||||
## An ``include`` file for the different table implementations.
|
||||
# An ``include`` file for the different table implementations.
|
||||
|
||||
# hcode for real keys cannot be zero. hcode==0 signifies an empty slot. These
|
||||
# two procs retain clarity of that encoding without the space cost of an enum.
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -7,15 +7,50 @@
|
||||
# distribution, for details about the copyright.
|
||||
#
|
||||
|
||||
## Constructive mathematics is naturally typed. -- Simon Thompson
|
||||
## :Author: Nim contributors
|
||||
##
|
||||
## *Constructive mathematics is naturally typed.* -- Simon Thompson
|
||||
##
|
||||
## Basic math routines for Nim.
|
||||
##
|
||||
## Note that the trigonometric functions naturally operate on radians.
|
||||
## The helper functions `degToRad<#degToRad,T>`_ and `radToDeg<#radToDeg,T>`_
|
||||
## provide conversion between radians and degrees.
|
||||
##
|
||||
## .. code-block::
|
||||
##
|
||||
## import math
|
||||
## from sequtils import map
|
||||
##
|
||||
## let a = [0.0, PI/6, PI/4, PI/3, PI/2]
|
||||
##
|
||||
## echo a.map(sin)
|
||||
## # @[0.0, 0.499…, 0.707…, 0.866…, 1.0]
|
||||
##
|
||||
## echo a.map(tan)
|
||||
## # @[0.0, 0.577…, 0.999…, 1.732…, 1.633…e+16]
|
||||
##
|
||||
## echo cos(degToRad(180.0))
|
||||
## # -1.0
|
||||
##
|
||||
## echo sqrt(-1.0)
|
||||
## # nan (use `complex` module)
|
||||
##
|
||||
## This module is available for the `JavaScript target
|
||||
## <backends.html#the-javascript-target>`_.
|
||||
##
|
||||
## Note that the trigonometric functions naturally operate on radians.
|
||||
## The helper functions `degToRad` and `radToDeg` provide conversion
|
||||
## between radians and degrees.
|
||||
## **See also:**
|
||||
## * `complex module<complex.html>`_ for complex numbers and their
|
||||
## mathematical operations
|
||||
## * `rationals module<rationals.html>`_ for rational numbers and their
|
||||
## mathematical operations
|
||||
## * `fenv module<fenv.html>`_ for handling of floating-point rounding
|
||||
## and exceptions (overflow, zero-devide, etc.)
|
||||
## * `random module<random.html>`_ for fast and tiny random number generator
|
||||
## * `mersenne module<mersenne.html>`_ for Mersenne twister random number generator
|
||||
## * `stats module<stats.html>`_ for statistical analysis
|
||||
## * `strformat module<strformat>`_ for formatting floats for print
|
||||
|
||||
|
||||
include "system/inclrtl"
|
||||
{.push debugger:off .} # the user does not want to trace a part
|
||||
@@ -25,9 +60,11 @@ import bitops
|
||||
|
||||
proc binom*(n, k: int): int {.noSideEffect.} =
|
||||
## Computes the `binomial coefficient <https://en.wikipedia.org/wiki/Binomial_coefficient>`_.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo binom(6, 2) ## 15
|
||||
runnableExamples:
|
||||
doAssert binom(6, 2) == binom(6, 4)
|
||||
doAssert binom(6, 2) == 15
|
||||
doAssert binom(-6, 2) == 1
|
||||
doAssert binom(6, 0) == 1
|
||||
if k <= 0: return 1
|
||||
if 2*k > n: return binom(n, n-k)
|
||||
result = n
|
||||
@@ -40,10 +77,15 @@ proc createFactTable[N: static[int]]: array[N, int] =
|
||||
result[i] = result[i - 1] * i
|
||||
|
||||
proc fac*(n: int): int =
|
||||
## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of a non-negative integer ``n``
|
||||
## Computes the `factorial <https://en.wikipedia.org/wiki/Factorial>`_ of
|
||||
## a non-negative integer ``n``.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo fac(4) ## 24
|
||||
## See also:
|
||||
## * `prod proc <#prod,openArray[T]>`_
|
||||
runnableExamples:
|
||||
doAssert fac(3) == 6
|
||||
doAssert fac(4) == 24
|
||||
doAssert fac(10) == 3628800
|
||||
const factTable =
|
||||
when sizeof(int) == 4:
|
||||
createFactTable[13]()
|
||||
@@ -59,25 +101,26 @@ when defined(Posix):
|
||||
{.passl: "-lm".}
|
||||
|
||||
const
|
||||
PI* = 3.1415926535897932384626433 ## the circle constant PI (Ludolph's number)
|
||||
TAU* = 2.0 * PI ## the circle constant TAU (= 2 * PI)
|
||||
PI* = 3.1415926535897932384626433 ## The circle constant PI (Ludolph's number)
|
||||
TAU* = 2.0 * PI ## The circle constant TAU (= 2 * PI)
|
||||
E* = 2.71828182845904523536028747 ## Euler's number
|
||||
|
||||
MaxFloat64Precision* = 16 ## maximum number of meaningful digits
|
||||
MaxFloat64Precision* = 16 ## Maximum number of meaningful digits
|
||||
## after the decimal point for Nim's
|
||||
## ``float64`` type.
|
||||
MaxFloat32Precision* = 8 ## maximum number of meaningful digits
|
||||
MaxFloat32Precision* = 8 ## Maximum number of meaningful digits
|
||||
## after the decimal point for Nim's
|
||||
## ``float32`` type.
|
||||
MaxFloatPrecision* = MaxFloat64Precision ## maximum number of
|
||||
MaxFloatPrecision* = MaxFloat64Precision ## Maximum number of
|
||||
## meaningful digits
|
||||
## after the decimal point
|
||||
## for Nim's ``float`` type.
|
||||
RadPerDeg = PI / 180.0 ## number of radians per degree
|
||||
RadPerDeg = PI / 180.0 ## Number of radians per degree
|
||||
|
||||
type
|
||||
FloatClass* = enum ## describes the class a floating point value belongs to.
|
||||
## This is the type that is returned by `classify`.
|
||||
FloatClass* = enum ## Describes the class a floating point value belongs to.
|
||||
## This is the type that is returned by
|
||||
## `classify proc <#classify,float>`_.
|
||||
fcNormal, ## value is an ordinary nonzero floating point value
|
||||
fcSubnormal, ## value is a subnormal (a very small) floating point value
|
||||
fcZero, ## value is zero
|
||||
@@ -87,13 +130,14 @@ type
|
||||
fcNegInf ## value is negative infinity
|
||||
|
||||
proc classify*(x: float): FloatClass =
|
||||
## Classifies a floating point value. Returns ``x``'s class as specified by
|
||||
## `FloatClass`.
|
||||
## Classifies a floating point value.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo classify(0.3) ## fcNormal
|
||||
## echo classify(0.0) ## fcZero
|
||||
## echo classify(0.3/0.0) ## fcInf
|
||||
## Returns ``x``'s class as specified by `FloatClass enum<#FloatClass>`_.
|
||||
runnableExamples:
|
||||
doAssert classify(0.3) == fcNormal
|
||||
doAssert classify(0.0) == fcZero
|
||||
doAssert classify(0.3/0.0) == fcInf
|
||||
doAssert classify(-0.3/0.0) == fcNegInf
|
||||
|
||||
# JavaScript and most C compilers have no classify:
|
||||
if x == 0.0:
|
||||
@@ -110,20 +154,30 @@ proc classify*(x: float): FloatClass =
|
||||
|
||||
proc isPowerOfTwo*(x: int): bool {.noSideEffect.} =
|
||||
## Returns ``true``, if ``x`` is a power of two, ``false`` otherwise.
|
||||
##
|
||||
## Zero and negative numbers are not a power of two.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo isPowerOfTwo(5) ## false
|
||||
## echo isPowerOfTwo(8) ## true
|
||||
## See also:
|
||||
## * `nextPowerOfTwo proc<#nextPowerOfTwo,int>`_
|
||||
runnableExamples:
|
||||
doAssert isPowerOfTwo(16) == true
|
||||
doAssert isPowerOfTwo(5) == false
|
||||
doAssert isPowerOfTwo(0) == false
|
||||
doAssert isPowerOfTwo(-16) == false
|
||||
return (x > 0) and ((x and (x - 1)) == 0)
|
||||
|
||||
proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
|
||||
## Returns ``x`` rounded up to the nearest power of two.
|
||||
##
|
||||
## Zero and negative numbers get rounded up to 1.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo nextPowerOfTwo(8) ## 8
|
||||
## echo nextPowerOfTwo(9) ## 16
|
||||
## See also:
|
||||
## * `isPowerOfTwo proc<#isPowerOfTwo,int>`_
|
||||
runnableExamples:
|
||||
doAssert nextPowerOfTwo(16) == 16
|
||||
doAssert nextPowerOfTwo(5) == 8
|
||||
doAssert nextPowerOfTwo(0) == 1
|
||||
doAssert nextPowerOfTwo(-16) == 1
|
||||
result = x - 1
|
||||
when defined(cpu64):
|
||||
result = result or (result shr 32)
|
||||
@@ -138,9 +192,12 @@ proc nextPowerOfTwo*(x: int): int {.noSideEffect.} =
|
||||
|
||||
proc countBits32*(n: int32): int {.noSideEffect.} =
|
||||
## Counts the set bits in ``n``.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo countBits32(13'i32) ## 3
|
||||
runnableExamples:
|
||||
doAssert countBits32(7) == 3
|
||||
doAssert countBits32(8) == 1
|
||||
doAssert countBits32(15) == 4
|
||||
doAssert countBits32(16) == 1
|
||||
doAssert countBits32(17) == 2
|
||||
var v = n
|
||||
v = v -% ((v shr 1'i32) and 0x55555555'i32)
|
||||
v = (v and 0x33333333'i32) +% ((v shr 2'i32) and 0x33333333'i32)
|
||||
@@ -148,37 +205,58 @@ proc countBits32*(n: int32): int {.noSideEffect.} =
|
||||
|
||||
proc sum*[T](x: openArray[T]): T {.noSideEffect.} =
|
||||
## Computes the sum of the elements in ``x``.
|
||||
##
|
||||
## If ``x`` is empty, 0 is returned.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo sum([1.0, 2.5, -3.0, 4.3]) ## 4.8
|
||||
## See also:
|
||||
## * `prod proc <#prod,openArray[T]>`_
|
||||
## * `cumsum proc <#cumsum,openArray[T]>`_
|
||||
## * `cumsummed proc <#cumsummed,openArray[T]>`_
|
||||
runnableExamples:
|
||||
doAssert sum([1, 2, 3, 4]) == 10
|
||||
doAssert sum([-1.5, 2.7, -0.1]) == 1.1
|
||||
for i in items(x): result = result + i
|
||||
|
||||
proc prod*[T](x: openArray[T]): T {.noSideEffect.} =
|
||||
## Computes the product of the elements in ``x``.
|
||||
##
|
||||
## If ``x`` is empty, 1 is returned.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo prod([1.0, 3.0, -0.2]) ## -0.6
|
||||
## See also:
|
||||
## * `sum proc <#sum,openArray[T]>`_
|
||||
## * `fac proc <#fac,int>`_
|
||||
runnableExamples:
|
||||
doAssert prod([1, 2, 3, 4]) == 24
|
||||
doAssert prod([-4, 3, 5]) == -60
|
||||
result = 1.T
|
||||
for i in items(x): result = result * i
|
||||
|
||||
proc cumsummed*[T](x: openArray[T]): seq[T] =
|
||||
## Return cumulative aka prefix summation of ``x``.
|
||||
## Return cumulative (aka prefix) summation of ``x``.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## var x = [1, 2, 3, 4]
|
||||
## echo x.cumsummed # [1, 3, 6, 10]
|
||||
## See also:
|
||||
## * `sum proc <#sum,openArray[T]>`_
|
||||
## * `cumsum proc <#cumsum,openArray[T]>`_ for the in-place version
|
||||
## * `cumsummed proc <#cumsummed,openArray[T]>`_
|
||||
runnableExamples:
|
||||
let a = [1, 2, 3, 4]
|
||||
doAssert cumsummed(a) == @[1, 3, 6, 10]
|
||||
result.setLen(x.len)
|
||||
result[0] = x[0]
|
||||
for i in 1 ..< x.len: result[i] = result[i-1] + x[i]
|
||||
|
||||
proc cumsum*[T](x: var openArray[T]) =
|
||||
## Transforms ``x`` in-place into its cumulative aka prefix summation.
|
||||
## Transforms ``x`` in-place (must be declared as `var`) into its
|
||||
## cumulative (aka prefix) summation.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## var x = [1, 2, 3, 4]
|
||||
## x.cumsum; echo x # [1, 3, 6, 10]
|
||||
## See also:
|
||||
## * `sum proc <#sum,openArray[T]>`_
|
||||
## * `cumsummed proc <#cumsummed,openArray[T]>`_ for a version which
|
||||
## returns cumsummed sequence
|
||||
runnableExamples:
|
||||
var a = [1, 2, 3, 4]
|
||||
cumsum(a)
|
||||
doAssert a == @[1, 3, 6, 10]
|
||||
for i in 1 ..< x.len: x[i] = x[i-1] + x[i]
|
||||
|
||||
{.push noSideEffect.}
|
||||
@@ -187,20 +265,40 @@ when not defined(JS): # C
|
||||
proc sqrt*(x: float64): float64 {.importc: "sqrt", header: "<math.h>".}
|
||||
## Computes the square root of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `cbrt proc <#cbrt,float64>`_ for cubic root
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo sqrt(4.0) ## 2.0
|
||||
## echo sqrt(1.44) ## 1.2
|
||||
## echo sqrt(-4.0) ## nan
|
||||
proc cbrt*(x: float32): float32 {.importc: "cbrtf", header: "<math.h>".}
|
||||
proc cbrt*(x: float64): float64 {.importc: "cbrt", header: "<math.h>".}
|
||||
## Computes the cubic root of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `sqrt proc <#sqrt,float64>`_ for square root
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo cbrt(8.0) ## 2.0
|
||||
## echo cbrt(2.197) ## 1.3
|
||||
## echo cbrt(-27.0) ## -3.0
|
||||
proc ln*(x: float32): float32 {.importc: "logf", header: "<math.h>".}
|
||||
proc ln*(x: float64): float64 {.importc: "log", header: "<math.h>".}
|
||||
## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_ of ``x``.
|
||||
## Computes the `natural logarithm <https://en.wikipedia.org/wiki/Natural_logarithm>`_
|
||||
## of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `log proc <#log,T,T>`_
|
||||
## * `log10 proc <#log10,float64>`_
|
||||
## * `log2 proc <#log2,float64>`_
|
||||
## * `exp proc <#exp,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo ln(exp(4.0)) ## 4.0
|
||||
## echo ln(1.0)) ## 0.0
|
||||
## echo ln(0.0) ## -inf
|
||||
## echo ln(-7.0) ## nan
|
||||
else: # JS
|
||||
proc sqrt*(x: float32): float32 {.importc: "Math.sqrt", nodecl.}
|
||||
proc sqrt*(x: float64): float64 {.importc: "Math.sqrt", nodecl.}
|
||||
@@ -211,8 +309,18 @@ else: # JS
|
||||
proc log*[T: SomeFloat](x, base: T): T =
|
||||
## Computes the logarithm of ``x`` to base ``base``.
|
||||
##
|
||||
## See also:
|
||||
## * `ln proc <#ln,float64>`_
|
||||
## * `log10 proc <#log10,float64>`_
|
||||
## * `log2 proc <#log2,float64>`_
|
||||
## * `exp proc <#exp,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo log(9.0, 3.0) ## 2.0
|
||||
## echo log(9.0, 3.0) ## 2.0
|
||||
## echo log(32.0, 2.0) ## 5.0
|
||||
## echo log(0.0, 2.0) ## -inf
|
||||
## echo log(-7.0, 4.0) ## nan
|
||||
## echo log(8.0, -2.0) ## nan
|
||||
ln(x) / ln(base)
|
||||
|
||||
when not defined(JS): # C
|
||||
@@ -220,77 +328,164 @@ when not defined(JS): # C
|
||||
proc log10*(x: float64): float64 {.importc: "log10", header: "<math.h>".}
|
||||
## Computes the common logarithm (base 10) of ``x``.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo log10(100.0) ## 2.0
|
||||
proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
|
||||
proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
|
||||
## Computes the exponential function of ``x`` (pow(E, x)).
|
||||
## See also:
|
||||
## * `ln proc <#ln,float64>`_
|
||||
## * `log proc <#log,T,T>`_
|
||||
## * `log2 proc <#log2,float64>`_
|
||||
## * `exp proc <#exp,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo exp(1.0) ## 2.718281828459045
|
||||
## echo log10(100.0) ## 2.0
|
||||
## echo log10(0.0) ## nan
|
||||
## echo log10(-100.0) ## -inf
|
||||
proc exp*(x: float32): float32 {.importc: "expf", header: "<math.h>".}
|
||||
proc exp*(x: float64): float64 {.importc: "exp", header: "<math.h>".}
|
||||
## Computes the exponential function of ``x`` (e^x).
|
||||
##
|
||||
## See also:
|
||||
## * `ln proc <#ln,float64>`_
|
||||
## * `log proc <#log,T,T>`_
|
||||
## * `log10 proc <#log10,float64>`_
|
||||
## * `log2 proc <#log2,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo exp(1.0) ## 2.718281828459045
|
||||
## echo ln(exp(4.0)) ## 4.0
|
||||
## echo exp(0.0) ## 1.0
|
||||
## echo exp(-1.0) ## 0.3678794411714423
|
||||
proc sin*(x: float32): float32 {.importc: "sinf", header: "<math.h>".}
|
||||
proc sin*(x: float64): float64 {.importc: "sin", header: "<math.h>".}
|
||||
## Computes the sine of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `cos proc <#cos,float64>`_
|
||||
## * `tan proc <#tan,float64>`_
|
||||
## * `arcsin proc <#arcsin,float64>`_
|
||||
## * `sinh proc <#sinh,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo sin(PI / 6) ## 0.4999999999999999
|
||||
## echo sin(PI / 6) ## 0.4999999999999999
|
||||
## echo sin(degToRad(90.0)) ## 1.0
|
||||
proc cos*(x: float32): float32 {.importc: "cosf", header: "<math.h>".}
|
||||
proc cos*(x: float64): float64 {.importc: "cos", header: "<math.h>".}
|
||||
## Computes the cosine of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `sin proc <#sin,float64>`_
|
||||
## * `tan proc <#tan,float64>`_
|
||||
## * `arccos proc <#arccos,float64>`_
|
||||
## * `cosh proc <#cosh,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo cos(2 * PI) ## 1.0
|
||||
## echo cos(2 * PI) ## 1.0
|
||||
## echo cos(degToRad(60.0)) ## 0.5000000000000001
|
||||
proc tan*(x: float32): float32 {.importc: "tanf", header: "<math.h>".}
|
||||
proc tan*(x: float64): float64 {.importc: "tan", header: "<math.h>".}
|
||||
## Computes the tangent of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `sin proc <#sin,float64>`_
|
||||
## * `cos proc <#cos,float64>`_
|
||||
## * `arctan proc <#arctan,float64>`_
|
||||
## * `tanh proc <#tanh,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo tan(degToRad(45.0)) ## 0.9999999999999999
|
||||
## echo tan(PI / 4) ## 0.9999999999999999
|
||||
## echo tan(PI / 4) ## 0.9999999999999999
|
||||
proc sinh*(x: float32): float32 {.importc: "sinhf", header: "<math.h>".}
|
||||
proc sinh*(x: float64): float64 {.importc: "sinh", header: "<math.h>".}
|
||||
## Computes the `hyperbolic sine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `cosh proc <#cosh,float64>`_
|
||||
## * `tanh proc <#tanh,float64>`_
|
||||
## * `arcsinh proc <#arcsinh,float64>`_
|
||||
## * `sin proc <#sin,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo sinh(1.0) ## 1.175201193643801
|
||||
## echo sinh(0.0) ## 0.0
|
||||
## echo sinh(1.0) ## 1.175201193643801
|
||||
## echo sinh(degToRad(90.0)) ## 2.301298902307295
|
||||
proc cosh*(x: float32): float32 {.importc: "coshf", header: "<math.h>".}
|
||||
proc cosh*(x: float64): float64 {.importc: "cosh", header: "<math.h>".}
|
||||
## Computes the `hyperbolic cosine <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `sinh proc <#sinh,float64>`_
|
||||
## * `tanh proc <#tanh,float64>`_
|
||||
## * `arccosh proc <#arccosh,float64>`_
|
||||
## * `cos proc <#cos,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo cosh(1.0) ## 1.543080634815244
|
||||
## echo cosh(0.0) ## 1.0
|
||||
## echo cosh(1.0) ## 1.543080634815244
|
||||
## echo cosh(degToRad(90.0)) ## 2.509178478658057
|
||||
proc tanh*(x: float32): float32 {.importc: "tanhf", header: "<math.h>".}
|
||||
proc tanh*(x: float64): float64 {.importc: "tanh", header: "<math.h>".}
|
||||
## Computes the `hyperbolic tangent <https://en.wikipedia.org/wiki/Hyperbolic_function#Definitions>`_ of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `sinh proc <#sinh,float64>`_
|
||||
## * `cosh proc <#cosh,float64>`_
|
||||
## * `arctanh proc <#arctanh,float64>`_
|
||||
## * `tan proc <#tan,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo tanh(1.0) ## 0.7615941559557649
|
||||
## echo tanh(0.0) ## 0.0
|
||||
## echo tanh(1.0) ## 0.7615941559557649
|
||||
## echo tanh(degToRad(90.0)) ## 0.9171523356672744
|
||||
|
||||
proc arccos*(x: float32): float32 {.importc: "acosf", header: "<math.h>".}
|
||||
proc arccos*(x: float64): float64 {.importc: "acos", header: "<math.h>".}
|
||||
## Computes the arc cosine of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `arcsin proc <#arcsin,float64>`_
|
||||
## * `arctan proc <#arctan,float64>`_
|
||||
## * `arctan2 proc <#arctan2,float64,float64>`_
|
||||
## * `cos proc <#cos,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo arccos(1.0) ## 0.0
|
||||
## echo radToDeg(arccos(0.0)) ## 90.0
|
||||
## echo radToDeg(arccos(1.0)) ## 0.0
|
||||
proc arcsin*(x: float32): float32 {.importc: "asinf", header: "<math.h>".}
|
||||
proc arcsin*(x: float64): float64 {.importc: "asin", header: "<math.h>".}
|
||||
## Computes the arc sine of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `arccos proc <#arccos,float64>`_
|
||||
## * `arctan proc <#arctan,float64>`_
|
||||
## * `arctan2 proc <#arctan2,float64,float64>`_
|
||||
## * `sin proc <#sin,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo radToDeg(arcsin(0.0)) ## 0.0
|
||||
## echo radToDeg(arcsin(1.0)) ## 90.0
|
||||
proc arctan*(x: float32): float32 {.importc: "atanf", header: "<math.h>".}
|
||||
proc arctan*(x: float64): float64 {.importc: "atan", header: "<math.h>".}
|
||||
## Calculate the arc tangent of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `arcsin proc <#arcsin,float64>`_
|
||||
## * `arccos proc <#arccos,float64>`_
|
||||
## * `arctan2 proc <#arctan2,float64,float64>`_
|
||||
## * `tan proc <#tan,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo arctan(1.0) ## 0.7853981633974483
|
||||
## echo radToDeg(arctan(1.0)) ## 45.0
|
||||
proc arctan2*(y, x: float32): float32 {.importc: "atan2f", header: "<math.h>".}
|
||||
proc arctan2*(y, x: float64): float64 {.importc: "atan2", header: "<math.h>".}
|
||||
## Calculate the arc tangent of ``y`` / ``x``.
|
||||
## `arctan2` returns the arc tangent of ``y`` / ``x``; it produces correct
|
||||
## results even when the resulting angle is near pi/2 or -pi/2
|
||||
## (``x`` near 0).
|
||||
##
|
||||
## It produces correct results even when the resulting angle is near
|
||||
## pi/2 or -pi/2 (``x`` near 0).
|
||||
##
|
||||
## See also:
|
||||
## * `arcsin proc <#arcsin,float64>`_
|
||||
## * `arccos proc <#arccos,float64>`_
|
||||
## * `arctan proc <#arctan,float64>`_
|
||||
## * `tan proc <#tan,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo arctan2(1.0, 0.0) ## 1.570796326794897
|
||||
@@ -331,18 +526,18 @@ else: # JS
|
||||
proc arctanh*[T: float32|float64](x: T): T {.importc: "Math.atanh", nodecl.}
|
||||
|
||||
proc cot*[T: float32|float64](x: T): T = 1.0 / tan(x)
|
||||
## Computes the cotangent of ``x``.
|
||||
## Computes the cotangent of ``x`` (1 / tan(x)).
|
||||
proc sec*[T: float32|float64](x: T): T = 1.0 / cos(x)
|
||||
## Computes the secant of ``x``.
|
||||
## Computes the secant of ``x`` (1 / cos(x)).
|
||||
proc csc*[T: float32|float64](x: T): T = 1.0 / sin(x)
|
||||
## Computes the cosecant of ``x``.
|
||||
## Computes the cosecant of ``x`` (1 / sin(x)).
|
||||
|
||||
proc coth*[T: float32|float64](x: T): T = 1.0 / tanh(x)
|
||||
## Computes the hyperbolic cotangent of ``x``.
|
||||
## Computes the hyperbolic cotangent of ``x`` (1 / tanh(x)).
|
||||
proc sech*[T: float32|float64](x: T): T = 1.0 / cosh(x)
|
||||
## Computes the hyperbolic secant of ``x``.
|
||||
## Computes the hyperbolic secant of ``x`` (1 / cosh(x)).
|
||||
proc csch*[T: float32|float64](x: T): T = 1.0 / sinh(x)
|
||||
## Computes the hyperbolic cosecant of ``x``.
|
||||
## Computes the hyperbolic cosecant of ``x`` (1 / sinh(x)).
|
||||
|
||||
proc arccot*[T: float32|float64](x: T): T = arctan(1.0 / x)
|
||||
## Computes the inverse cotangent of ``x``.
|
||||
@@ -370,11 +565,17 @@ when not defined(JS): # C
|
||||
## echo hypot(4.0, 3.0) ## 5.0
|
||||
proc pow*(x, y: float32): float32 {.importc: "powf", header: "<math.h>".}
|
||||
proc pow*(x, y: float64): float64 {.importc: "pow", header: "<math.h>".}
|
||||
## computes x to power raised of y.
|
||||
## Computes x to power raised of y.
|
||||
##
|
||||
## To compute power between integers, use ``^`` e.g. 2 ^ 6
|
||||
## To compute power between integers (e.g. 2^6), use `^ proc<#^,T,Natural>`_.
|
||||
##
|
||||
## See also:
|
||||
## * `^ proc<#^,T,Natural>`_
|
||||
## * `sqrt proc <#sqrt,float64>`_
|
||||
## * `cbrt proc <#cbrt,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo pow(100, 1.5) ## 1000.0
|
||||
## echo pow(16.0, 0.5) ## 4.0
|
||||
|
||||
# TODO: add C89 version on windows
|
||||
@@ -388,6 +589,15 @@ when not defined(JS): # C
|
||||
proc gamma*(x: float32): float32 {.importc: "tgammaf", header: "<math.h>".}
|
||||
proc gamma*(x: float64): float64 {.importc: "tgamma", header: "<math.h>".}
|
||||
## Computes the the `gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ for ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `lgamma proc <#lgamma,float64>`_ for a natural log of gamma function
|
||||
##
|
||||
## .. code-block:: Nim
|
||||
## echo gamma(1.0) # 1.0
|
||||
## echo gamma(4.0) # 6.0
|
||||
## echo gamma(11.0) # 3628800.0
|
||||
## echo gamma(-1.0) # nan
|
||||
proc tgamma*(x: float32): float32
|
||||
{.deprecated: "use gamma instead", importc: "tgammaf", header: "<math.h>".}
|
||||
proc tgamma*(x: float64): float64
|
||||
@@ -397,19 +607,43 @@ when not defined(JS): # C
|
||||
proc lgamma*(x: float32): float32 {.importc: "lgammaf", header: "<math.h>".}
|
||||
proc lgamma*(x: float64): float64 {.importc: "lgamma", header: "<math.h>".}
|
||||
## Computes the natural log of the gamma function for ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `gamma proc <#gamma,float64>`_ for gamma function
|
||||
##
|
||||
## .. code-block:: Nim
|
||||
## echo lgamma(1.0) # 1.0
|
||||
## echo lgamma(4.0) # 1.791759469228055
|
||||
## echo lgamma(11.0) # 15.10441257307552
|
||||
## echo lgamma(-1.0) # inf
|
||||
|
||||
proc floor*(x: float32): float32 {.importc: "floorf", header: "<math.h>".}
|
||||
proc floor*(x: float64): float64 {.importc: "floor", header: "<math.h>".}
|
||||
## Computes the floor function (i.e., the largest integer not greater than ``x``).
|
||||
##
|
||||
## See also:
|
||||
## * `ceil proc <#ceil,float64>`_
|
||||
## * `round proc <#round,float64>`_
|
||||
## * `trunc proc <#trunc,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo floor(2.1) ## 2.0
|
||||
## echo floor(2.9) ## 2.0
|
||||
## echo floor(-3.5) ## -4.0
|
||||
|
||||
proc ceil*(x: float32): float32 {.importc: "ceilf", header: "<math.h>".}
|
||||
proc ceil*(x: float64): float64 {.importc: "ceil", header: "<math.h>".}
|
||||
## Computes the ceiling function (i.e., the smallest integer not less than ``x``).
|
||||
## Computes the ceiling function (i.e., the smallest integer not smaller
|
||||
## than ``x``).
|
||||
##
|
||||
## See also:
|
||||
## * `floor proc <#floor,float64>`_
|
||||
## * `round proc <#round,float64>`_
|
||||
## * `trunc proc <#trunc,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo ceil(2.1) ## 3.0
|
||||
## echo ceil(2.9) ## 3.0
|
||||
## echo ceil(-2.1) ## -2.0
|
||||
|
||||
when windowsCC89:
|
||||
@@ -470,26 +704,50 @@ when not defined(JS): # C
|
||||
else:
|
||||
proc round*(x: float32): float32 {.importc: "roundf", header: "<math.h>".}
|
||||
proc round*(x: float64): float64 {.importc: "round", header: "<math.h>".}
|
||||
## Rounds a float to zero decimal places. Used internally by the round
|
||||
## function when the specified number of places is 0.
|
||||
## Rounds a float to zero decimal places.
|
||||
##
|
||||
## Used internally by the `round proc <#round,T,int>`_
|
||||
## when the specified number of places is 0.
|
||||
##
|
||||
## See also:
|
||||
## * `round proc <#round,T,int>`_ for rounding to the specific
|
||||
## number of decimal places
|
||||
## * `floor proc <#floor,float64>`_
|
||||
## * `ceil proc <#ceil,float64>`_
|
||||
## * `trunc proc <#trunc,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo round(3.4) ## 3.0
|
||||
## echo round(3.5) ## 4.0
|
||||
## echo round(4.5) ## 5.0
|
||||
|
||||
proc trunc*(x: float32): float32 {.importc: "truncf", header: "<math.h>".}
|
||||
proc trunc*(x: float64): float64 {.importc: "trunc", header: "<math.h>".}
|
||||
## Truncates ``x`` to the decimal point.
|
||||
##
|
||||
## See also:
|
||||
## * `floor proc <#floor,float64>`_
|
||||
## * `ceil proc <#ceil,float64>`_
|
||||
## * `round proc <#round,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo trunc(PI) # 3.0
|
||||
## echo trunc(-1.85) # -1.0
|
||||
|
||||
proc fmod*(x, y: float32): float32 {.deprecated: "use mod instead", importc: "fmodf", header: "<math.h>".}
|
||||
proc fmod*(x, y: float64): float64 {.deprecated: "use mod instead", importc: "fmod", header: "<math.h>".}
|
||||
## **Deprecated since version 0.19.0**: Use the `mod proc
|
||||
## <#mod,float64,float64>`_ instead.
|
||||
##
|
||||
## Computes the remainder of ``x`` divided by ``y``.
|
||||
## **Deprecated since version 0.19.0**: Use the ``mod`` operator instead.
|
||||
|
||||
proc `mod`*(x, y: float32): float32 {.importc: "fmodf", header: "<math.h>".}
|
||||
proc `mod`*(x, y: float64): float64 {.importc: "fmod", header: "<math.h>".}
|
||||
## Computes the modulo operation for float values (the remainder of ``x`` divided by ``y``).
|
||||
##
|
||||
## See also:
|
||||
## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## ( 6.5 mod 2.5) == 1.5
|
||||
## (-6.5 mod 2.5) == -1.5
|
||||
@@ -520,16 +778,22 @@ else: # JS
|
||||
## (-6.5 mod -2.5) == -1.5
|
||||
|
||||
proc round*[T: float32|float64](x: T, places: int): T {.deprecated: "use format instead".} =
|
||||
## **Deprecated:** use `strformat module <strformat.html>`_
|
||||
##
|
||||
## Decimal rounding on a binary floating point number.
|
||||
##
|
||||
## This function is NOT reliable. Floating point numbers cannot hold
|
||||
## non integer decimals precisely. If ``places`` is 0 (or omitted),
|
||||
## non integer decimals precisely. If ``places`` is 0 (or omitted),
|
||||
## round to the nearest integral value following normal mathematical
|
||||
## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
|
||||
## rounding rules (e.g. ``round(54.5) -> 55.0``). If ``places`` is
|
||||
## greater than 0, round to the given number of decimal places,
|
||||
## e.g. ``round(54.346, 2) -> 54.350000000000001421...``. If ``places`` is negative, round
|
||||
## to the left of the decimal place, e.g. ``round(537.345, -1) ->
|
||||
## e.g. ``round(54.346, 2) -> 54.350000000000001421…``. If ``places`` is negative, round
|
||||
## to the left of the decimal place, e.g. ``round(537.345, -1) ->
|
||||
## 540.0``
|
||||
##
|
||||
## .. code-block:: Nim
|
||||
## echo round(PI, 2) ## 3.14
|
||||
## echo round(PI, 4) ## 3.1416
|
||||
if places == 0:
|
||||
result = round(x)
|
||||
else:
|
||||
@@ -538,9 +802,14 @@ proc round*[T: float32|float64](x: T, places: int): T {.deprecated: "use format
|
||||
|
||||
proc floorDiv*[T: SomeInteger](x, y: T): T =
|
||||
## Floor division is conceptually defined as ``floor(x / y)``.
|
||||
## This is different from the ``div`` operator, which is defined
|
||||
## as ``trunc(x / y)``. That is, ``div`` rounds towards ``0`` and ``floorDiv``
|
||||
## rounds down.
|
||||
##
|
||||
## This is different from the `system.div <system.html#div,int,int>`_
|
||||
## operator, which is defined as ``trunc(x / y)``.
|
||||
## That is, ``div`` rounds towards ``0`` and ``floorDiv`` rounds down.
|
||||
##
|
||||
## See also:
|
||||
## * `system.div proc <system.html#div,int,int>`_ for integer division
|
||||
## * `floorMod proc <#floorMod,T,T>`_ for Python-like (% operator) behavior
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo floorDiv( 13, 3) # 4
|
||||
@@ -553,8 +822,13 @@ proc floorDiv*[T: SomeInteger](x, y: T): T =
|
||||
|
||||
proc floorMod*[T: SomeNumber](x, y: T): T =
|
||||
## Floor modulus is conceptually defined as ``x - (floorDiv(x, y) * y)``.
|
||||
##
|
||||
## This proc behaves the same as the ``%`` operator in Python.
|
||||
##
|
||||
## See also:
|
||||
## * `mod proc <#mod,float64,float64>`_
|
||||
## * `floorDiv proc <#floorDiv,T,T>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo floorMod( 13, 3) # 1
|
||||
## echo floorMod(-13, 3) # 2
|
||||
@@ -570,6 +844,7 @@ when not defined(JS):
|
||||
importc: "frexp", header: "<math.h>".}
|
||||
proc frexp*[T, U](x: T, exponent: var U): T =
|
||||
## Split a number into mantissa and exponent.
|
||||
##
|
||||
## ``frexp`` calculates the mantissa m (a float greater than or equal to 0.5
|
||||
## and less than 1) and the integer value n such that ``x`` (the original
|
||||
## float value) equals ``m * 2**n``. frexp stores n in `exponent` and returns
|
||||
@@ -602,7 +877,19 @@ when not defined(JS):
|
||||
else:
|
||||
proc log2*(x: float32): float32 {.importc: "log2f", header: "<math.h>".}
|
||||
proc log2*(x: float64): float64 {.importc: "log2", header: "<math.h>".}
|
||||
## Computes the binary logarithm (base 2) of ``x``
|
||||
## Computes the binary logarithm (base 2) of ``x``.
|
||||
##
|
||||
## See also:
|
||||
## * `log proc <#log,T,T>`_
|
||||
## * `log10 proc <#log10,float64>`_
|
||||
## * `ln proc <#ln,float64>`_
|
||||
## * `exp proc <#exp,float64>`_
|
||||
##
|
||||
## .. code-block:: Nim
|
||||
## echo log2(8.0) # 3.0
|
||||
## echo log2(1.0) # 0.0
|
||||
## echo log2(0.0) # -inf
|
||||
## echo log2(-2.0) # nan
|
||||
|
||||
else:
|
||||
proc frexp*[T: float32|float64](x: T, exponent: var int): T =
|
||||
@@ -631,7 +918,8 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
|
||||
## function in C.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25)
|
||||
## echo splitDecimal(5.25) # (intpart: 5.0, floatpart: 0.25)
|
||||
## echo splitDecimal(-2.73) # (intpart: -2.0, floatpart: -0.73)
|
||||
var
|
||||
absolute: T
|
||||
absolute = abs(x)
|
||||
@@ -644,26 +932,36 @@ proc splitDecimal*[T: float32|float64](x: T): tuple[intpart: T, floatpart: T] =
|
||||
{.pop.}
|
||||
|
||||
proc degToRad*[T: float32|float64](d: T): T {.inline.} =
|
||||
## Convert from degrees to radians
|
||||
## Convert from degrees to radians.
|
||||
##
|
||||
## See also:
|
||||
## * `radToDeg proc <#radToDeg,T>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo degToRad(180.0) # 3.141592653589793
|
||||
result = T(d) * RadPerDeg
|
||||
|
||||
proc radToDeg*[T: float32|float64](d: T): T {.inline.} =
|
||||
## Convert from radians to degrees
|
||||
|
||||
## Convert from radians to degrees.
|
||||
##
|
||||
## See also:
|
||||
## * `degToRad proc <#degToRad,T>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo degToRad(2 * PI) # 360.0
|
||||
result = T(d) / RadPerDeg
|
||||
|
||||
proc sgn*[T: SomeNumber](x: T): int {.inline.} =
|
||||
## Sign function. Returns -1 for negative numbers and ``NegInf``, 1 for
|
||||
## positive numbers and ``Inf``, and 0 for positive zero, negative zero and
|
||||
## ``NaN``.
|
||||
## Sign function.
|
||||
##
|
||||
## Returns:
|
||||
## * `-1` for negative numbers and ``NegInf``,
|
||||
## * `1` for positive numbers and ``Inf``,
|
||||
## * `0` for positive zero, negative zero and ``NaN``
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo sgn(-5) # 1
|
||||
## echo sgn(5) # 1
|
||||
## echo sgn(0) # 0
|
||||
## echo sgn(-4.1) # -1
|
||||
ord(T(0) < x) - ord(x < T(0))
|
||||
|
||||
@@ -671,11 +969,20 @@ proc sgn*[T: SomeNumber](x: T): int {.inline.} =
|
||||
{.pop.}
|
||||
|
||||
proc `^`*[T](x: T, y: Natural): T =
|
||||
## Computes ``x`` to the power ``y``. ``x`` must be non-negative, use
|
||||
## `pow <#pow,float,float>`_ for negative exponents.
|
||||
## Computes ``x`` to the power ``y``.
|
||||
##
|
||||
## Exponent ``y`` must be non-negative, use
|
||||
## `pow proc <#pow,float64,float64>`_ for negative exponents.
|
||||
##
|
||||
## See also:
|
||||
## * `pow proc <#pow,float64,float64>`_ for negative exponent or
|
||||
## floats
|
||||
## * `sqrt proc <#sqrt,float64>`_
|
||||
## * `cbrt proc <#cbrt,float64>`_
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo 2 ^ 3 # 8
|
||||
## echo 2^3 # 8
|
||||
## echo -2^3 # -8
|
||||
when compiles(y >= T(0)):
|
||||
assert y >= T(0)
|
||||
else:
|
||||
@@ -693,9 +1000,16 @@ proc `^`*[T](x: T, y: Natural): T =
|
||||
|
||||
proc gcd*[T](x, y: T): T =
|
||||
## Computes the greatest common (positive) divisor of ``x`` and ``y``.
|
||||
##
|
||||
## Note that for floats, the result cannot always be interpreted as
|
||||
## "greatest decimal `z` such that ``z*N == x and z*M == y``
|
||||
## where N and M are positive integers."
|
||||
##
|
||||
## See also:
|
||||
## * `gcd proc <#gcd,SomeInteger,SomeInteger>`_ for integer version
|
||||
## * `lcm proc <#lcm,T,T>`_
|
||||
runnableExamples:
|
||||
doAssert gcd(13.5, 9.0) == 4.5
|
||||
var (x, y) = (x, y)
|
||||
while y != 0:
|
||||
x = x mod y
|
||||
@@ -703,11 +1017,15 @@ proc gcd*[T](x, y: T): T =
|
||||
abs x
|
||||
|
||||
proc gcd*(x, y: SomeInteger): SomeInteger =
|
||||
## Computes the greatest common (positive) divisor of ``x`` and ``y``.
|
||||
## Using binary GCD (aka Stein's) algorithm.
|
||||
## Computes the greatest common (positive) divisor of ``x`` and ``y``,
|
||||
## using binary GCD (aka Stein's) algorithm.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo gcd(24, 30) # 6
|
||||
## See also:
|
||||
## * `gcd proc <#gcd,T,T>`_ for floats version
|
||||
## * `lcm proc <#lcm,T,T>`_
|
||||
runnableExamples:
|
||||
doAssert gcd(12, 8) == 4
|
||||
doAssert gcd(17, 63) == 1
|
||||
when x is SomeSignedInt:
|
||||
var x = abs(x)
|
||||
else:
|
||||
@@ -734,10 +1052,15 @@ proc gcd*(x, y: SomeInteger): SomeInteger =
|
||||
proc lcm*[T](x, y: T): T =
|
||||
## Computes the least common multiple of ``x`` and ``y``.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
## echo lcm(24, 30) # 120
|
||||
## See also:
|
||||
## * `gcd proc <#gcd,T,T>`_
|
||||
runnableExamples:
|
||||
doAssert lcm(24, 30) == 120
|
||||
doAssert lcm(13, 39) == 39
|
||||
x div gcd(x, y) * y
|
||||
|
||||
|
||||
|
||||
when isMainModule and not defined(JS) and not windowsCC89:
|
||||
# Check for no side effect annotation
|
||||
proc mySqrt(num: float): float {.noSideEffect.} =
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -2,10 +2,6 @@ discard """
|
||||
cmd: "nim check $file"
|
||||
errormsg: "type mismatch: got <string, set[char], maxsplits: int literal(1)>"
|
||||
nimout: '''
|
||||
proc rsplit(s: string; sep: string; maxsplit: int = -1): seq[string]
|
||||
first type mismatch at position: 2
|
||||
required type: string
|
||||
but expression '{':'}' is of type: set[char]
|
||||
proc rsplit(s: string; sep: char; maxsplit: int = -1): seq[string]
|
||||
first type mismatch at position: 2
|
||||
required type: char
|
||||
@@ -13,6 +9,10 @@ proc rsplit(s: string; sep: char; maxsplit: int = -1): seq[string]
|
||||
proc rsplit(s: string; seps: set[char] = Whitespace; maxsplit: int = -1): seq[string]
|
||||
first type mismatch at position: 3
|
||||
unknown named parameter: maxsplits
|
||||
proc rsplit(s: string; sep: string; maxsplit: int = -1): seq[string]
|
||||
first type mismatch at position: 2
|
||||
required type: string
|
||||
but expression '{':'}' is of type: set[char]
|
||||
|
||||
expression: rsplit("abc:def", {':'}, maxsplits = 1)
|
||||
'''
|
||||
|
||||
@@ -76,7 +76,7 @@ task "testskel", "create skeleton test dir for testing":
|
||||
|
||||
task "clean", "cleanup generated files":
|
||||
var dirs = @["nimcache", "server"/"nimcache"]
|
||||
dirs.map(proc(x: var string) =
|
||||
dirs.apply(proc(x: var string) =
|
||||
if existsDir(x): removeDir(x))
|
||||
|
||||
task "download", "download game assets":
|
||||
|
||||
Reference in New Issue
Block a user