Improve documentation for stats (#16742)

* Improve documentation for stats

* Address nits

* Update lib/pure/stats.nim

Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
This commit is contained in:
konsumlamm
2021-01-19 08:40:09 +01:00
committed by GitHub
parent 2e5254ff27
commit bd5ce5b351

View File

@@ -9,65 +9,72 @@
## Statistical analysis framework for performing
## basic statistical analysis of data.
## The data is analysed in a single pass, when a data value
## is pushed to the ``RunningStat`` or ``RunningRegress`` objects
## The data is analysed in a single pass, when it
## is pushed to a `RunningStat` or `RunningRegress` object.
##
## ``RunningStat`` calculates for a single data set
## `RunningStat` calculates for a single data set
## - n (data count)
## - min (smallest value)
## - max (largest value)
## - min (smallest value)
## - max (largest value)
## - sum
## - mean
## - variance
## - varianceS (sample var)
## - varianceS (sample variance)
## - standardDeviation
## - standardDeviationS (sample stddev)
## - standardDeviationS (sample standard deviation)
## - skewness (the third statistical moment)
## - kurtosis (the fourth statistical moment)
##
## ``RunningRegress`` calculates for two sets of data
## - n
## `RunningRegress` calculates for two sets of data
## - n (data count)
## - slope
## - intercept
## - correlation
##
## Procs have been provided to calculate statistics on arrays and sequences.
## Procs are provided to calculate statistics on `openArray`s.
##
## However, if more than a single statistical calculation is required, it is more
## efficient to push the data once to the RunningStat object, and
## call the numerous statistical procs for the RunningStat object.
##
## .. code-block:: Nim
##
## var rs: RunningStat
## rs.push(MySeqOfData)
## rs.mean()
## rs.variance()
## rs.skewness()
## rs.kurtosis()
## efficient to push the data once to a `RunningStat` object and then
## call the numerous statistical procs for the `RunningStat` object:
from math import FloatClass, sqrt, pow, round
runnableExamples:
from std/math import almostEqual
template `~=`(a, b: float): bool = almostEqual(a, b)
var statistics: RunningStat ## Must be var
statistics.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
doAssert statistics.n == 8
doAssert statistics.mean() ~= 2.0
doAssert statistics.variance() ~= 1.5
doAssert statistics.varianceS() ~= 1.714285714285715
doAssert statistics.skewness() ~= 0.8164965809277261
doAssert statistics.skewnessS() ~= 1.018350154434631
doAssert statistics.kurtosis() ~= -1.0
doAssert statistics.kurtosisS() ~= -0.7000000000000008
from std/math import FloatClass, sqrt, pow, round
{.push debugger: off.} # the user does not want to trace a part
# of the standard library!
{.push checks: off, line_dir: off, stack_trace: off.}
type
RunningStat* = object ## an accumulator for statistical data
n*: int ## number of pushed data
RunningStat* = object ## An accumulator for statistical data.
n*: int ## amount of pushed data
min*, max*, sum*: float ## self-explaining
mom1, mom2, mom3, mom4: float ## statistical moments, mom1 is mean
RunningRegress* = object ## an accumulator for regression calculations
n*: int ## number of pushed data
x_stats*: RunningStat ## stats for first set of data
y_stats*: RunningStat ## stats for second set of data
RunningRegress* = object ## An accumulator for regression calculations.
n*: int ## amount of pushed data
x_stats*: RunningStat ## stats for the first set of data
y_stats*: RunningStat ## stats for the second set of data
s_xy: float ## accumulated data for combined xy
# ----------- RunningStat --------------------------
proc clear*(s: var RunningStat) =
## reset `s`
## Resets `s`.
s.n = 0
s.min = toBiggestFloat(int.high)
s.max = 0.0
@@ -78,7 +85,7 @@ proc clear*(s: var RunningStat) =
s.mom4 = 0.0
proc push*(s: var RunningStat, x: float) =
## pushes a value `x` for processing
## Pushes a value `x` for processing.
if s.n == 0: s.min = x
inc(s.n)
# See Knuth TAOCP vol 2, 3rd edition, page 232
@@ -97,63 +104,63 @@ proc push*(s: var RunningStat, x: float) =
s.mom1 += delta_n
proc push*(s: var RunningStat, x: int) =
## pushes a value `x` for processing.
## Pushes a value `x` for processing.
##
## `x` is simply converted to ``float``
## `x` is simply converted to `float`
## and the other push operation is called.
s.push(toFloat(x))
proc push*(s: var RunningStat, x: openArray[float|int]) =
## pushes all values of `x` for processing.
## Pushes all values of `x` for processing.
##
## Int values of `x` are simply converted to ``float`` and
## Int values of `x` are simply converted to `float` and
## the other push operation is called.
for val in x:
s.push(val)
proc mean*(s: RunningStat): float =
## computes the current mean of `s`
## Computes the current mean of `s`.
result = s.mom1
proc variance*(s: RunningStat): float =
## computes the current population variance of `s`
## Computes the current population variance of `s`.
result = s.mom2 / toFloat(s.n)
proc varianceS*(s: RunningStat): float =
## computes the current sample variance of `s`
## Computes the current sample variance of `s`.
if s.n > 1: result = s.mom2 / toFloat(s.n - 1)
proc standardDeviation*(s: RunningStat): float =
## computes the current population standard deviation of `s`
## Computes the current population standard deviation of `s`.
result = sqrt(variance(s))
proc standardDeviationS*(s: RunningStat): float =
## computes the current sample standard deviation of `s`
## Computes the current sample standard deviation of `s`.
result = sqrt(varianceS(s))
proc skewness*(s: RunningStat): float =
## computes the current population skewness of `s`
## Computes the current population skewness of `s`.
result = sqrt(toFloat(s.n)) * s.mom3 / pow(s.mom2, 1.5)
proc skewnessS*(s: RunningStat): float =
## computes the current sample skewness of `s`
## Computes the current sample skewness of `s`.
let s2 = skewness(s)
result = sqrt(toFloat(s.n*(s.n-1)))*s2 / toFloat(s.n-2)
proc kurtosis*(s: RunningStat): float =
## computes the current population kurtosis of `s`
## Computes the current population kurtosis of `s`.
result = toFloat(s.n) * s.mom4 / (s.mom2 * s.mom2) - 3.0
proc kurtosisS*(s: RunningStat): float =
## computes the current sample kurtosis of `s`
## Computes the current sample kurtosis of `s`.
result = toFloat(s.n-1) / toFloat((s.n-2)*(s.n-3)) *
(toFloat(s.n+1)*kurtosis(s) + 6)
proc `+`*(a, b: RunningStat): RunningStat =
## combine two RunningStats.
## Combines two `RunningStat`s.
##
## Useful if performing parallel analysis of data series
## and need to re-combine parallel result sets
## Useful when performing parallel analysis of data series
## and needing to re-combine parallel result sets.
result.clear()
result.n = a.n + b.n
@@ -178,11 +185,11 @@ proc `+`*(a, b: RunningStat): RunningStat =
result.min = min(a.min, b.min)
proc `+=`*(a: var RunningStat, b: RunningStat) {.inline.} =
## add a second RunningStats `b` to `a`
## Adds the `RunningStat` `b` to `a`.
a = a + b
proc `$`*(a: RunningStat): string =
## produces a string representation of the ``RunningStat``. The exact
## Produces a string representation of the `RunningStat`. The exact
## format is currently unspecified and subject to change. Currently
## it contains:
##
@@ -199,56 +206,57 @@ proc `$`*(a: RunningStat): string =
result.add ")"
# ---------------------- standalone array/seq stats ---------------------
proc mean*[T](x: openArray[T]): float =
## computes the mean of `x`
## Computes the mean of `x`.
var rs: RunningStat
rs.push(x)
result = rs.mean()
proc variance*[T](x: openArray[T]): float =
## computes the population variance of `x`
## Computes the population variance of `x`.
var rs: RunningStat
rs.push(x)
result = rs.variance()
proc varianceS*[T](x: openArray[T]): float =
## computes the sample variance of `x`
## Computes the sample variance of `x`.
var rs: RunningStat
rs.push(x)
result = rs.varianceS()
proc standardDeviation*[T](x: openArray[T]): float =
## computes the population standardDeviation of `x`
## Computes the population standard deviation of `x`.
var rs: RunningStat
rs.push(x)
result = rs.standardDeviation()
proc standardDeviationS*[T](x: openArray[T]): float =
## computes the sample standardDeviation of `x`
## Computes the sample standard deviation of `x`.
var rs: RunningStat
rs.push(x)
result = rs.standardDeviationS()
proc skewness*[T](x: openArray[T]): float =
## computes the population skewness of `x`
## Computes the population skewness of `x`.
var rs: RunningStat
rs.push(x)
result = rs.skewness()
proc skewnessS*[T](x: openArray[T]): float =
## computes the sample skewness of `x`
## Computes the sample skewness of `x`.
var rs: RunningStat
rs.push(x)
result = rs.skewnessS()
proc kurtosis*[T](x: openArray[T]): float =
## computes the population kurtosis of `x`
## Computes the population kurtosis of `x`.
var rs: RunningStat
rs.push(x)
result = rs.kurtosis()
proc kurtosisS*[T](x: openArray[T]): float =
## computes the sample kurtosis of `x`
## Computes the sample kurtosis of `x`.
var rs: RunningStat
rs.push(x)
result = rs.kurtosisS()
@@ -256,14 +264,14 @@ proc kurtosisS*[T](x: openArray[T]): float =
# ---------------------- Running Regression -----------------------------
proc clear*(r: var RunningRegress) =
## reset `r`
## Resets `r`.
r.x_stats.clear()
r.y_stats.clear()
r.s_xy = 0.0
r.n = 0
proc push*(r: var RunningRegress, x, y: float) =
## pushes two values `x` and `y` for processing
## Pushes two values `x` and `y` for processing.
r.s_xy += (r.x_stats.mean() - x)*(r.y_stats.mean() - y) *
toFloat(r.n) / toFloat(r.n + 1)
r.x_stats.push(x)
@@ -271,38 +279,38 @@ proc push*(r: var RunningRegress, x, y: float) =
inc(r.n)
proc push*(r: var RunningRegress, x, y: int) {.inline.} =
## pushes two values `x` and `y` for processing.
## Pushes two values `x` and `y` for processing.
##
## `x` and `y` are converted to ``float``
## `x` and `y` are converted to `float`
## and the other push operation is called.
r.push(toFloat(x), toFloat(y))
proc push*(r: var RunningRegress, x, y: openArray[float|int]) =
## pushes two sets of values `x` and `y` for processing.
## Pushes two sets of values `x` and `y` for processing.
assert(x.len == y.len)
for i in 0..<x.len:
r.push(x[i], y[i])
proc slope*(r: RunningRegress): float =
## computes the current slope of `r`
## Computes the current slope of `r`.
let s_xx = r.x_stats.varianceS()*toFloat(r.n - 1)
result = r.s_xy / s_xx
proc intercept*(r: RunningRegress): float =
## computes the current intercept of `r`
## Computes the current intercept of `r`.
result = r.y_stats.mean() - r.slope()*r.x_stats.mean()
proc correlation*(r: RunningRegress): float =
## computes the current correlation of the two data
## sets pushed into `r`
## Computes the current correlation of the two data
## sets pushed into `r`.
let t = r.x_stats.standardDeviation() * r.y_stats.standardDeviation()
result = r.s_xy / (toFloat(r.n) * t)
proc `+`*(a, b: RunningRegress): RunningRegress =
## combine two `RunningRegress` objects.
## Combines two `RunningRegress` objects.
##
## Useful if performing parallel analysis of data series
## and need to re-combine parallel result sets
## Useful when performing parallel analysis of data series
## and needing to re-combine parallel result sets
result.clear()
result.x_stats = a.x_stats + b.x_stats
result.y_stats = a.y_stats + b.y_stats
@@ -314,24 +322,8 @@ proc `+`*(a, b: RunningRegress): RunningRegress =
toFloat(a.n*b.n)*delta_x*delta_y/toFloat(result.n)
proc `+=`*(a: var RunningRegress, b: RunningRegress) =
## add RunningRegress `b` to `a`
## Adds the `RunningRegress` `b` to `a`.
a = a + b
{.pop.}
{.pop.}
runnableExamples:
static:
block:
var statistics: RunningStat ## Must be "var"
statistics.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
doAssert statistics.n == 8
template `===`(a, b: float): bool = (abs(a - b) < 1e-9)
doAssert statistics.mean() === 2.0
doAssert statistics.variance() === 1.5
doAssert statistics.varianceS() === 1.714285714285715
doAssert statistics.skewness() === 0.8164965809277261
doAssert statistics.skewnessS() === 1.018350154434631
doAssert statistics.kurtosis() === -1.0
doAssert statistics.kurtosisS() === -0.7000000000000008