mirror of
https://github.com/nim-lang/Nim.git
synced 2025-12-28 17:04:41 +00:00
update the changelog
This commit is contained in:
@@ -41,6 +41,9 @@
|
||||
|
||||
#### Breaking changes in the compiler
|
||||
|
||||
- The undocumented ``#? braces`` parsing mode was removed.
|
||||
- The undocumented PHP backend was removed.
|
||||
|
||||
### Library additions
|
||||
|
||||
- ``re.split`` now also supports the ``maxsplit`` parameter for consistency
|
||||
|
||||
@@ -1,432 +0,0 @@
|
||||
#? braces
|
||||
|
||||
#
|
||||
#
|
||||
# Nim's Runtime Library
|
||||
# (c) Copyright 2015 Andreas Rumpf
|
||||
#
|
||||
# See the file "copying.txt", included in this
|
||||
# distribution, for details about the copyright.
|
||||
#
|
||||
|
||||
## This module implements some common generic algorithms.
|
||||
|
||||
type
|
||||
SortOrder* = enum { ## sort order
|
||||
Descending, Ascending
|
||||
}
|
||||
|
||||
|
||||
type(
|
||||
DummyAlias = int
|
||||
OtherAlias = distinct char
|
||||
|
||||
SomeObject = object of RootObj { ## declaration here
|
||||
fieldA, fieldB: int
|
||||
case order: SortOrder {
|
||||
of Descending {a: string}
|
||||
of Ascending {b: seq[char]}
|
||||
}
|
||||
}
|
||||
|
||||
MyConcept = concept x {
|
||||
x is int
|
||||
}
|
||||
)
|
||||
|
||||
{.deprecated: [TSortOrder: SortOrder].}
|
||||
|
||||
|
||||
proc `*`*(x: int, order: SortOrder): int @inline {
|
||||
## flips `x` if ``order == Descending``;
|
||||
## if ``order == Ascending`` then `x` is returned.
|
||||
## `x` is supposed to be the result of a comparator, ie ``< 0`` for
|
||||
## *less than*, ``== 0`` for *equal*, ``> 0`` for *greater than*.
|
||||
var y = order.ord - 1
|
||||
result = (x xor y) - y
|
||||
}
|
||||
|
||||
proc fill*[T](a: var openArray[T], first, last: Natural, value: T) {
|
||||
## fills the array ``a[first..last]`` with `value`.
|
||||
var x = first
|
||||
while x <= last {
|
||||
a[x] = value
|
||||
inc(x)
|
||||
}
|
||||
}
|
||||
|
||||
proc fill*[T](a: var openArray[T], value: T) {
|
||||
## fills the array `a` with `value`.
|
||||
fill(a, 0, a.high, value)
|
||||
}
|
||||
|
||||
proc reverse*[T](a: var openArray[T], first, last: Natural) {
|
||||
## reverses the array ``a[first..last]``.
|
||||
var x = first
|
||||
var y = last
|
||||
while x < y {
|
||||
swap(a[x], a[y])
|
||||
dec(y)
|
||||
inc(x)
|
||||
}
|
||||
}
|
||||
|
||||
proc reverse*[T](a: var openArray[T]) {
|
||||
## reverses the array `a`.
|
||||
reverse(a, 0, a.high)
|
||||
}
|
||||
|
||||
proc reversed*[T](a: openArray[T], first: Natural, last: int): seq[T] {
|
||||
## returns the reverse of the array `a[first..last]`.
|
||||
assert last >= first-1
|
||||
var i = last - first
|
||||
var x = first.int
|
||||
result = newSeq[T](i + 1)
|
||||
while i >= 0 {
|
||||
result[i] = a[x]
|
||||
dec(i)
|
||||
inc(x)
|
||||
}
|
||||
}
|
||||
|
||||
proc reversed*[T](a: openArray[T]): seq[T] {
|
||||
## returns the reverse of the array `a`.
|
||||
reversed(a, 0, a.high)
|
||||
}
|
||||
|
||||
proc binarySearch*[T](a: openArray[T], key: T): int {
|
||||
## binary search for `key` in `a`. Returns -1 if not found.
|
||||
var b = len(a)
|
||||
while result < b {
|
||||
var mid = (result + b) div 2
|
||||
if a[mid] < key { result = mid + 1 } else { b = mid }
|
||||
}
|
||||
if result >= len(a) or a[result] != key { result = -1 }
|
||||
}
|
||||
|
||||
proc smartBinarySearch*[T](a: openArray[T], key: T): int {
|
||||
## ``a.len`` must be a power of 2 for this to work.
|
||||
var step = a.len div 2
|
||||
while step > 0 {
|
||||
if a[result or step] <= key { result = result or step }
|
||||
step = step shr 1
|
||||
}
|
||||
if a[result] != key { result = -1 }
|
||||
}
|
||||
|
||||
const (
|
||||
onlySafeCode = true
|
||||
)
|
||||
|
||||
proc lowerBound*[T](a: openArray[T], key: T, cmp: proc(x,y: T): int @closure): int {
|
||||
## same as binarySearch except that if key is not in `a` then this
|
||||
## returns the location where `key` would be if it were. In other
|
||||
## words if you have a sorted sequence and you call
|
||||
## insert(thing, elm, lowerBound(thing, elm))
|
||||
## the sequence will still be sorted.
|
||||
##
|
||||
## `cmp` is the comparator function to use, the expected return values are
|
||||
## the same as that of system.cmp.
|
||||
##
|
||||
## example::
|
||||
##
|
||||
## var arr = @[1,2,3,5,6,7,8,9]
|
||||
## arr.insert(4, arr.lowerBound(4))
|
||||
## # after running the above arr is `[1,2,3,4,5,6,7,8,9]`
|
||||
result = a.low
|
||||
var count = a.high - a.low + 1
|
||||
var step, pos: int
|
||||
while count != 0 {
|
||||
step = count div 2
|
||||
pos = result + step
|
||||
if cmp(a[pos], key) < 0 {
|
||||
result = pos + 1
|
||||
count -= step + 1
|
||||
} else {
|
||||
count = step
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
proc lowerBound*[T](a: openArray[T], key: T): int { lowerBound(a, key, cmp[T]) }
|
||||
proc merge[T](a, b: var openArray[T], lo, m, hi: int,
|
||||
cmp: proc (x, y: T): int @closure, order: SortOrder) {
|
||||
template `<-` (a, b) {
|
||||
when false {
|
||||
a = b
|
||||
} elif onlySafeCode {
|
||||
shallowCopy(a, b)
|
||||
} else {
|
||||
copyMem(addr(a), addr(b), sizeof(T))
|
||||
}
|
||||
}
|
||||
# optimization: If max(left) <= min(right) there is nothing to do!
|
||||
# 1 2 3 4 ## 5 6 7 8
|
||||
# -> O(n) for sorted arrays.
|
||||
# On random data this safes up to 40% of merge calls
|
||||
if cmp(a[m], a[m+1]) * order <= 0 { return }
|
||||
var j = lo
|
||||
# copy a[j..m] into b:
|
||||
assert j <= m
|
||||
when onlySafeCode {
|
||||
var bb = 0
|
||||
while j <= m {
|
||||
b[bb] <- a[j]
|
||||
inc(bb)
|
||||
inc(j)
|
||||
}
|
||||
} else {
|
||||
copyMem(addr(b[0]), addr(a[j]), sizeof(T)*(m-j+1))
|
||||
j = m+1
|
||||
}
|
||||
var i = 0
|
||||
var k = lo
|
||||
# copy proper element back:
|
||||
while k < j and j <= hi {
|
||||
if cmp(b[i], a[j]) * order <= 0 {
|
||||
a[k] <- b[i]
|
||||
inc(i)
|
||||
} else {
|
||||
a[k] <- a[j]
|
||||
inc(j)
|
||||
}
|
||||
inc(k)
|
||||
}
|
||||
# copy rest of b:
|
||||
when onlySafeCode {
|
||||
while k < j {
|
||||
a[k] <- b[i]
|
||||
inc(k)
|
||||
inc(i)
|
||||
}
|
||||
} else {
|
||||
if k < j { copyMem(addr(a[k]), addr(b[i]), sizeof(T)*(j-k)) }
|
||||
}
|
||||
}
|
||||
|
||||
proc sort*[T](a: var openArray[T],
|
||||
cmp: proc (x, y: T): int @closure,
|
||||
order = SortOrder.Ascending) {
|
||||
## Default Nim sort (an implementation of merge sort). The sorting
|
||||
## is guaranteed to be stable and the worst case is guaranteed to
|
||||
## be O(n log n).
|
||||
## The current implementation uses an iterative
|
||||
## mergesort to achieve this. It uses a temporary sequence of
|
||||
## length ``a.len div 2``. Currently Nim does not support a
|
||||
## sensible default argument for ``cmp``, so you have to provide one
|
||||
## of your own. However, the ``system.cmp`` procs can be used:
|
||||
##
|
||||
## .. code-block:: nim
|
||||
##
|
||||
## sort(myIntArray, system.cmp[int])
|
||||
##
|
||||
## # do not use cmp[string] here as we want to use the specialized
|
||||
## # overload:
|
||||
## sort(myStrArray, system.cmp)
|
||||
##
|
||||
## You can inline adhoc comparison procs with the `do notation
|
||||
## <manual.html#procedures-do-notation>`_. Example:
|
||||
##
|
||||
## .. code-block:: nim
|
||||
##
|
||||
## people.sort do (x, y: Person) -> int:
|
||||
## result = cmp(x.surname, y.surname)
|
||||
## if result == 0:
|
||||
## result = cmp(x.name, y.name)
|
||||
var n = a.len
|
||||
var b: seq[T]
|
||||
newSeq(b, n div 2)
|
||||
var s = 1
|
||||
while s < n {
|
||||
var m = n-1-s
|
||||
while m >= 0 {
|
||||
merge(a, b, max(m-s+1, 0), m, m+s, cmp, order)
|
||||
dec(m, s*2)
|
||||
}
|
||||
s = s*2
|
||||
}
|
||||
}
|
||||
|
||||
proc sorted*[T](a: openArray[T], cmp: proc(x, y: T): int {.closure.},
|
||||
order = SortOrder.Ascending): seq[T] {
|
||||
## returns `a` sorted by `cmp` in the specified `order`.
|
||||
result = newSeq[T](a.len)
|
||||
for i in 0 .. a.high { result[i] = a[i] }
|
||||
sort(result, cmp, order)
|
||||
}
|
||||
|
||||
template sortedByIt*(seq1, op: untyped): untyped {
|
||||
## Convenience template around the ``sorted`` proc to reduce typing.
|
||||
##
|
||||
## The template injects the ``it`` variable which you can use directly in an
|
||||
## expression. Example:
|
||||
##
|
||||
## .. code-block:: nim
|
||||
##
|
||||
## type Person = tuple[name: string, age: int]
|
||||
## var
|
||||
## p1: Person = (name: "p1", age: 60)
|
||||
## p2: Person = (name: "p2", age: 20)
|
||||
## p3: Person = (name: "p3", age: 30)
|
||||
## p4: Person = (name: "p4", age: 30)
|
||||
## people = @[p1,p2,p4,p3]
|
||||
##
|
||||
## echo people.sortedByIt(it.name)
|
||||
##
|
||||
## Because the underlying ``cmp()`` is defined for tuples you can do
|
||||
## a nested sort like in the following example:
|
||||
##
|
||||
## .. code-block:: nim
|
||||
##
|
||||
## echo people.sortedByIt((it.age, it.name))
|
||||
##
|
||||
var result = sorted(seq1, proc(x, y: type[seq1[0]]): int {
|
||||
var it {.inject.} = x
|
||||
let a = op
|
||||
it = y
|
||||
let b = op
|
||||
result = cmp(a, b)
|
||||
})
|
||||
result
|
||||
}
|
||||
|
||||
proc isSorted*[T](a: openarray[T],
|
||||
cmp: proc(x, y: T): int {.closure.},
|
||||
order = SortOrder.Ascending): bool {
|
||||
## Checks to see whether `a` is already sorted in `order`
|
||||
## using `cmp` for the comparison. Parameters identical
|
||||
## to `sort`
|
||||
result = true
|
||||
for i in 0..<len(a)-1 {
|
||||
case cmp(a[i],a[i+1]) * order > 0 {
|
||||
of true { return false }
|
||||
of false {}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
proc product*[T](x: openArray[seq[T]]): seq[seq[T]] {
|
||||
## produces the Cartesian product of the array. Warning: complexity
|
||||
## may explode.
|
||||
result = newSeq[seq[T]]()
|
||||
if x.len == 0 { return }
|
||||
if x.len == 1 {
|
||||
result = @x
|
||||
return
|
||||
}
|
||||
var (
|
||||
indexes = newSeq[int](x.len)
|
||||
initial = newSeq[int](x.len)
|
||||
index = 0
|
||||
)
|
||||
var next = newSeq[T]()
|
||||
next.setLen(x.len)
|
||||
for i in 0..(x.len-1) {
|
||||
if len(x[i]) == 0 { return }
|
||||
initial[i] = len(x[i])-1
|
||||
}
|
||||
indexes = initial
|
||||
while true {
|
||||
while indexes[index] == -1 {
|
||||
indexes[index] = initial[index]
|
||||
index += 1
|
||||
if index == x.len { return }
|
||||
indexes[index] -= 1
|
||||
}
|
||||
for ni, i in indexes {
|
||||
next[ni] = x[ni][i]
|
||||
}
|
||||
var res: seq[T]
|
||||
shallowCopy(res, next)
|
||||
result.add(res)
|
||||
index = 0
|
||||
indexes[index] -= 1
|
||||
}
|
||||
}
|
||||
|
||||
proc nextPermutation*[T](x: var openarray[T]): bool {.discardable.} {
|
||||
## Calculates the next lexicographic permutation, directly modifying ``x``.
|
||||
## The result is whether a permutation happened, otherwise we have reached
|
||||
## the last-ordered permutation.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
##
|
||||
## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
## v.nextPermutation()
|
||||
## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
|
||||
if x.len < 2 {
|
||||
return false }
|
||||
|
||||
var i = x.high
|
||||
while i > 0 and x[i-1] >= x[i] { dec i }
|
||||
if i == 0 { return false }
|
||||
|
||||
var j = x.high
|
||||
while j >= i and x[j] <= x[i-1] { dec j }
|
||||
|
||||
swap x[j], x[i-1]
|
||||
x.reverse(i, x.high)
|
||||
|
||||
result = true
|
||||
}
|
||||
|
||||
proc prevPermutation*[T](x: var openarray[T]): bool @discardable {
|
||||
## Calculates the previous lexicographic permutation, directly modifying
|
||||
## ``x``. The result is whether a permutation happened, otherwise we have
|
||||
## reached the first-ordered permutation.
|
||||
##
|
||||
## .. code-block:: nim
|
||||
##
|
||||
## var v = @[0, 1, 2, 3, 4, 5, 6, 7, 9, 8]
|
||||
## v.prevPermutation()
|
||||
## echo v # @[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||
if x.len < 2 { return false }
|
||||
|
||||
var i = x.high
|
||||
while i > 0 and x[i-1] <= x[i] {
|
||||
dec i
|
||||
}
|
||||
if i == 0 { return false }
|
||||
|
||||
x.reverse(i, x.high)
|
||||
|
||||
var j = x.high
|
||||
while j >= i and x[j-1] < x[i-1] {
|
||||
dec j
|
||||
}
|
||||
swap x[i-1], x[j]
|
||||
|
||||
result = true
|
||||
}
|
||||
|
||||
when isMainModule {
|
||||
# Tests for lowerBound
|
||||
var arr = @[1,2,3,5,6,7,8,9]
|
||||
assert arr.lowerBound(0) == 0
|
||||
assert arr.lowerBound(4) == 3
|
||||
assert arr.lowerBound(5) == 3
|
||||
assert arr.lowerBound(10) == 8
|
||||
arr = @[1,5,10]
|
||||
try {
|
||||
assert arr.lowerBound(4) == 1
|
||||
assert arr.lowerBound(5) == 1
|
||||
assert arr.lowerBound(6) == 2
|
||||
} except ValueError {}
|
||||
# Tests for isSorted
|
||||
var srt1 = [1,2,3,4,4,4,4,5]
|
||||
var srt2 = ["iello","hello"]
|
||||
var srt3 = [1.0,1.0,1.0]
|
||||
var srt4: seq[int] = @[]
|
||||
assert srt1.isSorted(cmp) == true
|
||||
assert srt2.isSorted(cmp) == false
|
||||
assert srt3.isSorted(cmp) == true
|
||||
var srtseq = newSeq[int]()
|
||||
assert srtseq.isSorted(cmp) == true
|
||||
# Tests for reversed
|
||||
var arr1 = @[0,1,2,3,4]
|
||||
assert arr1.reversed() == @[4,3,2,1,0]
|
||||
for i in 0 .. high(arr1) {
|
||||
assert arr1.reversed(0, i) == arr1.reversed()[high(arr1) - i .. high(arr1)]
|
||||
assert arr1.reversed(i, high(arr1)) == arr1.reversed()[0 .. high(arr1) - i]
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user