added libffi for win support

This commit is contained in:
Araq
2013-12-19 01:00:51 +01:00
parent 3d869d4dec
commit e2a4d591e5
22 changed files with 7192 additions and 10 deletions

View File

@@ -0,0 +1,331 @@
/* -----------------------------------------------------------------*-C-*-
libffi 2.00-beta - Copyright (c) 1996-2003 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* -------------------------------------------------------------------
The basic API is described in the README file.
The raw API is designed to bypass some of the argument packing
and unpacking on architectures for which it can be avoided.
The closure API allows interpreted functions to be packaged up
inside a C function pointer, so that they can be called as C functions,
with no understanding on the client side that they are interpreted.
It can also be used in other cases in which it is necessary to package
up a user specified parameter and a function pointer as a single
function pointer.
The closure API must be implemented in order to get its functionality,
e.g. for use by gij. Routines are provided to emulate the raw API
if the underlying platform doesn't allow faster implementation.
More details on the raw and cloure API can be found in:
http://gcc.gnu.org/ml/java/1999-q3/msg00138.html
and
http://gcc.gnu.org/ml/java/1999-q3/msg00174.html
-------------------------------------------------------------------- */
#ifndef LIBFFI_H
#define LIBFFI_H
#ifdef __cplusplus
extern "C" {
#endif
/* Specify which architecture libffi is configured for. */
//XXX #define X86
/* ---- System configuration information --------------------------------- */
#include <ffitarget.h>
#ifndef LIBFFI_ASM
#include <stddef.h>
#include <limits.h>
/* LONG_LONG_MAX is not always defined (not if STRICT_ANSI, for example).
But we can find it either under the correct ANSI name, or under GNU
C's internal name. */
#ifdef LONG_LONG_MAX
# define FFI_LONG_LONG_MAX LONG_LONG_MAX
#else
# ifdef LLONG_MAX
# define FFI_LONG_LONG_MAX LLONG_MAX
# else
# ifdef __GNUC__
# define FFI_LONG_LONG_MAX __LONG_LONG_MAX__
# endif
# ifdef _MSC_VER
# define FFI_LONG_LONG_MAX _I64_MAX
# endif
# endif
#endif
#if SCHAR_MAX == 127
# define ffi_type_uchar ffi_type_uint8
# define ffi_type_schar ffi_type_sint8
#else
#error "char size not supported"
#endif
#if SHRT_MAX == 32767
# define ffi_type_ushort ffi_type_uint16
# define ffi_type_sshort ffi_type_sint16
#elif SHRT_MAX == 2147483647
# define ffi_type_ushort ffi_type_uint32
# define ffi_type_sshort ffi_type_sint32
#else
#error "short size not supported"
#endif
#if INT_MAX == 32767
# define ffi_type_uint ffi_type_uint16
# define ffi_type_sint ffi_type_sint16
#elif INT_MAX == 2147483647
# define ffi_type_uint ffi_type_uint32
# define ffi_type_sint ffi_type_sint32
#elif INT_MAX == 9223372036854775807
# define ffi_type_uint ffi_type_uint64
# define ffi_type_sint ffi_type_sint64
#else
#error "int size not supported"
#endif
#define ffi_type_ulong ffi_type_uint64
#define ffi_type_slong ffi_type_sint64
#if LONG_MAX == 2147483647
# if FFI_LONG_LONG_MAX != 9223372036854775807
#error "no 64-bit data type supported"
# endif
#elif LONG_MAX != 9223372036854775807
#error "long size not supported"
#endif
/* The closure code assumes that this works on pointers, i.e. a size_t */
/* can hold a pointer. */
typedef struct _ffi_type
{
size_t size;
unsigned short alignment;
unsigned short type;
/*@null@*/ struct _ffi_type **elements;
} ffi_type;
/* These are defined in types.c */
extern const ffi_type ffi_type_void;
extern const ffi_type ffi_type_uint8;
extern const ffi_type ffi_type_sint8;
extern const ffi_type ffi_type_uint16;
extern const ffi_type ffi_type_sint16;
extern const ffi_type ffi_type_uint32;
extern const ffi_type ffi_type_sint32;
extern const ffi_type ffi_type_uint64;
extern const ffi_type ffi_type_sint64;
extern const ffi_type ffi_type_float;
extern const ffi_type ffi_type_double;
extern const ffi_type ffi_type_longdouble;
extern const ffi_type ffi_type_pointer;
typedef enum {
FFI_OK = 0,
FFI_BAD_TYPEDEF,
FFI_BAD_ABI
} ffi_status;
typedef unsigned FFI_TYPE;
typedef struct {
ffi_abi abi;
unsigned nargs;
/*@dependent@*/ ffi_type **arg_types;
/*@dependent@*/ ffi_type *rtype;
unsigned bytes;
unsigned flags;
#ifdef FFI_EXTRA_CIF_FIELDS
FFI_EXTRA_CIF_FIELDS;
#endif
} ffi_cif;
/* ---- Definitions for the raw API -------------------------------------- */
#ifdef _WIN64
#define FFI_SIZEOF_ARG 8
#else
#define FFI_SIZEOF_ARG 4
#endif
typedef union {
ffi_sarg sint;
ffi_arg uint;
float flt;
char data[FFI_SIZEOF_ARG];
void* ptr;
} ffi_raw;
void ffi_raw_call (/*@dependent@*/ ffi_cif *cif,
void (*fn)(),
/*@out@*/ void *rvalue,
/*@dependent@*/ ffi_raw *avalue);
void ffi_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw);
void ffi_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args);
size_t ffi_raw_size (ffi_cif *cif);
/* This is analogous to the raw API, except it uses Java parameter */
/* packing, even on 64-bit machines. I.e. on 64-bit machines */
/* longs and doubles are followed by an empty 64-bit word. */
void ffi_java_raw_call (/*@dependent@*/ ffi_cif *cif,
void (*fn)(),
/*@out@*/ void *rvalue,
/*@dependent@*/ ffi_raw *avalue);
void ffi_java_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw);
void ffi_java_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args);
size_t ffi_java_raw_size (ffi_cif *cif);
/* ---- Definitions for closures ----------------------------------------- */
#if FFI_CLOSURES
typedef struct {
char tramp[FFI_TRAMPOLINE_SIZE];
ffi_cif *cif;
void (*fun)(ffi_cif*,void*,void**,void*);
void *user_data;
} ffi_closure;
void ffi_closure_free(void *);
void *ffi_closure_alloc (size_t size, void **code);
ffi_status
ffi_prep_closure_loc (ffi_closure*,
ffi_cif *,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc);
typedef struct {
char tramp[FFI_TRAMPOLINE_SIZE];
ffi_cif *cif;
#if !FFI_NATIVE_RAW_API
/* if this is enabled, then a raw closure has the same layout
as a regular closure. We use this to install an intermediate
handler to do the transaltion, void** -> ffi_raw*. */
void (*translate_args)(ffi_cif*,void*,void**,void*);
void *this_closure;
#endif
void (*fun)(ffi_cif*,void*,ffi_raw*,void*);
void *user_data;
} ffi_raw_closure;
ffi_status
ffi_prep_raw_closure (ffi_raw_closure*,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data);
ffi_status
ffi_prep_java_raw_closure (ffi_raw_closure*,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data);
#endif /* FFI_CLOSURES */
/* ---- Public interface definition -------------------------------------- */
ffi_status ffi_prep_cif(/*@out@*/ /*@partial@*/ ffi_cif *cif,
ffi_abi abi,
unsigned int nargs,
/*@dependent@*/ /*@out@*/ /*@partial@*/ ffi_type *rtype,
/*@dependent@*/ ffi_type **atypes);
void
ffi_call(/*@dependent@*/ ffi_cif *cif,
void (*fn)(),
/*@out@*/ void *rvalue,
/*@dependent@*/ void **avalue);
/* Useful for eliminating compiler warnings */
#define FFI_FN(f) ((void (*)())f)
/* ---- Definitions shared with assembly code ---------------------------- */
#endif
/* If these change, update src/mips/ffitarget.h. */
#define FFI_TYPE_VOID 0
#define FFI_TYPE_INT 1
#define FFI_TYPE_FLOAT 2
#define FFI_TYPE_DOUBLE 3
#if 1
#define FFI_TYPE_LONGDOUBLE 4
#else
#define FFI_TYPE_LONGDOUBLE FFI_TYPE_DOUBLE
#endif
#define FFI_TYPE_UINT8 5
#define FFI_TYPE_SINT8 6
#define FFI_TYPE_UINT16 7
#define FFI_TYPE_SINT16 8
#define FFI_TYPE_UINT32 9
#define FFI_TYPE_SINT32 10
#define FFI_TYPE_UINT64 11
#define FFI_TYPE_SINT64 12
#define FFI_TYPE_STRUCT 13
#define FFI_TYPE_POINTER 14
/* This should always refer to the last type code (for sanity checks) */
#define FFI_TYPE_LAST FFI_TYPE_POINTER
#define FFI_HIDDEN /* no idea what the origial definition looks like ... */
#ifdef __GNUC__
# define LIKELY(x) __builtin_expect(x, 1)
# define UNLIKELY(x) __builtin_expect(x, 0)
#else
# define LIKELY(x) (x)
# define UNLIKELY(x) (x)
#endif
#define MAYBE_UNUSED
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,77 @@
/* -----------------------------------------------------------------------
ffi_common.h - Copyright (c) 1996 Red Hat, Inc.
Common internal definitions and macros. Only necessary for building
libffi.
----------------------------------------------------------------------- */
#ifndef FFI_COMMON_H
#define FFI_COMMON_H
#ifdef __cplusplus
extern "C" {
#endif
#include <fficonfig.h>
#include <malloc.h>
/* Check for the existence of memcpy. */
#if STDC_HEADERS
# include <string.h>
#else
# ifndef HAVE_MEMCPY
# define memcpy(d, s, n) bcopy ((s), (d), (n))
# endif
#endif
#if defined(FFI_DEBUG)
#include <stdio.h>
#endif
#ifdef FFI_DEBUG
/*@exits@*/ void ffi_assert(/*@temp@*/ char *expr, /*@temp@*/ char *file, int line);
void ffi_stop_here(void);
void ffi_type_test(/*@temp@*/ /*@out@*/ ffi_type *a, /*@temp@*/ char *file, int line);
#define FFI_ASSERT(x) ((x) ? (void)0 : ffi_assert(#x, __FILE__,__LINE__))
#define FFI_ASSERT_AT(x, f, l) ((x) ? 0 : ffi_assert(#x, (f), (l)))
#define FFI_ASSERT_VALID_TYPE(x) ffi_type_test (x, __FILE__, __LINE__)
#else
#define FFI_ASSERT(x)
#define FFI_ASSERT_AT(x, f, l)
#define FFI_ASSERT_VALID_TYPE(x)
#endif
#define ALIGN(v, a) (((((size_t) (v))-1) | ((a)-1))+1)
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif);
/* Extended cif, used in callback from assembly routine */
typedef struct
{
/*@dependent@*/ ffi_cif *cif;
/*@dependent@*/ void *rvalue;
/*@dependent@*/ void **avalue;
} extended_cif;
/* Terse sized type definitions. */
typedef unsigned int UINT8 __attribute__((__mode__(__QI__)));
typedef signed int SINT8 __attribute__((__mode__(__QI__)));
typedef unsigned int UINT16 __attribute__((__mode__(__HI__)));
typedef signed int SINT16 __attribute__((__mode__(__HI__)));
typedef unsigned int UINT32 __attribute__((__mode__(__SI__)));
typedef signed int SINT32 __attribute__((__mode__(__SI__)));
typedef unsigned int UINT64 __attribute__((__mode__(__DI__)));
typedef signed int SINT64 __attribute__((__mode__(__DI__)));
typedef float FLOAT32;
#ifdef __cplusplus
}
#endif
#endif

View File

@@ -0,0 +1,96 @@
/* fficonfig.h. Originally created by configure, now hand_maintained for MSVC. */
/* fficonfig.h. Generated automatically by configure. */
/* fficonfig.h.in. Generated automatically from configure.in by autoheader. */
/* Define this for MSVC, but not for mingw32! */
#ifdef _MSC_VER
#define __attribute__(x) /* */
#endif
#define alloca _alloca
/*----------------------------------------------------------------*/
/* Define if using alloca.c. */
/* #undef C_ALLOCA */
/* Define to one of _getb67, GETB67, getb67 for Cray-2 and Cray-YMP systems.
This function is required for alloca.c support on those systems. */
/* #undef CRAY_STACKSEG_END */
/* Define if you have alloca, as a function or macro. */
#define HAVE_ALLOCA 1
/* Define if you have <alloca.h> and it should be used (not on Ultrix). */
/* #define HAVE_ALLOCA_H 1 */
/* If using the C implementation of alloca, define if you know the
direction of stack growth for your system; otherwise it will be
automatically deduced at run-time.
STACK_DIRECTION > 0 => grows toward higher addresses
STACK_DIRECTION < 0 => grows toward lower addresses
STACK_DIRECTION = 0 => direction of growth unknown
*/
/* #undef STACK_DIRECTION */
/* Define if you have the ANSI C header files. */
#define STDC_HEADERS 1
/* Define if you have the memcpy function. */
#define HAVE_MEMCPY 1
/* Define if read-only mmap of a plain file works. */
//#define HAVE_MMAP_FILE 1
/* Define if mmap of /dev/zero works. */
//#define HAVE_MMAP_DEV_ZERO 1
/* Define if mmap with MAP_ANON(YMOUS) works. */
//#define HAVE_MMAP_ANON 1
/* The number of bytes in type double */
#define SIZEOF_DOUBLE 8
/* The number of bytes in type long double */
#define SIZEOF_LONG_DOUBLE 12
/* Define if you have the long double type and it is bigger than a double */
#define HAVE_LONG_DOUBLE 1
/* whether byteorder is bigendian */
/* #undef WORDS_BIGENDIAN */
/* Define if the host machine stores words of multi-word integers in
big-endian order. */
/* #undef HOST_WORDS_BIG_ENDIAN */
/* 1234 = LIL_ENDIAN, 4321 = BIGENDIAN */
#define BYTEORDER 1234
/* Define if your assembler and linker support unaligned PC relative relocs. */
/* #undef HAVE_AS_SPARC_UA_PCREL */
/* Define if your assembler supports .register. */
/* #undef HAVE_AS_REGISTER_PSEUDO_OP */
/* Define if .eh_frame sections should be read-only. */
/* #undef HAVE_RO_EH_FRAME */
/* Define to the flags needed for the .section .eh_frame directive. */
/* #define EH_FRAME_FLAGS "aw" */
/* Define to the flags needed for the .section .eh_frame directive. */
/* #define EH_FRAME_FLAGS "aw" */
/* Define this if you want extra debugging. */
/* #undef FFI_DEBUG */
/* Define this is you do not want support for aggregate types. */
/* #undef FFI_NO_STRUCTS */
/* Define this is you do not want support for the raw API. */
/* #undef FFI_NO_RAW_API */
/* Define this if you are using Purify and want to suppress spurious messages. */
/* #undef USING_PURIFY */

View File

@@ -0,0 +1,150 @@
/* -----------------------------------------------------------------*-C-*-
ffitarget.h - Copyright (c) 2012 Anthony Green
Copyright (c) 1996-2003, 2010 Red Hat, Inc.
Copyright (C) 2008 Free Software Foundation, Inc.
Target configuration macros for x86 and x86-64.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef LIBFFI_TARGET_H
#define LIBFFI_TARGET_H
#ifndef LIBFFI_H
#error "Please do not include ffitarget.h directly into your source. Use ffi.h instead."
#endif
/* ---- System specific configurations ----------------------------------- */
/* For code common to all platforms on x86 and x86_64. */
#define X86_ANY
#if (defined(WIN32) || defined(_WIN32) || defined(__WIN32__))
# if defined(__x86_64__) || defined(__x86_64) || defined(_M_X64)
# define X86_64
# define X86_WIN64
# else
# define X86_32
# define X86_WIN32
# endif
#endif
#if defined (X86_64) && defined (__i386__)
#undef X86_64
#define X86
#endif
#ifdef X86_WIN64
#define FFI_SIZEOF_ARG 8
#define USE_BUILTIN_FFS 0 /* not yet implemented in mingw-64 */
#endif
/* ---- Generic type definitions ----------------------------------------- */
#ifndef LIBFFI_ASM
#ifdef X86_WIN64
#ifdef _MSC_VER
typedef unsigned __int64 ffi_arg;
typedef __int64 ffi_sarg;
#else
typedef unsigned long long ffi_arg;
typedef long long ffi_sarg;
#endif
#else
#if defined __x86_64__ && defined __ILP32__
#define FFI_SIZEOF_ARG 8
#define FFI_SIZEOF_JAVA_RAW 4
typedef unsigned long long ffi_arg;
typedef long long ffi_sarg;
#else
typedef unsigned long ffi_arg;
typedef signed long ffi_sarg;
#endif
#endif
typedef enum ffi_abi {
FFI_FIRST_ABI = 0,
/* ---- Intel x86 Win32 ---------- */
#ifdef X86_WIN32
FFI_SYSV,
FFI_STDCALL,
FFI_THISCALL,
FFI_FASTCALL,
FFI_MS_CDECL,
FFI_LAST_ABI,
#ifdef _MSC_VER
FFI_DEFAULT_ABI = FFI_MS_CDECL
#else
FFI_DEFAULT_ABI = FFI_SYSV
#endif
#elif defined(X86_WIN64)
FFI_WIN64,
FFI_LAST_ABI,
FFI_DEFAULT_ABI = FFI_WIN64
#else
/* ---- Intel x86 and AMD x86-64 - */
FFI_SYSV,
FFI_UNIX64, /* Unix variants all use the same ABI for x86-64 */
FFI_LAST_ABI,
#if defined(__i386__) || defined(__i386)
FFI_DEFAULT_ABI = FFI_SYSV
#else
FFI_DEFAULT_ABI = FFI_UNIX64
#endif
#endif
} ffi_abi;
#endif
/* ---- Definitions for closures ----------------------------------------- */
#define FFI_CLOSURES 1
#define FFI_TYPE_SMALL_STRUCT_1B (FFI_TYPE_LAST + 1)
#define FFI_TYPE_SMALL_STRUCT_2B (FFI_TYPE_LAST + 2)
#define FFI_TYPE_SMALL_STRUCT_4B (FFI_TYPE_LAST + 3)
#define FFI_TYPE_MS_STRUCT (FFI_TYPE_LAST + 4)
#if defined (X86_64) || (defined (__x86_64__) && defined (X86_DARWIN))
#define FFI_TRAMPOLINE_SIZE 24
#define FFI_NATIVE_RAW_API 0
#else
#ifdef X86_WIN32
#define FFI_TRAMPOLINE_SIZE 52
#else
#ifdef X86_WIN64
#define FFI_TRAMPOLINE_SIZE 29
#define FFI_NATIVE_RAW_API 0
#define FFI_NO_RAW_API 1
#else
#define FFI_TRAMPOLINE_SIZE 10
#endif
#endif
#ifndef X86_WIN64
#define FFI_NATIVE_RAW_API 1 /* x86 has native raw api support */
#endif
#endif
#endif

View File

@@ -0,0 +1,110 @@
#include <ffi.h>
#ifdef MS_WIN32
#include <windows.h>
#else
#include <sys/mman.h>
#include <unistd.h>
# if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
# define MAP_ANONYMOUS MAP_ANON
# endif
#endif
#include "ctypes.h"
/* BLOCKSIZE can be adjusted. Larger blocksize will take a larger memory
overhead, but allocate less blocks from the system. It may be that some
systems have a limit of how many mmap'd blocks can be open.
*/
#define BLOCKSIZE _pagesize
/* #define MALLOC_CLOSURE_DEBUG */ /* enable for some debugging output */
/******************************************************************/
typedef union _tagITEM {
ffi_closure closure;
union _tagITEM *next;
} ITEM;
static ITEM *free_list;
static int _pagesize;
static void more_core(void)
{
ITEM *item;
int count, i;
/* determine the pagesize */
#ifdef MS_WIN32
if (!_pagesize) {
SYSTEM_INFO systeminfo;
GetSystemInfo(&systeminfo);
_pagesize = systeminfo.dwPageSize;
}
#else
if (!_pagesize) {
#ifdef _SC_PAGESIZE
_pagesize = sysconf(_SC_PAGESIZE);
#else
_pagesize = getpagesize();
#endif
}
#endif
/* calculate the number of nodes to allocate */
count = BLOCKSIZE / sizeof(ITEM);
/* allocate a memory block */
#ifdef MS_WIN32
item = (ITEM *)VirtualAlloc(NULL,
count * sizeof(ITEM),
MEM_COMMIT,
PAGE_EXECUTE_READWRITE);
if (item == NULL)
return;
#else
item = (ITEM *)mmap(NULL,
count * sizeof(ITEM),
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0);
if (item == (void *)MAP_FAILED)
return;
#endif
#ifdef MALLOC_CLOSURE_DEBUG
printf("block at %p allocated (%d bytes), %d ITEMs\n",
item, count * sizeof(ITEM), count);
#endif
/* put them into the free list */
for (i = 0; i < count; ++i) {
item->next = free_list;
free_list = item;
++item;
}
}
/******************************************************************/
/* put the item back into the free list */
void ffi_closure_free(void *p)
{
ITEM *item = (ITEM *)p;
item->next = free_list;
free_list = item;
}
/* return one item from the free list, allocating more if needed */
void *ffi_closure_alloc(size_t ignored, void** codeloc)
{
ITEM *item;
if (!free_list)
more_core();
if (!free_list)
return NULL;
item = free_list;
free_list = item->next;
*codeloc = (void *)item;
return (void *)item;
}

View File

@@ -0,0 +1,254 @@
/* -----------------------------------------------------------------------
raw_api.c - Copyright (c) 1999, 2008 Red Hat, Inc.
Author: Kresten Krab Thorup <krab@gnu.org>
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* This file defines generic functions for use with the raw api. */
#include <ffi.h>
#include <ffi_common.h>
#if !FFI_NO_RAW_API
size_t
ffi_raw_size (ffi_cif *cif)
{
size_t result = 0;
int i;
ffi_type **at = cif->arg_types;
for (i = cif->nargs-1; i >= 0; i--, at++)
{
#if !FFI_NO_STRUCTS
if ((*at)->type == FFI_TYPE_STRUCT)
result += ALIGN (sizeof (void*), FFI_SIZEOF_ARG);
else
#endif
result += ALIGN ((*at)->size, FFI_SIZEOF_ARG);
}
return result;
}
void
ffi_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args)
{
unsigned i;
ffi_type **tp = cif->arg_types;
#if WORDS_BIGENDIAN
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 1);
break;
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 2);
break;
#if FFI_SIZEOF_ARG >= 4
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
*args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 4);
break;
#endif
#if !FFI_NO_STRUCTS
case FFI_TYPE_STRUCT:
*args = (raw++)->ptr;
break;
#endif
case FFI_TYPE_POINTER:
*args = (void*) &(raw++)->ptr;
break;
default:
*args = raw;
raw += ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
}
}
#else /* WORDS_BIGENDIAN */
#if !PDP
/* then assume little endian */
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
#if !FFI_NO_STRUCTS
if ((*tp)->type == FFI_TYPE_STRUCT)
{
*args = (raw++)->ptr;
}
else
#endif
{
*args = (void*) raw;
raw += ALIGN ((*tp)->size, sizeof (void*)) / sizeof (void*);
}
}
#else
#error "pdp endian not supported"
#endif /* ! PDP */
#endif /* WORDS_BIGENDIAN */
}
void
ffi_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw)
{
unsigned i;
ffi_type **tp = cif->arg_types;
for (i = 0; i < cif->nargs; i++, tp++, args++)
{
switch ((*tp)->type)
{
case FFI_TYPE_UINT8:
(raw++)->uint = *(UINT8*) (*args);
break;
case FFI_TYPE_SINT8:
(raw++)->sint = *(SINT8*) (*args);
break;
case FFI_TYPE_UINT16:
(raw++)->uint = *(UINT16*) (*args);
break;
case FFI_TYPE_SINT16:
(raw++)->sint = *(SINT16*) (*args);
break;
#if FFI_SIZEOF_ARG >= 4
case FFI_TYPE_UINT32:
(raw++)->uint = *(UINT32*) (*args);
break;
case FFI_TYPE_SINT32:
(raw++)->sint = *(SINT32*) (*args);
break;
#endif
#if !FFI_NO_STRUCTS
case FFI_TYPE_STRUCT:
(raw++)->ptr = *args;
break;
#endif
case FFI_TYPE_POINTER:
(raw++)->ptr = **(void***) args;
break;
default:
memcpy ((void*) raw->data, (void*)*args, (*tp)->size);
raw += ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG;
}
}
}
#if !FFI_NATIVE_RAW_API
/* This is a generic definition of ffi_raw_call, to be used if the
* native system does not provide a machine-specific implementation.
* Having this, allows code to be written for the raw API, without
* the need for system-specific code to handle input in that format;
* these following couple of functions will handle the translation forth
* and back automatically. */
void ffi_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *raw)
{
void **avalue = (void**) alloca (cif->nargs * sizeof (void*));
ffi_raw_to_ptrarray (cif, raw, avalue);
ffi_call (cif, fn, rvalue, avalue);
}
#if FFI_CLOSURES /* base system provides closures */
static void
ffi_translate_args (ffi_cif *cif, void *rvalue,
void **avalue, void *user_data)
{
ffi_raw *raw = (ffi_raw*)alloca (ffi_raw_size (cif));
ffi_raw_closure *cl = (ffi_raw_closure*)user_data;
ffi_ptrarray_to_raw (cif, avalue, raw);
(*cl->fun) (cif, rvalue, raw, cl->user_data);
}
ffi_status
ffi_prep_raw_closure_loc (ffi_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data,
void *codeloc)
{
ffi_status status;
status = ffi_prep_closure_loc ((ffi_closure*) cl,
cif,
&ffi_translate_args,
codeloc,
codeloc);
if (status == FFI_OK)
{
cl->fun = fun;
cl->user_data = user_data;
}
return status;
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NATIVE_RAW_API */
#if FFI_CLOSURES
/* Again, here is the generic version of ffi_prep_raw_closure, which
* will install an intermediate "hub" for translation of arguments from
* the pointer-array format, to the raw format */
ffi_status
ffi_prep_raw_closure (ffi_raw_closure* cl,
ffi_cif *cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data)
{
return ffi_prep_raw_closure_loc (cl, cif, fun, user_data, cl);
}
#endif /* FFI_CLOSURES */
#endif /* !FFI_NO_RAW_API */

View File

@@ -0,0 +1,627 @@
/* -----------------------------------------------------------------------
closures.c - Copyright (c) 2007, 2009, 2010 Red Hat, Inc.
Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
Code to allocate and deallocate memory for closures.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if defined __linux__ && !defined _GNU_SOURCE
#define _GNU_SOURCE 1
#endif
#include <ffi.h>
#include <ffi_common.h>
#if !FFI_MMAP_EXEC_WRIT && !FFI_EXEC_TRAMPOLINE_TABLE
# if __gnu_linux__
/* This macro indicates it may be forbidden to map anonymous memory
with both write and execute permission. Code compiled when this
option is defined will attempt to map such pages once, but if it
fails, it falls back to creating a temporary file in a writable and
executable filesystem and mapping pages from it into separate
locations in the virtual memory space, one location writable and
another executable. */
# define FFI_MMAP_EXEC_WRIT 1
# define HAVE_MNTENT 1
# endif
# if defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)
/* Windows systems may have Data Execution Protection (DEP) enabled,
which requires the use of VirtualMalloc/VirtualFree to alloc/free
executable memory. */
# define FFI_MMAP_EXEC_WRIT 1
# endif
#endif
#if FFI_MMAP_EXEC_WRIT && !defined FFI_MMAP_EXEC_SELINUX
# ifdef __linux__
/* When defined to 1 check for SELinux and if SELinux is active,
don't attempt PROT_EXEC|PROT_WRITE mapping at all, as that
might cause audit messages. */
# define FFI_MMAP_EXEC_SELINUX 1
# endif
#endif
#if FFI_CLOSURES
# if FFI_EXEC_TRAMPOLINE_TABLE
// Per-target implementation; It's unclear what can reasonable be shared
// between two OS/architecture implementations.
# elif FFI_MMAP_EXEC_WRIT /* !FFI_EXEC_TRAMPOLINE_TABLE */
#define USE_LOCKS 1
#define USE_DL_PREFIX 1
#ifdef __GNUC__
#ifndef USE_BUILTIN_FFS
#define USE_BUILTIN_FFS 1
#endif
#endif
/* We need to use mmap, not sbrk. */
#define HAVE_MORECORE 0
/* We could, in theory, support mremap, but it wouldn't buy us anything. */
#define HAVE_MREMAP 0
/* We have no use for this, so save some code and data. */
#define NO_MALLINFO 1
/* We need all allocations to be in regular segments, otherwise we
lose track of the corresponding code address. */
#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
/* Don't allocate more than a page unless needed. */
#define DEFAULT_GRANULARITY ((size_t)malloc_getpagesize)
#if FFI_CLOSURE_TEST
/* Don't release single pages, to avoid a worst-case scenario of
continuously allocating and releasing single pages, but release
pairs of pages, which should do just as well given that allocations
are likely to be small. */
#define DEFAULT_TRIM_THRESHOLD ((size_t)malloc_getpagesize)
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include <string.h>
#include <stdio.h>
#if !defined(X86_WIN32) && !defined(X86_WIN64)
#ifdef HAVE_MNTENT
#include <mntent.h>
#endif /* HAVE_MNTENT */
#include <sys/param.h>
#include <pthread.h>
/* We don't want sys/mman.h to be included after we redefine mmap and
dlmunmap. */
#include <sys/mman.h>
#define LACKS_SYS_MMAN_H 1
#if FFI_MMAP_EXEC_SELINUX
#include <sys/statfs.h>
#include <stdlib.h>
static int selinux_enabled = -1;
static int
selinux_enabled_check (void)
{
struct statfs sfs;
FILE *f;
char *buf = NULL;
size_t len = 0;
if (statfs ("/selinux", &sfs) >= 0
&& (unsigned int) sfs.f_type == 0xf97cff8cU)
return 1;
f = fopen ("/proc/mounts", "r");
if (f == NULL)
return 0;
while (getline (&buf, &len, f) >= 0)
{
char *p = strchr (buf, ' ');
if (p == NULL)
break;
p = strchr (p + 1, ' ');
if (p == NULL)
break;
if (strncmp (p + 1, "selinuxfs ", 10) == 0)
{
free (buf);
fclose (f);
return 1;
}
}
free (buf);
fclose (f);
return 0;
}
#define is_selinux_enabled() (selinux_enabled >= 0 ? selinux_enabled \
: (selinux_enabled = selinux_enabled_check ()))
#else
#define is_selinux_enabled() 0
#endif /* !FFI_MMAP_EXEC_SELINUX */
/* On PaX enable kernels that have MPROTECT enable we can't use PROT_EXEC. */
#ifdef FFI_MMAP_EXEC_EMUTRAMP_PAX
#include <stdlib.h>
static int emutramp_enabled = -1;
static int
emutramp_enabled_check (void)
{
if (getenv ("FFI_DISABLE_EMUTRAMP") == NULL)
return 1;
else
return 0;
}
#define is_emutramp_enabled() (emutramp_enabled >= 0 ? emutramp_enabled \
: (emutramp_enabled = emutramp_enabled_check ()))
#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */
#elif defined (__CYGWIN__) || defined(__INTERIX)
#include <sys/mman.h>
/* Cygwin is Linux-like, but not quite that Linux-like. */
#define is_selinux_enabled() 0
#endif /* !defined(X86_WIN32) && !defined(X86_WIN64) */
#ifndef FFI_MMAP_EXEC_EMUTRAMP_PAX
#define is_emutramp_enabled() 0
#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */
#if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX)
/* Use these for mmap and munmap within dlmalloc.c. */
static void *dlmmap(void *, size_t, int, int, int, off_t);
static int dlmunmap(void *, size_t);
#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */
#if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX)
/* A mutex used to synchronize access to *exec* variables in this file. */
static pthread_mutex_t open_temp_exec_file_mutex = PTHREAD_MUTEX_INITIALIZER;
/* A file descriptor of a temporary file from which we'll map
executable pages. */
static int execfd = -1;
/* The amount of space already allocated from the temporary file. */
static size_t execsize = 0;
/* Open a temporary file name, and immediately unlink it. */
static int
open_temp_exec_file_name (char *name)
{
int fd = mkstemp (name);
if (fd != -1)
unlink (name);
return fd;
}
/* Open a temporary file in the named directory. */
static int
open_temp_exec_file_dir (const char *dir)
{
static const char suffix[] = "/ffiXXXXXX";
int lendir = strlen (dir);
char *tempname = __builtin_alloca (lendir + sizeof (suffix));
if (!tempname)
return -1;
memcpy (tempname, dir, lendir);
memcpy (tempname + lendir, suffix, sizeof (suffix));
return open_temp_exec_file_name (tempname);
}
/* Open a temporary file in the directory in the named environment
variable. */
static int
open_temp_exec_file_env (const char *envvar)
{
const char *value = getenv (envvar);
if (!value)
return -1;
return open_temp_exec_file_dir (value);
}
#ifdef HAVE_MNTENT
/* Open a temporary file in an executable and writable mount point
listed in the mounts file. Subsequent calls with the same mounts
keep searching for mount points in the same file. Providing NULL
as the mounts file closes the file. */
static int
open_temp_exec_file_mnt (const char *mounts)
{
static const char *last_mounts;
static FILE *last_mntent;
if (mounts != last_mounts)
{
if (last_mntent)
endmntent (last_mntent);
last_mounts = mounts;
if (mounts)
last_mntent = setmntent (mounts, "r");
else
last_mntent = NULL;
}
if (!last_mntent)
return -1;
for (;;)
{
int fd;
struct mntent mnt;
char buf[MAXPATHLEN * 3];
if (getmntent_r (last_mntent, &mnt, buf, sizeof (buf)) == NULL)
return -1;
if (hasmntopt (&mnt, "ro")
|| hasmntopt (&mnt, "noexec")
|| access (mnt.mnt_dir, W_OK))
continue;
fd = open_temp_exec_file_dir (mnt.mnt_dir);
if (fd != -1)
return fd;
}
}
#endif /* HAVE_MNTENT */
/* Instructions to look for a location to hold a temporary file that
can be mapped in for execution. */
static struct
{
int (*func)(const char *);
const char *arg;
int repeat;
} open_temp_exec_file_opts[] = {
{ open_temp_exec_file_env, "TMPDIR", 0 },
{ open_temp_exec_file_dir, "/tmp", 0 },
{ open_temp_exec_file_dir, "/var/tmp", 0 },
{ open_temp_exec_file_dir, "/dev/shm", 0 },
{ open_temp_exec_file_env, "HOME", 0 },
#ifdef HAVE_MNTENT
{ open_temp_exec_file_mnt, "/etc/mtab", 1 },
{ open_temp_exec_file_mnt, "/proc/mounts", 1 },
#endif /* HAVE_MNTENT */
};
/* Current index into open_temp_exec_file_opts. */
static int open_temp_exec_file_opts_idx = 0;
/* Reset a current multi-call func, then advances to the next entry.
If we're at the last, go back to the first and return nonzero,
otherwise return zero. */
static int
open_temp_exec_file_opts_next (void)
{
if (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat)
open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func (NULL);
open_temp_exec_file_opts_idx++;
if (open_temp_exec_file_opts_idx
== (sizeof (open_temp_exec_file_opts)
/ sizeof (*open_temp_exec_file_opts)))
{
open_temp_exec_file_opts_idx = 0;
return 1;
}
return 0;
}
/* Return a file descriptor of a temporary zero-sized file in a
writable and exexutable filesystem. */
static int
open_temp_exec_file (void)
{
int fd;
do
{
fd = open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func
(open_temp_exec_file_opts[open_temp_exec_file_opts_idx].arg);
if (!open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat
|| fd == -1)
{
if (open_temp_exec_file_opts_next ())
break;
}
}
while (fd == -1);
return fd;
}
/* Map in a chunk of memory from the temporary exec file into separate
locations in the virtual memory address space, one writable and one
executable. Returns the address of the writable portion, after
storing an offset to the corresponding executable portion at the
last word of the requested chunk. */
static void *
dlmmap_locked (void *start, size_t length, int prot, int flags, off_t offset)
{
void *ptr;
if (execfd == -1)
{
open_temp_exec_file_opts_idx = 0;
retry_open:
execfd = open_temp_exec_file ();
if (execfd == -1)
return MFAIL;
}
offset = execsize;
if (ftruncate (execfd, offset + length))
return MFAIL;
flags &= ~(MAP_PRIVATE | MAP_ANONYMOUS);
flags |= MAP_SHARED;
ptr = mmap (NULL, length, (prot & ~PROT_WRITE) | PROT_EXEC,
flags, execfd, offset);
if (ptr == MFAIL)
{
if (!offset)
{
close (execfd);
goto retry_open;
}
ftruncate (execfd, offset);
return MFAIL;
}
else if (!offset
&& open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat)
open_temp_exec_file_opts_next ();
start = mmap (start, length, prot, flags, execfd, offset);
if (start == MFAIL)
{
munmap (ptr, length);
ftruncate (execfd, offset);
return start;
}
mmap_exec_offset ((char *)start, length) = (char*)ptr - (char*)start;
execsize += length;
return start;
}
/* Map in a writable and executable chunk of memory if possible.
Failing that, fall back to dlmmap_locked. */
static void *
dlmmap (void *start, size_t length, int prot,
int flags, int fd, off_t offset)
{
void *ptr;
assert (start == NULL && length % malloc_getpagesize == 0
&& prot == (PROT_READ | PROT_WRITE)
&& flags == (MAP_PRIVATE | MAP_ANONYMOUS)
&& fd == -1 && offset == 0);
#if FFI_CLOSURE_TEST
printf ("mapping in %zi\n", length);
#endif
if (execfd == -1 && is_emutramp_enabled ())
{
ptr = mmap (start, length, prot & ~PROT_EXEC, flags, fd, offset);
return ptr;
}
if (execfd == -1 && !is_selinux_enabled ())
{
ptr = mmap (start, length, prot | PROT_EXEC, flags, fd, offset);
if (ptr != MFAIL || (errno != EPERM && errno != EACCES))
/* Cool, no need to mess with separate segments. */
return ptr;
/* If MREMAP_DUP is ever introduced and implemented, try mmap
with ((prot & ~PROT_WRITE) | PROT_EXEC) and mremap with
MREMAP_DUP and prot at this point. */
}
if (execsize == 0 || execfd == -1)
{
pthread_mutex_lock (&open_temp_exec_file_mutex);
ptr = dlmmap_locked (start, length, prot, flags, offset);
pthread_mutex_unlock (&open_temp_exec_file_mutex);
return ptr;
}
return dlmmap_locked (start, length, prot, flags, offset);
}
/* Release memory at the given address, as well as the corresponding
executable page if it's separate. */
static int
dlmunmap (void *start, size_t length)
{
/* We don't bother decreasing execsize or truncating the file, since
we can't quite tell whether we're unmapping the end of the file.
We don't expect frequent deallocation anyway. If we did, we
could locate pages in the file by writing to the pages being
deallocated and checking that the file contents change.
Yuck. */
msegmentptr seg = segment_holding (gm, start);
void *code;
#if FFI_CLOSURE_TEST
printf ("unmapping %zi\n", length);
#endif
if (seg && (code = add_segment_exec_offset (start, seg)) != start)
{
int ret = munmap (code, length);
if (ret)
return ret;
}
return munmap (start, length);
}
#if FFI_CLOSURE_FREE_CODE
/* Return segment holding given code address. */
static msegmentptr
segment_holding_code (mstate m, char* addr)
{
msegmentptr sp = &m->seg;
for (;;) {
if (addr >= add_segment_exec_offset (sp->base, sp)
&& addr < add_segment_exec_offset (sp->base, sp) + sp->size)
return sp;
if ((sp = sp->next) == 0)
return 0;
}
}
#endif
#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */
/* Allocate a chunk of memory with the given size. Returns a pointer
to the writable address, and sets *CODE to the executable
corresponding virtual address. */
void *
ffi_closure_alloc (size_t size, void **code)
{
*code = malloc(size);
return *code;
#if 0
void *ptr;
if (!code)
return NULL;
ptr = dlmalloc (size);
if (ptr)
{
msegmentptr seg = segment_holding (gm, ptr);
*code = add_segment_exec_offset (ptr, seg);
}
return ptr;
#endif
}
/* Release a chunk of memory allocated with ffi_closure_alloc. If
FFI_CLOSURE_FREE_CODE is nonzero, the given address can be the
writable or the executable address given. Otherwise, only the
writable address can be provided here. */
void
ffi_closure_free (void *ptr)
{
#if 0
#if FFI_CLOSURE_FREE_CODE
msegmentptr seg = segment_holding_code(gm, ptr);
if (seg)
ptr = sub_segment_exec_offset(ptr, seg);
#endif
dlfree(ptr);
#endif
free(ptr);
}
#if FFI_CLOSURE_TEST
/* Do some internal sanity testing to make sure allocation and
deallocation of pages are working as intended. */
int main ()
{
void *p[3];
#define GET(idx, len) do { p[idx] = dlmalloc (len); printf ("allocated %zi for p[%i]\n", (len), (idx)); } while (0)
#define PUT(idx) do { printf ("freeing p[%i]\n", (idx)); dlfree (p[idx]); } while (0)
GET (0, malloc_getpagesize / 2);
GET (1, 2 * malloc_getpagesize - 64 * sizeof (void*));
PUT (1);
GET (1, 2 * malloc_getpagesize);
GET (2, malloc_getpagesize / 2);
PUT (1);
PUT (0);
PUT (2);
return 0;
}
#endif /* FFI_CLOSURE_TEST */
# else /* ! FFI_MMAP_EXEC_WRIT */
/* On many systems, memory returned by malloc is writable and
executable, so just use it. */
#include <stdlib.h>
void *
ffi_closure_alloc (size_t size, void **code)
{
if (!code)
return NULL;
return *code = malloc (size);
}
void
ffi_closure_free (void *ptr)
{
free (ptr);
}
# endif /* ! FFI_MMAP_EXEC_WRIT */
#endif /* FFI_CLOSURES */

View File

@@ -0,0 +1,841 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc.
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2002 Bo Thorsen
Copyright (c) 2002 Roger Sayle
Copyright (C) 2008, 2010 Free Software Foundation, Inc.
x86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if !defined(__x86_64__) || defined(_WIN64)
#ifdef _WIN64
#include <windows.h>
#endif
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments */
void ffi_prep_args(char *stack, extended_cif *ecif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
#ifdef X86_WIN32
size_t p_stack_args[2];
void *p_stack_data[2];
char *argp2 = stack;
int stack_args_count = 0;
int cabi = ecif->cif->abi;
#endif
argp = stack;
if ((ecif->cif->flags == FFI_TYPE_STRUCT
|| ecif->cif->flags == FFI_TYPE_MS_STRUCT)
#ifdef X86_WIN64
&& (ecif->cif->rtype->size != 1 && ecif->cif->rtype->size != 2
&& ecif->cif->rtype->size != 4 && ecif->cif->rtype->size != 8)
#endif
)
{
*(void **) argp = ecif->rvalue;
#ifdef X86_WIN32
/* For fastcall/thiscall this is first register-passed
argument. */
if (cabi == FFI_THISCALL || cabi == FFI_FASTCALL)
{
p_stack_args[stack_args_count] = sizeof (void*);
p_stack_data[stack_args_count] = argp;
++stack_args_count;
}
#endif
argp += sizeof(void*);
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void*) - 1) & (size_t) argp)
argp = (char *) ALIGN(argp, sizeof(void*));
z = (*p_arg)->size;
#ifdef X86_WIN64
if (z > sizeof(ffi_arg)
|| ((*p_arg)->type == FFI_TYPE_STRUCT
&& (z != 1 && z != 2 && z != 4 && z != 8))
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
|| ((*p_arg)->type == FFI_TYPE_LONGDOUBLE)
#endif
)
{
z = sizeof(ffi_arg);
*(void **)argp = *p_argv;
}
else if ((*p_arg)->type == FFI_TYPE_FLOAT)
{
memcpy(argp, *p_argv, z);
}
else
#endif
if (z < sizeof(ffi_arg))
{
z = sizeof(ffi_arg);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(ffi_arg *) argp = (ffi_arg)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(ffi_arg *) argp = (ffi_arg)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_SINT32:
*(ffi_sarg *) argp = (ffi_sarg)*(SINT32 *)(* p_argv);
break;
case FFI_TYPE_UINT32:
*(ffi_arg *) argp = (ffi_arg)*(UINT32 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
*(ffi_arg *) argp = *(ffi_arg *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else
{
memcpy(argp, *p_argv, z);
}
#ifdef X86_WIN32
/* For thiscall/fastcall convention register-passed arguments
are the first two none-floating-point arguments with a size
smaller or equal to sizeof (void*). */
if ((cabi == FFI_THISCALL && stack_args_count < 1)
|| (cabi == FFI_FASTCALL && stack_args_count < 2))
{
if (z <= 4
&& ((*p_arg)->type != FFI_TYPE_FLOAT
&& (*p_arg)->type != FFI_TYPE_STRUCT))
{
p_stack_args[stack_args_count] = z;
p_stack_data[stack_args_count] = argp;
++stack_args_count;
}
}
#endif
p_argv++;
#ifdef X86_WIN64
argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
#else
argp += z;
#endif
}
#ifdef X86_WIN32
/* We need to move the register-passed arguments for thiscall/fastcall
on top of stack, so that those can be moved to registers ecx/edx by
call-handler. */
if (stack_args_count > 0)
{
size_t zz = (p_stack_args[0] + 3) & ~3;
char *h;
/* Move first argument to top-stack position. */
if (p_stack_data[0] != argp2)
{
h = alloca (zz + 1);
memcpy (h, p_stack_data[0], zz);
memmove (argp2 + zz, argp2,
(size_t) ((char *) p_stack_data[0] - (char*)argp2));
memcpy (argp2, h, zz);
}
argp2 += zz;
--stack_args_count;
if (zz > 4)
stack_args_count = 0;
/* If we have a second argument, then move it on top
after the first one. */
if (stack_args_count > 0 && p_stack_data[1] != argp2)
{
zz = p_stack_args[1];
zz = (zz + 3) & ~3;
h = alloca (zz + 1);
h = alloca (zz + 1);
memcpy (h, p_stack_data[1], zz);
memmove (argp2 + zz, argp2, (size_t) ((char*) p_stack_data[1] - (char*)argp2));
memcpy (argp2, h, zz);
}
}
#endif
return;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
unsigned int i;
ffi_type **ptr;
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_UINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT8:
case FFI_TYPE_SINT16:
#ifdef X86_WIN64
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
#endif
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
#ifndef X86_WIN64
#if FFI_TYPE_DOUBLE != FFI_TYPE_LONGDOUBLE
case FFI_TYPE_LONGDOUBLE:
#endif
#endif
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_UINT64:
#ifdef X86_WIN64
case FFI_TYPE_POINTER:
#endif
cif->flags = FFI_TYPE_SINT64;
break;
case FFI_TYPE_STRUCT:
#ifndef X86
if (cif->rtype->size == 1)
{
cif->flags = FFI_TYPE_SMALL_STRUCT_1B; /* same as char size */
}
else if (cif->rtype->size == 2)
{
cif->flags = FFI_TYPE_SMALL_STRUCT_2B; /* same as short size */
}
else if (cif->rtype->size == 4)
{
#ifdef X86_WIN64
cif->flags = FFI_TYPE_SMALL_STRUCT_4B;
#else
cif->flags = FFI_TYPE_INT; /* same as int type */
#endif
}
else if (cif->rtype->size == 8)
{
cif->flags = FFI_TYPE_SINT64; /* same as int64 type */
}
else
#endif
{
#ifdef X86_WIN32
if (cif->abi == FFI_MS_CDECL)
cif->flags = FFI_TYPE_MS_STRUCT;
else
#endif
cif->flags = FFI_TYPE_STRUCT;
/* allocate space for return value pointer */
cif->bytes += ALIGN(sizeof(void*), FFI_SIZEOF_ARG);
}
break;
default:
#ifdef X86_WIN64
cif->flags = FFI_TYPE_SINT64;
break;
case FFI_TYPE_INT:
cif->flags = FFI_TYPE_SINT32;
#else
cif->flags = FFI_TYPE_INT;
#endif
break;
}
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
if (((*ptr)->alignment - 1) & cif->bytes)
cif->bytes = ALIGN(cif->bytes, (*ptr)->alignment);
cif->bytes += ALIGN((*ptr)->size, FFI_SIZEOF_ARG);
}
#ifdef X86_WIN64
/* ensure space for storing four registers */
cif->bytes += 4 * sizeof(ffi_arg);
#endif
cif->bytes = (cif->bytes + 15) & ~0xF;
return FFI_OK;
}
#ifdef X86_WIN64
extern int
ffi_call_win64(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#elif defined(X86_WIN32)
extern void
ffi_call_win32(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned, unsigned *, void (*fn)(void));
#else
extern void ffi_call_SYSV(void (*)(char *, extended_cif *), extended_cif *,
unsigned, unsigned, unsigned *, void (*fn)(void));
#endif
void ffi_call(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
#ifdef X86_WIN64
if (rvalue == NULL
&& cif->flags == FFI_TYPE_STRUCT
&& cif->rtype->size != 1 && cif->rtype->size != 2
&& cif->rtype->size != 4 && cif->rtype->size != 8)
{
ecif.rvalue = alloca((cif->rtype->size + 0xF) & ~0xF);
}
#else
if (rvalue == NULL
&& (cif->flags == FFI_TYPE_STRUCT
|| cif->flags == FFI_TYPE_MS_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
#endif
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#ifdef X86_WIN64
case FFI_WIN64:
ffi_call_win64(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
break;
#elif defined(X86_WIN32)
case FFI_SYSV:
case FFI_STDCALL:
case FFI_MS_CDECL:
ffi_call_win32(ffi_prep_args, &ecif, cif->abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
case FFI_THISCALL:
case FFI_FASTCALL:
{
unsigned int abi = cif->abi;
unsigned int i, passed_regs = 0;
if (cif->flags == FFI_TYPE_STRUCT)
++passed_regs;
for (i=0; i < cif->nargs && passed_regs < 2;i++)
{
size_t sz;
if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
|| cif->arg_types[i]->type == FFI_TYPE_STRUCT)
continue;
sz = (cif->arg_types[i]->size + 3) & ~3;
if (sz == 0 || sz > 4)
continue;
++passed_regs;
}
if (passed_regs < 2 && abi == FFI_FASTCALL)
abi = FFI_THISCALL;
if (passed_regs < 1 && abi == FFI_THISCALL)
abi = FFI_STDCALL;
ffi_call_win32(ffi_prep_args, &ecif, abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
}
break;
#else
case FFI_SYSV:
ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes, cif->flags, ecif.rvalue,
fn);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
}
/** private members **/
/* The following __attribute__((regparm(1))) decorations will have no effect
on MSVC or SUNPRO_C -- standard conventions apply. */
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif);
void FFI_HIDDEN ffi_closure_SYSV (ffi_closure *)
__attribute__ ((regparm(1)));
unsigned int FFI_HIDDEN ffi_closure_SYSV_inner (ffi_closure *, void **, void *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_raw_SYSV (ffi_raw_closure *)
__attribute__ ((regparm(1)));
#ifdef X86_WIN32
void FFI_HIDDEN ffi_closure_raw_THISCALL (ffi_raw_closure *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_STDCALL (ffi_closure *)
__attribute__ ((regparm(1)));
void FFI_HIDDEN ffi_closure_THISCALL (ffi_closure *)
__attribute__ ((regparm(1)));
#endif
#ifdef X86_WIN64
void FFI_HIDDEN ffi_closure_win64 (ffi_closure *);
#endif
/* This function is jumped to by the trampoline */
#ifdef X86_WIN64
void * FFI_HIDDEN
ffi_closure_win64_inner (ffi_closure *closure, void *args) {
ffi_cif *cif;
void **arg_area;
void *result;
void *resp = &result;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will change RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, &resp, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
/* The result is returned in rax. This does the right thing for
result types except for floats; we have to 'mov xmm0, rax' in the
caller to correct this.
TODO: structure sizes of 3 5 6 7 are returned by reference, too!!!
*/
return cif->rtype->size > sizeof(void *) ? resp : *(void **)resp;
}
#else
unsigned int FFI_HIDDEN __attribute__ ((regparm(1)))
ffi_closure_SYSV_inner (ffi_closure *closure, void **respp, void *args)
{
/* our various things... */
ffi_cif *cif;
void **arg_area;
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will change RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, respp, arg_area, cif);
(closure->fun) (cif, *respp, arg_area, closure->user_data);
return cif->flags;
}
#endif /* !X86_WIN64 */
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue, void **avalue,
ffi_cif *cif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
#ifdef X86_WIN64
if (cif->rtype->size > sizeof(ffi_arg)
|| (cif->flags == FFI_TYPE_STRUCT
&& (cif->rtype->size != 1 && cif->rtype->size != 2
&& cif->rtype->size != 4 && cif->rtype->size != 8))) {
*rvalue = *(void **) argp;
argp += sizeof(void *);
}
#else
if ( cif->flags == FFI_TYPE_STRUCT
|| cif->flags == FFI_TYPE_MS_STRUCT ) {
*rvalue = *(void **) argp;
argp += sizeof(void *);
}
#endif
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void*) - 1) & (size_t) argp) {
argp = (char *) ALIGN(argp, sizeof(void*));
}
#ifdef X86_WIN64
if ((*p_arg)->size > sizeof(ffi_arg)
|| ((*p_arg)->type == FFI_TYPE_STRUCT
&& ((*p_arg)->size != 1 && (*p_arg)->size != 2
&& (*p_arg)->size != 4 && (*p_arg)->size != 8)))
{
z = sizeof(void *);
*p_argv = *(void **)argp;
}
else
#endif
{
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
}
p_argv++;
#ifdef X86_WIN64
argp += (z + sizeof(void*) - 1) & ~(sizeof(void*) - 1);
#else
argp += z;
#endif
}
return;
}
#define FFI_INIT_TRAMPOLINE_WIN64(TRAMP,FUN,CTX,MASK) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
void* __fun = (void*)(FUN); \
void* __ctx = (void*)(CTX); \
*(unsigned char*) &__tramp[0] = 0x41; \
*(unsigned char*) &__tramp[1] = 0xbb; \
*(unsigned int*) &__tramp[2] = MASK; /* mov $mask, %r11 */ \
*(unsigned char*) &__tramp[6] = 0x48; \
*(unsigned char*) &__tramp[7] = 0xb8; \
*(void**) &__tramp[8] = __ctx; /* mov __ctx, %rax */ \
*(unsigned char *) &__tramp[16] = 0x49; \
*(unsigned char *) &__tramp[17] = 0xba; \
*(void**) &__tramp[18] = __fun; /* mov __fun, %r10 */ \
*(unsigned char *) &__tramp[26] = 0x41; \
*(unsigned char *) &__tramp[27] = 0xff; \
*(unsigned char *) &__tramp[28] = 0xe2; /* jmp %r10 */ \
}
/* How to make a trampoline. Derived from gcc/config/i386/i386.c. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe9; \
*(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \
}
#define FFI_INIT_TRAMPOLINE_THISCALL(TRAMP,FUN,CTX,SIZE) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 49); \
unsigned short __size = (unsigned short)(SIZE); \
*(unsigned int *) &__tramp[0] = 0x8324048b; /* mov (%esp), %eax */ \
*(unsigned int *) &__tramp[4] = 0x4c890cec; /* sub $12, %esp */ \
*(unsigned int *) &__tramp[8] = 0x04890424; /* mov %ecx, 4(%esp) */ \
*(unsigned char*) &__tramp[12] = 0x24; /* mov %eax, (%esp) */ \
*(unsigned char*) &__tramp[13] = 0xb8; \
*(unsigned int *) &__tramp[14] = __size; /* mov __size, %eax */ \
*(unsigned int *) &__tramp[18] = 0x08244c8d; /* lea 8(%esp), %ecx */ \
*(unsigned int *) &__tramp[22] = 0x4802e8c1; /* shr $2, %eax ; dec %eax */ \
*(unsigned short*) &__tramp[26] = 0x0b74; /* jz 1f */ \
*(unsigned int *) &__tramp[28] = 0x8908518b; /* 2b: mov 8(%ecx), %edx */ \
*(unsigned int *) &__tramp[32] = 0x04c18311; /* mov %edx, (%ecx) ; add $4, %ecx */ \
*(unsigned char*) &__tramp[36] = 0x48; /* dec %eax */ \
*(unsigned short*) &__tramp[37] = 0xf575; /* jnz 2b ; 1f: */ \
*(unsigned char*) &__tramp[39] = 0xb8; \
*(unsigned int*) &__tramp[40] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[44] = 0xe8; \
*(unsigned int*) &__tramp[45] = __dis; /* call __fun */ \
*(unsigned char*) &__tramp[49] = 0xc2; /* ret */ \
*(unsigned short*) &__tramp[50] = (__size + 8); /* ret (__size + 8) */ \
}
#define FFI_INIT_TRAMPOLINE_STDCALL(TRAMP,FUN,CTX,SIZE) \
{ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - (__ctx + 10); \
unsigned short __size = (unsigned short)(SIZE); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe8; \
*(unsigned int*) &__tramp[6] = __dis; /* call __fun */ \
*(unsigned char *) &__tramp[10] = 0xc2; \
*(unsigned short*) &__tramp[11] = __size; /* ret __size */ \
}
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
#ifdef X86_WIN64
#define ISFLOAT(IDX) (cif->arg_types[IDX]->type == FFI_TYPE_FLOAT || cif->arg_types[IDX]->type == FFI_TYPE_DOUBLE)
#define FLAG(IDX) (cif->nargs>(IDX)&&ISFLOAT(IDX)?(1<<(IDX)):0)
if (cif->abi == FFI_WIN64)
{
int mask = FLAG(0)|FLAG(1)|FLAG(2)|FLAG(3);
FFI_INIT_TRAMPOLINE_WIN64 (&closure->tramp[0],
&ffi_closure_win64,
codeloc, mask);
/* make sure we can execute here */
}
#else
if (cif->abi == FFI_SYSV)
{
FFI_INIT_TRAMPOLINE (&closure->tramp[0],
&ffi_closure_SYSV,
(void*)codeloc);
}
#ifdef X86_WIN32
else if (cif->abi == FFI_THISCALL)
{
FFI_INIT_TRAMPOLINE_THISCALL (&closure->tramp[0],
&ffi_closure_THISCALL,
(void*)codeloc,
cif->bytes);
}
else if (cif->abi == FFI_STDCALL)
{
FFI_INIT_TRAMPOLINE_STDCALL (&closure->tramp[0],
&ffi_closure_STDCALL,
(void*)codeloc, cif->bytes);
}
else if (cif->abi == FFI_MS_CDECL)
{
FFI_INIT_TRAMPOLINE (&closure->tramp[0],
&ffi_closure_SYSV,
(void*)codeloc);
}
#endif /* X86_WIN32 */
#endif /* !X86_WIN64 */
else
{
return FFI_BAD_ABI;
}
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* ------- Native raw API support -------------------------------- */
#if !FFI_NO_RAW_API
ffi_status
ffi_prep_raw_closure_loc (ffi_raw_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data,
void *codeloc)
{
int i;
if (cif->abi != FFI_SYSV) {
#ifdef X86_WIN32
if (cif->abi != FFI_THISCALL)
#endif
return FFI_BAD_ABI;
}
/* we currently don't support certain kinds of arguments for raw
closures. This should be implemented by a separate assembly
language routine, since it would require argument processing,
something we don't do now for performance. */
for (i = cif->nargs-1; i >= 0; i--)
{
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT);
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE);
}
#ifdef X86_WIN32
if (cif->abi == FFI_SYSV)
{
#endif
FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV,
codeloc);
#ifdef X86_WIN32
}
else if (cif->abi == FFI_THISCALL)
{
FFI_INIT_TRAMPOLINE_THISCALL (&closure->tramp[0], &ffi_closure_raw_THISCALL,
codeloc, cif->bytes);
}
#endif
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
static void
ffi_prep_args_raw(char *stack, extended_cif *ecif)
{
memcpy (stack, ecif->avalue, ecif->cif->bytes);
}
/* we borrow this routine from libffi (it must be changed, though, to
* actually call the function passed in the first argument. as of
* libffi-1.20, this is not the case.)
*/
void
ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *fake_avalue)
{
extended_cif ecif;
void **avalue = (void **)fake_avalue;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if (rvalue == NULL
&& (cif->flags == FFI_TYPE_STRUCT
|| cif->flags == FFI_TYPE_MS_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#ifdef X86_WIN32
case FFI_SYSV:
case FFI_STDCALL:
case FFI_MS_CDECL:
ffi_call_win32(ffi_prep_args_raw, &ecif, cif->abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
case FFI_THISCALL:
case FFI_FASTCALL:
{
unsigned int abi = cif->abi;
unsigned int i, passed_regs = 0;
if (cif->flags == FFI_TYPE_STRUCT)
++passed_regs;
for (i=0; i < cif->nargs && passed_regs < 2;i++)
{
size_t sz;
if (cif->arg_types[i]->type == FFI_TYPE_FLOAT
|| cif->arg_types[i]->type == FFI_TYPE_STRUCT)
continue;
sz = (cif->arg_types[i]->size + 3) & ~3;
if (sz == 0 || sz > 4)
continue;
++passed_regs;
}
if (passed_regs < 2 && abi == FFI_FASTCALL)
cif->abi = abi = FFI_THISCALL;
if (passed_regs < 1 && abi == FFI_THISCALL)
cif->abi = abi = FFI_STDCALL;
ffi_call_win32(ffi_prep_args_raw, &ecif, abi, cif->bytes, cif->flags,
ecif.rvalue, fn);
}
break;
#else
case FFI_SYSV:
ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes, cif->flags,
ecif.rvalue, fn);
break;
#endif
default:
FFI_ASSERT(0);
break;
}
}
#endif
#endif /* !__x86_64__ || X86_WIN64 */

View File

@@ -0,0 +1,673 @@
/* -----------------------------------------------------------------------
ffi64.c - Copyright (c) 2013 The Written Word, Inc.
Copyright (c) 2011 Anthony Green
Copyright (c) 2008, 2010 Red Hat, Inc.
Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de>
x86-64 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
#include <stdarg.h>
#ifdef __x86_64__
#define MAX_GPR_REGS 6
#define MAX_SSE_REGS 8
#if defined(__INTEL_COMPILER)
#define UINT128 __m128
#else
#if defined(__SUNPRO_C)
#include <sunmedia_types.h>
#define UINT128 __m128i
#else
#define UINT128 __int128_t
#endif
#endif
union big_int_union
{
UINT32 i32;
UINT64 i64;
UINT128 i128;
};
struct register_args
{
/* Registers for argument passing. */
UINT64 gpr[MAX_GPR_REGS];
union big_int_union sse[MAX_SSE_REGS];
};
extern void ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags,
void *raddr, void (*fnaddr)(void), unsigned ssecount);
/* All reference to register classes here is identical to the code in
gcc/config/i386/i386.c. Do *not* change one without the other. */
/* Register class used for passing given 64bit part of the argument.
These represent classes as documented by the PS ABI, with the
exception of SSESF, SSEDF classes, that are basically SSE class,
just gcc will use SF or DFmode move instead of DImode to avoid
reformatting penalties.
Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves
whenever possible (upper half does contain padding). */
enum x86_64_reg_class
{
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,
X86_64_X87UP_CLASS,
X86_64_COMPLEX_X87_CLASS,
X86_64_MEMORY_CLASS
};
#define MAX_CLASSES 4
#define SSE_CLASS_P(X) ((X) >= X86_64_SSE_CLASS && X <= X86_64_SSEUP_CLASS)
/* x86-64 register passing implementation. See x86-64 ABI for details. Goal
of this code is to classify each 8bytes of incoming argument by the register
class and assign registers accordingly. */
/* Return the union class of CLASS1 and CLASS2.
See the x86-64 PS ABI for details. */
static enum x86_64_reg_class
merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
{
/* Rule #1: If both classes are equal, this is the resulting class. */
if (class1 == class2)
return class1;
/* Rule #2: If one of the classes is NO_CLASS, the resulting class is
the other class. */
if (class1 == X86_64_NO_CLASS)
return class2;
if (class2 == X86_64_NO_CLASS)
return class1;
/* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
return X86_64_INTEGERSI_CLASS;
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
return X86_64_INTEGER_CLASS;
/* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class,
MEMORY is used. */
if (class1 == X86_64_X87_CLASS
|| class1 == X86_64_X87UP_CLASS
|| class1 == X86_64_COMPLEX_X87_CLASS
|| class2 == X86_64_X87_CLASS
|| class2 == X86_64_X87UP_CLASS
|| class2 == X86_64_COMPLEX_X87_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #6: Otherwise class SSE is used. */
return X86_64_SSE_CLASS;
}
/* Classify the argument of type TYPE and mode MODE.
CLASSES will be filled by the register class used to pass each word
of the operand. The number of words is returned. In case the parameter
should be passed in memory, 0 is returned. As a special case for zero
sized containers, classes[0] will be NO_CLASS and 1 is returned.
See the x86-64 PS ABI for details.
*/
static int
classify_argument (ffi_type *type, enum x86_64_reg_class classes[],
size_t byte_offset)
{
switch (type->type)
{
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT64:
case FFI_TYPE_SINT64:
case FFI_TYPE_POINTER:
{
int size = byte_offset + type->size;
if (size <= 4)
{
classes[0] = X86_64_INTEGERSI_CLASS;
return 1;
}
else if (size <= 8)
{
classes[0] = X86_64_INTEGER_CLASS;
return 1;
}
else if (size <= 12)
{
classes[0] = X86_64_INTEGER_CLASS;
classes[1] = X86_64_INTEGERSI_CLASS;
return 2;
}
else if (size <= 16)
{
classes[0] = classes[1] = X86_64_INTEGERSI_CLASS;
return 2;
}
else
FFI_ASSERT (0);
}
case FFI_TYPE_FLOAT:
if (!(byte_offset % 8))
classes[0] = X86_64_SSESF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case FFI_TYPE_DOUBLE:
classes[0] = X86_64_SSEDF_CLASS;
return 1;
case FFI_TYPE_LONGDOUBLE:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
return 2;
case FFI_TYPE_STRUCT:
{
const int UNITS_PER_WORD = 8;
int words = (type->size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
ffi_type **ptr;
int i;
enum x86_64_reg_class subclasses[MAX_CLASSES];
/* If the struct is larger than 32 bytes, pass it on the stack. */
if (type->size > 32)
return 0;
for (i = 0; i < words; i++)
classes[i] = X86_64_NO_CLASS;
/* Zero sized arrays or structures are NO_CLASS. We return 0 to
signalize memory class, so handle it as special case. */
if (!words)
{
classes[0] = X86_64_NO_CLASS;
return 1;
}
/* Merge the fields of structure. */
for (ptr = type->elements; *ptr != NULL; ptr++)
{
int num;
byte_offset = ALIGN (byte_offset, (*ptr)->alignment);
num = classify_argument (*ptr, subclasses, byte_offset % 8);
if (num == 0)
return 0;
for (i = 0; i < num; i++)
{
int pos = byte_offset / 8;
classes[i + pos] =
merge_classes (subclasses[i], classes[i + pos]);
}
byte_offset += (*ptr)->size;
}
if (words > 2)
{
/* When size > 16 bytes, if the first one isn't
X86_64_SSE_CLASS or any other ones aren't
X86_64_SSEUP_CLASS, everything should be passed in
memory. */
if (classes[0] != X86_64_SSE_CLASS)
return 0;
for (i = 1; i < words; i++)
if (classes[i] != X86_64_SSEUP_CLASS)
return 0;
}
/* Final merger cleanup. */
for (i = 0; i < words; i++)
{
/* If one class is MEMORY, everything should be passed in
memory. */
if (classes[i] == X86_64_MEMORY_CLASS)
return 0;
/* The X86_64_SSEUP_CLASS should be always preceded by
X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */
if (classes[i] == X86_64_SSEUP_CLASS
&& classes[i - 1] != X86_64_SSE_CLASS
&& classes[i - 1] != X86_64_SSEUP_CLASS)
{
/* The first one should never be X86_64_SSEUP_CLASS. */
FFI_ASSERT (i != 0);
classes[i] = X86_64_SSE_CLASS;
}
/* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS,
everything should be passed in memory. */
if (classes[i] == X86_64_X87UP_CLASS
&& (classes[i - 1] != X86_64_X87_CLASS))
{
/* The first one should never be X86_64_X87UP_CLASS. */
FFI_ASSERT (i != 0);
return 0;
}
}
return words;
}
default:
FFI_ASSERT(0);
}
return 0; /* Never reached. */
}
/* Examine the argument and return set number of register required in each
class. Return zero iff parameter should be passed in memory, otherwise
the number of registers. */
static int
examine_argument (ffi_type *type, enum x86_64_reg_class classes[MAX_CLASSES],
_Bool in_return, int *pngpr, int *pnsse)
{
int i, n, ngpr, nsse;
n = classify_argument (type, classes, 0);
if (n == 0)
return 0;
ngpr = nsse = 0;
for (i = 0; i < n; ++i)
switch (classes[i])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
ngpr++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
nsse++;
break;
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
break;
case X86_64_X87_CLASS:
case X86_64_X87UP_CLASS:
case X86_64_COMPLEX_X87_CLASS:
return in_return != 0;
default:
abort ();
}
*pngpr = ngpr;
*pnsse = nsse;
return n;
}
/* Perform machine dependent cif processing. */
ffi_status
ffi_prep_cif_machdep (ffi_cif *cif)
{
int gprcount, ssecount, i, avn, n, ngpr, nsse, flags;
enum x86_64_reg_class classes[MAX_CLASSES];
size_t bytes;
gprcount = ssecount = 0;
flags = cif->rtype->type;
if (flags != FFI_TYPE_VOID)
{
n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse);
if (n == 0)
{
/* The return value is passed in memory. A pointer to that
memory is the first argument. Allocate a register for it. */
gprcount++;
/* We don't have to do anything in asm for the return. */
flags = FFI_TYPE_VOID;
}
else if (flags == FFI_TYPE_STRUCT)
{
/* Mark which registers the result appears in. */
_Bool sse0 = SSE_CLASS_P (classes[0]);
_Bool sse1 = n == 2 && SSE_CLASS_P (classes[1]);
if (sse0 && !sse1)
flags |= 1 << 8;
else if (!sse0 && sse1)
flags |= 1 << 9;
else if (sse0 && sse1)
flags |= 1 << 10;
/* Mark the true size of the structure. */
flags |= cif->rtype->size << 12;
}
}
/* Go over all arguments and determine the way they should be passed.
If it's in a register and there is space for it, let that be so. If
not, add it's size to the stack byte count. */
for (bytes = 0, i = 0, avn = cif->nargs; i < avn; i++)
{
if (examine_argument (cif->arg_types[i], classes, 0, &ngpr, &nsse) == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = cif->arg_types[i]->alignment;
if (align < 8)
align = 8;
bytes = ALIGN (bytes, align);
bytes += cif->arg_types[i]->size;
}
else
{
gprcount += ngpr;
ssecount += nsse;
}
}
if (ssecount)
flags |= 1 << 11;
cif->flags = flags;
cif->bytes = ALIGN (bytes, 8);
return FFI_OK;
}
void
ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue)
{
enum x86_64_reg_class classes[MAX_CLASSES];
char *stack, *argp;
ffi_type **arg_types;
int gprcount, ssecount, ngpr, nsse, i, avn;
_Bool ret_in_memory;
struct register_args *reg_args;
/* Can't call 32-bit mode from 64-bit mode. */
FFI_ASSERT (cif->abi == FFI_UNIX64);
/* If the return value is a struct and we don't have a return value
address then we need to make one. Note the setting of flags to
VOID above in ffi_prep_cif_machdep. */
ret_in_memory = (cif->rtype->type == FFI_TYPE_STRUCT
&& (cif->flags & 0xff) == FFI_TYPE_VOID);
if (rvalue == NULL && ret_in_memory)
rvalue = alloca (cif->rtype->size);
/* Allocate the space for the arguments, plus 4 words of temp space. */
stack = alloca (sizeof (struct register_args) + cif->bytes + 4*8);
reg_args = (struct register_args *) stack;
argp = stack + sizeof (struct register_args);
gprcount = ssecount = 0;
/* If the return value is passed in memory, add the pointer as the
first integer argument. */
if (ret_in_memory)
reg_args->gpr[gprcount++] = (unsigned long) rvalue;
avn = cif->nargs;
arg_types = cif->arg_types;
for (i = 0; i < avn; ++i)
{
size_t size = arg_types[i]->size;
int n;
n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse);
if (n == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = arg_types[i]->alignment;
/* Stack arguments are *always* at least 8 byte aligned. */
if (align < 8)
align = 8;
/* Pass this argument in memory. */
argp = (void *) ALIGN (argp, align);
memcpy (argp, avalue[i], size);
argp += size;
}
else
{
/* The argument is passed entirely in registers. */
char *a = (char *) avalue[i];
int j;
for (j = 0; j < n; j++, a += 8, size -= 8)
{
switch (classes[j])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
/* Sign-extend integer arguments passed in general
purpose registers, to cope with the fact that
LLVM incorrectly assumes that this will be done
(the x86-64 PS ABI does not specify this). */
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
*(SINT64 *)&reg_args->gpr[gprcount] = (SINT64) *((SINT8 *) a);
break;
case FFI_TYPE_SINT16:
*(SINT64 *)&reg_args->gpr[gprcount] = (SINT64) *((SINT16 *) a);
break;
case FFI_TYPE_SINT32:
*(SINT64 *)&reg_args->gpr[gprcount] = (SINT64) *((SINT32 *) a);
break;
default:
reg_args->gpr[gprcount] = 0;
memcpy (&reg_args->gpr[gprcount], a, size < 8 ? size : 8);
}
gprcount++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSEDF_CLASS:
reg_args->sse[ssecount++].i64 = *(UINT64 *) a;
break;
case X86_64_SSESF_CLASS:
reg_args->sse[ssecount++].i32 = *(UINT32 *) a;
break;
default:
abort();
}
}
}
}
ffi_call_unix64 (stack, cif->bytes + sizeof (struct register_args),
cif->flags, rvalue, fn, ssecount);
}
extern void ffi_closure_unix64(void);
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
volatile unsigned short *tramp;
/* Sanity check on the cif ABI. */
{
int abi = cif->abi;
if (UNLIKELY (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI)))
return FFI_BAD_ABI;
}
tramp = (volatile unsigned short *) &closure->tramp[0];
tramp[0] = 0xbb49; /* mov <code>, %r11 */
*((unsigned long long * volatile) &tramp[1])
= (unsigned long) ffi_closure_unix64;
tramp[5] = 0xba49; /* mov <data>, %r10 */
*((unsigned long long * volatile) &tramp[6])
= (unsigned long) codeloc;
/* Set the carry bit iff the function uses any sse registers.
This is clc or stc, together with the first byte of the jmp. */
tramp[10] = cif->flags & (1 << 11) ? 0x49f9 : 0x49f8;
tramp[11] = 0xe3ff; /* jmp *%r11 */
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
int
ffi_closure_unix64_inner(ffi_closure *closure, void *rvalue,
struct register_args *reg_args, char *argp)
{
ffi_cif *cif;
void **avalue;
ffi_type **arg_types;
long i, avn;
int gprcount, ssecount, ngpr, nsse;
int ret;
cif = closure->cif;
avalue = alloca(cif->nargs * sizeof(void *));
gprcount = ssecount = 0;
ret = cif->rtype->type;
if (ret != FFI_TYPE_VOID)
{
enum x86_64_reg_class classes[MAX_CLASSES];
int n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse);
if (n == 0)
{
/* The return value goes in memory. Arrange for the closure
return value to go directly back to the original caller. */
rvalue = (void *) (unsigned long) reg_args->gpr[gprcount++];
/* We don't have to do anything in asm for the return. */
ret = FFI_TYPE_VOID;
}
else if (ret == FFI_TYPE_STRUCT && n == 2)
{
/* Mark which register the second word of the structure goes in. */
_Bool sse0 = SSE_CLASS_P (classes[0]);
_Bool sse1 = SSE_CLASS_P (classes[1]);
if (!sse0 && sse1)
ret |= 1 << 8;
else if (sse0 && !sse1)
ret |= 1 << 9;
}
}
avn = cif->nargs;
arg_types = cif->arg_types;
for (i = 0; i < avn; ++i)
{
enum x86_64_reg_class classes[MAX_CLASSES];
int n;
n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse);
if (n == 0
|| gprcount + ngpr > MAX_GPR_REGS
|| ssecount + nsse > MAX_SSE_REGS)
{
long align = arg_types[i]->alignment;
/* Stack arguments are *always* at least 8 byte aligned. */
if (align < 8)
align = 8;
/* Pass this argument in memory. */
argp = (void *) ALIGN (argp, align);
avalue[i] = argp;
argp += arg_types[i]->size;
}
/* If the argument is in a single register, or two consecutive
integer registers, then we can use that address directly. */
else if (n == 1
|| (n == 2 && !(SSE_CLASS_P (classes[0])
|| SSE_CLASS_P (classes[1]))))
{
/* The argument is in a single register. */
if (SSE_CLASS_P (classes[0]))
{
avalue[i] = &reg_args->sse[ssecount];
ssecount += n;
}
else
{
avalue[i] = &reg_args->gpr[gprcount];
gprcount += n;
}
}
/* Otherwise, allocate space to make them consecutive. */
else
{
char *a = alloca (16);
int j;
avalue[i] = a;
for (j = 0; j < n; j++, a += 8)
{
if (SSE_CLASS_P (classes[j]))
memcpy (a, &reg_args->sse[ssecount++], 8);
else
memcpy (a, &reg_args->gpr[gprcount++], 8);
}
}
}
/* Invoke the closure. */
closure->fun (cif, rvalue, avalue, closure->user_data);
/* Tell assembly how to perform return type promotions. */
return ret;
}
#endif /* __x86_64__ */

View File

@@ -0,0 +1,237 @@
/* -----------------------------------------------------------------------
prep_cif.c - Copyright (c) 2011, 2012 Anthony Green
Copyright (c) 1996, 1998, 2007 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Round up to FFI_SIZEOF_ARG. */
#define STACK_ARG_SIZE(x) ALIGN(x, FFI_SIZEOF_ARG)
/* Perform machine independent initialization of aggregate type
specifications. */
static ffi_status initialize_aggregate(ffi_type *arg)
{
ffi_type **ptr;
if (UNLIKELY(arg == NULL || arg->elements == NULL))
return FFI_BAD_TYPEDEF;
arg->size = 0;
arg->alignment = 0;
ptr = &(arg->elements[0]);
if (UNLIKELY(ptr == 0))
return FFI_BAD_TYPEDEF;
while ((*ptr) != NULL)
{
if (UNLIKELY(((*ptr)->size == 0)
&& (initialize_aggregate((*ptr)) != FFI_OK)))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type */
FFI_ASSERT_VALID_TYPE(*ptr);
arg->size = ALIGN(arg->size, (*ptr)->alignment);
arg->size += (*ptr)->size;
arg->alignment = (arg->alignment > (*ptr)->alignment) ?
arg->alignment : (*ptr)->alignment;
ptr++;
}
/* Structure size includes tail padding. This is important for
structures that fit in one register on ABIs like the PowerPC64
Linux ABI that right justify small structs in a register.
It's also needed for nested structure layout, for example
struct A { long a; char b; }; struct B { struct A x; char y; };
should find y at an offset of 2*sizeof(long) and result in a
total size of 3*sizeof(long). */
arg->size = ALIGN (arg->size, arg->alignment);
if (arg->size == 0)
return FFI_BAD_TYPEDEF;
else
return FFI_OK;
}
#ifndef __CRIS__
/* The CRIS ABI specifies structure elements to have byte
alignment only, so it completely overrides this functions,
which assumes "natural" alignment and padding. */
/* Perform machine independent ffi_cif preparation, then call
machine dependent routine. */
/* For non variadic functions isvariadic should be 0 and
nfixedargs==ntotalargs.
For variadic calls, isvariadic should be 1 and nfixedargs
and ntotalargs set as appropriate. nfixedargs must always be >=1 */
ffi_status FFI_HIDDEN ffi_prep_cif_core(ffi_cif *cif, ffi_abi abi,
unsigned int isvariadic,
unsigned int nfixedargs,
unsigned int ntotalargs,
ffi_type *rtype, ffi_type **atypes)
{
unsigned bytes = 0;
unsigned int i;
ffi_type **ptr;
FFI_ASSERT(cif != NULL);
FFI_ASSERT((!isvariadic) || (nfixedargs >= 1));
FFI_ASSERT(nfixedargs <= ntotalargs);
#ifndef X86_WIN32
if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI))
return FFI_BAD_ABI;
#else
if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI || abi == FFI_THISCALL))
return FFI_BAD_ABI;
#endif
cif->abi = abi;
cif->arg_types = atypes;
cif->nargs = ntotalargs;
cif->rtype = rtype;
cif->flags = 0;
/* Initialize the return type if necessary */
if ((cif->rtype->size == 0) && (initialize_aggregate(cif->rtype) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the return type */
FFI_ASSERT_VALID_TYPE(cif->rtype);
/* x86, x86-64 and s390 stack space allocation is handled in prep_machdep. */
#if !defined M68K && !defined X86_ANY && !defined S390 && !defined PA
/* Make space for the return structure pointer */
if (cif->rtype->type == FFI_TYPE_STRUCT
#ifdef SPARC
&& (cif->abi != FFI_V9 || cif->rtype->size > 32)
#endif
#ifdef TILE
&& (cif->rtype->size > 10 * FFI_SIZEOF_ARG)
#endif
#ifdef XTENSA
&& (cif->rtype->size > 16)
#endif
)
bytes = STACK_ARG_SIZE(sizeof(void*));
#endif
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
/* Initialize any uninitialized aggregate type definitions */
if (((*ptr)->size == 0) && (initialize_aggregate((*ptr)) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type, do this
check after the initialization. */
FFI_ASSERT_VALID_TYPE(*ptr);
#if !defined X86_ANY && !defined S390 && !defined PA
#ifdef SPARC
if (((*ptr)->type == FFI_TYPE_STRUCT
&& ((*ptr)->size > 16 || cif->abi != FFI_V9))
|| ((*ptr)->type == FFI_TYPE_LONGDOUBLE
&& cif->abi != FFI_V9))
bytes += sizeof(void*);
else
#endif
{
/* Add any padding if necessary */
if (((*ptr)->alignment - 1) & bytes)
bytes = ALIGN(bytes, (*ptr)->alignment);
#ifdef TILE
if (bytes < 10 * FFI_SIZEOF_ARG &&
bytes + STACK_ARG_SIZE((*ptr)->size) > 10 * FFI_SIZEOF_ARG)
{
/* An argument is never split between the 10 parameter
registers and the stack. */
bytes = 10 * FFI_SIZEOF_ARG;
}
#endif
#ifdef XTENSA
if (bytes <= 6*4 && bytes + STACK_ARG_SIZE((*ptr)->size) > 6*4)
bytes = 6*4;
#endif
bytes += STACK_ARG_SIZE((*ptr)->size);
}
#endif
}
cif->bytes = bytes;
/* Perform machine dependent cif processing */
#ifdef FFI_TARGET_SPECIFIC_VARIADIC
if (isvariadic)
return ffi_prep_cif_machdep_var(cif, nfixedargs, ntotalargs);
#endif
return ffi_prep_cif_machdep(cif);
}
#endif /* not __CRIS__ */
ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi, unsigned int nargs,
ffi_type *rtype, ffi_type **atypes)
{
return ffi_prep_cif_core(cif, abi, 0, nargs, nargs, rtype, atypes);
}
ffi_status ffi_prep_cif_var(ffi_cif *cif,
ffi_abi abi,
unsigned int nfixedargs,
unsigned int ntotalargs,
ffi_type *rtype,
ffi_type **atypes)
{
return ffi_prep_cif_core(cif, abi, 1, nfixedargs, ntotalargs, rtype, atypes);
}
#if FFI_CLOSURES
ffi_status
ffi_prep_closure (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data)
{
return ffi_prep_closure_loc (closure, cif, fun, user_data, closure);
}
#endif

View File

@@ -0,0 +1,77 @@
/* -----------------------------------------------------------------------
types.c - Copyright (c) 1996, 1998 Red Hat, Inc.
Predefined ffi_types needed by libffi.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* Hide the basic type definitions from the header file, so that we
can redefine them here as "const". */
#define LIBFFI_HIDE_BASIC_TYPES
#include <ffi.h>
#include <ffi_common.h>
/* Type definitions */
#define FFI_TYPEDEF(name, type, id) \
struct struct_align_##name { \
char c; \
type x; \
}; \
const ffi_type ffi_type_##name = { \
sizeof(type), \
offsetof(struct struct_align_##name, x), \
id, NULL \
}
/* Size and alignment are fake here. They must not be 0. */
const ffi_type ffi_type_void = {
1, 1, FFI_TYPE_VOID, NULL
};
FFI_TYPEDEF(uint8, UINT8, FFI_TYPE_UINT8);
FFI_TYPEDEF(sint8, SINT8, FFI_TYPE_SINT8);
FFI_TYPEDEF(uint16, UINT16, FFI_TYPE_UINT16);
FFI_TYPEDEF(sint16, SINT16, FFI_TYPE_SINT16);
FFI_TYPEDEF(uint32, UINT32, FFI_TYPE_UINT32);
FFI_TYPEDEF(sint32, SINT32, FFI_TYPE_SINT32);
FFI_TYPEDEF(uint64, UINT64, FFI_TYPE_UINT64);
FFI_TYPEDEF(sint64, SINT64, FFI_TYPE_SINT64);
FFI_TYPEDEF(pointer, void*, FFI_TYPE_POINTER);
FFI_TYPEDEF(float, float, FFI_TYPE_FLOAT);
FFI_TYPEDEF(double, double, FFI_TYPE_DOUBLE);
#ifdef __alpha__
/* Even if we're not configured to default to 128-bit long double,
maintain binary compatibility, as -mlong-double-128 can be used
at any time. */
/* Validate the hard-coded number below. */
# if defined(__LONG_DOUBLE_128__) && FFI_TYPE_LONGDOUBLE != 4
# error FFI_TYPE_LONGDOUBLE out of date
# endif
const ffi_type ffi_type_longdouble = { 16, 16, 4, NULL };
#elif FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
FFI_TYPEDEF(longdouble, long double, FFI_TYPE_LONGDOUBLE);
#endif

View File

@@ -0,0 +1,759 @@
/* -----------------------------------------------------------------------
win32.S - Copyright (c) 1996, 1998, 2001, 2002, 2009 Red Hat, Inc.
Copyright (c) 2001 John Beniton
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2009 Daniel Witte
X86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
-----------------------------------------------------------------------
*/
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#include <ffitarget.h>
.text
// This assumes we are using gas.
.balign 16
.globl _ffi_call_win32
#ifndef __OS2__
.def _ffi_call_win32; .scl 2; .type 32; .endef
#endif
_ffi_call_win32:
.LFB1:
pushl %ebp
.LCFI0:
movl %esp,%ebp
.LCFI1:
// Make room for all of the new args.
movl 20(%ebp),%ecx
subl %ecx,%esp
movl %esp,%eax
// Place all of the ffi_prep_args in position
pushl 12(%ebp)
pushl %eax
call *8(%ebp)
// Return stack to previous state and call the function
addl $8,%esp
// Handle fastcall and thiscall
cmpl $3, 16(%ebp) // FFI_THISCALL
jz .do_thiscall
cmpl $4, 16(%ebp) // FFI_FASTCALL
jnz .do_fncall
movl (%esp), %ecx
movl 4(%esp), %edx
addl $8, %esp
jmp .do_fncall
.do_thiscall:
movl (%esp), %ecx
addl $4, %esp
.do_fncall:
// FIXME: Align the stack to a 128-bit boundary to avoid
// potential performance hits.
call *32(%ebp)
// stdcall functions pop arguments off the stack themselves
// Load %ecx with the return type code
movl 24(%ebp),%ecx
// If the return value pointer is NULL, assume no return value.
cmpl $0,28(%ebp)
jne 0f
// Even if there is no space for the return value, we are
// obliged to handle floating-point values.
cmpl $FFI_TYPE_FLOAT,%ecx
jne .Lnoretval
fstp %st(0)
jmp .Lepilogue
0:
call 1f
// Do not insert anything here between the call and the jump table.
.Lstore_table:
.long .Lnoretval /* FFI_TYPE_VOID */
.long .Lretint /* FFI_TYPE_INT */
.long .Lretfloat /* FFI_TYPE_FLOAT */
.long .Lretdouble /* FFI_TYPE_DOUBLE */
.long .Lretlongdouble /* FFI_TYPE_LONGDOUBLE */
.long .Lretuint8 /* FFI_TYPE_UINT8 */
.long .Lretsint8 /* FFI_TYPE_SINT8 */
.long .Lretuint16 /* FFI_TYPE_UINT16 */
.long .Lretsint16 /* FFI_TYPE_SINT16 */
.long .Lretint /* FFI_TYPE_UINT32 */
.long .Lretint /* FFI_TYPE_SINT32 */
.long .Lretint64 /* FFI_TYPE_UINT64 */
.long .Lretint64 /* FFI_TYPE_SINT64 */
.long .Lretstruct /* FFI_TYPE_STRUCT */
.long .Lretint /* FFI_TYPE_POINTER */
.long .Lretstruct1b /* FFI_TYPE_SMALL_STRUCT_1B */
.long .Lretstruct2b /* FFI_TYPE_SMALL_STRUCT_2B */
.long .Lretstruct4b /* FFI_TYPE_SMALL_STRUCT_4B */
.long .Lretstruct /* FFI_TYPE_MS_STRUCT */
1:
add %ecx, %ecx
add %ecx, %ecx
add (%esp),%ecx
add $4, %esp
jmp *(%ecx)
/* Sign/zero extend as appropriate. */
.Lretsint8:
movsbl %al, %eax
jmp .Lretint
.Lretsint16:
movswl %ax, %eax
jmp .Lretint
.Lretuint8:
movzbl %al, %eax
jmp .Lretint
.Lretuint16:
movzwl %ax, %eax
jmp .Lretint
.Lretint:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
movl %eax,0(%ecx)
jmp .Lepilogue
.Lretfloat:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
fstps (%ecx)
jmp .Lepilogue
.Lretdouble:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
fstpl (%ecx)
jmp .Lepilogue
.Lretlongdouble:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
fstpt (%ecx)
jmp .Lepilogue
.Lretint64:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
movl %eax,0(%ecx)
movl %edx,4(%ecx)
jmp .Lepilogue
.Lretstruct1b:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
movb %al,0(%ecx)
jmp .Lepilogue
.Lretstruct2b:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
movw %ax,0(%ecx)
jmp .Lepilogue
.Lretstruct4b:
// Load %ecx with the pointer to storage for the return value
movl 28(%ebp),%ecx
movl %eax,0(%ecx)
jmp .Lepilogue
.Lretstruct:
// Nothing to do!
.Lnoretval:
.Lepilogue:
movl %ebp,%esp
popl %ebp
ret
.ffi_call_win32_end:
.balign 16
.globl _ffi_closure_THISCALL
#ifndef __OS2__
.def _ffi_closure_THISCALL; .scl 2; .type 32; .endef
#endif
_ffi_closure_THISCALL:
pushl %ebp
movl %esp, %ebp
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp) /* resp */
leal 12(%ebp), %edx /* account for stub return address on stack */
jmp .stub
.LFE1:
// This assumes we are using gas.
.balign 16
.globl _ffi_closure_SYSV
#ifndef __OS2__
.def _ffi_closure_SYSV; .scl 2; .type 32; .endef
#endif
_ffi_closure_SYSV:
.LFB3:
pushl %ebp
.LCFI4:
movl %esp, %ebp
.LCFI5:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp) /* resp */
leal 8(%ebp), %edx
.stub:
movl %edx, 4(%esp) /* args = __builtin_dwarf_cfa () */
leal -12(%ebp), %edx
movl %edx, (%esp) /* &resp */
call _ffi_closure_SYSV_inner
movl -12(%ebp), %ecx
0:
call 1f
// Do not insert anything here between the call and the jump table.
.Lcls_store_table:
.long .Lcls_noretval /* FFI_TYPE_VOID */
.long .Lcls_retint /* FFI_TYPE_INT */
.long .Lcls_retfloat /* FFI_TYPE_FLOAT */
.long .Lcls_retdouble /* FFI_TYPE_DOUBLE */
.long .Lcls_retldouble /* FFI_TYPE_LONGDOUBLE */
.long .Lcls_retuint8 /* FFI_TYPE_UINT8 */
.long .Lcls_retsint8 /* FFI_TYPE_SINT8 */
.long .Lcls_retuint16 /* FFI_TYPE_UINT16 */
.long .Lcls_retsint16 /* FFI_TYPE_SINT16 */
.long .Lcls_retint /* FFI_TYPE_UINT32 */
.long .Lcls_retint /* FFI_TYPE_SINT32 */
.long .Lcls_retllong /* FFI_TYPE_UINT64 */
.long .Lcls_retllong /* FFI_TYPE_SINT64 */
.long .Lcls_retstruct /* FFI_TYPE_STRUCT */
.long .Lcls_retint /* FFI_TYPE_POINTER */
.long .Lcls_retstruct1 /* FFI_TYPE_SMALL_STRUCT_1B */
.long .Lcls_retstruct2 /* FFI_TYPE_SMALL_STRUCT_2B */
.long .Lcls_retstruct4 /* FFI_TYPE_SMALL_STRUCT_4B */
.long .Lcls_retmsstruct /* FFI_TYPE_MS_STRUCT */
1:
add %eax, %eax
add %eax, %eax
add (%esp),%eax
add $4, %esp
jmp *(%eax)
/* Sign/zero extend as appropriate. */
.Lcls_retsint8:
movsbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retsint16:
movswl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retuint8:
movzbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retuint16:
movzwl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retint:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retfloat:
flds (%ecx)
jmp .Lcls_epilogue
.Lcls_retdouble:
fldl (%ecx)
jmp .Lcls_epilogue
.Lcls_retldouble:
fldt (%ecx)
jmp .Lcls_epilogue
.Lcls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lcls_epilogue
.Lcls_retstruct1:
movsbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct2:
movswl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct4:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct:
// Caller expects us to pop struct return value pointer hidden arg.
movl %ebp, %esp
popl %ebp
ret $0x4
.Lcls_retmsstruct:
// Caller expects us to return a pointer to the real return value.
mov %ecx, %eax
// Caller doesn't expects us to pop struct return value pointer hidden arg.
jmp .Lcls_epilogue
.Lcls_noretval:
.Lcls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.ffi_closure_SYSV_end:
.LFE3:
#if !FFI_NO_RAW_API
#define RAW_CLOSURE_CIF_OFFSET ((FFI_TRAMPOLINE_SIZE + 3) & ~3)
#define RAW_CLOSURE_FUN_OFFSET (RAW_CLOSURE_CIF_OFFSET + 4)
#define RAW_CLOSURE_USER_DATA_OFFSET (RAW_CLOSURE_FUN_OFFSET + 4)
#define CIF_FLAGS_OFFSET 20
.balign 16
.globl _ffi_closure_raw_THISCALL
#ifndef __OS2__
.def _ffi_closure_raw_THISCALL; .scl 2; .type 32; .endef
#endif
_ffi_closure_raw_THISCALL:
pushl %ebp
movl %esp, %ebp
pushl %esi
subl $36, %esp
movl RAW_CLOSURE_CIF_OFFSET(%eax), %esi /* closure->cif */
movl RAW_CLOSURE_USER_DATA_OFFSET(%eax), %edx /* closure->user_data */
movl %edx, 12(%esp) /* user_data */
leal 12(%ebp), %edx /* __builtin_dwarf_cfa () */
jmp .stubraw
// This assumes we are using gas.
.balign 16
.globl _ffi_closure_raw_SYSV
#ifndef __OS2__
.def _ffi_closure_raw_SYSV; .scl 2; .type 32; .endef
#endif
_ffi_closure_raw_SYSV:
.LFB4:
pushl %ebp
.LCFI6:
movl %esp, %ebp
.LCFI7:
pushl %esi
.LCFI8:
subl $36, %esp
movl RAW_CLOSURE_CIF_OFFSET(%eax), %esi /* closure->cif */
movl RAW_CLOSURE_USER_DATA_OFFSET(%eax), %edx /* closure->user_data */
movl %edx, 12(%esp) /* user_data */
leal 8(%ebp), %edx /* __builtin_dwarf_cfa () */
.stubraw:
movl %edx, 8(%esp) /* raw_args */
leal -24(%ebp), %edx
movl %edx, 4(%esp) /* &res */
movl %esi, (%esp) /* cif */
call *RAW_CLOSURE_FUN_OFFSET(%eax) /* closure->fun */
movl CIF_FLAGS_OFFSET(%esi), %eax /* rtype */
0:
call 1f
// Do not insert anything here between the call and the jump table.
.Lrcls_store_table:
.long .Lrcls_noretval /* FFI_TYPE_VOID */
.long .Lrcls_retint /* FFI_TYPE_INT */
.long .Lrcls_retfloat /* FFI_TYPE_FLOAT */
.long .Lrcls_retdouble /* FFI_TYPE_DOUBLE */
.long .Lrcls_retldouble /* FFI_TYPE_LONGDOUBLE */
.long .Lrcls_retuint8 /* FFI_TYPE_UINT8 */
.long .Lrcls_retsint8 /* FFI_TYPE_SINT8 */
.long .Lrcls_retuint16 /* FFI_TYPE_UINT16 */
.long .Lrcls_retsint16 /* FFI_TYPE_SINT16 */
.long .Lrcls_retint /* FFI_TYPE_UINT32 */
.long .Lrcls_retint /* FFI_TYPE_SINT32 */
.long .Lrcls_retllong /* FFI_TYPE_UINT64 */
.long .Lrcls_retllong /* FFI_TYPE_SINT64 */
.long .Lrcls_retstruct /* FFI_TYPE_STRUCT */
.long .Lrcls_retint /* FFI_TYPE_POINTER */
.long .Lrcls_retstruct1 /* FFI_TYPE_SMALL_STRUCT_1B */
.long .Lrcls_retstruct2 /* FFI_TYPE_SMALL_STRUCT_2B */
.long .Lrcls_retstruct4 /* FFI_TYPE_SMALL_STRUCT_4B */
.long .Lrcls_retstruct /* FFI_TYPE_MS_STRUCT */
1:
add %eax, %eax
add %eax, %eax
add (%esp),%eax
add $4, %esp
jmp *(%eax)
/* Sign/zero extend as appropriate. */
.Lrcls_retsint8:
movsbl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retsint16:
movswl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retuint8:
movzbl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retuint16:
movzwl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retint:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retfloat:
flds -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retdouble:
fldl -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retldouble:
fldt -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retllong:
movl -24(%ebp), %eax
movl -20(%ebp), %edx
jmp .Lrcls_epilogue
.Lrcls_retstruct1:
movsbl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retstruct2:
movswl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retstruct4:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retstruct:
// Nothing to do!
.Lrcls_noretval:
.Lrcls_epilogue:
addl $36, %esp
popl %esi
popl %ebp
ret
.ffi_closure_raw_SYSV_end:
.LFE4:
#endif /* !FFI_NO_RAW_API */
// This assumes we are using gas.
.balign 16
.globl _ffi_closure_STDCALL
#ifndef __OS2__
.def _ffi_closure_STDCALL; .scl 2; .type 32; .endef
#endif
_ffi_closure_STDCALL:
.LFB5:
pushl %ebp
.LCFI9:
movl %esp, %ebp
.LCFI10:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp) /* resp */
leal 12(%ebp), %edx /* account for stub return address on stack */
movl %edx, 4(%esp) /* args */
leal -12(%ebp), %edx
movl %edx, (%esp) /* &resp */
call _ffi_closure_SYSV_inner
movl -12(%ebp), %ecx
0:
call 1f
// Do not insert anything here between the call and the jump table.
.Lscls_store_table:
.long .Lscls_noretval /* FFI_TYPE_VOID */
.long .Lscls_retint /* FFI_TYPE_INT */
.long .Lscls_retfloat /* FFI_TYPE_FLOAT */
.long .Lscls_retdouble /* FFI_TYPE_DOUBLE */
.long .Lscls_retldouble /* FFI_TYPE_LONGDOUBLE */
.long .Lscls_retuint8 /* FFI_TYPE_UINT8 */
.long .Lscls_retsint8 /* FFI_TYPE_SINT8 */
.long .Lscls_retuint16 /* FFI_TYPE_UINT16 */
.long .Lscls_retsint16 /* FFI_TYPE_SINT16 */
.long .Lscls_retint /* FFI_TYPE_UINT32 */
.long .Lscls_retint /* FFI_TYPE_SINT32 */
.long .Lscls_retllong /* FFI_TYPE_UINT64 */
.long .Lscls_retllong /* FFI_TYPE_SINT64 */
.long .Lscls_retstruct /* FFI_TYPE_STRUCT */
.long .Lscls_retint /* FFI_TYPE_POINTER */
.long .Lscls_retstruct1 /* FFI_TYPE_SMALL_STRUCT_1B */
.long .Lscls_retstruct2 /* FFI_TYPE_SMALL_STRUCT_2B */
.long .Lscls_retstruct4 /* FFI_TYPE_SMALL_STRUCT_4B */
1:
add %eax, %eax
add %eax, %eax
add (%esp),%eax
add $4, %esp
jmp *(%eax)
/* Sign/zero extend as appropriate. */
.Lscls_retsint8:
movsbl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retsint16:
movswl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retuint8:
movzbl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retuint16:
movzwl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retint:
movl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retfloat:
flds (%ecx)
jmp .Lscls_epilogue
.Lscls_retdouble:
fldl (%ecx)
jmp .Lscls_epilogue
.Lscls_retldouble:
fldt (%ecx)
jmp .Lscls_epilogue
.Lscls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lscls_epilogue
.Lscls_retstruct1:
movsbl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retstruct2:
movswl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retstruct4:
movl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retstruct:
// Nothing to do!
.Lscls_noretval:
.Lscls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.ffi_closure_STDCALL_end:
.LFE5:
#ifndef __OS2__
.section .eh_frame,"w"
#endif
.Lframe1:
.LSCIE1:
.long .LECIE1-.LASCIE1 /* Length of Common Information Entry */
.LASCIE1:
.long 0x0 /* CIE Identifier Tag */
.byte 0x1 /* CIE Version */
#ifdef __PIC__
.ascii "zR\0" /* CIE Augmentation */
#else
.ascii "\0" /* CIE Augmentation */
#endif
.byte 0x1 /* .uleb128 0x1; CIE Code Alignment Factor */
.byte 0x7c /* .sleb128 -4; CIE Data Alignment Factor */
.byte 0x8 /* CIE RA Column */
#ifdef __PIC__
.byte 0x1 /* .uleb128 0x1; Augmentation size */
.byte 0x1b /* FDE Encoding (pcrel sdata4) */
#endif
.byte 0xc /* DW_CFA_def_cfa CFA = r4 + 4 = 4(%esp) */
.byte 0x4 /* .uleb128 0x4 */
.byte 0x4 /* .uleb128 0x4 */
.byte 0x88 /* DW_CFA_offset, column 0x8 %eip at CFA + 1 * -4 */
.byte 0x1 /* .uleb128 0x1 */
.align 4
.LECIE1:
.LSFDE1:
.long .LEFDE1-.LASFDE1 /* FDE Length */
.LASFDE1:
.long .LASFDE1-.Lframe1 /* FDE CIE offset */
#if defined __PIC__ && defined HAVE_AS_X86_PCREL
.long .LFB1-. /* FDE initial location */
#else
.long .LFB1
#endif
.long .LFE1-.LFB1 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
/* DW_CFA_xxx CFI instructions go here. */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI0-.LFB1
.byte 0xe /* DW_CFA_def_cfa_offset CFA = r4 + 8 = 8(%esp) */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 %ebp at CFA + 2 * -4 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI1-.LCFI0
.byte 0xd /* DW_CFA_def_cfa_register CFA = r5 = %ebp */
.byte 0x5 /* .uleb128 0x5 */
/* End of DW_CFA_xxx CFI instructions. */
.align 4
.LEFDE1:
.LSFDE3:
.long .LEFDE3-.LASFDE3 /* FDE Length */
.LASFDE3:
.long .LASFDE3-.Lframe1 /* FDE CIE offset */
#if defined __PIC__ && defined HAVE_AS_X86_PCREL
.long .LFB3-. /* FDE initial location */
#else
.long .LFB3
#endif
.long .LFE3-.LFB3 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
/* DW_CFA_xxx CFI instructions go here. */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI4-.LFB3
.byte 0xe /* DW_CFA_def_cfa_offset CFA = r4 + 8 = 8(%esp) */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 %ebp at CFA + 2 * -4 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI5-.LCFI4
.byte 0xd /* DW_CFA_def_cfa_register CFA = r5 = %ebp */
.byte 0x5 /* .uleb128 0x5 */
/* End of DW_CFA_xxx CFI instructions. */
.align 4
.LEFDE3:
#if !FFI_NO_RAW_API
.LSFDE4:
.long .LEFDE4-.LASFDE4 /* FDE Length */
.LASFDE4:
.long .LASFDE4-.Lframe1 /* FDE CIE offset */
#if defined __PIC__ && defined HAVE_AS_X86_PCREL
.long .LFB4-. /* FDE initial location */
#else
.long .LFB4
#endif
.long .LFE4-.LFB4 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
/* DW_CFA_xxx CFI instructions go here. */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI6-.LFB4
.byte 0xe /* DW_CFA_def_cfa_offset CFA = r4 + 8 = 8(%esp) */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 %ebp at CFA + 2 * -4 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI7-.LCFI6
.byte 0xd /* DW_CFA_def_cfa_register CFA = r5 = %ebp */
.byte 0x5 /* .uleb128 0x5 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI8-.LCFI7
.byte 0x86 /* DW_CFA_offset, column 0x6 %esi at CFA + 3 * -4 */
.byte 0x3 /* .uleb128 0x3 */
/* End of DW_CFA_xxx CFI instructions. */
.align 4
.LEFDE4:
#endif /* !FFI_NO_RAW_API */
.LSFDE5:
.long .LEFDE5-.LASFDE5 /* FDE Length */
.LASFDE5:
.long .LASFDE5-.Lframe1 /* FDE CIE offset */
#if defined __PIC__ && defined HAVE_AS_X86_PCREL
.long .LFB5-. /* FDE initial location */
#else
.long .LFB5
#endif
.long .LFE5-.LFB5 /* FDE address range */
#ifdef __PIC__
.byte 0x0 /* .uleb128 0x0; Augmentation size */
#endif
/* DW_CFA_xxx CFI instructions go here. */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI9-.LFB5
.byte 0xe /* DW_CFA_def_cfa_offset CFA = r4 + 8 = 8(%esp) */
.byte 0x8 /* .uleb128 0x8 */
.byte 0x85 /* DW_CFA_offset, column 0x5 %ebp at CFA + 2 * -4 */
.byte 0x2 /* .uleb128 0x2 */
.byte 0x4 /* DW_CFA_advance_loc4 */
.long .LCFI10-.LCFI9
.byte 0xd /* DW_CFA_def_cfa_register CFA = r5 = %ebp */
.byte 0x5 /* .uleb128 0x5 */
/* End of DW_CFA_xxx CFI instructions. */
.align 4
.LEFDE5:

View File

@@ -0,0 +1,736 @@
# 1 "gcc\\win32_asm.asm"
# 1 "<command-line>"
# 1 "gcc\\win32_asm.asm"
# 33 "gcc\\win32_asm.asm"
# 1 "common/fficonfig.h" 1
# 34 "gcc\\win32_asm.asm" 2
# 1 "common/ffi.h" 1
# 63 "common/ffi.h"
# 1 "common/ffitarget.h" 1
# 64 "common/ffi.h" 2
# 35 "gcc\\win32_asm.asm" 2
.text
.balign 16
.globl _ffi_call_win32
.def _ffi_call_win32; .scl 2; .type 32; .endef
_ffi_call_win32:
.LFB1:
pushl %ebp
.LCFI0:
movl %esp,%ebp
.LCFI1:
movl 20(%ebp),%ecx
subl %ecx,%esp
movl %esp,%eax
pushl 12(%ebp)
pushl %eax
call *8(%ebp)
addl $8,%esp
cmpl $3, 16(%ebp)
jz .do_thiscall
cmpl $4, 16(%ebp)
jnz .do_fncall
movl (%esp), %ecx
movl 4(%esp), %edx
addl $8, %esp
jmp .do_fncall
.do_thiscall:
movl (%esp), %ecx
addl $4, %esp
.do_fncall:
call *32(%ebp)
movl 24(%ebp),%ecx
cmpl $0,28(%ebp)
jne 0f
cmpl $2,%ecx
jne .Lnoretval
fstp %st(0)
jmp .Lepilogue
0:
call 1f
.Lstore_table:
.long .Lnoretval
.long .Lretint
.long .Lretfloat
.long .Lretdouble
.long .Lretlongdouble
.long .Lretuint8
.long .Lretsint8
.long .Lretuint16
.long .Lretsint16
.long .Lretint
.long .Lretint
.long .Lretint64
.long .Lretint64
.long .Lretstruct
.long .Lretint
.long .Lretstruct1b
.long .Lretstruct2b
.long .Lretstruct4b
.long .Lretstruct
1:
add %ecx, %ecx
add %ecx, %ecx
add (%esp),%ecx
add $4, %esp
jmp *(%ecx)
.Lretsint8:
movsbl %al, %eax
jmp .Lretint
.Lretsint16:
movswl %ax, %eax
jmp .Lretint
.Lretuint8:
movzbl %al, %eax
jmp .Lretint
.Lretuint16:
movzwl %ax, %eax
jmp .Lretint
.Lretint:
movl 28(%ebp),%ecx
movl %eax,0(%ecx)
jmp .Lepilogue
.Lretfloat:
movl 28(%ebp),%ecx
fstps (%ecx)
jmp .Lepilogue
.Lretdouble:
movl 28(%ebp),%ecx
fstpl (%ecx)
jmp .Lepilogue
.Lretlongdouble:
movl 28(%ebp),%ecx
fstpt (%ecx)
jmp .Lepilogue
.Lretint64:
movl 28(%ebp),%ecx
movl %eax,0(%ecx)
movl %edx,4(%ecx)
jmp .Lepilogue
.Lretstruct1b:
movl 28(%ebp),%ecx
movb %al,0(%ecx)
jmp .Lepilogue
.Lretstruct2b:
movl 28(%ebp),%ecx
movw %ax,0(%ecx)
jmp .Lepilogue
.Lretstruct4b:
movl 28(%ebp),%ecx
movl %eax,0(%ecx)
jmp .Lepilogue
.Lretstruct:
.Lnoretval:
.Lepilogue:
movl %ebp,%esp
popl %ebp
ret
.ffi_call_win32_end:
.balign 16
.globl _ffi_closure_THISCALL
.def _ffi_closure_THISCALL; .scl 2; .type 32; .endef
_ffi_closure_THISCALL:
pushl %ebp
movl %esp, %ebp
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp)
leal 12(%ebp), %edx
jmp .stub
.LFE1:
.balign 16
.globl _ffi_closure_SYSV
.def _ffi_closure_SYSV; .scl 2; .type 32; .endef
_ffi_closure_SYSV:
.LFB3:
pushl %ebp
.LCFI4:
movl %esp, %ebp
.LCFI5:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp)
leal 8(%ebp), %edx
.stub:
movl %edx, 4(%esp)
leal -12(%ebp), %edx
movl %edx, (%esp)
call _ffi_closure_SYSV_inner
movl -12(%ebp), %ecx
0:
call 1f
.Lcls_store_table:
.long .Lcls_noretval
.long .Lcls_retint
.long .Lcls_retfloat
.long .Lcls_retdouble
.long .Lcls_retldouble
.long .Lcls_retuint8
.long .Lcls_retsint8
.long .Lcls_retuint16
.long .Lcls_retsint16
.long .Lcls_retint
.long .Lcls_retint
.long .Lcls_retllong
.long .Lcls_retllong
.long .Lcls_retstruct
.long .Lcls_retint
.long .Lcls_retstruct1
.long .Lcls_retstruct2
.long .Lcls_retstruct4
.long .Lcls_retmsstruct
1:
add %eax, %eax
add %eax, %eax
add (%esp),%eax
add $4, %esp
jmp *(%eax)
.Lcls_retsint8:
movsbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retsint16:
movswl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retuint8:
movzbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retuint16:
movzwl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retint:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retfloat:
flds (%ecx)
jmp .Lcls_epilogue
.Lcls_retdouble:
fldl (%ecx)
jmp .Lcls_epilogue
.Lcls_retldouble:
fldt (%ecx)
jmp .Lcls_epilogue
.Lcls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lcls_epilogue
.Lcls_retstruct1:
movsbl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct2:
movswl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct4:
movl (%ecx), %eax
jmp .Lcls_epilogue
.Lcls_retstruct:
movl %ebp, %esp
popl %ebp
ret $0x4
.Lcls_retmsstruct:
mov %ecx, %eax
jmp .Lcls_epilogue
.Lcls_noretval:
.Lcls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.ffi_closure_SYSV_end:
.LFE3:
.balign 16
.globl _ffi_closure_raw_THISCALL
.def _ffi_closure_raw_THISCALL; .scl 2; .type 32; .endef
_ffi_closure_raw_THISCALL:
pushl %ebp
movl %esp, %ebp
pushl %esi
subl $36, %esp
movl ((52 + 3) & ~3)(%eax), %esi
movl ((((52 + 3) & ~3) + 4) + 4)(%eax), %edx
movl %edx, 12(%esp)
leal 12(%ebp), %edx
jmp .stubraw
.balign 16
.globl _ffi_closure_raw_SYSV
.def _ffi_closure_raw_SYSV; .scl 2; .type 32; .endef
_ffi_closure_raw_SYSV:
.LFB4:
pushl %ebp
.LCFI6:
movl %esp, %ebp
.LCFI7:
pushl %esi
.LCFI8:
subl $36, %esp
movl ((52 + 3) & ~3)(%eax), %esi
movl ((((52 + 3) & ~3) + 4) + 4)(%eax), %edx
movl %edx, 12(%esp)
leal 8(%ebp), %edx
.stubraw:
movl %edx, 8(%esp)
leal -24(%ebp), %edx
movl %edx, 4(%esp)
movl %esi, (%esp)
call *(((52 + 3) & ~3) + 4)(%eax)
movl 20(%esi), %eax
0:
call 1f
.Lrcls_store_table:
.long .Lrcls_noretval
.long .Lrcls_retint
.long .Lrcls_retfloat
.long .Lrcls_retdouble
.long .Lrcls_retldouble
.long .Lrcls_retuint8
.long .Lrcls_retsint8
.long .Lrcls_retuint16
.long .Lrcls_retsint16
.long .Lrcls_retint
.long .Lrcls_retint
.long .Lrcls_retllong
.long .Lrcls_retllong
.long .Lrcls_retstruct
.long .Lrcls_retint
.long .Lrcls_retstruct1
.long .Lrcls_retstruct2
.long .Lrcls_retstruct4
.long .Lrcls_retstruct
1:
add %eax, %eax
add %eax, %eax
add (%esp),%eax
add $4, %esp
jmp *(%eax)
.Lrcls_retsint8:
movsbl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retsint16:
movswl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retuint8:
movzbl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retuint16:
movzwl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retint:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retfloat:
flds -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retdouble:
fldl -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retldouble:
fldt -24(%ebp)
jmp .Lrcls_epilogue
.Lrcls_retllong:
movl -24(%ebp), %eax
movl -20(%ebp), %edx
jmp .Lrcls_epilogue
.Lrcls_retstruct1:
movsbl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retstruct2:
movswl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retstruct4:
movl -24(%ebp), %eax
jmp .Lrcls_epilogue
.Lrcls_retstruct:
.Lrcls_noretval:
.Lrcls_epilogue:
addl $36, %esp
popl %esi
popl %ebp
ret
.ffi_closure_raw_SYSV_end:
.LFE4:
.balign 16
.globl _ffi_closure_STDCALL
.def _ffi_closure_STDCALL; .scl 2; .type 32; .endef
_ffi_closure_STDCALL:
.LFB5:
pushl %ebp
.LCFI9:
movl %esp, %ebp
.LCFI10:
subl $40, %esp
leal -24(%ebp), %edx
movl %edx, -12(%ebp)
leal 12(%ebp), %edx
movl %edx, 4(%esp)
leal -12(%ebp), %edx
movl %edx, (%esp)
call _ffi_closure_SYSV_inner
movl -12(%ebp), %ecx
0:
call 1f
.Lscls_store_table:
.long .Lscls_noretval
.long .Lscls_retint
.long .Lscls_retfloat
.long .Lscls_retdouble
.long .Lscls_retldouble
.long .Lscls_retuint8
.long .Lscls_retsint8
.long .Lscls_retuint16
.long .Lscls_retsint16
.long .Lscls_retint
.long .Lscls_retint
.long .Lscls_retllong
.long .Lscls_retllong
.long .Lscls_retstruct
.long .Lscls_retint
.long .Lscls_retstruct1
.long .Lscls_retstruct2
.long .Lscls_retstruct4
1:
add %eax, %eax
add %eax, %eax
add (%esp),%eax
add $4, %esp
jmp *(%eax)
.Lscls_retsint8:
movsbl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retsint16:
movswl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retuint8:
movzbl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retuint16:
movzwl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retint:
movl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retfloat:
flds (%ecx)
jmp .Lscls_epilogue
.Lscls_retdouble:
fldl (%ecx)
jmp .Lscls_epilogue
.Lscls_retldouble:
fldt (%ecx)
jmp .Lscls_epilogue
.Lscls_retllong:
movl (%ecx), %eax
movl 4(%ecx), %edx
jmp .Lscls_epilogue
.Lscls_retstruct1:
movsbl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retstruct2:
movswl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retstruct4:
movl (%ecx), %eax
jmp .Lscls_epilogue
.Lscls_retstruct:
.Lscls_noretval:
.Lscls_epilogue:
movl %ebp, %esp
popl %ebp
ret
.ffi_closure_STDCALL_end:
.LFE5:
.section .eh_frame,"w"
.Lframe1:
.LSCIE1:
.long .LECIE1-.LASCIE1
.LASCIE1:
.long 0x0
.byte 0x1
.ascii "\0"
.byte 0x1
.byte 0x7c
.byte 0x8
.byte 0xc
.byte 0x4
.byte 0x4
.byte 0x88
.byte 0x1
.align 4
.LECIE1:
.LSFDE1:
.long .LEFDE1-.LASFDE1
.LASFDE1:
.long .LASFDE1-.Lframe1
.long .LFB1
.long .LFE1-.LFB1
.byte 0x4
.long .LCFI0-.LFB1
.byte 0xe
.byte 0x8
.byte 0x85
.byte 0x2
.byte 0x4
.long .LCFI1-.LCFI0
.byte 0xd
.byte 0x5
.align 4
.LEFDE1:
.LSFDE3:
.long .LEFDE3-.LASFDE3
.LASFDE3:
.long .LASFDE3-.Lframe1
.long .LFB3
.long .LFE3-.LFB3
.byte 0x4
.long .LCFI4-.LFB3
.byte 0xe
.byte 0x8
.byte 0x85
.byte 0x2
.byte 0x4
.long .LCFI5-.LCFI4
.byte 0xd
.byte 0x5
.align 4
.LEFDE3:
.LSFDE4:
.long .LEFDE4-.LASFDE4
.LASFDE4:
.long .LASFDE4-.Lframe1
.long .LFB4
.long .LFE4-.LFB4
.byte 0x4
.long .LCFI6-.LFB4
.byte 0xe
.byte 0x8
.byte 0x85
.byte 0x2
.byte 0x4
.long .LCFI7-.LCFI6
.byte 0xd
.byte 0x5
.byte 0x4
.long .LCFI8-.LCFI7
.byte 0x86
.byte 0x3
.align 4
.LEFDE4:
.LSFDE5:
.long .LEFDE5-.LASFDE5
.LASFDE5:
.long .LASFDE5-.Lframe1
.long .LFB5
.long .LFE5-.LFB5
.byte 0x4
.long .LCFI9-.LFB5
.byte 0xe
.byte 0x8
.byte 0x85
.byte 0x2
.byte 0x4
.long .LCFI10-.LCFI9
.byte 0xd
.byte 0x5
.align 4
.LEFDE5:

View File

@@ -0,0 +1,467 @@
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
/* Constants for ffi_call_win64 */
#define STACK 0
#define PREP_ARGS_FN 32
#define ECIF 40
#define CIF_BYTES 48
#define CIF_FLAGS 56
#define RVALUE 64
#define FN 72
/* ffi_call_win64 (void (*prep_args_fn)(char *, extended_cif *),
extended_cif *ecif, unsigned bytes, unsigned flags,
unsigned *rvalue, void (*fn)());
*/
#ifdef _MSC_VER
PUBLIC ffi_call_win64
EXTRN __chkstk:NEAR
EXTRN ffi_closure_win64_inner:NEAR
_TEXT SEGMENT
;;; ffi_closure_win64 will be called with these registers set:
;;; rax points to 'closure'
;;; r11 contains a bit mask that specifies which of the
;;; first four parameters are float or double
;;;
;;; It must move the parameters passed in registers to their stack location,
;;; call ffi_closure_win64_inner for the actual work, then return the result.
;;;
ffi_closure_win64 PROC FRAME
;; copy register arguments onto stack
test r11, 1
jne first_is_float
mov QWORD PTR [rsp+8], rcx
jmp second
first_is_float:
movlpd QWORD PTR [rsp+8], xmm0
second:
test r11, 2
jne second_is_float
mov QWORD PTR [rsp+16], rdx
jmp third
second_is_float:
movlpd QWORD PTR [rsp+16], xmm1
third:
test r11, 4
jne third_is_float
mov QWORD PTR [rsp+24], r8
jmp fourth
third_is_float:
movlpd QWORD PTR [rsp+24], xmm2
fourth:
test r11, 8
jne fourth_is_float
mov QWORD PTR [rsp+32], r9
jmp done
fourth_is_float:
movlpd QWORD PTR [rsp+32], xmm3
done:
.ALLOCSTACK 40
sub rsp, 40
.ENDPROLOG
mov rcx, rax ; context is first parameter
mov rdx, rsp ; stack is second parameter
add rdx, 48 ; point to start of arguments
mov rax, ffi_closure_win64_inner
call rax ; call the real closure function
add rsp, 40
movd xmm0, rax ; If the closure returned a float,
; ffi_closure_win64_inner wrote it to rax
ret 0
ffi_closure_win64 ENDP
ffi_call_win64 PROC FRAME
;; copy registers onto stack
mov QWORD PTR [rsp+32], r9
mov QWORD PTR [rsp+24], r8
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
.PUSHREG rbp
push rbp
.ALLOCSTACK 48
sub rsp, 48 ; 00000030H
.SETFRAME rbp, 32
lea rbp, QWORD PTR [rsp+32]
.ENDPROLOG
mov eax, DWORD PTR CIF_BYTES[rbp]
add rax, 15
and rax, -16
call __chkstk
sub rsp, rax
lea rax, QWORD PTR [rsp+32]
mov QWORD PTR STACK[rbp], rax
mov rdx, QWORD PTR ECIF[rbp]
mov rcx, QWORD PTR STACK[rbp]
call QWORD PTR PREP_ARGS_FN[rbp]
mov rsp, QWORD PTR STACK[rbp]
movlpd xmm3, QWORD PTR [rsp+24]
movd r9, xmm3
movlpd xmm2, QWORD PTR [rsp+16]
movd r8, xmm2
movlpd xmm1, QWORD PTR [rsp+8]
movd rdx, xmm1
movlpd xmm0, QWORD PTR [rsp]
movd rcx, xmm0
call QWORD PTR FN[rbp]
ret_struct4b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_4B
jne ret_struct2b$
mov rcx, QWORD PTR RVALUE[rbp]
mov DWORD PTR [rcx], eax
jmp ret_void$
ret_struct2b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_2B
jne ret_struct1b$
mov rcx, QWORD PTR RVALUE[rbp]
mov WORD PTR [rcx], ax
jmp ret_void$
ret_struct1b$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SMALL_STRUCT_1B
jne ret_uint8$
mov rcx, QWORD PTR RVALUE[rbp]
mov BYTE PTR [rcx], al
jmp ret_void$
ret_uint8$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT8
jne ret_sint8$
mov rcx, QWORD PTR RVALUE[rbp]
movzx rax, al
mov QWORD PTR [rcx], rax
jmp ret_void$
ret_sint8$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT8
jne ret_uint16$
mov rcx, QWORD PTR RVALUE[rbp]
movsx rax, al
mov QWORD PTR [rcx], rax
jmp ret_void$
ret_uint16$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT16
jne ret_sint16$
mov rcx, QWORD PTR RVALUE[rbp]
movzx rax, ax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_sint16$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT16
jne ret_uint32$
mov rcx, QWORD PTR RVALUE[rbp]
movsx rax, ax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_uint32$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_UINT32
jne ret_sint32$
mov rcx, QWORD PTR RVALUE[rbp]
mov eax, eax
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_sint32$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT32
jne ret_float$
mov rcx, QWORD PTR RVALUE[rbp]
cdqe
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_float$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_FLOAT
jne SHORT ret_double$
mov rax, QWORD PTR RVALUE[rbp]
movss DWORD PTR [rax], xmm0
jmp SHORT ret_void$
ret_double$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_DOUBLE
jne SHORT ret_sint64$
mov rax, QWORD PTR RVALUE[rbp]
movlpd QWORD PTR [rax], xmm0
jmp SHORT ret_void$
ret_sint64$:
cmp DWORD PTR CIF_FLAGS[rbp], FFI_TYPE_SINT64
jne ret_void$
mov rcx, QWORD PTR RVALUE[rbp]
mov QWORD PTR [rcx], rax
jmp SHORT ret_void$
ret_void$:
xor rax, rax
lea rsp, QWORD PTR [rbp+16]
pop rbp
ret 0
ffi_call_win64 ENDP
_TEXT ENDS
END
#else
#ifdef SYMBOL_UNDERSCORE
#define SYMBOL_NAME(name) _##name
#else
#define SYMBOL_NAME(name) name
#endif
.text
.extern SYMBOL_NAME(ffi_closure_win64_inner)
// ffi_closure_win64 will be called with these registers set:
// rax points to 'closure'
// r11 contains a bit mask that specifies which of the
// first four parameters are float or double
// // It must move the parameters passed in registers to their stack location,
// call ffi_closure_win64_inner for the actual work, then return the result.
//
.balign 16
.globl SYMBOL_NAME(ffi_closure_win64)
SYMBOL_NAME(ffi_closure_win64):
// copy register arguments onto stack
test $1,%r11
jne .Lfirst_is_float
mov %rcx, 8(%rsp)
jmp .Lsecond
.Lfirst_is_float:
movlpd %xmm0, 8(%rsp)
.Lsecond:
test $2, %r11
jne .Lsecond_is_float
mov %rdx, 16(%rsp)
jmp .Lthird
.Lsecond_is_float:
movlpd %xmm1, 16(%rsp)
.Lthird:
test $4, %r11
jne .Lthird_is_float
mov %r8,24(%rsp)
jmp .Lfourth
.Lthird_is_float:
movlpd %xmm2, 24(%rsp)
.Lfourth:
test $8, %r11
jne .Lfourth_is_float
mov %r9, 32(%rsp)
jmp .Ldone
.Lfourth_is_float:
movlpd %xmm3, 32(%rsp)
.Ldone:
// ALLOCSTACK 40
sub $40, %rsp
// ENDPROLOG
mov %rax, %rcx // context is first parameter
mov %rsp, %rdx // stack is second parameter
add $48, %rdx // point to start of arguments
mov $SYMBOL_NAME(ffi_closure_win64_inner), %rax
callq *%rax // call the real closure function
add $40, %rsp
movq %rax, %xmm0 // If the closure returned a float,
// ffi_closure_win64_inner wrote it to rax
retq
.ffi_closure_win64_end:
.balign 16
.globl SYMBOL_NAME(ffi_call_win64)
SYMBOL_NAME(ffi_call_win64):
// copy registers onto stack
mov %r9,32(%rsp)
mov %r8,24(%rsp)
mov %rdx,16(%rsp)
mov %rcx,8(%rsp)
// PUSHREG rbp
push %rbp
// ALLOCSTACK 48
sub $48,%rsp
// SETFRAME rbp, 32
lea 32(%rsp),%rbp
// ENDPROLOG
mov CIF_BYTES(%rbp),%eax
add $15, %rax
and $-16, %rax
cmpq $0x1000, %rax
jb Lch_done
Lch_probe:
subq $0x1000,%rsp
orl $0x0, (%rsp)
subq $0x1000,%rax
cmpq $0x1000,%rax
ja Lch_probe
Lch_done:
subq %rax, %rsp
orl $0x0, (%rsp)
lea 32(%rsp), %rax
mov %rax, STACK(%rbp)
mov ECIF(%rbp), %rdx
mov STACK(%rbp), %rcx
callq *PREP_ARGS_FN(%rbp)
mov STACK(%rbp), %rsp
movlpd 24(%rsp), %xmm3
movd %xmm3, %r9
movlpd 16(%rsp), %xmm2
movd %xmm2, %r8
movlpd 8(%rsp), %xmm1
movd %xmm1, %rdx
movlpd (%rsp), %xmm0
movd %xmm0, %rcx
callq *FN(%rbp)
.Lret_struct4b:
cmpl $FFI_TYPE_SMALL_STRUCT_4B, CIF_FLAGS(%rbp)
jne .Lret_struct2b
mov RVALUE(%rbp), %rcx
mov %eax, (%rcx)
jmp .Lret_void
.Lret_struct2b:
cmpl $FFI_TYPE_SMALL_STRUCT_2B, CIF_FLAGS(%rbp)
jne .Lret_struct1b
mov RVALUE(%rbp), %rcx
mov %ax, (%rcx)
jmp .Lret_void
.Lret_struct1b:
cmpl $FFI_TYPE_SMALL_STRUCT_1B, CIF_FLAGS(%rbp)
jne .Lret_uint8
mov RVALUE(%rbp), %rcx
mov %al, (%rcx)
jmp .Lret_void
.Lret_uint8:
cmpl $FFI_TYPE_UINT8, CIF_FLAGS(%rbp)
jne .Lret_sint8
mov RVALUE(%rbp), %rcx
movzbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint8:
cmpl $FFI_TYPE_SINT8, CIF_FLAGS(%rbp)
jne .Lret_uint16
mov RVALUE(%rbp), %rcx
movsbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint16:
cmpl $FFI_TYPE_UINT16, CIF_FLAGS(%rbp)
jne .Lret_sint16
mov RVALUE(%rbp), %rcx
movzwq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint16:
cmpl $FFI_TYPE_SINT16, CIF_FLAGS(%rbp)
jne .Lret_uint32
mov RVALUE(%rbp), %rcx
movswq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint32:
cmpl $FFI_TYPE_UINT32, CIF_FLAGS(%rbp)
jne .Lret_sint32
mov RVALUE(%rbp), %rcx
movl %eax, %eax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint32:
cmpl $FFI_TYPE_SINT32, CIF_FLAGS(%rbp)
jne .Lret_float
mov RVALUE(%rbp), %rcx
cltq
movq %rax, (%rcx)
jmp .Lret_void
.Lret_float:
cmpl $FFI_TYPE_FLOAT, CIF_FLAGS(%rbp)
jne .Lret_double
mov RVALUE(%rbp), %rax
movss %xmm0, (%rax)
jmp .Lret_void
.Lret_double:
cmpl $FFI_TYPE_DOUBLE, CIF_FLAGS(%rbp)
jne .Lret_sint64
mov RVALUE(%rbp), %rax
movlpd %xmm0, (%rax)
jmp .Lret_void
.Lret_sint64:
cmpl $FFI_TYPE_SINT64, CIF_FLAGS(%rbp)
jne .Lret_void
mov RVALUE(%rbp), %rcx
mov %rax, (%rcx)
jmp .Lret_void
.Lret_void:
xor %rax, %rax
lea 16(%rbp), %rsp
pop %rbp
retq
.ffi_call_win64_end:
#endif /* !_MSC_VER */

View File

@@ -0,0 +1,227 @@
# 1 "gcc\\win64_asm.asm"
# 1 "<command-line>"
# 1 "gcc\\win64_asm.asm"
# 1 "common/fficonfig.h" 1
# 3 "gcc\\win64_asm.asm" 2
# 1 "common/ffi.h" 1
# 63 "common/ffi.h"
# 1 "common/ffitarget.h" 1
# 64 "common/ffi.h" 2
# 4 "gcc\\win64_asm.asm" 2
# 244 "gcc\\win64_asm.asm"
.text
.extern ffi_closure_win64_inner
# 255 "gcc\\win64_asm.asm"
.balign 16
.globl ffi_closure_win64
ffi_closure_win64:
test $1,%r11
jne .Lfirst_is_float
mov %rcx, 8(%rsp)
jmp .Lsecond
.Lfirst_is_float:
movlpd %xmm0, 8(%rsp)
.Lsecond:
test $2, %r11
jne .Lsecond_is_float
mov %rdx, 16(%rsp)
jmp .Lthird
.Lsecond_is_float:
movlpd %xmm1, 16(%rsp)
.Lthird:
test $4, %r11
jne .Lthird_is_float
mov %r8,24(%rsp)
jmp .Lfourth
.Lthird_is_float:
movlpd %xmm2, 24(%rsp)
.Lfourth:
test $8, %r11
jne .Lfourth_is_float
mov %r9, 32(%rsp)
jmp .Ldone
.Lfourth_is_float:
movlpd %xmm3, 32(%rsp)
.Ldone:
sub $40, %rsp
mov %rax, %rcx
mov %rsp, %rdx
add $48, %rdx
mov $SYMBOL_NAME(ffi_closure_win64_inner), %rax
callq *%rax
add $40, %rsp
movq %rax, %xmm0
retq
.ffi_closure_win64_end:
.balign 16
.globl ffi_call_win64
ffi_call_win64:
mov %r9,32(%rsp)
mov %r8,24(%rsp)
mov %rdx,16(%rsp)
mov %rcx,8(%rsp)
push %rbp
sub $48,%rsp
lea 32(%rsp),%rbp
mov 48(%rbp),%eax
add $15, %rax
and $-16, %rax
cmpq $0x1000, %rax
jb Lch_done
Lch_probe:
subq $0x1000,%rsp
orl $0x0, (%rsp)
subq $0x1000,%rax
cmpq $0x1000,%rax
ja Lch_probe
Lch_done:
subq %rax, %rsp
orl $0x0, (%rsp)
lea 32(%rsp), %rax
mov %rax, 0(%rbp)
mov 40(%rbp), %rdx
mov 0(%rbp), %rcx
callq *32(%rbp)
mov 0(%rbp), %rsp
movlpd 24(%rsp), %xmm3
movd %xmm3, %r9
movlpd 16(%rsp), %xmm2
movd %xmm2, %r8
movlpd 8(%rsp), %xmm1
movd %xmm1, %rdx
movlpd (%rsp), %xmm0
movd %xmm0, %rcx
callq *72(%rbp)
.Lret_struct4b:
cmpl $FFI_TYPE_SMALL_STRUCT_4B, 56(%rbp)
jne .Lret_struct2b
mov 64(%rbp), %rcx
mov %eax, (%rcx)
jmp .Lret_void
.Lret_struct2b:
cmpl $FFI_TYPE_SMALL_STRUCT_2B, 56(%rbp)
jne .Lret_struct1b
mov 64(%rbp), %rcx
mov %ax, (%rcx)
jmp .Lret_void
.Lret_struct1b:
cmpl $FFI_TYPE_SMALL_STRUCT_1B, 56(%rbp)
jne .Lret_uint8
mov 64(%rbp), %rcx
mov %al, (%rcx)
jmp .Lret_void
.Lret_uint8:
cmpl $FFI_TYPE_UINT8, 56(%rbp)
jne .Lret_sint8
mov 64(%rbp), %rcx
movzbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint8:
cmpl $FFI_TYPE_SINT8, 56(%rbp)
jne .Lret_uint16
mov 64(%rbp), %rcx
movsbq %al, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint16:
cmpl $FFI_TYPE_UINT16, 56(%rbp)
jne .Lret_sint16
mov 64(%rbp), %rcx
movzwq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint16:
cmpl $FFI_TYPE_SINT16, 56(%rbp)
jne .Lret_uint32
mov 64(%rbp), %rcx
movswq %ax, %rax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_uint32:
cmpl $9, 56(%rbp)
jne .Lret_sint32
mov 64(%rbp), %rcx
movl %eax, %eax
movq %rax, (%rcx)
jmp .Lret_void
.Lret_sint32:
cmpl $10, 56(%rbp)
jne .Lret_float
mov 64(%rbp), %rcx
cltq
movq %rax, (%rcx)
jmp .Lret_void
.Lret_float:
cmpl $2, 56(%rbp)
jne .Lret_double
mov 64(%rbp), %rax
movss %xmm0, (%rax)
jmp .Lret_void
.Lret_double:
cmpl $3, 56(%rbp)
jne .Lret_sint64
mov 64(%rbp), %rax
movlpd %xmm0, (%rax)
jmp .Lret_void
.Lret_sint64:
cmpl $12, 56(%rbp)
jne .Lret_void
mov 64(%rbp), %rcx
mov %rax, (%rcx)
jmp .Lret_void
.Lret_void:
xor %rax, %rax
lea 16(%rbp), %rsp
pop %rbp
retq
.ffi_call_win64_end:

View File

@@ -30,31 +30,27 @@ when defined(windows):
# on Windows we don't use a DLL but instead embed libffi directly:
{.pragma: mylib, header: r"ffi.h".}
{.compile: r"common\callproc.c".}
{.compile: r"common\malloc_closure.c".}
#{.compile: r"common\malloc_closure.c".}
{.compile: r"common\raw_api.c".}
when defined(vcc):
#{.compile: "libffi_msvc\ffi.h".}
#<ClInclude: "..\Modules\_ctypes\libffi_msvc\ffi_common.h".}
#<ClInclude: "..\Modules\_ctypes\libffi_msvc\fficonfig.h".}
#<ClInclude: "..\Modules\_ctypes\libffi_msvc\ffitarget.h".}
{.compile: r"msvc\ffi.c".}
{.compile: r"msvc\prep_cif.c".}
{.compile: r"msvc\win32.c".}
{.compile: r"msvc\types.c".}
when defined(cpu64):
{.compile: r"msvc\win64.asm".}
{.compile: r"msvc\win64_asm.asm".}
else:
{.compile: r"msvc\win32_asm.asm".}
else:
{.compile: r"gcc\ffi.c".}
{.compile: r"gcc\prep_cif.c".}
{.compile: r"gcc\win32.c".}
{.compile: r"gcc\types.c".}
{.compile: r"gcc\closures.c".}
when defined(cpu64):
{.compile: r"gcc\ffi64.c".}
{.compile: r"gcc\win64.S".}
{.compile: r"gcc\win64_asm.S".}
else:
{.compile: r"gcc\win32.S".}
{.compile: r"gcc\win32_asm.S".}
elif defined(macosx):
{.pragma: mylib, dynlib: "libffi.dylib".}

View File

@@ -0,0 +1,457 @@
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1996, 1998, 1999, 2001 Red Hat, Inc.
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2002 Bo Thorsen
Copyright (c) 2002 Roger Sayle
x86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments */
extern void Py_FatalError(const char *msg);
/*@-exportheader@*/
void ffi_prep_args(char *stack, extended_cif *ecif)
/*@=exportheader@*/
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if (ecif->cif->rtype->type == FFI_TYPE_STRUCT)
{
*(void **) argp = ecif->rvalue;
argp += sizeof(void *);
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(void *) - 1) & (size_t) argp)
argp = (char *) ALIGN(argp, sizeof(void *));
z = (*p_arg)->size;
if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_SINT32:
*(signed int *) argp = (signed int)*(SINT32 *)(* p_argv);
break;
case FFI_TYPE_UINT32:
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
}
if (argp >= stack && (unsigned)(argp - stack) > ecif->cif->bytes)
{
Py_FatalError("FFI BUG: not enough stack space for arguments");
}
return;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_STRUCT:
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_UINT64:
#ifdef _WIN64
case FFI_TYPE_POINTER:
#endif
cif->flags = FFI_TYPE_SINT64;
break;
default:
cif->flags = FFI_TYPE_INT;
break;
}
return FFI_OK;
}
#ifdef _WIN32
extern int
ffi_call_x86(void (*)(char *, extended_cif *),
/*@out@*/ extended_cif *,
unsigned, unsigned,
/*@out@*/ unsigned *,
void (*fn)());
#endif
#ifdef _WIN64
extern int
ffi_call_AMD64(void (*)(char *, extended_cif *),
/*@out@*/ extended_cif *,
unsigned, unsigned,
/*@out@*/ unsigned *,
void (*fn)());
#endif
int
ffi_call(/*@dependent@*/ ffi_cif *cif,
void (*fn)(),
/*@out@*/ void *rvalue,
/*@dependent@*/ void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
/*@-sysunrecog@*/
ecif.rvalue = alloca(cif->rtype->size);
/*@=sysunrecog@*/
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
#if !defined(_WIN64)
case FFI_SYSV:
case FFI_STDCALL:
return ffi_call_x86(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
break;
#else
case FFI_SYSV:
/*@-usedef@*/
/* Function call needs at least 40 bytes stack size, on win64 AMD64 */
return ffi_call_AMD64(ffi_prep_args, &ecif, cif->bytes ? cif->bytes : 40,
cif->flags, ecif.rvalue, fn);
/*@=usedef@*/
break;
#endif
default:
FFI_ASSERT(0);
break;
}
return -1; /* theller: Hrm. */
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif);
/* This function is jumped to by the trampoline */
#ifdef _WIN64
void *
#else
static void __fastcall
#endif
ffi_closure_SYSV (ffi_closure *closure, int *argp)
{
// this is our return value storage
long double res;
// our various things...
ffi_cif *cif;
void **arg_area;
unsigned short rtype;
void *resp = (void*)&res;
void *args = &argp[1];
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will re-set RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, (void**)&resp, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
rtype = cif->flags;
#if defined(_WIN32) && !defined(_WIN64)
#ifdef _MSC_VER
/* now, do a generic return based on the value of rtype */
if (rtype == FFI_TYPE_INT)
{
_asm mov eax, resp ;
_asm mov eax, [eax] ;
}
else if (rtype == FFI_TYPE_FLOAT)
{
_asm mov eax, resp ;
_asm fld DWORD PTR [eax] ;
// asm ("flds (%0)" : : "r" (resp) : "st" );
}
else if (rtype == FFI_TYPE_DOUBLE)
{
_asm mov eax, resp ;
_asm fld QWORD PTR [eax] ;
// asm ("fldl (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_LONGDOUBLE)
{
// asm ("fldt (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_SINT64)
{
_asm mov edx, resp ;
_asm mov eax, [edx] ;
_asm mov edx, [edx + 4] ;
// asm ("movl 0(%0),%%eax;"
// "movl 4(%0),%%edx"
// : : "r"(resp)
// : "eax", "edx");
}
#else
/* now, do a generic return based on the value of rtype */
if (rtype == FFI_TYPE_INT)
{
asm ("movl (%0),%%eax" : : "r" (resp) : "eax");
}
else if (rtype == FFI_TYPE_FLOAT)
{
asm ("flds (%0)" : : "r" (resp) : "st" );
}
else if (rtype == FFI_TYPE_DOUBLE)
{
asm ("fldl (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_LONGDOUBLE)
{
asm ("fldt (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_SINT64)
{
asm ("movl 0(%0),%%eax;"
"movl 4(%0),%%edx"
: : "r"(resp)
: "eax", "edx");
}
#endif
#endif
#ifdef _WIN64
/* The result is returned in rax. This does the right thing for
result types except for floats; we have to 'mov xmm0, rax' in the
caller to correct this.
*/
return *(void **)resp;
#endif
}
/*@-exportheader@*/
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
void **avalue, ffi_cif *cif)
/*@=exportheader@*/
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( cif->rtype->type == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += 4;
}
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(char *) - 1) & (size_t) argp) {
argp = (char *) ALIGN(argp, sizeof(char*));
}
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
p_argv++;
argp += z;
}
return;
}
/* the cif must already be prep'ed */
extern void ffi_closure_OUTER();
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data,
void *codeloc)
{
short bytes;
char *tramp;
#ifdef _WIN64
int mask = 0;
#endif
FFI_ASSERT (cif->abi == FFI_SYSV);
if (cif->abi == FFI_SYSV)
bytes = 0;
#if !defined(_WIN64)
else if (cif->abi == FFI_STDCALL)
bytes = cif->bytes;
#endif
else
return FFI_BAD_ABI;
tramp = &closure->tramp[0];
#define BYTES(text) memcpy(tramp, text, sizeof(text)), tramp += sizeof(text)-1
#define POINTER(x) *(void**)tramp = (void*)(x), tramp += sizeof(void*)
#define SHORT(x) *(short*)tramp = x, tramp += sizeof(short)
#define INT(x) *(int*)tramp = x, tramp += sizeof(int)
#ifdef _WIN64
if (cif->nargs >= 1 &&
(cif->arg_types[0]->type == FFI_TYPE_FLOAT
|| cif->arg_types[0]->type == FFI_TYPE_DOUBLE))
mask |= 1;
if (cif->nargs >= 2 &&
(cif->arg_types[1]->type == FFI_TYPE_FLOAT
|| cif->arg_types[1]->type == FFI_TYPE_DOUBLE))
mask |= 2;
if (cif->nargs >= 3 &&
(cif->arg_types[2]->type == FFI_TYPE_FLOAT
|| cif->arg_types[2]->type == FFI_TYPE_DOUBLE))
mask |= 4;
if (cif->nargs >= 4 &&
(cif->arg_types[3]->type == FFI_TYPE_FLOAT
|| cif->arg_types[3]->type == FFI_TYPE_DOUBLE))
mask |= 8;
/* 41 BB ---- mov r11d,mask */
BYTES("\x41\xBB"); INT(mask);
/* 48 B8 -------- mov rax, closure */
BYTES("\x48\xB8"); POINTER(closure);
/* 49 BA -------- mov r10, ffi_closure_OUTER */
BYTES("\x49\xBA"); POINTER(ffi_closure_OUTER);
/* 41 FF E2 jmp r10 */
BYTES("\x41\xFF\xE2");
#else
/* mov ecx, closure */
BYTES("\xb9"); POINTER(closure);
/* mov edx, esp */
BYTES("\x8b\xd4");
/* call ffi_closure_SYSV */
BYTES("\xe8"); POINTER((char*)&ffi_closure_SYSV - (tramp + 4));
/* ret bytes */
BYTES("\xc2");
SHORT(bytes);
#endif
if (tramp - &closure->tramp[0] > FFI_TRAMPOLINE_SIZE)
Py_FatalError("FFI_TRAMPOLINE_SIZE too small in " __FILE__);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}

View File

@@ -0,0 +1,175 @@
/* -----------------------------------------------------------------------
prep_cif.c - Copyright (c) 1996, 1998 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* Round up to FFI_SIZEOF_ARG. */
#define STACK_ARG_SIZE(x) ALIGN(x, FFI_SIZEOF_ARG)
/* Perform machine independent initialization of aggregate type
specifications. */
static ffi_status initialize_aggregate(/*@out@*/ ffi_type *arg)
{
ffi_type **ptr;
FFI_ASSERT(arg != NULL);
/*@-usedef@*/
FFI_ASSERT(arg->elements != NULL);
FFI_ASSERT(arg->size == 0);
FFI_ASSERT(arg->alignment == 0);
ptr = &(arg->elements[0]);
while ((*ptr) != NULL)
{
if (((*ptr)->size == 0) && (initialize_aggregate((*ptr)) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type */
FFI_ASSERT_VALID_TYPE(*ptr);
arg->size = ALIGN(arg->size, (*ptr)->alignment);
arg->size += (*ptr)->size;
arg->alignment = (arg->alignment > (*ptr)->alignment) ?
arg->alignment : (*ptr)->alignment;
ptr++;
}
/* Structure size includes tail padding. This is important for
structures that fit in one register on ABIs like the PowerPC64
Linux ABI that right justify small structs in a register.
It's also needed for nested structure layout, for example
struct A { long a; char b; }; struct B { struct A x; char y; };
should find y at an offset of 2*sizeof(long) and result in a
total size of 3*sizeof(long). */
arg->size = ALIGN (arg->size, arg->alignment);
if (arg->size == 0)
return FFI_BAD_TYPEDEF;
else
return FFI_OK;
/*@=usedef@*/
}
/* Perform machine independent ffi_cif preparation, then call
machine dependent routine. */
ffi_status ffi_prep_cif(/*@out@*/ /*@partial@*/ ffi_cif *cif,
ffi_abi abi, unsigned int nargs,
/*@dependent@*/ /*@out@*/ /*@partial@*/ ffi_type *rtype,
/*@dependent@*/ ffi_type **atypes)
{
unsigned bytes = 0;
unsigned int i;
ffi_type **ptr;
FFI_ASSERT(cif != NULL);
FFI_ASSERT((abi > FFI_FIRST_ABI) && (abi <= FFI_DEFAULT_ABI));
cif->abi = abi;
cif->arg_types = atypes;
cif->nargs = nargs;
cif->rtype = rtype;
cif->flags = 0;
/* Initialize the return type if necessary */
/*@-usedef@*/
if ((cif->rtype->size == 0) && (initialize_aggregate(cif->rtype) != FFI_OK))
return FFI_BAD_TYPEDEF;
/*@=usedef@*/
/* Perform a sanity check on the return type */
FFI_ASSERT_VALID_TYPE(cif->rtype);
/* x86-64 and s390 stack space allocation is handled in prep_machdep. */
#if !defined M68K && !defined __x86_64__ && !defined S390
/* Make space for the return structure pointer */
if (cif->rtype->type == FFI_TYPE_STRUCT
/* MSVC returns small structures in registers. But we have a different
workaround: pretend int32 or int64 return type, and converting to
structure afterwards. */
#ifdef SPARC
&& (cif->abi != FFI_V9 || cif->rtype->size > 32)
#endif
)
bytes = STACK_ARG_SIZE(sizeof(void*));
#endif
for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++)
{
/* Initialize any uninitialized aggregate type definitions */
if (((*ptr)->size == 0) && (initialize_aggregate((*ptr)) != FFI_OK))
return FFI_BAD_TYPEDEF;
/* Perform a sanity check on the argument type, do this
check after the initialization. */
FFI_ASSERT_VALID_TYPE(*ptr);
#if !defined __x86_64__ && !defined S390
#ifdef SPARC
if (((*ptr)->type == FFI_TYPE_STRUCT
&& ((*ptr)->size > 16 || cif->abi != FFI_V9))
|| ((*ptr)->type == FFI_TYPE_LONGDOUBLE
&& cif->abi != FFI_V9))
bytes += sizeof(void*);
else
#endif
{
#if !defined(_MSC_VER) && !defined(__MINGW32__)
/* Don't know if this is a libffi bug or not. At least on
Windows with MSVC, function call parameters are *not*
aligned in the same way as structure fields are, they are
only aligned in integer boundaries.
This doesn't do any harm for cdecl functions and closures,
since the caller cleans up the stack, but it is wrong for
stdcall functions where the callee cleans.
*/
/* Add any padding if necessary */
if (((*ptr)->alignment - 1) & bytes)
bytes = ALIGN(bytes, (*ptr)->alignment);
#endif
bytes += STACK_ARG_SIZE((*ptr)->size);
}
#endif
}
cif->bytes = bytes;
/* Perform machine dependent cif processing */
return ffi_prep_cif_machdep(cif);
}

View File

@@ -0,0 +1,104 @@
/* -----------------------------------------------------------------------
types.c - Copyright (c) 1996, 1998 Red Hat, Inc.
Predefined ffi_types needed by libffi.
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#include <ffi.h>
#include <ffi_common.h>
/* Type definitions */
#define FFI_INTEGRAL_TYPEDEF(n, s, a, t) ffi_type ffi_type_##n = { s, a, t, NULL }
#define FFI_AGGREGATE_TYPEDEF(n, e) ffi_type ffi_type_##n = { 0, 0, FFI_TYPE_STRUCT, e }
/* Size and alignment are fake here. They must not be 0. */
FFI_INTEGRAL_TYPEDEF(void, 1, 1, FFI_TYPE_VOID);
FFI_INTEGRAL_TYPEDEF(uint8, 1, 1, FFI_TYPE_UINT8);
FFI_INTEGRAL_TYPEDEF(sint8, 1, 1, FFI_TYPE_SINT8);
FFI_INTEGRAL_TYPEDEF(uint16, 2, 2, FFI_TYPE_UINT16);
FFI_INTEGRAL_TYPEDEF(sint16, 2, 2, FFI_TYPE_SINT16);
FFI_INTEGRAL_TYPEDEF(uint32, 4, 4, FFI_TYPE_UINT32);
FFI_INTEGRAL_TYPEDEF(sint32, 4, 4, FFI_TYPE_SINT32);
FFI_INTEGRAL_TYPEDEF(float, 4, 4, FFI_TYPE_FLOAT);
#if defined ALPHA || defined SPARC64 || defined X86_64 || defined S390X \
|| defined IA64
FFI_INTEGRAL_TYPEDEF(pointer, 8, 8, FFI_TYPE_POINTER);
#else
FFI_INTEGRAL_TYPEDEF(pointer, 4, 4, FFI_TYPE_POINTER);
#endif
#if defined X86 || defined X86_WIN32 || defined ARM || defined M68K
FFI_INTEGRAL_TYPEDEF(uint64, 8, 4, FFI_TYPE_UINT64);
FFI_INTEGRAL_TYPEDEF(sint64, 8, 4, FFI_TYPE_SINT64);
#elif defined SH
FFI_INTEGRAL_TYPEDEF(uint64, 8, 4, FFI_TYPE_UINT64);
FFI_INTEGRAL_TYPEDEF(sint64, 8, 4, FFI_TYPE_SINT64);
#else
FFI_INTEGRAL_TYPEDEF(uint64, 8, 8, FFI_TYPE_UINT64);
FFI_INTEGRAL_TYPEDEF(sint64, 8, 8, FFI_TYPE_SINT64);
#endif
#if defined X86 || defined X86_WIN32 || defined M68K
FFI_INTEGRAL_TYPEDEF(double, 8, 4, FFI_TYPE_DOUBLE);
FFI_INTEGRAL_TYPEDEF(longdouble, 12, 4, FFI_TYPE_LONGDOUBLE);
#elif defined ARM || defined SH || defined POWERPC_AIX || defined POWERPC_DARWIN
FFI_INTEGRAL_TYPEDEF(double, 8, 4, FFI_TYPE_DOUBLE);
FFI_INTEGRAL_TYPEDEF(longdouble, 8, 4, FFI_TYPE_LONGDOUBLE);
#elif defined SPARC
FFI_INTEGRAL_TYPEDEF(double, 8, 8, FFI_TYPE_DOUBLE);
#ifdef SPARC64
FFI_INTEGRAL_TYPEDEF(longdouble, 16, 16, FFI_TYPE_LONGDOUBLE);
#else
FFI_INTEGRAL_TYPEDEF(longdouble, 16, 8, FFI_TYPE_LONGDOUBLE);
#endif
#elif defined X86_64
FFI_INTEGRAL_TYPEDEF(double, 8, 8, FFI_TYPE_DOUBLE);
FFI_INTEGRAL_TYPEDEF(longdouble, 16, 16, FFI_TYPE_LONGDOUBLE);
#else
FFI_INTEGRAL_TYPEDEF(double, 8, 8, FFI_TYPE_DOUBLE);
FFI_INTEGRAL_TYPEDEF(longdouble, 8, 8, FFI_TYPE_LONGDOUBLE);
#endif

View File

@@ -0,0 +1,162 @@
/* -----------------------------------------------------------------------
win32.S - Copyright (c) 1996, 1998, 2001, 2002 Red Hat, Inc.
Copyright (c) 2001 John Beniton
Copyright (c) 2002 Ranjit Mathew
X86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
/* theller: almost verbatim translation from gas syntax to MSVC inline
assembler code. */
/* theller: ffi_call_x86 now returns an integer - the difference of the stack
pointer before and after the function call. If everything is ok, zero is
returned. If stdcall functions are passed the wrong number of arguments,
the difference will be nonzero. */
#include <ffi.h>
#include <ffi_common.h>
__declspec(naked) int
ffi_call_x86(void (* prepfunc)(char *, extended_cif *), /* 8 */
extended_cif *ecif, /* 12 */
unsigned bytes, /* 16 */
unsigned flags, /* 20 */
unsigned *rvalue, /* 24 */
void (*fn)()) /* 28 */
{
_asm {
push ebp
mov ebp, esp
push esi // NEW: this register must be preserved across function calls
// XXX SAVE ESP NOW!
mov esi, esp // save stack pointer before the call
// Make room for all of the new args.
mov ecx, [ebp+16]
sub esp, ecx // sub esp, bytes
mov eax, esp
// Place all of the ffi_prep_args in position
push [ebp + 12] // ecif
push eax
call [ebp + 8] // prepfunc
// Return stack to previous state and call the function
add esp, 8
// FIXME: Align the stack to a 128-bit boundary to avoid
// potential performance hits.
call [ebp + 28]
// Load ecif->cif->abi
mov ecx, [ebp + 12]
mov ecx, [ecx]ecif.cif
mov ecx, [ecx]ecif.cif.abi
cmp ecx, FFI_STDCALL
je noclean
// STDCALL: Remove the space we pushed for the args
mov ecx, [ebp + 16]
add esp, ecx
// CDECL: Caller has already cleaned the stack
noclean:
// Check that esp has the same value as before!
sub esi, esp
// Load %ecx with the return type code
mov ecx, [ebp + 20]
// If the return value pointer is NULL, assume no return value.
/*
Intel asm is weird. We have to explicitely specify 'DWORD PTR' in the nexr instruction,
otherwise only one BYTE will be compared (instead of a DWORD)!
*/
cmp DWORD PTR [ebp + 24], 0
jne sc_retint
// Even if there is no space for the return value, we are
// obliged to handle floating-point values.
cmp ecx, FFI_TYPE_FLOAT
jne sc_noretval
// fstp %st(0)
fstp st(0)
jmp sc_epilogue
sc_retint:
cmp ecx, FFI_TYPE_INT
jne sc_retfloat
// # Load %ecx with the pointer to storage for the return value
mov ecx, [ebp + 24]
mov [ecx + 0], eax
jmp sc_epilogue
sc_retfloat:
cmp ecx, FFI_TYPE_FLOAT
jne sc_retdouble
// Load %ecx with the pointer to storage for the return value
mov ecx, [ebp+24]
// fstps (%ecx)
fstp DWORD PTR [ecx]
jmp sc_epilogue
sc_retdouble:
cmp ecx, FFI_TYPE_DOUBLE
jne sc_retlongdouble
// movl 24(%ebp),%ecx
mov ecx, [ebp+24]
fstp QWORD PTR [ecx]
jmp sc_epilogue
jmp sc_retlongdouble // avoid warning about unused label
sc_retlongdouble:
cmp ecx, FFI_TYPE_LONGDOUBLE
jne sc_retint64
// Load %ecx with the pointer to storage for the return value
mov ecx, [ebp+24]
// fstpt (%ecx)
fstp QWORD PTR [ecx] /* XXX ??? */
jmp sc_epilogue
sc_retint64:
cmp ecx, FFI_TYPE_SINT64
jne sc_retstruct
// Load %ecx with the pointer to storage for the return value
mov ecx, [ebp+24]
mov [ecx+0], eax
mov [ecx+4], edx
sc_retstruct:
// Nothing to do!
sc_noretval:
sc_epilogue:
mov eax, esi
pop esi // NEW restore: must be preserved across function calls
mov esp, ebp
pop ebp
ret
}
}

View File

@@ -0,0 +1,470 @@
/* -----------------------------------------------------------------------
win32.S - Copyright (c) 1996, 1998, 2001, 2002, 2009 Red Hat, Inc.
Copyright (c) 2001 John Beniton
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2009 Daniel Witte
X86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
-----------------------------------------------------------------------
*/
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
.386
.MODEL FLAT, C
EXTRN ffi_closure_SYSV_inner:NEAR
_TEXT SEGMENT
ffi_call_win32 PROC NEAR,
ffi_prep_args : NEAR PTR DWORD,
ecif : NEAR PTR DWORD,
cif_abi : DWORD,
cif_bytes : DWORD,
cif_flags : DWORD,
rvalue : NEAR PTR DWORD,
fn : NEAR PTR DWORD
;; Make room for all of the new args.
mov ecx, cif_bytes
sub esp, ecx
mov eax, esp
;; Place all of the ffi_prep_args in position
push ecif
push eax
call ffi_prep_args
;; Return stack to previous state and call the function
add esp, 8
;; Handle thiscall and fastcall
cmp cif_abi, 3 ;; FFI_THISCALL
jz do_thiscall
cmp cif_abi, 4 ;; FFI_FASTCALL
jnz do_stdcall
mov ecx, DWORD PTR [esp]
mov edx, DWORD PTR [esp+4]
add esp, 8
jmp do_stdcall
do_thiscall:
mov ecx, DWORD PTR [esp]
add esp, 4
do_stdcall:
call fn
;; cdecl: we restore esp in the epilogue, so there's no need to
;; remove the space we pushed for the args.
;; stdcall: the callee has already cleaned the stack.
;; Load ecx with the return type code
mov ecx, cif_flags
;; If the return value pointer is NULL, assume no return value.
cmp rvalue, 0
jne ca_jumptable
;; Even if there is no space for the return value, we are
;; obliged to handle floating-point values.
cmp ecx, FFI_TYPE_FLOAT
jne ca_epilogue
fstp st(0)
jmp ca_epilogue
ca_jumptable:
jmp [ca_jumpdata + 4 * ecx]
ca_jumpdata:
;; Do not insert anything here between label and jump table.
dd offset ca_epilogue ;; FFI_TYPE_VOID
dd offset ca_retint ;; FFI_TYPE_INT
dd offset ca_retfloat ;; FFI_TYPE_FLOAT
dd offset ca_retdouble ;; FFI_TYPE_DOUBLE
dd offset ca_retlongdouble ;; FFI_TYPE_LONGDOUBLE
dd offset ca_retuint8 ;; FFI_TYPE_UINT8
dd offset ca_retsint8 ;; FFI_TYPE_SINT8
dd offset ca_retuint16 ;; FFI_TYPE_UINT16
dd offset ca_retsint16 ;; FFI_TYPE_SINT16
dd offset ca_retint ;; FFI_TYPE_UINT32
dd offset ca_retint ;; FFI_TYPE_SINT32
dd offset ca_retint64 ;; FFI_TYPE_UINT64
dd offset ca_retint64 ;; FFI_TYPE_SINT64
dd offset ca_epilogue ;; FFI_TYPE_STRUCT
dd offset ca_retint ;; FFI_TYPE_POINTER
dd offset ca_retstruct1b ;; FFI_TYPE_SMALL_STRUCT_1B
dd offset ca_retstruct2b ;; FFI_TYPE_SMALL_STRUCT_2B
dd offset ca_retint ;; FFI_TYPE_SMALL_STRUCT_4B
dd offset ca_epilogue ;; FFI_TYPE_MS_STRUCT
/* Sign/zero extend as appropriate. */
ca_retuint8:
movzx eax, al
jmp ca_retint
ca_retsint8:
movsx eax, al
jmp ca_retint
ca_retuint16:
movzx eax, ax
jmp ca_retint
ca_retsint16:
movsx eax, ax
jmp ca_retint
ca_retint:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
mov [ecx + 0], eax
jmp ca_epilogue
ca_retint64:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
mov [ecx + 0], eax
mov [ecx + 4], edx
jmp ca_epilogue
ca_retfloat:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
fstp DWORD PTR [ecx]
jmp ca_epilogue
ca_retdouble:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
fstp QWORD PTR [ecx]
jmp ca_epilogue
ca_retlongdouble:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
fstp TBYTE PTR [ecx]
jmp ca_epilogue
ca_retstruct1b:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
mov [ecx + 0], al
jmp ca_epilogue
ca_retstruct2b:
;; Load %ecx with the pointer to storage for the return value
mov ecx, rvalue
mov [ecx + 0], ax
jmp ca_epilogue
ca_epilogue:
;; Epilogue code is autogenerated.
ret
ffi_call_win32 ENDP
ffi_closure_THISCALL PROC NEAR FORCEFRAME
sub esp, 40
lea edx, [ebp -24]
mov [ebp - 12], edx /* resp */
lea edx, [ebp + 12] /* account for stub return address on stack */
jmp stub
ffi_closure_THISCALL ENDP
ffi_closure_SYSV PROC NEAR FORCEFRAME
;; the ffi_closure ctx is passed in eax by the trampoline.
sub esp, 40
lea edx, [ebp - 24]
mov [ebp - 12], edx ;; resp
lea edx, [ebp + 8]
stub::
mov [esp + 8], edx ;; args
lea edx, [ebp - 12]
mov [esp + 4], edx ;; &resp
mov [esp], eax ;; closure
call ffi_closure_SYSV_inner
mov ecx, [ebp - 12]
cs_jumptable:
jmp [cs_jumpdata + 4 * eax]
cs_jumpdata:
;; Do not insert anything here between the label and jump table.
dd offset cs_epilogue ;; FFI_TYPE_VOID
dd offset cs_retint ;; FFI_TYPE_INT
dd offset cs_retfloat ;; FFI_TYPE_FLOAT
dd offset cs_retdouble ;; FFI_TYPE_DOUBLE
dd offset cs_retlongdouble ;; FFI_TYPE_LONGDOUBLE
dd offset cs_retuint8 ;; FFI_TYPE_UINT8
dd offset cs_retsint8 ;; FFI_TYPE_SINT8
dd offset cs_retuint16 ;; FFI_TYPE_UINT16
dd offset cs_retsint16 ;; FFI_TYPE_SINT16
dd offset cs_retint ;; FFI_TYPE_UINT32
dd offset cs_retint ;; FFI_TYPE_SINT32
dd offset cs_retint64 ;; FFI_TYPE_UINT64
dd offset cs_retint64 ;; FFI_TYPE_SINT64
dd offset cs_retstruct ;; FFI_TYPE_STRUCT
dd offset cs_retint ;; FFI_TYPE_POINTER
dd offset cs_retsint8 ;; FFI_TYPE_SMALL_STRUCT_1B
dd offset cs_retsint16 ;; FFI_TYPE_SMALL_STRUCT_2B
dd offset cs_retint ;; FFI_TYPE_SMALL_STRUCT_4B
dd offset cs_retmsstruct ;; FFI_TYPE_MS_STRUCT
cs_retuint8:
movzx eax, BYTE PTR [ecx]
jmp cs_epilogue
cs_retsint8:
movsx eax, BYTE PTR [ecx]
jmp cs_epilogue
cs_retuint16:
movzx eax, WORD PTR [ecx]
jmp cs_epilogue
cs_retsint16:
movsx eax, WORD PTR [ecx]
jmp cs_epilogue
cs_retint:
mov eax, [ecx]
jmp cs_epilogue
cs_retint64:
mov eax, [ecx + 0]
mov edx, [ecx + 4]
jmp cs_epilogue
cs_retfloat:
fld DWORD PTR [ecx]
jmp cs_epilogue
cs_retdouble:
fld QWORD PTR [ecx]
jmp cs_epilogue
cs_retlongdouble:
fld TBYTE PTR [ecx]
jmp cs_epilogue
cs_retstruct:
;; Caller expects us to pop struct return value pointer hidden arg.
;; Epilogue code is autogenerated.
ret 4
cs_retmsstruct:
;; Caller expects us to return a pointer to the real return value.
mov eax, ecx
;; Caller doesn't expects us to pop struct return value pointer hidden arg.
jmp cs_epilogue
cs_epilogue:
;; Epilogue code is autogenerated.
ret
ffi_closure_SYSV ENDP
#if !FFI_NO_RAW_API
#define RAW_CLOSURE_CIF_OFFSET ((FFI_TRAMPOLINE_SIZE + 3) AND NOT 3)
#define RAW_CLOSURE_FUN_OFFSET (RAW_CLOSURE_CIF_OFFSET + 4)
#define RAW_CLOSURE_USER_DATA_OFFSET (RAW_CLOSURE_FUN_OFFSET + 4)
#define CIF_FLAGS_OFFSET 20
ffi_closure_raw_THISCALL PROC NEAR USES esi FORCEFRAME
sub esp, 36
mov esi, [eax + RAW_CLOSURE_CIF_OFFSET] ;; closure->cif
mov edx, [eax + RAW_CLOSURE_USER_DATA_OFFSET] ;; closure->user_data
mov [esp + 12], edx
lea edx, [ebp + 12]
jmp stubraw
ffi_closure_raw_THISCALL ENDP
ffi_closure_raw_SYSV PROC NEAR USES esi FORCEFRAME
;; the ffi_closure ctx is passed in eax by the trampoline.
sub esp, 40
mov esi, [eax + RAW_CLOSURE_CIF_OFFSET] ;; closure->cif
mov edx, [eax + RAW_CLOSURE_USER_DATA_OFFSET] ;; closure->user_data
mov [esp + 12], edx ;; user_data
lea edx, [ebp + 8]
stubraw::
mov [esp + 8], edx ;; raw_args
lea edx, [ebp - 24]
mov [esp + 4], edx ;; &res
mov [esp], esi ;; cif
call DWORD PTR [eax + RAW_CLOSURE_FUN_OFFSET] ;; closure->fun
mov eax, [esi + CIF_FLAGS_OFFSET] ;; cif->flags
lea ecx, [ebp - 24]
cr_jumptable:
jmp [cr_jumpdata + 4 * eax]
cr_jumpdata:
;; Do not insert anything here between the label and jump table.
dd offset cr_epilogue ;; FFI_TYPE_VOID
dd offset cr_retint ;; FFI_TYPE_INT
dd offset cr_retfloat ;; FFI_TYPE_FLOAT
dd offset cr_retdouble ;; FFI_TYPE_DOUBLE
dd offset cr_retlongdouble ;; FFI_TYPE_LONGDOUBLE
dd offset cr_retuint8 ;; FFI_TYPE_UINT8
dd offset cr_retsint8 ;; FFI_TYPE_SINT8
dd offset cr_retuint16 ;; FFI_TYPE_UINT16
dd offset cr_retsint16 ;; FFI_TYPE_SINT16
dd offset cr_retint ;; FFI_TYPE_UINT32
dd offset cr_retint ;; FFI_TYPE_SINT32
dd offset cr_retint64 ;; FFI_TYPE_UINT64
dd offset cr_retint64 ;; FFI_TYPE_SINT64
dd offset cr_epilogue ;; FFI_TYPE_STRUCT
dd offset cr_retint ;; FFI_TYPE_POINTER
dd offset cr_retsint8 ;; FFI_TYPE_SMALL_STRUCT_1B
dd offset cr_retsint16 ;; FFI_TYPE_SMALL_STRUCT_2B
dd offset cr_retint ;; FFI_TYPE_SMALL_STRUCT_4B
dd offset cr_epilogue ;; FFI_TYPE_MS_STRUCT
cr_retuint8:
movzx eax, BYTE PTR [ecx]
jmp cr_epilogue
cr_retsint8:
movsx eax, BYTE PTR [ecx]
jmp cr_epilogue
cr_retuint16:
movzx eax, WORD PTR [ecx]
jmp cr_epilogue
cr_retsint16:
movsx eax, WORD PTR [ecx]
jmp cr_epilogue
cr_retint:
mov eax, [ecx]
jmp cr_epilogue
cr_retint64:
mov eax, [ecx + 0]
mov edx, [ecx + 4]
jmp cr_epilogue
cr_retfloat:
fld DWORD PTR [ecx]
jmp cr_epilogue
cr_retdouble:
fld QWORD PTR [ecx]
jmp cr_epilogue
cr_retlongdouble:
fld TBYTE PTR [ecx]
jmp cr_epilogue
cr_epilogue:
;; Epilogue code is autogenerated.
ret
ffi_closure_raw_SYSV ENDP
#endif /* !FFI_NO_RAW_API */
ffi_closure_STDCALL PROC NEAR FORCEFRAME
;; the ffi_closure ctx is passed in eax by the trampoline.
sub esp, 40
lea edx, [ebp - 24]
mov [ebp - 12], edx ;; resp
lea edx, [ebp + 12] ;; account for stub return address on stack
mov [esp + 8], edx ;; args
lea edx, [ebp - 12]
mov [esp + 4], edx ;; &resp
mov [esp], eax ;; closure
call ffi_closure_SYSV_inner
mov ecx, [ebp - 12]
cd_jumptable:
jmp [cd_jumpdata + 4 * eax]
cd_jumpdata:
;; Do not insert anything here between the label and jump table.
dd offset cd_epilogue ;; FFI_TYPE_VOID
dd offset cd_retint ;; FFI_TYPE_INT
dd offset cd_retfloat ;; FFI_TYPE_FLOAT
dd offset cd_retdouble ;; FFI_TYPE_DOUBLE
dd offset cd_retlongdouble ;; FFI_TYPE_LONGDOUBLE
dd offset cd_retuint8 ;; FFI_TYPE_UINT8
dd offset cd_retsint8 ;; FFI_TYPE_SINT8
dd offset cd_retuint16 ;; FFI_TYPE_UINT16
dd offset cd_retsint16 ;; FFI_TYPE_SINT16
dd offset cd_retint ;; FFI_TYPE_UINT32
dd offset cd_retint ;; FFI_TYPE_SINT32
dd offset cd_retint64 ;; FFI_TYPE_UINT64
dd offset cd_retint64 ;; FFI_TYPE_SINT64
dd offset cd_epilogue ;; FFI_TYPE_STRUCT
dd offset cd_retint ;; FFI_TYPE_POINTER
dd offset cd_retsint8 ;; FFI_TYPE_SMALL_STRUCT_1B
dd offset cd_retsint16 ;; FFI_TYPE_SMALL_STRUCT_2B
dd offset cd_retint ;; FFI_TYPE_SMALL_STRUCT_4B
cd_retuint8:
movzx eax, BYTE PTR [ecx]
jmp cd_epilogue
cd_retsint8:
movsx eax, BYTE PTR [ecx]
jmp cd_epilogue
cd_retuint16:
movzx eax, WORD PTR [ecx]
jmp cd_epilogue
cd_retsint16:
movsx eax, WORD PTR [ecx]
jmp cd_epilogue
cd_retint:
mov eax, [ecx]
jmp cd_epilogue
cd_retint64:
mov eax, [ecx + 0]
mov edx, [ecx + 4]
jmp cd_epilogue
cd_retfloat:
fld DWORD PTR [ecx]
jmp cd_epilogue
cd_retdouble:
fld QWORD PTR [ecx]
jmp cd_epilogue
cd_retlongdouble:
fld TBYTE PTR [ecx]
jmp cd_epilogue
cd_epilogue:
;; Epilogue code is autogenerated.
ret
ffi_closure_STDCALL ENDP
_TEXT ENDS
END

View File

@@ -0,0 +1,156 @@
PUBLIC ffi_call_AMD64
EXTRN __chkstk:NEAR
EXTRN ffi_closure_SYSV:NEAR
_TEXT SEGMENT
;;; ffi_closure_OUTER will be called with these registers set:
;;; rax points to 'closure'
;;; r11 contains a bit mask that specifies which of the
;;; first four parameters are float or double
;;;
;;; It must move the parameters passed in registers to their stack location,
;;; call ffi_closure_SYSV for the actual work, then return the result.
;;;
ffi_closure_OUTER PROC FRAME
;; save actual arguments to their stack space.
test r11, 1
jne first_is_float
mov QWORD PTR [rsp+8], rcx
jmp second
first_is_float:
movlpd QWORD PTR [rsp+8], xmm0
second:
test r11, 2
jne second_is_float
mov QWORD PTR [rsp+16], rdx
jmp third
second_is_float:
movlpd QWORD PTR [rsp+16], xmm1
third:
test r11, 4
jne third_is_float
mov QWORD PTR [rsp+24], r8
jmp forth
third_is_float:
movlpd QWORD PTR [rsp+24], xmm2
forth:
test r11, 8
jne forth_is_float
mov QWORD PTR [rsp+32], r9
jmp done
forth_is_float:
movlpd QWORD PTR [rsp+32], xmm3
done:
.ALLOCSTACK 40
sub rsp, 40
.ENDPROLOG
mov rcx, rax ; context is first parameter
mov rdx, rsp ; stack is second parameter
add rdx, 40 ; correct our own area
mov rax, ffi_closure_SYSV
call rax ; call the real closure function
;; Here, code is missing that handles float return values
add rsp, 40
movd xmm0, rax ; In case the closure returned a float.
ret 0
ffi_closure_OUTER ENDP
;;; ffi_call_AMD64
stack$ = 0
prepfunc$ = 32
ecif$ = 40
bytes$ = 48
flags$ = 56
rvalue$ = 64
fn$ = 72
ffi_call_AMD64 PROC FRAME
mov QWORD PTR [rsp+32], r9
mov QWORD PTR [rsp+24], r8
mov QWORD PTR [rsp+16], rdx
mov QWORD PTR [rsp+8], rcx
.PUSHREG rbp
push rbp
.ALLOCSTACK 48
sub rsp, 48 ; 00000030H
.SETFRAME rbp, 32
lea rbp, QWORD PTR [rsp+32]
.ENDPROLOG
mov eax, DWORD PTR bytes$[rbp]
add rax, 15
and rax, -16
call __chkstk
sub rsp, rax
lea rax, QWORD PTR [rsp+32]
mov QWORD PTR stack$[rbp], rax
mov rdx, QWORD PTR ecif$[rbp]
mov rcx, QWORD PTR stack$[rbp]
call QWORD PTR prepfunc$[rbp]
mov rsp, QWORD PTR stack$[rbp]
movlpd xmm3, QWORD PTR [rsp+24]
movd r9, xmm3
movlpd xmm2, QWORD PTR [rsp+16]
movd r8, xmm2
movlpd xmm1, QWORD PTR [rsp+8]
movd rdx, xmm1
movlpd xmm0, QWORD PTR [rsp]
movd rcx, xmm0
call QWORD PTR fn$[rbp]
ret_int$:
cmp DWORD PTR flags$[rbp], 1 ; FFI_TYPE_INT
jne ret_float$
mov rcx, QWORD PTR rvalue$[rbp]
mov DWORD PTR [rcx], eax
jmp SHORT ret_nothing$
ret_float$:
cmp DWORD PTR flags$[rbp], 2 ; FFI_TYPE_FLOAT
jne SHORT ret_double$
mov rax, QWORD PTR rvalue$[rbp]
movlpd QWORD PTR [rax], xmm0
jmp SHORT ret_nothing$
ret_double$:
cmp DWORD PTR flags$[rbp], 3 ; FFI_TYPE_DOUBLE
jne SHORT ret_int64$
mov rax, QWORD PTR rvalue$[rbp]
movlpd QWORD PTR [rax], xmm0
jmp SHORT ret_nothing$
ret_int64$:
cmp DWORD PTR flags$[rbp], 12 ; FFI_TYPE_SINT64
jne ret_nothing$
mov rcx, QWORD PTR rvalue$[rbp]
mov QWORD PTR [rcx], rax
jmp SHORT ret_nothing$
ret_nothing$:
xor eax, eax
lea rsp, QWORD PTR [rbp+16]
pop rbp
ret 0
ffi_call_AMD64 ENDP
_TEXT ENDS
END