Some minor fixes

Fixed som wrong spellings in cooments, reordering
some arguments to be mor uniform, and fixed a small bug in
isUniform for 3d matrix.
This commit is contained in:
ventor3000
2013-07-30 18:15:39 +02:00
parent 7c2fcd4ad9
commit e6cedc2b8c
2 changed files with 59 additions and 40 deletions

View File

@@ -131,7 +131,7 @@ template makeBinOpAssignVector(s:expr)=
# ***************************************
proc setElements*(t:var TMatrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}=
## Sets arbitrary elements in an exisitng matrix.
## Sets arbitrary elements in an existing matrix.
t.ax=ax
t.ay=ay
t.bx=bx
@@ -220,7 +220,7 @@ proc mirror*(v:TVector2d):TMatrix2d {.noInit.} =
xy2,-sqd,
0.0,0.0)
proc mirror*(v:TVector2d,org:TPoint2d):TMatrix2d {.noInit.} =
proc mirror*(org:TPoint2d,v:TVector2d):TMatrix2d {.noInit.} =
## Returns a new mirror matrix, mirroring
## around the line that passes through `org` and
## has the direction of `v`
@@ -270,6 +270,7 @@ proc isUniform*(t:TMatrix2d,tol=1.0e-6):bool=
proc determinant*(t:TMatrix2d):float=
## Computes the determinant of the matrix.
#NOTE: equivalent with perp.dot product for two 2d vectors
return t.ax*t.by-t.bx*t.ay
@@ -413,8 +414,8 @@ proc `&=`*(v:var TVector2d,m:TMatrix2d) {.inline.}=
proc tryNormalize*(v:var TVector2d):bool=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length (and thus no angle), it is left unmodified and false is
## returned, otherwise true is returned.
## If `v` has zero length (and thus no angle), it is left unmodified and
## false is returned, otherwise true is returned.
let mag=v.len
@@ -452,7 +453,7 @@ proc transformNorm*(v:var TVector2d,t:TMatrix2d)=
v.x = newx
proc transformInv*(v:var TVector2d,t:TMatrix2d)=
## Applies inverse of a transformation `m` to `v` in place.
## Applies inverse of a transformation `t` to `v` in place.
## This is faster than creating an inverse matrix and apply() it.
## Transforming a vector ignores the translational part
## of the matrix. If the matrix is not invertible (determinant=0), an EDivByZero
@@ -521,7 +522,7 @@ proc stretch*(v:var TVector2d,facx,facy:float){.inline.}=
v.x*=facx
v.y*=facy
proc mirror*(v:var TVector2d,mirrvec:TVector2d){.inline.}=
proc mirror*(v:var TVector2d,mirrvec:TVector2d)=
## Mirrors vector `v` using `mirrvec` as mirror direction.
let
sqx=mirrvec.x*mirrvec.x
@@ -561,7 +562,7 @@ proc dot*(v1,v2:TVector2d):float=
proc cross*(v1,v2:TVector2d):float=
## Computes the cross product of two vectors, also called
## the 'perpendicualar dot product' in 2d. Returns 0.0 if the vectors
## the 'perpendicular dot product' in 2d. Returns 0.0 if the vectors
## are parallel.
return v1.x*v2.y-v1.y*v2.x
@@ -575,7 +576,8 @@ proc `=~` *(v1,v2:TVector2d):bool=
equals(v1,v2)
proc angleTo*(v1,v2:TVector2d):float=
## Returns the smallest of the two possible angles between `v1` and `v2` in radians.
## Returns the smallest of the two possible angles
## between `v1` and `v2` in radians.
var
nv1=v1
nv2=v2
@@ -585,7 +587,7 @@ proc angleTo*(v1,v2:TVector2d):float=
proc angleCCW*(v1,v2:TVector2d):float=
## Returns the counter clockwise plane angle from `v1` to `v2`,
## in range 0-PI
## in range 0 - 2*PI
let a=v1.angleTo(v2)
if v1.cross(v2)>=0.0:
return a
@@ -593,7 +595,7 @@ proc angleCCW*(v1,v2:TVector2d):float=
proc angleCW*(v1,v2:TVector2d):float=
## Returns the clockwise plane angle from `v1` to `v2`,
## in range 0-PI
## in range 0 - 2*PI
let a=v1.angleTo(v2)
if v1.cross(v2)<=0.0:
return a
@@ -609,7 +611,7 @@ proc turnAngle*(v1,v2:TVector2d):float=
proc bisect*(v1,v2:TVector2d):TVector2d {.noInit.}=
## Computes the bisector between v1 and v2 as a normalized vector.
## If one of the input vectors has zero length, a normalized verison
## If one of the input vectors has zero length, a normalized version
## of the other is returned. If both input vectors has zero length,
## an arbitrary normalized vector is returned.
var
@@ -651,13 +653,13 @@ proc point2d*(x,y:float):TPoint2d =
result.y=y
proc sqrDist*(a,b:TPoint2d):float=
## Computes the squared distance between `a`and `b`
## Computes the squared distance between `a` and `b`
let dx=b.x-a.x
let dy=b.y-a.y
result=dx*dx+dy*dy
proc dist*(a,b:TPoint2d):float {.inline.}=
## Computes the absolute distance between `a`and `b`
## Computes the absolute distance between `a` and `b`
result=sqrt(sqrDist(a,b))
proc angle*(a,b:TPoint2d):float=
@@ -759,7 +761,8 @@ proc rotate*(p:var TPoint2d,rad:float)=
p.x=newx
proc rotate*(p:var TPoint2d,rad:float,org:TPoint2d)=
## Rotates a point in place `rad` radians around another point `org`
## Rotates a point in place `rad` radians using `org` as
## center of rotation.
let
c=cos(rad)
s=sin(rad)
@@ -778,12 +781,14 @@ proc scale*(p:var TPoint2d,fac:float,org:TPoint2d){.inline.}=
p.y=(p.y - org.y) * fac + org.y
proc stretch*(p:var TPoint2d,facx,facy:float){.inline.}=
## Scales a point in place non uniformly `facx` and `facy` times with world origo as origin.
## Scales a point in place non uniformly `facx` and `facy` times with
## world origo as origin.
p.x*=facx
p.y*=facy
proc stretch*(p:var TPoint2d,facx,facy:float,org:TPoint2d){.inline.}=
## Scales the point in place non uniformly `facx` and `facy` times with `org` as origin.
## Scales the point in place non uniformly `facx` and `facy` times with
## `org` as origin.
p.x=(p.x - org.x) * facx + org.x
p.y=(p.y - org.y) * facy + org.y
@@ -809,7 +814,8 @@ proc area*(a,b,c:TPoint2d):float=
return abs(sgnArea(a,b,c))
proc closestPoint*(p:TPoint2d,pts:varargs[TPoint2d]):TPoint2d=
## Returns a point selected from `pts`, that has the closest euclidean distance to `p`
## Returns a point selected from `pts`, that has the closest
## euclidean distance to `p`
assert(pts.len>0) # must have at least one point
var

View File

@@ -17,7 +17,8 @@ import times
## the translation part of matrix is ignored. The coordinate system used is
## right handed, because its compatible with 2d coordinate system (rotation around
## zaxis equals 2d rotation).
## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented for vectors and scalars.
## Operators `+` , `-` , `*` , `/` , `+=` , `-=` , `*=` and `/=` are implemented
## for vectors and scalars.
##
##
## Quick start example:
@@ -37,7 +38,7 @@ import times
##
## var pt2:TPoint3d=pt & m #concatenates pt with m and returns a new point
##
## var vec2:TVector3d=vec & m #concatenates vec with m and returns a new vector
## var vec2:TVector3d=vec & m #concatenates vec with m and returns a new vector
@@ -69,6 +70,7 @@ proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d
## Creates a new 4x4 3d transformation matrix.
## `ax` , `ay` , `az` is the local x axis.
## `bx` , `by` , `bz` is the local y axis.
## `cx` , `cy` , `cz` is the local z axis.
## `tx` , `ty` , `tz` is the translation.
proc vector3d*(x,y,z:float):TVector3d {.noInit,inline.}
## Returns a new 3d vector (`x`,`y`,`z`)
@@ -114,14 +116,19 @@ proc safeArccos(v:float):float=
template makeBinOpVector(s:expr)=
## implements binary operators + , - , * and / for vectors
proc s*(a,b:TVector3d):TVector3d {.inline,noInit.} = vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
proc s*(a:TVector3d,b:float):TVector3d {.inline,noInit.} = vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
proc s*(a:float,b:TVector3d):TVector3d {.inline,noInit.} = vector3d(s(a,b.x),s(a,b.y),s(a,b.z))
proc s*(a,b:TVector3d):TVector3d {.inline,noInit.} =
vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
proc s*(a:TVector3d,b:float):TVector3d {.inline,noInit.} =
vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
proc s*(a:float,b:TVector3d):TVector3d {.inline,noInit.} =
vector3d(s(a,b.x),s(a,b.y),s(a,b.z))
template makeBinOpAssignVector(s:expr)=
## implements inplace binary operators += , -= , /= and *= for vectors
proc s*(a:var TVector3d,b:TVector3d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z)
proc s*(a:var TVector3d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b) ; s(a.z,b)
proc s*(a:var TVector3d,b:TVector3d) {.inline.} =
s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z)
proc s*(a:var TVector3d,b:float) {.inline.} =
s(a.x,b) ; s(a.y,b) ; s(a.z,b)
@@ -235,7 +242,7 @@ proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}=
uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0,
0.0,0.0,0.0,1.0)
proc rotate*(angle:float,axis:TVector3d,org:TPoint3d):TMatrix3d {.noInit.}=
proc rotate*(angle:float,org:TPoint3d,axis:TVector3d):TMatrix3d {.noInit.}=
## Creates a rotation matrix that rotates `angle` radians over
## `axis`, which passes through `org`.
@@ -319,7 +326,10 @@ proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool=
## and perpendicular comparison.
#dot product=0 means perpendicular coord. system, check xaxis vs yaxis and xaxis vs zaxis
if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol:
if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and # x vs y
abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol and #x vs z
abs(m.bx*m.cx+m.by*m.cy+m.bz*m.cz)<=tol: #y vs z
#subtract squared lengths of axes to check if uniform scaling:
let
sqxlen=(m.ax*m.ax+m.ay*m.ay+m.az*m.az)
@@ -355,7 +365,7 @@ proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}=
0,0,0,1)
proc mirror*(planeperp:TVector3d,org:TPoint3d):TMatrix3d {.noInit.}=
proc mirror*(org:TPoint3d,planeperp:TVector3d):TMatrix3d {.noInit.}=
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
## and passes through `org`. `planeperp` does not need to be normalized.
@@ -393,7 +403,8 @@ proc mirror*(planeperp:TVector3d,org:TPoint3d):TMatrix3d {.noInit.}=
proc determinant*(m:TMatrix3d):float=
## Computes the determinant of matrix `m`.
# This computation is gotten from ratsimp(optimize(determinant(m))) in maxima CAS
# This computation is gotten from ratsimp(optimize(determinant(m)))
# in maxima CAS
let
O1=m.cx*m.tw-m.cw*m.tx
O2=m.cy*m.tw-m.cw*m.ty
@@ -537,7 +548,7 @@ proc len*(v:TVector3d):float=
proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} =
## Sets the length of the vector, keeping its direction.
## If the vector has zero length before chenging it's length,
## If the vector has zero length before changing it's length,
## an arbitrary vector of the requested length is returned.
let fac=newlen/v.len
@@ -702,8 +713,7 @@ proc stretch*(v:var TVector3d,sx,sy,sz:float)=
proc mirror*(v:var TVector3d,planeperp:TVector3d)=
## Computes the mirrored vector of `v` over the plane
## that has `planeperp` as normal direction. This is the
## same as reflecting the vector `v` on the plane.
## that has `planeperp` as normal direction.
## `planeperp` does not need to be normalized.
var n=planeperp
@@ -750,7 +760,8 @@ proc cross*(v1,v2:TVector3d):TVector3d {.inline.}=
## Computes the cross product of two vectors.
## The result is a vector which is perpendicular
## to the plane of `v1` and `v2`, which means
## cross(xaxis,yaxis)=zaxis
## cross(xaxis,yaxis)=zaxis. The magnitude of the result is
## zero if the vectors are colinear.
result.x = (v1.y * v2.z) - (v2.y * v1.z)
result.y = (v1.z * v2.x) - (v2.z * v1.x)
result.z = (v1.x * v2.y) - (v2.x * v1.y)
@@ -798,16 +809,16 @@ proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}=
0.0,0.0,0.0,1.0)
proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}=
## Computes the bisector between v1 and v2 as a normalized vector
## If one of the input vectors has zero length, a normalized verison
## Computes the bisector between v1 and v2 as a normalized vector.
## If one of the input vectors has zero length, a normalized version
## of the other is returned. If both input vectors has zero length,
## an arbitrary normalized vector is returned.
## an arbitrary normalized vector `v1`is returned.
var
vmag1=v1.len
vmag2=v2.len
# zero length vector equals arbitrary vector, just change to magnitude to one to
# avoid zero division
# zero length vector equals arbitrary vector, just change
# magnitude to one to avoid zero division
if vmag1==0.0:
if vmag2==0: #both are zero length return any normalized vector
return XAXIS
@@ -943,7 +954,7 @@ proc rotate*(p:var TPoint3d,rad:float,axis:TVector3d)=
p.y=v.y
p.z=v.z
proc rotate*(p:var TPoint3d,angle:float,axis:TVector3d,org:TPoint3d)=
proc rotate*(p:var TPoint3d,angle:float,org:TPoint3d,axis:TVector3d)=
## Rotates point `p` in place `rad` radians about an axis
## passing through `org`
@@ -994,13 +1005,15 @@ proc scale*(p:var TPoint3d,fac:float,org:TPoint3d){.inline.}=
p.z=(p.z - org.z) * fac + org.z
proc stretch*(p:var TPoint3d,facx,facy,facz:float){.inline.}=
## Scales a point in place non uniformly `facx` and `facy` times with world origo as origin.
## Scales a point in place non uniformly `facx` , `facy` , `facz` times
## with world origo as origin.
p.x*=facx
p.y*=facy
p.z*=facz
proc stretch*(p:var TPoint3d,facx,facy,facz:float,org:TPoint3d){.inline.}=
## Scales the point in place non uniformly `facx` and `facy` times with `org` as origin.
## Scales the point in place non uniformly `facx` , `facy` , `facz` times
## with `org` as origin.
p.x=(p.x - org.x) * facx + org.x
p.y=(p.y - org.y) * facy + org.y
p.z=(p.z - org.z) * facz + org.z