Go to file
metagn ac8c44e08d implement type bound operation RFC (#24315)
closes https://github.com/nim-lang/RFCs/issues/380, fixes #4773, fixes
#14729, fixes #16755, fixes #18150, fixes #22984, refs #11167 (only some
comments fixed), refs #12620 (needs tiny workaround)

The compiler gains a concept of root "nominal" types (i.e. objects,
enums, distincts, direct `Foo = ref object`s, generic versions of all of
these). Exported top-level routines in the same module as the nominal
types that their parameter types derive from (i.e. with
`var`/`sink`/`typedesc`/generic constraints) are considered attached to
the respective type, as the RFC states. This happens for every argument
regardless of placement.

When a call is overloaded and overload matching starts, for all
arguments in the call that already have a type, we add any operation
with the same name in the scope of the root nominal type of each
argument (if it exists) to the overload match. This also happens as
arguments gradually get typed after every overload match. This restricts
the considered overloads to ones attached to the given arguments, as
well as preventing `untyped` arguments from being forcefully typed due
to unrelated overloads. There are some caveats:

* If no overloads with a name are in scope, type bound ops are not
triggered, i.e. if `foo` is not declared, `foo(x)` will not consider a
type bound op for `x`.
* If overloads in scope do not have enough parameters up to the argument
which needs its type bound op considered, then type bound ops are also
not added. For example, if only `foo()` is in scope, `foo(x)` will not
consider a type bound op for `x`.

In the cases of "generic interfaces" like `hash`, `$`, `items` etc. this
is not really a problem since any code using it will have at least one
typed overload imported. For arbitrary versions of these though, as in
the test case for #12620, a workaround is to declare a temporary
"template" overload that never matches:

```nim
# neither have to be exported, just needed for any use of `foo`:
type Placeholder = object
proc foo(_: Placeholder) = discard
```

I don't know what a "proper" version of this could be, maybe something
to do with the new concepts.

Possible directions:

A limitation with the proposal is that parameters like `a: ref Foo` are
not attached to any type, even if `Foo` is nominal. Fixing this for just
`ptr`/`ref` would be a special case, parameters like `seq[Foo]` would
still not be attached to `Foo`. We could also skip any *structural* type
but this could produce more than one nominal type, i.e. `(Foo, Bar)`
(not that this is hard to implement, it just might be unexpected).

Converters do not use type bound ops, they still need to be in scope to
implicitly convert. But maybe they could also participate in the nominal
type consideration: if `Generic[T] = distinct T` has a converter to `T`,
both `Generic` and `T` can be considered as nominal roots.

The other restriction in the proposal, being in the same scope as the
nominal type, could maybe be worked around by explicitly attaching to
the type, i.e.: `proc foo(x: T) {.attach: T.}`, similar to class
extensions in newer OOP languages. The given type `T` needs to be
obtainable from the type of the given argument `x` however, i.e.
something like `proc foo(x: ref T) {.attach: T.}` doesn't work to fix
the `ref` issue since the compiler never obtains `T` from a given `ref
T` argument. Edit: Since the module is queried now, this is likely not
possible.

---------

Co-authored-by: Andreas Rumpf <rumpf_a@web.de>
(cherry picked from commit 2864830941)
2025-01-14 07:50:04 +01:00
2025-01-14 07:30:58 +01:00
2023-03-03 23:37:12 +01:00
2023-08-08 11:13:38 +08:00
2025-01-14 07:34:39 +01:00
2021-03-27 10:36:39 +01:00

Nim

Build Status

This repository contains the Nim compiler, Nim's stdlib, tools, and documentation. For more information about Nim, including downloads and documentation for the latest release, check out Nim's website or bleeding edge docs.

Community

Join the IRC chat Join the Discord server Join the Gitter chat Join the Matrix room Get help View Nim posts on Stack Overflow Follow @nim_lang on Twitter

  • The forum - the best place to ask questions and to discuss Nim.
  • #nim IRC Channel (Libera Chat) - a place to discuss Nim in real-time. Also where most development decisions get made.
  • Discord - an additional place to discuss Nim in real-time. Most channels there are bridged to IRC.
  • Gitter - an additional place to discuss Nim in real-time. There is a bridge between Gitter and the IRC channel.
  • Matrix - the main room to discuss Nim in real-time. Matrix space contains a list of rooms, most of them are bridged to IRC.
  • Telegram - an additional place to discuss Nim in real-time. There is the official Telegram channel. Not bridged to IRC.
  • Stack Overflow - a popular Q/A site for programming related topics that includes posts about Nim.
  • GitHub Wiki - Misc user-contributed content.

Compiling

The compiler currently officially supports the following platform and architecture combinations:

Operating System Architectures Supported
Windows (Windows XP or greater) x86 and x86_64
Linux (most distributions) x86, x86_64, ppc64, and armv6l
Mac OS X (10.04 or greater) x86, x86_64, ppc64, and Apple Silicon (ARM64)

More platforms are supported, however, they are not tested regularly and they may not be as stable as the above-listed platforms.

Compiling the Nim compiler is quite straightforward if you follow these steps:

First, the C source of an older version of the Nim compiler is needed to bootstrap the latest version because the Nim compiler itself is written in the Nim programming language. Those C sources are available within the nim-lang/csources_v2 repository.

Next, to build from source you will need:

  • A C compiler such as gcc 6.x/later or an alternative such as clang, Visual C++ or Intel C++. It is recommended to use gcc 6.x or later.
  • Either git or wget to download the needed source repositories.
  • The build-essential package when using gcc on Ubuntu (and likely other distros as well).
  • On Windows MinGW 4.3.0 (GCC 8.10) is the minimum recommended compiler.
  • Nim hosts a known working MinGW distribution:

Windows Note: Cygwin and similar POSIX runtime environments are not supported.

Then, if you are on a *nix system or Windows, the following steps should compile Nim from source using gcc, git, and the koch build tool.

Note: The following commands are for the development version of the compiler. For most users, installing the latest stable version is enough. Check out the installation instructions on the website to do so: https://nim-lang.org/install.html.

For package maintainers: see packaging guidelines.

First, get Nim from GitHub:

git clone https://github.com/nim-lang/Nim.git
cd Nim

Next, run the appropriate build shell script for your platform:

  • build_all.sh (Linux, Mac)
  • build_all.bat (Windows)

Finally, once you have finished the build steps (on Windows, Mac, or Linux) you should add the bin directory to your PATH.

See also bootstrapping the compiler.

See also reproducible builds.

Koch

koch is the build tool used to build various parts of Nim and to generate documentation and the website, among other things. The koch tool can also be used to run the Nim test suite.

Assuming that you added Nim's bin directory to your PATH, you may execute the tests using ./koch tests. The tests take a while to run, but you can run a subset of tests by specifying a category (for example ./koch tests cat async).

For more information on the koch build tool please see the documentation within the doc/koch.md file.

Nimble

nimble is Nim's package manager. To learn more about it, see the nim-lang/nimble repository.

Contributors

This project exists thanks to all the people who contribute.

Contributing

Backers on Open Collective Sponsors on Open Collective Donate Bitcoins Open Source Helpers

See detailed contributing guidelines. We welcome all contributions to Nim regardless of how small or large they are. Everything from spelling fixes to new modules to be included in the standard library are welcomed and appreciated. Before you start contributing, you should familiarize yourself with the following repository structure:

  • bin/, build/ - these directories are empty, but are used when Nim is built.
  • compiler/ - the compiler source code. Also includes plugins within compiler/plugins.
  • nimsuggest - the nimsuggest tool that previously lived in the nim-lang/nimsuggest repository.
  • config/ - the configuration for the compiler and documentation generator.
  • doc/ - the documentation files in reStructuredText format.
  • lib/ - the standard library, including:
    • pure/ - modules in the standard library written in pure Nim.
    • impure/ - modules in the standard library written in pure Nim with dependencies written in other languages.
    • wrappers/ - modules that wrap dependencies written in other languages.
  • tests/ - contains categorized tests for the compiler and standard library.
  • tools/ - the tools including niminst (mostly invoked via koch).
  • koch.nim - the tool used to bootstrap Nim, generate C sources, build the website, and generate the documentation.

If you are not familiar with making a pull request using GitHub and/or git, please read this guide.

Ideally, you should make sure that all tests pass before submitting a pull request. However, if you are short on time, you can just run the tests specific to your changes by only running the corresponding categories of tests. CI verifies that all tests pass before allowing the pull request to be accepted, so only running specific tests should be harmless. Integration tests should go in tests/untestable.

If you're looking for ways to contribute, please look at our issue tracker. There are always plenty of issues labeled Easy; these should be a good starting point for an initial contribution to Nim.

You can also help with the development of Nim by making donations. Donations can be made using:

If you have any questions feel free to submit a question on the Nim forum, or via IRC on the #nim channel.

Backers

Thank you to all our backers! [Become a backer]

Sponsors

Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [Become a sponsor]

You can also see a list of all our sponsors/backers from various payment services on the sponsors page of our website.

License

The compiler and the standard library are licensed under the MIT license, except for some modules which explicitly state otherwise. As a result, you may use any compatible license (essentially any license) for your own programs developed with Nim. You are explicitly permitted to develop commercial applications using Nim.

Please read the copying.txt file for more details.

Copyright © 2006-2024 Andreas Rumpf, all rights reserved.

Description
Nim is a statically typed compiled systems programming language. It combines successful concepts from mature languages like Python, Ada and Modula. Its design focuses on efficiency, expressiveness, and elegance (in that order of priority).
Readme 638 MiB
Languages
Nim 96.6%
HTML 1.8%
Python 0.5%
C 0.4%
Shell 0.4%
Other 0.2%