Files
Nim/compiler/semtypes.nim
2013-05-19 17:06:11 +02:00

1046 lines
38 KiB
Nim

#
#
# The Nimrod Compiler
# (c) Copyright 2012 Andreas Rumpf
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
# this module does the semantic checking of type declarations
# included from sem.nim
proc newOrPrevType(kind: TTypeKind, prev: PType, c: PContext): PType =
if prev == nil:
result = newTypeS(kind, c)
else:
result = prev
if result.kind == tyForward: result.kind = kind
proc newConstraint(c: PContext, k: TTypeKind): PType =
result = newTypeS(tyTypeClass, c)
result.addSonSkipIntLit(newTypeS(k, c))
proc semEnum(c: PContext, n: PNode, prev: PType): PType =
if n.sonsLen == 0: return newConstraint(c, tyEnum)
var
counter, x: BiggestInt
e: PSym
base: PType
counter = 0
base = nil
result = newOrPrevType(tyEnum, prev, c)
result.n = newNodeI(nkEnumTy, n.info)
checkMinSonsLen(n, 1)
if n.sons[0].kind != nkEmpty:
base = semTypeNode(c, n.sons[0].sons[0], nil)
if base.kind != tyEnum:
localError(n.sons[0].info, errInheritanceOnlyWithEnums)
counter = lastOrd(base) + 1
rawAddSon(result, base)
let isPure = result.sym != nil and sfPure in result.sym.flags
for i in countup(1, sonsLen(n) - 1):
case n.sons[i].kind
of nkEnumFieldDef:
e = newSymS(skEnumField, n.sons[i].sons[0], c)
var v = semConstExpr(c, n.sons[i].sons[1])
var strVal: PNode = nil
case skipTypes(v.typ, abstractInst-{tyTypeDesc}).kind
of tyTuple:
if sonsLen(v) == 2:
strVal = v.sons[1] # second tuple part is the string value
if skipTypes(strVal.typ, abstractInst).kind in {tyString, tyCstring}:
x = getOrdValue(v.sons[0]) # first tuple part is the ordinal
else:
LocalError(strVal.info, errStringLiteralExpected)
else:
LocalError(v.info, errWrongNumberOfVariables)
of tyString, tyCstring:
strVal = v
x = counter
else:
x = getOrdValue(v)
if i != 1:
if x != counter: incl(result.flags, tfEnumHasHoles)
if x < counter:
LocalError(n.sons[i].info, errInvalidOrderInEnumX, e.name.s)
x = counter
e.ast = strVal # might be nil
counter = x
of nkSym:
e = n.sons[i].sym
of nkIdent:
e = newSymS(skEnumField, n.sons[i], c)
else: illFormedAst(n)
e.typ = result
e.position = int(counter)
if result.sym != nil and sfExported in result.sym.flags:
incl(e.flags, sfUsed)
incl(e.flags, sfExported)
if not isPure: StrTableAdd(c.module.tab, e)
addSon(result.n, newSymNode(e))
if sfGenSym notin e.flags and not isPure: addDecl(c, e)
inc(counter)
proc semSet(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tySet, prev, c)
if sonsLen(n) == 2:
var base = semTypeNode(c, n.sons[1], nil)
addSonSkipIntLit(result, base)
if base.kind == tyGenericInst: base = lastSon(base)
if base.kind != tyGenericParam:
if not isOrdinalType(base):
LocalError(n.info, errOrdinalTypeExpected)
elif lengthOrd(base) > MaxSetElements:
LocalError(n.info, errSetTooBig)
else:
LocalError(n.info, errXExpectsOneTypeParam, "set")
addSonSkipIntLit(result, errorType(c))
proc semContainer(c: PContext, n: PNode, kind: TTypeKind, kindStr: string,
prev: PType): PType =
result = newOrPrevType(kind, prev, c)
if sonsLen(n) == 2:
var base = semTypeNode(c, n.sons[1], nil)
addSonSkipIntLit(result, base)
else:
LocalError(n.info, errXExpectsOneTypeParam, kindStr)
addSonSkipIntLit(result, errorType(c))
proc semVarargs(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tyVarargs, prev, c)
if sonsLen(n) == 2 or sonsLen(n) == 3:
var base = semTypeNode(c, n.sons[1], nil)
addSonSkipIntLit(result, base)
if sonsLen(n) == 3:
result.n = newIdentNode(considerAcc(n.sons[2]), n.sons[2].info)
else:
LocalError(n.info, errXExpectsOneTypeParam, "varargs")
addSonSkipIntLit(result, errorType(c))
proc semAnyRef(c: PContext, n: PNode, kind: TTypeKind, prev: PType): PType =
if sonsLen(n) == 1:
result = newOrPrevType(kind, prev, c)
var base = semTypeNode(c, n.sons[0], nil)
addSonSkipIntLit(result, base)
else:
result = newConstraint(c, kind)
proc semVarType(c: PContext, n: PNode, prev: PType): PType =
if sonsLen(n) == 1:
result = newOrPrevType(tyVar, prev, c)
var base = semTypeNode(c, n.sons[0], nil)
if base.kind == tyVar:
LocalError(n.info, errVarVarTypeNotAllowed)
base = base.sons[0]
addSonSkipIntLit(result, base)
else:
result = newConstraint(c, tyVar)
proc semDistinct(c: PContext, n: PNode, prev: PType): PType =
if sonsLen(n) == 1:
result = newOrPrevType(tyDistinct, prev, c)
addSonSkipIntLit(result, semTypeNode(c, n.sons[0], nil))
else:
result = newConstraint(c, tyDistinct)
proc semRangeAux(c: PContext, n: PNode, prev: PType): PType =
assert IsRange(n)
checkSonsLen(n, 3)
result = newOrPrevType(tyRange, prev, c)
result.n = newNodeI(nkRange, n.info)
if (n[1].kind == nkEmpty) or (n[2].kind == nkEmpty):
LocalError(n.Info, errRangeIsEmpty)
var a = semConstExpr(c, n[1])
var b = semConstExpr(c, n[2])
if not sameType(a.typ, b.typ):
LocalError(n.info, errPureTypeMismatch)
elif a.typ.kind notin {tyInt..tyInt64,tyEnum,tyBool,tyChar,
tyFloat..tyFloat128,tyUInt8..tyUInt32}:
LocalError(n.info, errOrdinalTypeExpected)
elif enumHasHoles(a.typ):
LocalError(n.info, errEnumXHasHoles, a.typ.sym.name.s)
elif not leValue(a, b): LocalError(n.Info, errRangeIsEmpty)
addSon(result.n, a)
addSon(result.n, b)
addSonSkipIntLit(result, b.typ)
proc semRange(c: PContext, n: PNode, prev: PType): PType =
result = nil
if sonsLen(n) == 2:
if isRange(n[1]): result = semRangeAux(c, n[1], prev)
else:
LocalError(n.sons[0].info, errRangeExpected)
result = newOrPrevType(tyError, prev, c)
else:
LocalError(n.info, errXExpectsOneTypeParam, "range")
result = newOrPrevType(tyError, prev, c)
proc semArray(c: PContext, n: PNode, prev: PType): PType =
var indx, base: PType
result = newOrPrevType(tyArray, prev, c)
if sonsLen(n) == 3:
# 3 = length(array indx base)
if isRange(n[1]): indx = semRangeAux(c, n[1], nil)
else: indx = semTypeNode(c, n.sons[1], nil)
addSonSkipIntLit(result, indx)
if indx.kind == tyGenericInst: indx = lastSon(indx)
if indx.kind != tyGenericParam:
if not isOrdinalType(indx):
LocalError(n.sons[1].info, errOrdinalTypeExpected)
elif enumHasHoles(indx):
LocalError(n.sons[1].info, errEnumXHasHoles, indx.sym.name.s)
base = semTypeNode(c, n.sons[2], nil)
addSonSkipIntLit(result, base)
else:
LocalError(n.info, errArrayExpectsTwoTypeParams)
result = newOrPrevType(tyError, prev, c)
proc semOrdinal(c: PContext, n: PNode, prev: PType): PType =
result = newOrPrevType(tyOrdinal, prev, c)
if sonsLen(n) == 2:
var base = semTypeNode(c, n.sons[1], nil)
if base.kind != tyGenericParam:
if not isOrdinalType(base):
LocalError(n.sons[1].info, errOrdinalTypeExpected)
addSonSkipIntLit(result, base)
else:
LocalError(n.info, errXExpectsOneTypeParam, "ordinal")
result = newOrPrevType(tyError, prev, c)
proc semTypeIdent(c: PContext, n: PNode): PSym =
if n.kind == nkSym:
result = n.sym
else:
result = qualifiedLookup(c, n, {checkAmbiguity, checkUndeclared})
if result != nil:
markUsed(n, result)
if result.kind == skParam and result.typ.kind == tyTypeDesc:
# This is a typedesc param. is it already bound?
# it's not bound when it's also used as return type for example
if result.typ.sonsLen > 0:
let bound = result.typ.sons[0].sym
if bound != nil:
return bound
return result
if result.typ.sym == nil:
LocalError(n.info, errTypeExpected)
return errorSym(c, n)
return result.typ.sym
if result.kind != skType:
# this implements the wanted ``var v: V, x: V`` feature ...
var ov: TOverloadIter
var amb = InitOverloadIter(ov, c, n)
while amb != nil and amb.kind != skType:
amb = nextOverloadIter(ov, c, n)
if amb != nil: result = amb
else:
if result.kind != skError: LocalError(n.info, errTypeExpected)
return errorSym(c, n)
if result.typ.kind != tyGenericParam:
# XXX get rid of this hack!
var oldInfo = n.info
reset(n[])
n.kind = nkSym
n.sym = result
n.info = oldInfo
else:
LocalError(n.info, errIdentifierExpected)
result = errorSym(c, n)
proc semTuple(c: PContext, n: PNode, prev: PType): PType =
if n.sonsLen == 0: return newConstraint(c, tyTuple)
var typ: PType
result = newOrPrevType(tyTuple, prev, c)
result.n = newNodeI(nkRecList, n.info)
var check = initIntSet()
var counter = 0
for i in countup(0, sonsLen(n) - 1):
var a = n.sons[i]
if (a.kind != nkIdentDefs): IllFormedAst(a)
checkMinSonsLen(a, 3)
var length = sonsLen(a)
if a.sons[length - 2].kind != nkEmpty:
typ = semTypeNode(c, a.sons[length - 2], nil)
else:
LocalError(a.info, errTypeExpected)
typ = errorType(c)
if a.sons[length - 1].kind != nkEmpty:
LocalError(a.sons[length - 1].info, errInitHereNotAllowed)
for j in countup(0, length - 3):
var field = newSymG(skField, a.sons[j], c)
field.typ = typ
field.position = counter
inc(counter)
if ContainsOrIncl(check, field.name.id):
LocalError(a.sons[j].info, errAttemptToRedefine, field.name.s)
else:
addSon(result.n, newSymNode(field))
addSonSkipIntLit(result, typ)
proc semIdentVis(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym =
# identifier with visibility
if n.kind == nkPostfix:
if sonsLen(n) == 2 and n.sons[0].kind == nkIdent:
# for gensym'ed identifiers the identifier may already have been
# transformed to a symbol and we need to use that here:
result = newSymG(kind, n.sons[1], c)
var v = n.sons[0].ident
if sfExported in allowed and v.id == ord(wStar):
incl(result.flags, sfExported)
else:
LocalError(n.sons[0].info, errInvalidVisibilityX, v.s)
else:
illFormedAst(n)
else:
result = newSymG(kind, n, c)
proc semIdentWithPragma(c: PContext, kind: TSymKind, n: PNode,
allowed: TSymFlags): PSym =
if n.kind == nkPragmaExpr:
checkSonsLen(n, 2)
result = semIdentVis(c, kind, n.sons[0], allowed)
case kind
of skType:
# process pragmas later, because result.typ has not been set yet
of skField: pragma(c, result, n.sons[1], fieldPragmas)
of skVar: pragma(c, result, n.sons[1], varPragmas)
of skLet: pragma(c, result, n.sons[1], letPragmas)
of skConst: pragma(c, result, n.sons[1], constPragmas)
else: nil
else:
result = semIdentVis(c, kind, n, allowed)
proc checkForOverlap(c: PContext, t: PNode, currentEx, branchIndex: int) =
let ex = t[branchIndex][currentEx].skipConv
for i in countup(1, branchIndex):
for j in countup(0, sonsLen(t.sons[i]) - 2):
if i == branchIndex and j == currentEx: break
if overlap(t.sons[i].sons[j].skipConv, ex):
LocalError(ex.info, errDuplicateCaseLabel)
proc semBranchRange(c: PContext, t, a, b: PNode, covered: var biggestInt): PNode =
checkMinSonsLen(t, 1)
let ac = semConstExpr(c, a)
let bc = semConstExpr(c, b)
let at = fitNode(c, t.sons[0].typ, ac).skipConvTakeType
let bt = fitNode(c, t.sons[0].typ, bc).skipConvTakeType
result = newNodeI(nkRange, a.info)
result.add(at)
result.add(bt)
if emptyRange(ac, bc): LocalError(b.info, errRangeIsEmpty)
else: covered = covered + getOrdValue(bc) - getOrdValue(ac) + 1
proc SemCaseBranchRange(c: PContext, t, b: PNode,
covered: var biggestInt): PNode =
checkSonsLen(b, 3)
result = semBranchRange(c, t, b.sons[1], b.sons[2], covered)
proc semCaseBranchSetElem(c: PContext, t, b: PNode,
covered: var biggestInt): PNode =
if isRange(b):
checkSonsLen(b, 3)
result = semBranchRange(c, t, b.sons[1], b.sons[2], covered)
elif b.kind == nkRange:
checkSonsLen(b, 2)
result = semBranchRange(c, t, b.sons[0], b.sons[1], covered)
else:
result = fitNode(c, t.sons[0].typ, b)
inc(covered)
proc semCaseBranch(c: PContext, t, branch: PNode, branchIndex: int,
covered: var biggestInt) =
for i in countup(0, sonsLen(branch) - 2):
var b = branch.sons[i]
if b.kind == nkRange:
branch.sons[i] = b
elif isRange(b):
branch.sons[i] = semCaseBranchRange(c, t, b, covered)
else:
var r = semConstExpr(c, b)
# for ``{}`` we want to trigger the type mismatch in ``fitNode``:
if r.kind != nkCurly or len(r) == 0:
checkMinSonsLen(t, 1)
branch.sons[i] = fitNode(c, t.sons[0].typ, r)
inc(covered)
else:
# constant sets have special rules
# first element is special and will overwrite: branch.sons[i]:
branch.sons[i] = semCaseBranchSetElem(c, t, r[0], covered)
# other elements have to be added to ``branch``
for j in 1 .. <r.len:
branch.add(semCaseBranchSetElem(c, t, r[j], covered))
# caution! last son of branch must be the actions to execute:
var L = branch.len
swap(branch.sons[L-2], branch.sons[L-1])
checkForOverlap(c, t, i, branchIndex)
proc semRecordNodeAux(c: PContext, n: PNode, check: var TIntSet, pos: var int,
father: PNode, rectype: PSym)
proc semRecordCase(c: PContext, n: PNode, check: var TIntSet, pos: var int,
father: PNode, rectype: PSym) =
var a = copyNode(n)
checkMinSonsLen(n, 2)
semRecordNodeAux(c, n.sons[0], check, pos, a, rectype)
if a.sons[0].kind != nkSym:
internalError("semRecordCase: discriminant is no symbol")
return
incl(a.sons[0].sym.flags, sfDiscriminant)
var covered: biggestInt = 0
var typ = skipTypes(a.sons[0].Typ, abstractVar-{tyTypeDesc})
if not isOrdinalType(typ):
LocalError(n.info, errSelectorMustBeOrdinal)
elif firstOrd(typ) < 0:
LocalError(n.info, errOrdXMustNotBeNegative, a.sons[0].sym.name.s)
elif lengthOrd(typ) > 0x00007FFF:
LocalError(n.info, errLenXinvalid, a.sons[0].sym.name.s)
var chckCovered = true
for i in countup(1, sonsLen(n) - 1):
var b = copyTree(n.sons[i])
addSon(a, b)
case n.sons[i].kind
of nkOfBranch:
checkMinSonsLen(b, 2)
semCaseBranch(c, a, b, i, covered)
of nkElse:
chckCovered = false
checkSonsLen(b, 1)
else: illFormedAst(n)
delSon(b, sonsLen(b) - 1)
semRecordNodeAux(c, lastSon(n.sons[i]), check, pos, b, rectype)
if chckCovered and (covered != lengthOrd(a.sons[0].typ)):
localError(a.info, errNotAllCasesCovered)
addSon(father, a)
proc semRecordNodeAux(c: PContext, n: PNode, check: var TIntSet, pos: var int,
father: PNode, rectype: PSym) =
if n == nil: return
case n.kind
of nkRecWhen:
var branch: PNode = nil # the branch to take
for i in countup(0, sonsLen(n) - 1):
var it = n.sons[i]
if it == nil: illFormedAst(n)
var idx = 1
case it.kind
of nkElifBranch:
checkSonsLen(it, 2)
if c.InGenericContext == 0:
var e = semConstBoolExpr(c, it.sons[0])
if e.kind != nkIntLit: InternalError(e.info, "semRecordNodeAux")
elif e.intVal != 0 and branch == nil: branch = it.sons[1]
else:
it.sons[0] = forceBool(c, semExprWithType(c, it.sons[0]))
of nkElse:
checkSonsLen(it, 1)
if branch == nil: branch = it.sons[0]
idx = 0
else: illFormedAst(n)
if c.InGenericContext > 0:
# use a new check intset here for each branch:
var newCheck: TIntSet
assign(newCheck, check)
var newPos = pos
var newf = newNodeI(nkRecList, n.info)
semRecordNodeAux(c, it.sons[idx], newcheck, newpos, newf, rectype)
it.sons[idx] = if newf.len == 1: newf[0] else: newf
if c.InGenericContext > 0:
addSon(father, n)
elif branch != nil:
semRecordNodeAux(c, branch, check, pos, father, rectype)
of nkRecCase:
semRecordCase(c, n, check, pos, father, rectype)
of nkNilLit:
if father.kind != nkRecList: addSon(father, newNodeI(nkRecList, n.info))
of nkRecList:
# attempt to keep the nesting at a sane level:
var a = if father.kind == nkRecList: father else: copyNode(n)
for i in countup(0, sonsLen(n) - 1):
semRecordNodeAux(c, n.sons[i], check, pos, a, rectype)
if a != father: addSon(father, a)
of nkIdentDefs:
checkMinSonsLen(n, 3)
var length = sonsLen(n)
var a: PNode
if father.kind != nkRecList and length >= 4: a = newNodeI(nkRecList, n.info)
else: a = ast.emptyNode
if n.sons[length-1].kind != nkEmpty:
localError(n.sons[length-1].info, errInitHereNotAllowed)
var typ: PType
if n.sons[length-2].kind == nkEmpty:
LocalError(n.info, errTypeExpected)
typ = errorType(c)
else:
typ = semTypeNode(c, n.sons[length-2], nil)
for i in countup(0, sonsLen(n)-3):
var f = semIdentWithPragma(c, skField, n.sons[i], {sfExported})
suggestSym(n.sons[i], f)
f.typ = typ
f.position = pos
if (rectype != nil) and ({sfImportc, sfExportc} * rectype.flags != {}) and
(f.loc.r == nil):
f.loc.r = toRope(f.name.s)
f.flags = f.flags + ({sfImportc, sfExportc} * rectype.flags)
inc(pos)
if ContainsOrIncl(check, f.name.id):
localError(n.sons[i].info, errAttemptToRedefine, f.name.s)
if a.kind == nkEmpty: addSon(father, newSymNode(f))
else: addSon(a, newSymNode(f))
if a.kind != nkEmpty: addSon(father, a)
of nkEmpty: nil
else: illFormedAst(n)
proc addInheritedFieldsAux(c: PContext, check: var TIntSet, pos: var int,
n: PNode) =
case n.kind
of nkRecCase:
if (n.sons[0].kind != nkSym): InternalError(n.info, "addInheritedFieldsAux")
addInheritedFieldsAux(c, check, pos, n.sons[0])
for i in countup(1, sonsLen(n) - 1):
case n.sons[i].kind
of nkOfBranch, nkElse:
addInheritedFieldsAux(c, check, pos, lastSon(n.sons[i]))
else: internalError(n.info, "addInheritedFieldsAux(record case branch)")
of nkRecList:
for i in countup(0, sonsLen(n) - 1):
addInheritedFieldsAux(c, check, pos, n.sons[i])
of nkSym:
Incl(check, n.sym.name.id)
inc(pos)
else: InternalError(n.info, "addInheritedFieldsAux()")
proc addInheritedFields(c: PContext, check: var TIntSet, pos: var int,
obj: PType) =
if (sonsLen(obj) > 0) and (obj.sons[0] != nil):
addInheritedFields(c, check, pos, obj.sons[0])
addInheritedFieldsAux(c, check, pos, obj.n)
proc skipGenericInvokation(t: PType): PType {.inline.} =
result = t
if result.kind == tyGenericInvokation:
result = result.sons[0]
if result.kind == tyGenericBody:
result = lastSon(result)
proc semObjectNode(c: PContext, n: PNode, prev: PType): PType =
if n.sonsLen == 0: return newConstraint(c, tyObject)
var check = initIntSet()
var pos = 0
var base: PType = nil
# n.sons[0] contains the pragmas (if any). We process these later...
checkSonsLen(n, 3)
if n.sons[1].kind != nkEmpty:
base = skipTypes(semTypeNode(c, n.sons[1].sons[0], nil), skipPtrs)
var concreteBase = skipGenericInvokation(base)
if concreteBase.kind == tyObject and tfFinal notin concreteBase.flags:
addInheritedFields(c, check, pos, concreteBase)
else:
if concreteBase.kind != tyError:
localError(n.sons[1].info, errInheritanceOnlyWithNonFinalObjects)
base = nil
if n.kind != nkObjectTy: InternalError(n.info, "semObjectNode")
result = newOrPrevType(tyObject, prev, c)
rawAddSon(result, base)
result.n = newNodeI(nkRecList, n.info)
semRecordNodeAux(c, n.sons[2], check, pos, result.n, result.sym)
if n.sons[0].kind != nkEmpty:
# dummy symbol for `pragma`:
var s = newSymS(skType, newIdentNode(getIdent("dummy"), n.info), c)
s.typ = result
pragma(c, s, n.sons[0], typePragmas)
if base == nil and tfInheritable notin result.flags:
incl(result.flags, tfFinal)
proc addParamOrResult(c: PContext, param: PSym, kind: TSymKind) =
if kind == skMacro and param.typ.kind != tyTypeDesc:
# within a macro, every param has the type PNimrodNode!
# and param.typ.kind in {tyTypeDesc, tyExpr, tyStmt}:
let nn = getSysSym"PNimrodNode"
var a = copySym(param)
a.typ = nn.typ
if sfGenSym notin a.flags: addDecl(c, a)
else:
if sfGenSym notin param.flags: addDecl(c, param)
proc paramTypeClass(c: PContext, paramType: PType, procKind: TSymKind):
tuple[typ: PType, id: PIdent] =
# if typ is not-nil, the param should be turned into a generic param
# if id is not nil, the generic param will bind just once (see below)
case paramType.kind:
of tyExpr:
if paramType.sonsLen == 0:
# proc(a, b: expr)
# no constraints, treat like generic param
result.typ = newTypeS(tyGenericParam, c)
else:
# proc(a: expr{string}, b: expr{nkLambda})
# overload on compile time values and AST trees
result.typ = newTypeS(tyExpr, c)
result.typ.sons = paramType.sons
of tyTypeDesc:
if tfInstantiated notin paramType.flags:
result.typ = newTypeS(tyTypeDesc, c)
result.typ.sons = paramType.sons
of tyDistinct:
result = paramTypeClass(c, paramType.lastSon, procKind)
# disable the bindOnce behavior for the type class
result.id = nil
return
of tyGenericBody:
# type Foo[T] = object
# proc x(a: Foo, b: Foo)
result.typ = newTypeS(tyTypeClass, c)
result.typ.addSonSkipIntLit(paramType)
of tyTypeClass:
result.typ = copyType(paramType, getCurrOwner(), false)
else: nil
# bindOnce by default
if paramType.sym != nil: result.id = paramType.sym.name
proc liftParamType(c: PContext, procKind: TSymKind, genericParams: PNode,
paramType: PType, paramName: string,
info: TLineInfo): PType =
result = paramType
if procKind in {skMacro, skTemplate}:
# generic param types in macros and templates affect overload
# resolution, but don't work as generic params when it comes
# to proc instantiation. We don't need to lift such params here.
return
## Params having implicit generic types or pseudo types such as 'expr'
## need to be added to the generic params lists.
## 'expr' is different from 'expr{string}' so we must first call
## paramTypeClass to get the actual type we are going to use.
var (typeClass, paramTypId) = paramTypeClass(c, paramType, procKind)
let isAnon = paramTypId == nil
if typeClass != nil:
if isAnon: paramTypId = getIdent(paramName & ":type")
if genericParams == nil:
# genericParams is nil when the proc is being instantiated
# the resolved type will be in scope then
let s = searchInScopes(c, paramTypId)
# tests/run/tinterf triggers this:
if s != nil: result = s.typ
else:
LocalError(info, errCannotInstantiateX, paramName)
result = errorType(c)
else:
block addImplicitGeneric:
# is this a bindOnce type class already present in the param list?
for i in countup(0, genericParams.len - 1):
if genericParams.sons[i].sym.name.id == paramTypId.id:
result = genericParams.sons[i].typ
break addImplicitGeneric
var s = newSym(skType, paramTypId, getCurrOwner(), info)
if isAnon: s.flags.incl(sfAnon)
s.linkTo(typeClass)
s.position = genericParams.len
genericParams.addSon(newSymNode(s))
result = typeClass
proc semParamType(c: PContext, n: PNode, constraint: var PNode): PType =
if n.kind == nkCurlyExpr:
result = semTypeNode(c, n.sons[0], nil)
constraint = semNodeKindConstraints(n)
else:
result = semTypeNode(c, n, nil)
proc semProcTypeNode(c: PContext, n, genericParams: PNode,
prev: PType, kind: TSymKind): PType =
var
res: PNode
cl: TIntSet
checkMinSonsLen(n, 1)
result = newOrPrevType(tyProc, prev, c)
result.callConv = lastOptionEntry(c).defaultCC
result.n = newNodeI(nkFormalParams, n.info)
if genericParams != nil and sonsLen(genericParams) == 0:
cl = initIntSet()
rawAddSon(result, nil) # return type
# result.n[0] used to be `nkType`, but now it's `nkEffectList` because
# the effects are now stored in there too ... this is a bit hacky, but as
# usual we desperately try to save memory:
res = newNodeI(nkEffectList, n.info)
addSon(result.n, res)
var check = initIntSet()
var counter = 0
for i in countup(1, n.len - 1):
var a = n.sons[i]
if a.kind != nkIdentDefs: IllFormedAst(a)
checkMinSonsLen(a, 3)
var
typ: PType = nil
def: PNode = nil
constraint: PNode = nil
length = sonsLen(a)
hasType = a.sons[length-2].kind != nkEmpty
hasDefault = a.sons[length-1].kind != nkEmpty
if hasType:
typ = semParamType(c, a.sons[length-2], constraint)
if hasDefault:
def = semExprWithType(c, a.sons[length-1])
# check type compability between def.typ and typ:
if typ == nil:
typ = def.typ
elif def != nil:
# and def.typ != nil and def.typ.kind != tyNone:
# example code that triggers it:
# proc sort[T](cmp: proc(a, b: T): int = cmp)
if not containsGenericType(typ):
def = fitNode(c, typ, def)
if not (hasType or hasDefault):
typ = newTypeS(tyExpr, c)
if skipTypes(typ, {tyGenericInst}).kind == tyEmpty: continue
for j in countup(0, length-3):
var arg = newSymG(skParam, a.sons[j], c)
var finalType = liftParamType(c, kind, genericParams, typ,
arg.name.s, arg.info).skipIntLit
arg.typ = finalType
arg.position = counter
arg.constraint = constraint
inc(counter)
if def != nil and def.kind != nkEmpty: arg.ast = copyTree(def)
if ContainsOrIncl(check, arg.name.id):
LocalError(a.sons[j].info, errAttemptToRedefine, arg.name.s)
addSon(result.n, newSymNode(arg))
rawAddSon(result, finalType)
addParamOrResult(c, arg, kind)
if n.sons[0].kind != nkEmpty:
var r = semTypeNode(c, n.sons[0], nil)
# turn explicit 'void' return type into 'nil' because the rest of the
# compiler only checks for 'nil':
if skipTypes(r, {tyGenericInst}).kind != tyEmpty:
if r.sym == nil or sfAnon notin r.sym.flags:
r = liftParamType(c, kind, genericParams, r, "result", n.sons[0].info)
r.flags.incl tfRetType
result.sons[0] = skipIntLit(r)
res.typ = result.sons[0]
proc semStmtListType(c: PContext, n: PNode, prev: PType): PType =
checkMinSonsLen(n, 1)
var length = sonsLen(n)
for i in countup(0, length - 2):
n.sons[i] = semStmt(c, n.sons[i])
if length > 0:
result = semTypeNode(c, n.sons[length - 1], prev)
n.typ = result
n.sons[length - 1].typ = result
else:
result = nil
proc semBlockType(c: PContext, n: PNode, prev: PType): PType =
Inc(c.p.nestedBlockCounter)
checkSonsLen(n, 2)
openScope(c)
if n.sons[0].kind notin {nkEmpty, nkSym}:
addDecl(c, newSymS(skLabel, n.sons[0], c))
result = semStmtListType(c, n.sons[1], prev)
n.sons[1].typ = result
n.typ = result
closeScope(c)
Dec(c.p.nestedBlockCounter)
proc semGenericParamInInvokation(c: PContext, n: PNode): PType =
# XXX hack 1022 for generics ... would have been nice if the compiler had
# been designed with them in mind from start ...
when false:
if n.kind == nkSym:
# for generics we need to lookup the type var again:
var s = searchInScopes(c, n.sym.name)
if s != nil:
if s.kind == skType and s.typ != nil:
var t = n.sym.typ
echo "came here"
return t
else:
echo "s is crap:"
debug(s)
else:
echo "s is nil!!!!"
result = semTypeNode(c, n, nil)
proc semGeneric(c: PContext, n: PNode, s: PSym, prev: PType): PType =
result = newOrPrevType(tyGenericInvokation, prev, c)
var isConcrete = true
if s.typ == nil:
LocalError(n.info, errCannotInstantiateX, s.name.s)
return newOrPrevType(tyError, prev, c)
elif s.typ.kind != tyGenericBody:
isConcrete = false
elif sonsLen(n) != sonsLen(s.typ):
LocalError(n.info, errWrongNumberOfArguments)
return newOrPrevType(tyError, prev, c)
addSonSkipIntLit(result, s.typ)
# iterate over arguments:
for i in countup(1, sonsLen(n)-1):
var elem = semGenericParamInInvokation(c, n.sons[i])
if containsGenericType(elem): isConcrete = false
#if elem.kind in {tyGenericParam, tyGenericInvokation}: isConcrete = false
if elem.isNil: rawAddSon(result, elem)
else: addSonSkipIntLit(result, elem)
if isConcrete:
if s.ast == nil:
LocalError(n.info, errCannotInstantiateX, s.name.s)
result = newOrPrevType(tyError, prev, c)
else:
result = instGenericContainer(c, n, result)
proc semTypeExpr(c: PContext, n: PNode): PType =
var n = semExprWithType(c, n, {efDetermineType})
if n.kind == nkSym and n.sym.kind == skType:
result = n.sym.typ
else:
LocalError(n.info, errTypeExpected, n.renderTree)
proc freshType(res, prev: PType): PType {.inline.} =
if prev.isNil:
result = copyType(res, res.owner, keepId=false)
else:
result = res
proc semTypeNode(c: PContext, n: PNode, prev: PType): PType =
result = nil
if gCmd == cmdIdeTools: suggestExpr(c, n)
case n.kind
of nkEmpty: nil
of nkTypeOfExpr:
# for ``type(countup(1,3))``, see ``tests/ttoseq``.
checkSonsLen(n, 1)
result = semExprWithType(c, n.sons[0], {efInTypeof}).typ
of nkPar:
if sonsLen(n) == 1: result = semTypeNode(c, n.sons[0], prev)
else:
# XXX support anon tuple here
LocalError(n.info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
of nkCallKinds:
if n[0].kind == nkIdent:
let op = n.sons[0].ident
if op.id in {ord(wAnd), ord(wOr)} or op.s == "|":
checkSonsLen(n, 3)
var
t1 = semTypeNode(c, n.sons[1], nil)
t2 = semTypeNode(c, n.sons[2], nil)
if t1 == nil:
LocalError(n.sons[1].info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
elif t2 == nil:
LocalError(n.sons[2].info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
else:
result = newTypeS(tyTypeClass, c)
result.addSonSkipIntLit(t1)
result.addSonSkipIntLit(t2)
result.flags.incl(if op.id == ord(wAnd): tfAll else: tfAny)
elif op.id == ord(wNot):
checkSonsLen(n, 3)
result = semTypeNode(c, n.sons[1], prev)
if result.kind in NilableTypes and n.sons[2].kind == nkNilLit:
result = freshType(result, prev)
result.flags.incl(tfNotNil)
else:
LocalError(n.info, errGenerated, "invalid type")
else:
result = semTypeExpr(c, n)
else:
result = semTypeExpr(c, n)
of nkWhenStmt:
var whenResult = semWhen(c, n, false)
if whenResult.kind == nkStmtList: whenResult.kind = nkStmtListType
result = semTypeNode(c, whenResult, prev)
of nkBracketExpr:
checkMinSonsLen(n, 2)
var s = semTypeIdent(c, n.sons[0])
case s.magic
of mArray: result = semArray(c, n, prev)
of mOpenArray: result = semContainer(c, n, tyOpenArray, "openarray", prev)
of mRange: result = semRange(c, n, prev)
of mSet: result = semSet(c, n, prev)
of mOrdinal: result = semOrdinal(c, n, prev)
of mSeq: result = semContainer(c, n, tySequence, "seq", prev)
of mVarargs: result = semVarargs(c, n, prev)
of mExpr, mTypeDesc:
result = semTypeNode(c, n.sons[0], nil)
if result != nil:
result = copyType(result, getCurrOwner(), false)
for i in countup(1, n.len - 1):
result.rawAddSon(semTypeNode(c, n.sons[i], nil))
else: result = semGeneric(c, n, s, prev)
of nkIdent, nkDotExpr, nkAccQuoted:
var s = semTypeIdent(c, n)
if s.typ == nil:
if s.kind != skError: LocalError(n.info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
elif s.kind == skParam and s.typ.kind == tyTypeDesc:
assert s.typ.len > 0
InternalAssert prev == nil
result = s.typ.sons[0]
elif prev == nil:
result = s.typ
else:
assignType(prev, s.typ)
# bugfix: keep the fresh id for aliases to integral types:
if s.typ.kind notin {tyBool, tyChar, tyInt..tyInt64, tyFloat..tyFloat128,
tyUInt..tyUInt64}:
prev.id = s.typ.id
result = prev
of nkSym:
if n.sym.kind == skType and n.sym.typ != nil:
var t = n.sym.typ
if prev == nil:
result = t
else:
assignType(prev, t)
result = prev
markUsed(n, n.sym)
else:
if n.sym.kind != skError: LocalError(n.info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
of nkObjectTy: result = semObjectNode(c, n, prev)
of nkTupleTy: result = semTuple(c, n, prev)
of nkRefTy: result = semAnyRef(c, n, tyRef, prev)
of nkPtrTy: result = semAnyRef(c, n, tyPtr, prev)
of nkVarTy: result = semVarType(c, n, prev)
of nkDistinctTy: result = semDistinct(c, n, prev)
of nkProcTy, nkIteratorTy:
if n.sonsLen == 0:
result = newConstraint(c, tyProc)
else:
checkSonsLen(n, 2)
openScope(c)
result = semProcTypeNode(c, n.sons[0], nil, prev, skProc)
# dummy symbol for `pragma`:
var s = newSymS(skProc, newIdentNode(getIdent("dummy"), n.info), c)
s.typ = result
if n.sons[1].kind == nkEmpty or n.sons[1].len == 0:
if result.callConv == ccDefault:
result.callConv = ccClosure
#Message(n.info, warnImplicitClosure, renderTree(n))
else:
pragma(c, s, n.sons[1], procTypePragmas)
when useEffectSystem: SetEffectsForProcType(result, n.sons[1])
closeScope(c)
if n.kind == nkIteratorTy:
result.flags.incl(tfIterator)
result.callConv = ccClosure
of nkEnumTy: result = semEnum(c, n, prev)
of nkType: result = n.typ
of nkStmtListType: result = semStmtListType(c, n, prev)
of nkBlockType: result = semBlockType(c, n, prev)
of nkSharedTy:
checkSonsLen(n, 1)
result = semTypeNode(c, n.sons[0], prev)
result = freshType(result, prev)
result.flags.incl(tfShared)
else:
LocalError(n.info, errTypeExpected)
result = newOrPrevType(tyError, prev, c)
proc setMagicType(m: PSym, kind: TTypeKind, size: int) =
m.typ.kind = kind
m.typ.align = size
m.typ.size = size
proc processMagicType(c: PContext, m: PSym) =
case m.magic
of mInt: setMagicType(m, tyInt, intSize)
of mInt8: setMagicType(m, tyInt8, 1)
of mInt16: setMagicType(m, tyInt16, 2)
of mInt32: setMagicType(m, tyInt32, 4)
of mInt64: setMagicType(m, tyInt64, 8)
of mUInt: setMagicType(m, tyUInt, intSize)
of mUInt8: setMagicType(m, tyUInt8, 1)
of mUInt16: setMagicType(m, tyUInt16, 2)
of mUInt32: setMagicType(m, tyUInt32, 4)
of mUInt64: setMagicType(m, tyUInt64, 8)
of mFloat: setMagicType(m, tyFloat, floatSize)
of mFloat32: setMagicType(m, tyFloat32, 4)
of mFloat64: setMagicType(m, tyFloat64, 8)
of mFloat128: setMagicType(m, tyFloat128, 16)
of mBool: setMagicType(m, tyBool, 1)
of mChar: setMagicType(m, tyChar, 1)
of mString:
setMagicType(m, tyString, ptrSize)
rawAddSon(m.typ, getSysType(tyChar))
of mCstring:
setMagicType(m, tyCString, ptrSize)
rawAddSon(m.typ, getSysType(tyChar))
of mPointer: setMagicType(m, tyPointer, ptrSize)
of mEmptySet:
setMagicType(m, tySet, 1)
rawAddSon(m.typ, newTypeS(tyEmpty, c))
of mIntSetBaseType: setMagicType(m, tyRange, intSize)
of mNil: setMagicType(m, tyNil, ptrSize)
of mExpr: setMagicType(m, tyExpr, 0)
of mStmt: setMagicType(m, tyStmt, 0)
of mTypeDesc: setMagicType(m, tyTypeDesc, 0)
of mVoidType: setMagicType(m, tyEmpty, 0)
of mArray: setMagicType(m, tyArray, 0)
of mOpenArray: setMagicType(m, tyOpenArray, 0)
of mVarargs: setMagicType(m, tyVarargs, 0)
of mRange: setMagicType(m, tyRange, 0)
of mSet: setMagicType(m, tySet, 0)
of mSeq: setMagicType(m, tySequence, 0)
of mOrdinal: setMagicType(m, tyOrdinal, 0)
of mPNimrodNode: nil
else: LocalError(m.info, errTypeExpected)
proc semGenericConstraints(c: PContext, n: PNode, result: PType) =
var x = semTypeNode(c, n, nil)
if x.kind in StructuralEquivTypes and (
sonsLen(x) == 0 or x.sons[0].kind in {tyGenericParam, tyEmpty}):
x = newConstraint(c, x.kind)
result.addSonSkipIntLit(x)
proc semGenericParamList(c: PContext, n: PNode, father: PType = nil): PNode =
result = copyNode(n)
if n.kind != nkGenericParams:
illFormedAst(n)
return
for i in countup(0, sonsLen(n)-1):
var a = n.sons[i]
if a.kind != nkIdentDefs: illFormedAst(n)
var L = sonsLen(a)
var def = a.sons[L-1]
var typ: PType
if a.sons[L-2].kind != nkEmpty:
typ = newTypeS(tyGenericParam, c)
semGenericConstraints(c, a.sons[L-2], typ)
if sonsLen(typ) == 1 and typ.sons[0].kind == tyTypeDesc:
typ = typ.sons[0]
elif def.kind != nkEmpty: typ = newTypeS(tyExpr, c)
else: typ = nil
for j in countup(0, L-3):
var s: PSym
if typ == nil:
s = newSymG(skType, a.sons[j], c)
s.typ = newTypeS(tyGenericParam, c)
else:
case typ.kind
of tyTypeDesc:
s = newSymG(skType, a.sons[j], c)
s.typ = newTypeS(tyGenericParam, c)
of tyExpr:
#echo "GENERIC EXPR ", a.info.toFileLineCol
# not a type param, but an expression
# proc foo[x: expr](bar: int) what is this?
s = newSymG(skGenericParam, a.sons[j], c)
s.typ = typ
else:
# This handles cases like proc foo[t: tuple]
# XXX: we want to turn that into a type class
s = newSymG(skType, a.sons[j], c)
s.typ = typ
if def.kind != nkEmpty: s.ast = def
s.typ.sym = s
if father != nil: addSonSkipIntLit(father, s.typ)
s.position = i
addSon(result, newSymNode(s))
if sfGenSym notin s.flags: addDecl(c, s)