mirror of
https://github.com/odin-lang/Odin.git
synced 2026-02-13 06:43:35 +00:00
Implement sin and cos in native Odin
This commit is contained in:
@@ -5,20 +5,6 @@ import "base:intrinsics"
|
||||
|
||||
@(default_calling_convention="none", private="file")
|
||||
foreign _ {
|
||||
@(link_name="llvm.sin.f16", require_results)
|
||||
_sin_f16 :: proc(θ: f16) -> f16 ---
|
||||
@(link_name="llvm.sin.f32", require_results)
|
||||
_sin_f32 :: proc(θ: f32) -> f32 ---
|
||||
@(link_name="llvm.sin.f64", require_results)
|
||||
_sin_f64 :: proc(θ: f64) -> f64 ---
|
||||
|
||||
@(link_name="llvm.cos.f16", require_results)
|
||||
_cos_f16 :: proc(θ: f16) -> f16 ---
|
||||
@(link_name="llvm.cos.f32", require_results)
|
||||
_cos_f32 :: proc(θ: f32) -> f32 ---
|
||||
@(link_name="llvm.cos.f64", require_results)
|
||||
_cos_f64 :: proc(θ: f64) -> f64 ---
|
||||
|
||||
@(link_name="llvm.pow.f16", require_results)
|
||||
_pow_f16 :: proc(x, power: f16) -> f16 ---
|
||||
@(link_name="llvm.pow.f32", require_results)
|
||||
@@ -41,31 +27,6 @@ foreign _ {
|
||||
_exp_f64 :: proc(x: f64) -> f64 ---
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
sin_f16 :: proc "contextless" (θ: f16) -> f16 {
|
||||
return _sin_f16(θ)
|
||||
}
|
||||
@(require_results)
|
||||
sin_f32 :: proc "contextless" (θ: f32) -> f32 {
|
||||
return _sin_f32(θ)
|
||||
}
|
||||
@(require_results)
|
||||
sin_f64 :: proc "contextless" (θ: f64) -> f64 {
|
||||
return _sin_f64(θ)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
cos_f16 :: proc "contextless" (θ: f16) -> f16 {
|
||||
return _cos_f16(θ)
|
||||
}
|
||||
@(require_results)
|
||||
cos_f32 :: proc "contextless" (θ: f32) -> f32 {
|
||||
return _cos_f32(θ)
|
||||
}
|
||||
@(require_results)
|
||||
cos_f64 :: proc "contextless" (θ: f64) -> f64 {
|
||||
return _cos_f64(θ)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
pow_f16 :: proc "contextless" (x, power: f16) -> f16 {
|
||||
|
||||
@@ -7,10 +7,6 @@ foreign import "odin_env"
|
||||
|
||||
@(default_calling_convention="c")
|
||||
foreign odin_env {
|
||||
@(link_name="sin", require_results)
|
||||
sin_f64 :: proc(θ: f64) -> f64 ---
|
||||
@(link_name="cos", require_results)
|
||||
cos_f64 :: proc(θ: f64) -> f64 ---
|
||||
@(link_name="pow", require_results)
|
||||
pow_f64 :: proc(x, power: f64) -> f64 ---
|
||||
@(link_name="fmuladd", require_results)
|
||||
@@ -27,16 +23,12 @@ sqrt_f64 :: proc "contextless" (x: f64) -> f64 {
|
||||
}
|
||||
|
||||
@(require_results) sqrt_f16 :: proc "c" (x: f16) -> f16 { return f16(sqrt_f64(f64(x))) }
|
||||
@(require_results) sin_f16 :: proc "c" (θ: f16) -> f16 { return f16(sin_f64(f64(θ))) }
|
||||
@(require_results) cos_f16 :: proc "c" (θ: f16) -> f16 { return f16(cos_f64(f64(θ))) }
|
||||
@(require_results) pow_f16 :: proc "c" (x, power: f16) -> f16 { return f16(pow_f64(f64(x), f64(power))) }
|
||||
@(require_results) fmuladd_f16 :: proc "c" (a, b, c: f16) -> f16 { return f16(fmuladd_f64(f64(a), f64(a), f64(c))) }
|
||||
@(require_results) ln_f16 :: proc "c" (x: f16) -> f16 { return f16(ln_f64(f64(x))) }
|
||||
@(require_results) exp_f16 :: proc "c" (x: f16) -> f16 { return f16(exp_f64(f64(x))) }
|
||||
|
||||
@(require_results) sqrt_f32 :: proc "c" (x: f32) -> f32 { return f32(sqrt_f64(f64(x))) }
|
||||
@(require_results) sin_f32 :: proc "c" (θ: f32) -> f32 { return f32(sin_f64(f64(θ))) }
|
||||
@(require_results) cos_f32 :: proc "c" (θ: f32) -> f32 { return f32(cos_f64(f64(θ))) }
|
||||
@(require_results) pow_f32 :: proc "c" (x, power: f32) -> f32 { return f32(pow_f64(f64(x), f64(power))) }
|
||||
@(require_results) fmuladd_f32 :: proc "c" (a, b, c: f32) -> f32 { return f32(fmuladd_f64(f64(a), f64(a), f64(c))) }
|
||||
@(require_results) ln_f32 :: proc "c" (x: f32) -> f32 { return f32(ln_f64(f64(x))) }
|
||||
|
||||
@@ -89,48 +89,58 @@ sincos :: proc{
|
||||
sincos_f64, sincos_f64le, sincos_f64be,
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
sincos_f16 :: proc "contextless" (x: f16) -> (sin, cos: f16) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f16(s), f16(c)
|
||||
}
|
||||
@(require_results)
|
||||
sincos_f16le :: proc "contextless" (x: f16le) -> (sin, cos: f16le) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f16le(s), f16le(c)
|
||||
}
|
||||
@(require_results)
|
||||
sincos_f16be :: proc "contextless" (x: f16be) -> (sin, cos: f16be) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f16be(s), f16be(c)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
sincos_f32 :: proc "contextless" (x: f32) -> (sin, cos: f32) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f32(s), f32(c)
|
||||
}
|
||||
@(require_results)
|
||||
sincos_f32le :: proc "contextless" (x: f32le) -> (sin, cos: f32le) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f32le(s), f32le(c)
|
||||
}
|
||||
@(require_results)
|
||||
sincos_f32be :: proc "contextless" (x: f32be) -> (sin, cos: f32be) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f32be(s), f32be(c)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
sincos_f64le :: proc "contextless" (x: f64le) -> (sin, cos: f64le) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f64le(s), f64le(c)
|
||||
}
|
||||
@(require_results)
|
||||
sincos_f64be :: proc "contextless" (x: f64be) -> (sin, cos: f64be) #no_bounds_check {
|
||||
s, c := sincos_f64(f64(x))
|
||||
return f64be(s), f64be(c)
|
||||
}
|
||||
|
||||
|
||||
@(private="file") PI4A :: 0h3fe921fb40000000 // 7.85398125648498535156e-1 PI/4 split into three parts
|
||||
@(private="file") PI4B :: 0h3e64442d00000000 // 3.77489470793079817668e-8
|
||||
@(private="file") PI4C :: 0h3ce8469898cc5170 // 2.69515142907905952645e-15
|
||||
|
||||
@(require_results)
|
||||
sincos_f64 :: proc "contextless" (x: f64) -> (sin, cos: f64) #no_bounds_check {
|
||||
x := x
|
||||
|
||||
PI4A :: 0h3fe921fb40000000 // 7.85398125648498535156e-1 PI/4 split into three parts
|
||||
PI4B :: 0h3e64442d00000000 // 3.77489470793079817668e-8
|
||||
PI4C :: 0h3ce8469898cc5170 // 2.69515142907905952645e-15
|
||||
|
||||
// special cases
|
||||
switch {
|
||||
case x == 0:
|
||||
@@ -189,12 +199,12 @@ sincos_f64 :: proc "contextless" (x: f64) -> (sin, cos: f64) #no_bounds_check {
|
||||
// sin coefficients
|
||||
@(private="file")
|
||||
_sin := [?]f64{
|
||||
0h3de5d8fd1fd19ccd, // 1.58962301576546568060e-10
|
||||
0hbe5ae5e5a9291f5d, // -2.50507477628578072866e-8
|
||||
0h3ec71de3567d48a1, // 2.75573136213857245213e-6
|
||||
0hbf2a01a019bfdf03, // -1.98412698295895385996e-4
|
||||
0h3f8111111110f7d0, // 8.33333333332211858878e-3
|
||||
0hbfc5555555555548, // -1.66666666666666307295e-1
|
||||
0h3de5d8fd1fd19ccd, // 1.58962301576546568060e-10
|
||||
0hbe5ae5e5a9291f5d, // -2.50507477628578072866e-8
|
||||
0h3ec71de3567d48a1, // 2.75573136213857245213e-6
|
||||
0hbf2a01a019bfdf03, // -1.98412698295895385996e-4
|
||||
0h3f8111111110f7d0, // 8.33333333332211858878e-3
|
||||
0hbfc5555555555548, // -1.66666666666666307295e-1
|
||||
}
|
||||
|
||||
// cos coefficients
|
||||
@@ -229,6 +239,7 @@ REDUCE_THRESHOLD :: 1 << 29
|
||||
// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
|
||||
// K. C. Ng et al, March 24, 1992
|
||||
// The simulated multi-precision calculation of x*B uses 64-bit integer arithmetic.
|
||||
@(require_results)
|
||||
_trig_reduce_f64 :: proc "contextless" (x: f64) -> (j: u64, z: f64) #no_bounds_check {
|
||||
// bd_pi4 is the binary digits of 4/pi as a u64 array,
|
||||
// that is, 4/pi = Sum bd_pi4[i]*2^(-64*i)
|
||||
@@ -306,3 +317,111 @@ _trig_reduce_f64 :: proc "contextless" (x: f64) -> (j: u64, z: f64) #no_bounds_c
|
||||
// Multiply the fractional part by pi/4.
|
||||
return j, z * PI4
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
cos_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check {
|
||||
x := x
|
||||
switch {
|
||||
case is_nan(x) || is_inf(x, 0):
|
||||
return nan_f64()
|
||||
}
|
||||
|
||||
// make argument positive
|
||||
sign := false
|
||||
x = abs(x)
|
||||
|
||||
j: u64
|
||||
y, z: f64
|
||||
if x >= REDUCE_THRESHOLD {
|
||||
j, z = _trig_reduce_f64(x)
|
||||
} else {
|
||||
j = u64(x * (4.0 / PI))
|
||||
y = f64(j)
|
||||
|
||||
// map zeros to origin
|
||||
if j&1 == 1 {
|
||||
j += 1
|
||||
y += 1
|
||||
}
|
||||
j &= 7 // octant modulo 2Pi radians (360 degrees)
|
||||
z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
|
||||
}
|
||||
|
||||
if j > 3 {
|
||||
j -= 4
|
||||
sign = !sign
|
||||
}
|
||||
if j > 1 {
|
||||
sign = !sign
|
||||
}
|
||||
|
||||
zz := z * z
|
||||
if j == 1 || j == 2 {
|
||||
y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
|
||||
} else {
|
||||
y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
|
||||
}
|
||||
if sign {
|
||||
y = -y
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
sin_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check {
|
||||
x := x
|
||||
|
||||
switch {
|
||||
case x == 0 || is_nan(x):
|
||||
return x
|
||||
case is_inf(x, 0):
|
||||
return nan_f64()
|
||||
}
|
||||
|
||||
// make argument positive but save the sign
|
||||
sign := false
|
||||
if x < 0 {
|
||||
x = -x
|
||||
sign = true
|
||||
}
|
||||
|
||||
j: u64
|
||||
y, z: f64
|
||||
if x >= REDUCE_THRESHOLD {
|
||||
j, z = _trig_reduce_f64(x)
|
||||
} else {
|
||||
j = u64(x * (4.0 / PI))
|
||||
y = f64(j)
|
||||
|
||||
// map zeros to origin
|
||||
if j&1 == 1 {
|
||||
j += 1
|
||||
y += 1
|
||||
}
|
||||
j &= 7 // octant modulo 2Pi radians (360 degrees)
|
||||
z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic
|
||||
}
|
||||
// reflect in x axis
|
||||
if j > 3 {
|
||||
sign = !sign
|
||||
j -= 4
|
||||
}
|
||||
zz := z * z
|
||||
if j == 1 || j == 2 {
|
||||
y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5])
|
||||
} else {
|
||||
y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5])
|
||||
}
|
||||
if sign {
|
||||
y = -y
|
||||
}
|
||||
return y
|
||||
}
|
||||
|
||||
|
||||
@(require_results) sin_f16 :: proc "c" (θ: f16) -> f16 { return f16(sin_f64(f64(θ))) }
|
||||
@(require_results) cos_f16 :: proc "c" (θ: f16) -> f16 { return f16(cos_f64(f64(θ))) }
|
||||
@(require_results) sin_f32 :: proc "c" (θ: f32) -> f32 { return f32(sin_f64(f64(θ))) }
|
||||
@(require_results) cos_f32 :: proc "c" (θ: f32) -> f32 { return f32(cos_f64(f64(θ))) }
|
||||
Reference in New Issue
Block a user