Begin work on core:math/cmplx

`complex*` types only at the moment, `quaternion*` types coming later
This commit is contained in:
gingerBill
2023-06-28 13:20:23 +01:00
parent a2b3c72647
commit 1ecb4aa9aa
3 changed files with 1195 additions and 0 deletions

513
core/math/cmplx/cmplx.odin Normal file
View File

@@ -0,0 +1,513 @@
package math_cmplx
import "core:builtin"
import "core:math"
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
abs :: builtin.abs
conj :: builtin.conj
real :: builtin.real
imag :: builtin.imag
jmag :: builtin.jmag
kmag :: builtin.kmag
sin :: proc{
sin_complex128,
}
cos :: proc{
cos_complex128,
}
tan :: proc{
tan_complex128,
}
cot :: proc{
cot_complex128,
}
sinh :: proc{
sinh_complex128,
}
cosh :: proc{
cosh_complex128,
}
tanh :: proc{
tanh_complex128,
}
// sqrt returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt :: proc{
sqrt_complex32,
sqrt_complex64,
sqrt_complex128,
}
ln :: proc{
ln_complex32,
ln_complex64,
ln_complex128,
}
log10 :: proc{
log10_complex32,
log10_complex64,
log10_complex128,
}
exp :: proc{
exp_complex32,
exp_complex64,
exp_complex128,
}
pow :: proc{
pow_complex32,
pow_complex64,
pow_complex128,
}
phase :: proc{
phase_complex32,
phase_complex64,
phase_complex128,
}
polar :: proc{
polar_complex32,
polar_complex64,
polar_complex128,
}
is_inf :: proc{
is_inf_complex32,
is_inf_complex64,
is_inf_complex128,
}
is_nan :: proc{
is_nan_complex32,
is_nan_complex64,
is_nan_complex128,
}
// sqrt_complex32 returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex32(sqrt_complex128(complex128(x)))
}
// sqrt_complex64 returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex64(sqrt_complex128(complex128(x)))
}
// sqrt_complex128 returns the square root of x.
// The result r is chosen so that real(r) ≥ 0 and imag(r) has the same sign as imag(x).
sqrt_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
// Complex square root
//
// DESCRIPTION:
//
// If z = x + iy, r = |z|, then
//
// 1/2
// Re w = [ (r + x)/2 ] ,
//
// 1/2
// Im w = [ (r - x)/2 ] .
//
// Cancellation error in r-x or r+x is avoided by using the
// identity 2 Re w Im w = y.
//
// Note that -w is also a square root of z. The root chosen
// is always in the right half plane and Im w has the same sign as y.
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 25000 3.2e-17 9.6e-18
// IEEE -10,+10 1,000,000 2.9e-16 6.1e-17
if imag(x) == 0 {
// Ensure that imag(r) has the same sign as imag(x) for imag(x) == signed zero.
if real(x) == 0 {
return complex(0, imag(x))
}
if real(x) < 0 {
return complex(0, math.copy_sign(math.sqrt(-real(x)), imag(x)))
}
return complex(math.sqrt(real(x)), imag(x))
} else if math.is_inf(imag(x), 0) {
return complex(math.inf_f64(1.0), imag(x))
}
if real(x) == 0 {
if imag(x) < 0 {
r := math.sqrt(-0.5 * imag(x))
return complex(r, -r)
}
r := math.sqrt(0.5 * imag(x))
return complex(r, r)
}
a := real(x)
b := imag(x)
scale: f64
// Rescale to avoid internal overflow or underflow.
if abs(a) > 4 || abs(b) > 4 {
a *= 0.25
b *= 0.25
scale = 2
} else {
a *= 1.8014398509481984e16 // 2**54
b *= 1.8014398509481984e16
scale = 7.450580596923828125e-9 // 2**-27
}
r := math.hypot(a, b)
t: f64
if a > 0 {
t = math.sqrt(0.5*r + 0.5*a)
r = scale * abs((0.5*b)/t)
t *= scale
} else {
r = math.sqrt(0.5*r - 0.5*a)
t = scale * abs((0.5*b)/r)
r *= scale
}
if b < 0 {
return complex(t, -r)
}
return complex(t, r)
}
ln_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex(math.ln(abs(x)), phase(x))
}
ln_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex(math.ln(abs(x)), phase(x))
}
ln_complex128 :: proc "contextless" (x: complex128) -> complex128 {
return complex(math.ln(abs(x)), phase(x))
}
exp_complex32 :: proc "contextless" (x: complex32) -> complex32 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case re > 0 && im == 0:
return x
case math.is_inf(im, 0) || math.is_nan(im):
if re < 0 {
return complex(0, math.copy_sign(0, im))
} else {
return complex(math.inf_f64(1.0), math.nan_f64())
}
}
case math.is_nan(re):
if im == 0 {
return complex(math.nan_f16(), im)
}
}
r := math.exp(real(x))
s, c := math.sincos(imag(x))
return complex(r*c, r*s)
}
exp_complex64 :: proc "contextless" (x: complex64) -> complex64 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case re > 0 && im == 0:
return x
case math.is_inf(im, 0) || math.is_nan(im):
if re < 0 {
return complex(0, math.copy_sign(0, im))
} else {
return complex(math.inf_f64(1.0), math.nan_f64())
}
}
case math.is_nan(re):
if im == 0 {
return complex(math.nan_f32(), im)
}
}
r := math.exp(real(x))
s, c := math.sincos(imag(x))
return complex(r*c, r*s)
}
exp_complex128 :: proc "contextless" (x: complex128) -> complex128 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case re > 0 && im == 0:
return x
case math.is_inf(im, 0) || math.is_nan(im):
if re < 0 {
return complex(0, math.copy_sign(0, im))
} else {
return complex(math.inf_f64(1.0), math.nan_f64())
}
}
case math.is_nan(re):
if im == 0 {
return complex(math.nan_f64(), im)
}
}
r := math.exp(real(x))
s, c := math.sincos(imag(x))
return complex(r*c, r*s)
}
pow_complex32 :: proc "contextless" (x, y: complex32) -> complex32 {
if x == 0 { // Guaranteed also true for x == -0.
if is_nan(y) {
return nan_complex32()
}
r, i := real(y), imag(y)
switch {
case r == 0:
return 1
case r < 0:
if i == 0 {
return complex(math.inf_f16(1), 0)
}
return inf_complex32()
case r > 0:
return 0
}
unreachable()
}
modulus := abs(x)
if modulus == 0 {
return complex(0, 0)
}
r := math.pow(modulus, real(y))
arg := phase(x)
theta := real(y) * arg
if imag(y) != 0 {
r *= math.exp(-imag(y) * arg)
theta += imag(y) * math.ln(modulus)
}
s, c := math.sincos(theta)
return complex(r*c, r*s)
}
pow_complex64 :: proc "contextless" (x, y: complex64) -> complex64 {
if x == 0 { // Guaranteed also true for x == -0.
if is_nan(y) {
return nan_complex64()
}
r, i := real(y), imag(y)
switch {
case r == 0:
return 1
case r < 0:
if i == 0 {
return complex(math.inf_f32(1), 0)
}
return inf_complex64()
case r > 0:
return 0
}
unreachable()
}
modulus := abs(x)
if modulus == 0 {
return complex(0, 0)
}
r := math.pow(modulus, real(y))
arg := phase(x)
theta := real(y) * arg
if imag(y) != 0 {
r *= math.exp(-imag(y) * arg)
theta += imag(y) * math.ln(modulus)
}
s, c := math.sincos(theta)
return complex(r*c, r*s)
}
pow_complex128 :: proc "contextless" (x, y: complex128) -> complex128 {
if x == 0 { // Guaranteed also true for x == -0.
if is_nan(y) {
return nan_complex128()
}
r, i := real(y), imag(y)
switch {
case r == 0:
return 1
case r < 0:
if i == 0 {
return complex(math.inf_f64(1), 0)
}
return inf_complex128()
case r > 0:
return 0
}
unreachable()
}
modulus := abs(x)
if modulus == 0 {
return complex(0, 0)
}
r := math.pow(modulus, real(y))
arg := phase(x)
theta := real(y) * arg
if imag(y) != 0 {
r *= math.exp(-imag(y) * arg)
theta += imag(y) * math.ln(modulus)
}
s, c := math.sincos(theta)
return complex(r*c, r*s)
}
log10_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return math.LN10*ln(x)
}
log10_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return math.LN10*ln(x)
}
log10_complex128 :: proc "contextless" (x: complex128) -> complex128 {
return math.LN10*ln(x)
}
phase_complex32 :: proc "contextless" (x: complex32) -> f16 {
return math.atan2(imag(x), real(x))
}
phase_complex64 :: proc "contextless" (x: complex64) -> f32 {
return math.atan2(imag(x), real(x))
}
phase_complex128 :: proc "contextless" (x: complex128) -> f64 {
return math.atan2(imag(x), real(x))
}
rect_complex32 :: proc "contextless" (r, θ: f16) -> complex32 {
s, c := math.sincos(θ)
return complex(r*c, r*s)
}
rect_complex64 :: proc "contextless" (r, θ: f32) -> complex64 {
s, c := math.sincos(θ)
return complex(r*c, r*s)
}
rect_complex128 :: proc "contextless" (r, θ: f64) -> complex128 {
s, c := math.sincos(θ)
return complex(r*c, r*s)
}
polar_complex32 :: proc "contextless" (x: complex32) -> (r, θ: f16) {
return abs(x), phase(x)
}
polar_complex64 :: proc "contextless" (x: complex64) -> (r, θ: f32) {
return abs(x), phase(x)
}
polar_complex128 :: proc "contextless" (x: complex128) -> (r, θ: f64) {
return abs(x), phase(x)
}
nan_complex32 :: proc "contextless" () -> complex32 {
return complex(math.nan_f16(), math.nan_f16())
}
nan_complex64 :: proc "contextless" () -> complex64 {
return complex(math.nan_f32(), math.nan_f32())
}
nan_complex128 :: proc "contextless" () -> complex128 {
return complex(math.nan_f64(), math.nan_f64())
}
inf_complex32 :: proc "contextless" () -> complex32 {
inf := math.inf_f16(1)
return complex(inf, inf)
}
inf_complex64 :: proc "contextless" () -> complex64 {
inf := math.inf_f32(1)
return complex(inf, inf)
}
inf_complex128 :: proc "contextless" () -> complex128 {
inf := math.inf_f64(1)
return complex(inf, inf)
}
is_inf_complex32 :: proc "contextless" (x: complex32) -> bool {
return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
}
is_inf_complex64 :: proc "contextless" (x: complex64) -> bool {
return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
}
is_inf_complex128 :: proc "contextless" (x: complex128) -> bool {
return math.is_inf(real(x), 0) || math.is_inf(imag(x), 0)
}
is_nan_complex32 :: proc "contextless" (x: complex32) -> bool {
if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
return false
}
return math.is_nan(real(x)) || math.is_nan(imag(x))
}
is_nan_complex64 :: proc "contextless" (x: complex64) -> bool {
if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
return false
}
return math.is_nan(real(x)) || math.is_nan(imag(x))
}
is_nan_complex128 :: proc "contextless" (x: complex128) -> bool {
if math.is_inf(real(x), 0) || math.is_inf(imag(x), 0) {
return false
}
return math.is_nan(real(x)) || math.is_nan(imag(x))
}

View File

@@ -0,0 +1,273 @@
package math_cmplx
import "core:builtin"
import "core:math"
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
acos :: proc{
acos_complex32,
acos_complex64,
acos_complex128,
}
acosh :: proc{
acosh_complex32,
acosh_complex64,
acosh_complex128,
}
asin :: proc{
asin_complex32,
asin_complex64,
asin_complex128,
}
asinh :: proc{
asinh_complex32,
asinh_complex64,
asinh_complex128,
}
atan :: proc{
atan_complex32,
atan_complex64,
atan_complex128,
}
atanh :: proc{
atanh_complex32,
atanh_complex64,
atanh_complex128,
}
acos_complex32 :: proc "contextless" (x: complex32) -> complex32 {
w := asin(x)
return complex(math.PI/2 - real(w), -imag(w))
}
acos_complex64 :: proc "contextless" (x: complex64) -> complex64 {
w := asin(x)
return complex(math.PI/2 - real(w), -imag(w))
}
acos_complex128 :: proc "contextless" (x: complex128) -> complex128 {
w := asin(x)
return complex(math.PI/2 - real(w), -imag(w))
}
acosh_complex32 :: proc "contextless" (x: complex32) -> complex32 {
if x == 0 {
return complex(0, math.copy_sign(math.PI/2, imag(x)))
}
w := acos(x)
if imag(w) <= 0 {
return complex(-imag(w), real(w))
}
return complex(imag(w), -real(w))
}
acosh_complex64 :: proc "contextless" (x: complex64) -> complex64 {
if x == 0 {
return complex(0, math.copy_sign(math.PI/2, imag(x)))
}
w := acos(x)
if imag(w) <= 0 {
return complex(-imag(w), real(w))
}
return complex(imag(w), -real(w))
}
acosh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
if x == 0 {
return complex(0, math.copy_sign(math.PI/2, imag(x)))
}
w := acos(x)
if imag(w) <= 0 {
return complex(-imag(w), real(w))
}
return complex(imag(w), -real(w))
}
asin_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex32(asin_complex128(complex128(x)))
}
asin_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex64(asin_complex128(complex128(x)))
}
asin_complex128 :: proc "contextless" (x: complex128) -> complex128 {
switch re, im := real(x), imag(x); {
case im == 0 && abs(re) <= 1:
return complex(math.asin(re), im)
case re == 0 && abs(im) <= 1:
return complex(re, math.asinh(im))
case math.is_nan(im):
switch {
case re == 0:
return complex(re, math.nan_f64())
case math.is_inf(re, 0):
return complex(math.nan_f64(), re)
case:
return nan_complex128()
}
case math.is_inf(im, 0):
switch {
case math.is_nan(re):
return x
case math.is_inf(re, 0):
return complex(math.copy_sign(math.PI/4, re), im)
case:
return complex(math.copy_sign(0, re), im)
}
case math.is_inf(re, 0):
return complex(math.copy_sign(math.PI/2, re), math.copy_sign(re, im))
}
ct := complex(-imag(x), real(x)) // i * x
xx := x * x
x1 := complex(1-real(xx), -imag(xx)) // 1 - x*x
x2 := sqrt(x1) // x2 = sqrt(1 - x*x)
w := ln(ct + x2)
return complex(imag(w), -real(w)) // -i * w
}
asinh_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex32(asinh_complex128(complex128(x)))
}
asinh_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex64(asinh_complex128(complex128(x)))
}
asinh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
switch re, im := real(x), imag(x); {
case im == 0 && abs(re) <= 1:
return complex(math.asinh(re), im)
case re == 0 && abs(im) <= 1:
return complex(re, math.asin(im))
case math.is_inf(re, 0):
switch {
case math.is_inf(im, 0):
return complex(re, math.copy_sign(math.PI/4, im))
case math.is_nan(im):
return x
case:
return complex(re, math.copy_sign(0.0, im))
}
case math.is_nan(re):
switch {
case im == 0:
return x
case math.is_inf(im, 0):
return complex(im, re)
case:
return nan_complex128()
}
case math.is_inf(im, 0):
return complex(math.copy_sign(im, re), math.copy_sign(math.PI/2, im))
}
xx := x * x
x1 := complex(1+real(xx), imag(xx)) // 1 + x*x
return ln(x + sqrt(x1)) // log(x + sqrt(1 + x*x))
}
atan_complex32 :: proc "contextless" (x: complex32) -> complex32 {
return complex32(atan_complex128(complex128(x)))
}
atan_complex64 :: proc "contextless" (x: complex64) -> complex64 {
return complex64(atan_complex128(complex128(x)))
}
atan_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// Complex circular arc tangent
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
// 1 ( 2x )
// Re w = - arctan(-----------) + k PI
// 2 ( 2 2)
// (1 - x - y )
//
// ( 2 2)
// 1 (x + (y+1) )
// Im w = - log(------------)
// 4 ( 2 2)
// (x + (y-1) )
//
// Where k is an arbitrary integer.
//
// catan(z) = -i catanh(iz).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 5900 1.3e-16 7.8e-18
// IEEE -10,+10 30000 2.3e-15 8.5e-17
// The check catan( ctan(z) ) = z, with |x| and |y| < PI/2,
// had peak relative error 1.5e-16, rms relative error
// 2.9e-17. See also clog().
switch re, im := real(x), imag(x); {
case im == 0:
return complex(math.atan(re), im)
case re == 0 && abs(im) <= 1:
return complex(re, math.atanh(im))
case math.is_inf(im, 0) || math.is_inf(re, 0):
if math.is_nan(re) {
return complex(math.nan_f64(), math.copy_sign(0, im))
}
return complex(math.copy_sign(math.PI/2, re), math.copy_sign(0, im))
case math.is_nan(re) || math.is_nan(im):
return nan_complex128()
}
x2 := real(x) * real(x)
a := 1 - x2 - imag(x)*imag(x)
if a == 0 {
return nan_complex128()
}
t := 0.5 * math.atan2(2*real(x), a)
w := _reduce_pi_f64(t)
t = imag(x) - 1
b := x2 + t*t
if b == 0 {
return nan_complex128()
}
t = imag(x) + 1
c := (x2 + t*t) / b
return complex(w, 0.25*math.ln(c))
}
atanh_complex32 :: proc "contextless" (x: complex32) -> complex32 {
z := complex(-imag(x), real(x)) // z = i * x
z = atan(z)
return complex(imag(z), -real(z)) // z = -i * z
}
atanh_complex64 :: proc "contextless" (x: complex64) -> complex64 {
z := complex(-imag(x), real(x)) // z = i * x
z = atan(z)
return complex(imag(z), -real(z)) // z = -i * z
}
atanh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
z := complex(-imag(x), real(x)) // z = i * x
z = atan(z)
return complex(imag(z), -real(z)) // z = -i * z
}

View File

@@ -0,0 +1,409 @@
package math_cmplx
import "core:math"
import "core:math/bits"
// The original C code, the long comment, and the constants
// below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c.
// The go code is a simplified version of the original C.
//
// Cephes Math Library Release 2.8: June, 2000
// Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
//
// The readme file at http://netlib.sandia.gov/cephes/ says:
// Some software in this archive may be from the book _Methods and
// Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster
// International, 1989) or from the Cephes Mathematical Library, a
// commercial product. In either event, it is copyrighted by the author.
// What you see here may be used freely but it comes with no support or
// guarantee.
//
// The two known misprints in the book are repaired here in the
// source listings for the gamma function and the incomplete beta
// integral.
//
// Stephen L. Moshier
// moshier@na-net.ornl.gov
sin_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// Complex circular sine
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// w = sin x cosh y + i cos x sinh y.
//
// csin(z) = -i csinh(iz).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 8400 5.3e-17 1.3e-17
// IEEE -10,+10 30000 3.8e-16 1.0e-16
// Also tested by csin(casin(z)) = z.
switch re, im := real(x), imag(x); {
case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
return complex(math.nan_f64(), im)
case math.is_inf(im, 0):
switch {
case re == 0:
return x
case math.is_inf(re, 0) || math.is_nan(re):
return complex(math.nan_f64(), im)
}
case re == 0 && math.is_nan(im):
return x
}
s, c := math.sincos(real(x))
sh, ch := _sinhcosh_f64(imag(x))
return complex(s*ch, c*sh)
}
cos_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// Complex circular cosine
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// w = cos x cosh y - i sin x sinh y.
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 8400 4.5e-17 1.3e-17
// IEEE -10,+10 30000 3.8e-16 1.0e-16
switch re, im := real(x), imag(x); {
case im == 0 && (math.is_inf(re, 0) || math.is_nan(re)):
return complex(math.nan_f64(), -im*math.copy_sign(0, re))
case math.is_inf(im, 0):
switch {
case re == 0:
return complex(math.inf_f64(1), -re*math.copy_sign(0, im))
case math.is_inf(re, 0) || math.is_nan(re):
return complex(math.inf_f64(1), math.nan_f64())
}
case re == 0 && math.is_nan(im):
return complex(math.nan_f64(), 0)
}
s, c := math.sincos(real(x))
sh, ch := _sinhcosh_f64(imag(x))
return complex(c*ch, -s*sh)
}
sinh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// Complex hyperbolic sine
//
// DESCRIPTION:
//
// csinh z = (cexp(z) - cexp(-z))/2
// = sinh x * cos y + i cosh x * sin y .
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -10,+10 30000 3.1e-16 8.2e-17
switch re, im := real(x), imag(x); {
case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
return complex(re, math.nan_f64())
case math.is_inf(re, 0):
switch {
case im == 0:
return complex(re, im)
case math.is_inf(im, 0) || math.is_nan(im):
return complex(re, math.nan_f64())
}
case im == 0 && math.is_nan(re):
return complex(math.nan_f64(), im)
}
s, c := math.sincos(imag(x))
sh, ch := _sinhcosh_f64(real(x))
return complex(c*sh, s*ch)
}
cosh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// Complex hyperbolic cosine
//
// DESCRIPTION:
//
// ccosh(z) = cosh x cos y + i sinh x sin y .
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// IEEE -10,+10 30000 2.9e-16 8.1e-17
switch re, im := real(x), imag(x); {
case re == 0 && (math.is_inf(im, 0) || math.is_nan(im)):
return complex(math.nan_f64(), re*math.copy_sign(0, im))
case math.is_inf(re, 0):
switch {
case im == 0:
return complex(math.inf_f64(1), im*math.copy_sign(0, re))
case math.is_inf(im, 0) || math.is_nan(im):
return complex(math.inf_f64(1), math.nan_f64())
}
case im == 0 && math.is_nan(re):
return complex(math.nan_f64(), im)
}
s, c := math.sincos(imag(x))
sh, ch := _sinhcosh_f64(real(x))
return complex(c*ch, s*sh)
}
tan_complex128 :: proc "contextless" (x: complex128) -> complex128 {
// Complex circular tangent
//
// DESCRIPTION:
//
// If
// z = x + iy,
//
// then
//
// sin 2x + i sinh 2y
// w = --------------------.
// cos 2x + cosh 2y
//
// On the real axis the denominator is zero at odd multiples
// of PI/2. The denominator is evaluated by its Taylor
// series near these points.
//
// ctan(z) = -i ctanh(iz).
//
// ACCURACY:
//
// Relative error:
// arithmetic domain # trials peak rms
// DEC -10,+10 5200 7.1e-17 1.6e-17
// IEEE -10,+10 30000 7.2e-16 1.2e-16
// Also tested by ctan * ccot = 1 and catan(ctan(z)) = z.
switch re, im := real(x), imag(x); {
case math.is_inf(im, 0):
switch {
case math.is_inf(re, 0) || math.is_nan(re):
return complex(math.copy_sign(0, re), math.copy_sign(1, im))
}
return complex(math.copy_sign(0, math.sin(2*re)), math.copy_sign(1, im))
case re == 0 && math.is_nan(im):
return x
}
d := math.cos(2*real(x)) + math.cosh(2*imag(x))
if abs(d) < 0.25 {
d = _tan_series_f64(x)
}
if d == 0 {
return inf_complex128()
}
return complex(math.sin(2*real(x))/d, math.sinh(2*imag(x))/d)
}
tanh_complex128 :: proc "contextless" (x: complex128) -> complex128 {
switch re, im := real(x), imag(x); {
case math.is_inf(re, 0):
switch {
case math.is_inf(im, 0) || math.is_nan(im):
return complex(math.copy_sign(1, re), math.copy_sign(0, im))
}
return complex(math.copy_sign(1, re), math.copy_sign(0, math.sin(2*im)))
case im == 0 && math.is_nan(re):
return x
}
d := math.cosh(2*real(x)) + math.cos(2*imag(x))
if d == 0 {
return inf_complex128()
}
return complex(math.sinh(2*real(x))/d, math.sin(2*imag(x))/d)
}
cot_complex128 :: proc "contextless" (x: complex128) -> complex128 {
d := math.cosh(2*imag(x)) - math.cos(2*real(x))
if abs(d) < 0.25 {
d = _tan_series_f64(x)
}
if d == 0 {
return inf_complex128()
}
return complex(math.sin(2*real(x))/d, -math.sinh(2*imag(x))/d)
}
@(private="file")
_sinhcosh_f64 :: proc "contextless" (x: f64) -> (sh, ch: f64) {
if abs(x) <= 0.5 {
return math.sinh(x), math.cosh(x)
}
e := math.exp(x)
ei := 0.5 / e
e *= 0.5
return e - ei, e + ei
}
// taylor series of cosh(2y) - cos(2x)
@(private)
_tan_series_f64 :: proc "contextless" (z: complex128) -> f64 {
MACH_EPSILON :: 1.0 / (1 << 53)
x := abs(2 * real(z))
y := abs(2 * imag(z))
x = _reduce_pi_f64(x)
x, y = x * x, y * y
x2, y2 := 1.0, 1.0
f, rn, d := 1.0, 0.0, 0.0
for {
rn += 1
f *= rn
rn += 1
f *= rn
x2 *= x
y2 *= y
t := y2 + x2
t /= f
d += t
rn += 1
f *= rn
rn += 1
f *= rn
x2 *= x
y2 *= y
t = y2 - x2
t /= f
d += t
if !(abs(t/d) > MACH_EPSILON) { // don't use <=, because of floating point nonsense and NaN
break
}
}
return d
}
// _reduce_pi_f64 reduces the input argument x to the range (-PI/2, PI/2].
// x must be greater than or equal to 0. For small arguments it
// uses Cody-Waite reduction in 3 f64 parts based on:
// "Elementary Function Evaluation: Algorithms and Implementation"
// Jean-Michel Muller, 1997.
// For very large arguments it uses Payne-Hanek range reduction based on:
// "ARGUMENT REDUCTION FOR HUGE ARGUMENTS: Good to the Last Bit"
@(private)
_reduce_pi_f64 :: proc "contextless" (x: f64) -> f64 #no_bounds_check {
x := x
// REDUCE_THRESHOLD is the maximum value of x where the reduction using
// Cody-Waite reduction still gives accurate results. This threshold
// is set by t*PIn being representable as a f64 without error
// where t is given by t = floor(x * (1 / PI)) and PIn are the leading partial
// terms of PI. Since the leading terms, PI1 and PI2 below, have 30 and 32
// trailing zero bits respectively, t should have less than 30 significant bits.
// t < 1<<30 -> floor(x*(1/PI)+0.5) < 1<<30 -> x < (1<<30-1) * PI - 0.5
// So, conservatively we can take x < 1<<30.
REDUCE_THRESHOLD :: f64(1 << 30)
if abs(x) < REDUCE_THRESHOLD {
// Use Cody-Waite reduction in three parts.
// PI1, PI2 and PI3 comprise an extended precision value of PI
// such that PI ~= PI1 + PI2 + PI3. The parts are chosen so
// that PI1 and PI2 have an approximately equal number of trailing
// zero bits. This ensures that t*PI1 and t*PI2 are exact for
// large integer values of t. The full precision PI3 ensures the
// approximation of PI is accurate to 102 bits to handle cancellation
// during subtraction.
PI1 :: 0h400921fb40000000 // 3.141592502593994
PI2 :: 0h3e84442d00000000 // 1.5099578831723193e-07
PI3 :: 0h3d08469898cc5170 // 1.0780605716316238e-14
t := x / math.PI
t += 0.5
t = f64(i64(t)) // i64(t) = the multiple
return ((x - t*PI1) - t*PI2) - t*PI3
}
// Must apply Payne-Hanek range reduction
MASK :: 0x7FF
SHIFT :: 64 - 11 - 1
BIAS :: 1023
FRAC_MASK :: 1<<SHIFT - 1
// Extract out the integer and exponent such that,
// x = ix * 2 ** exp.
ix := transmute(u64)(x)
exp := int(ix>>SHIFT&MASK) - BIAS - SHIFT
ix &= FRAC_MASK
ix |= 1 << SHIFT
// bdpi is the binary digits of 1/PI as a u64 array,
// that is, 1/PI = SUM bdpi[i]*2^(-64*i).
// 19 64-bit digits give 1216 bits of precision
// to handle the largest possible f64 exponent.
@static bdpi := [?]u64{
0x0000000000000000,
0x517cc1b727220a94,
0xfe13abe8fa9a6ee0,
0x6db14acc9e21c820,
0xff28b1d5ef5de2b0,
0xdb92371d2126e970,
0x0324977504e8c90e,
0x7f0ef58e5894d39f,
0x74411afa975da242,
0x74ce38135a2fbf20,
0x9cc8eb1cc1a99cfa,
0x4e422fc5defc941d,
0x8ffc4bffef02cc07,
0xf79788c5ad05368f,
0xb69b3f6793e584db,
0xa7a31fb34f2ff516,
0xba93dd63f5f2f8bd,
0x9e839cfbc5294975,
0x35fdafd88fc6ae84,
0x2b0198237e3db5d5,
}
// Use the exponent to extract the 3 appropriate u64 digits from bdpi,
// B ~ (z0, z1, z2), such that the product leading digit has the exponent -64.
// Note, exp >= 50 since x >= REDUCE_THRESHOLD and exp < 971 for maximum f64.
digit, bitshift := uint(exp+64)/64, uint(exp+64)%64
z0 := (bdpi[digit] << bitshift) | (bdpi[digit+1] >> (64 - bitshift))
z1 := (bdpi[digit+1] << bitshift) | (bdpi[digit+2] >> (64 - bitshift))
z2 := (bdpi[digit+2] << bitshift) | (bdpi[digit+3] >> (64 - bitshift))
// Multiply mantissa by the digits and extract the upper two digits (hi, lo).
z2hi, _ := bits.mul(z2, ix)
z1hi, z1lo := bits.mul(z1, ix)
z0lo := z0 * ix
lo, c := bits.add(z1lo, z2hi, 0)
hi, _ := bits.add(z0lo, z1hi, c)
// Find the magnitude of the fraction.
lz := uint(bits.leading_zeros(hi))
e := u64(BIAS - (lz + 1))
// Clear implicit mantissa bit and shift into place.
hi = (hi << (lz + 1)) | (lo >> (64 - (lz + 1)))
hi >>= 64 - SHIFT
// Include the exponent and convert to a float.
hi |= e << SHIFT
x = transmute(f64)(hi)
// map to (-PI/2, PI/2]
if x > 0.5 {
x -= 1
}
return math.PI * x
}