Basic support for matrix*vector, vector*matrix operations

This commit is contained in:
gingerBill
2021-10-19 11:24:26 +01:00
parent 35111b39b8
commit 243e2e2b8a
7 changed files with 207 additions and 130 deletions

View File

@@ -1960,13 +1960,13 @@ fmt_value :: proc(fi: ^Info, v: any, verb: rune) {
fi.indent += 1; defer fi.indent -= 1
if fi.hash {
if fi.hash {
io.write_byte(fi.writer, '\n')
// TODO(bill): Should this render it like in written form? e.g. tranposed
for col in 0..<info.column_count {
for row in 0..<info.row_count {
fmt_write_indent(fi)
for row in 0..<info.row_count {
if row > 0 { io.write_string(fi.writer, ", ") }
for col in 0..<info.column_count {
if col > 0 { io.write_string(fi.writer, ", ") }
offset := row*info.elem_size + col*info.stride
@@ -1976,10 +1976,10 @@ fmt_value :: proc(fi: ^Info, v: any, verb: rune) {
io.write_string(fi.writer, ";\n")
}
} else {
for col in 0..<info.column_count {
if col > 0 { io.write_string(fi.writer, "; ") }
for row in 0..<info.row_count {
if row > 0 { io.write_string(fi.writer, ", ") }
for row in 0..<info.row_count {
if row > 0 { io.write_string(fi.writer, ", ") }
for col in 0..<info.column_count {
if col > 0 { io.write_string(fi.writer, "; ") }
offset := row*info.elem_size + col*info.stride

View File

@@ -2686,10 +2686,11 @@ void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand
x->mode = Addressing_Invalid;
return;
}
Type *xt = base_type(x->type);
Type *yt = base_type(y->type);
if (is_type_matrix(x->type)) {
Type *xt = base_type(x->type);
Type *yt = base_type(y->type);
GB_ASSERT(xt->kind == Type_Matrix);
if (op.kind == Token_Mul) {
if (yt->kind == Type_Matrix) {
@@ -2714,7 +2715,11 @@ void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand
// Treat arrays as column vectors
x->mode = Addressing_Value;
x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, 1);
if (type_hint == nullptr && xt->Matrix.row_count == yt->Array.count) {
x->type = y->type;
} else {
x->type = alloc_type_matrix(xt->Matrix.elem, xt->Matrix.row_count, 1);
}
goto matrix_success;
}
}
@@ -2725,8 +2730,6 @@ void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand
x->type = xt;
goto matrix_success;
} else {
Type *xt = base_type(x->type);
Type *yt = base_type(y->type);
GB_ASSERT(is_type_matrix(yt));
GB_ASSERT(!is_type_matrix(xt));
@@ -2743,7 +2746,11 @@ void check_binary_matrix(CheckerContext *c, Token const &op, Operand *x, Operand
// Treat arrays as row vectors
x->mode = Addressing_Value;
x->type = alloc_type_matrix(xt->Matrix.elem, 1, xt->Matrix.column_count);
if (type_hint == nullptr && yt->Matrix.column_count == xt->Array.count) {
x->type = x->type;
} else {
x->type = alloc_type_matrix(yt->Matrix.elem, 1, yt->Matrix.column_count);
}
goto matrix_success;
}
}
@@ -2775,13 +2782,13 @@ matrix_success:
matrix_error:
gbString xt = type_to_string(x->type);
gbString yt = type_to_string(y->type);
gbString xts = type_to_string(x->type);
gbString yts = type_to_string(y->type);
gbString expr_str = expr_to_string(x->expr);
error(op, "Mismatched types in binary matrix expression '%s' for operator '%.*s' : '%s' vs '%s'", expr_str, LIT(op.string), xt, yt);
error(op, "Mismatched types in binary matrix expression '%s' for operator '%.*s' : '%s' vs '%s'", expr_str, LIT(op.string), xts, yts);
gb_string_free(expr_str);
gb_string_free(yt);
gb_string_free(xt);
gb_string_free(yts);
gb_string_free(xts);
x->type = t_invalid;
x->mode = Addressing_Invalid;
return;
@@ -2994,6 +3001,7 @@ void check_binary_expr(CheckerContext *c, Operand *x, Ast *node, Type *type_hint
}
if (is_type_matrix(x->type) || is_type_matrix(y->type)) {
check_binary_matrix(c, op, x, y, type_hint, use_lhs_as_type_hint);
x->expr = node;
return;
}

View File

@@ -1135,13 +1135,46 @@ void lb_generate_code(lbGenerator *gen) {
auto *min_dep_set = &info->minimum_dependency_set;
LLVMInitializeAllTargetInfos();
LLVMInitializeAllTargets();
LLVMInitializeAllTargetMCs();
LLVMInitializeAllAsmPrinters();
LLVMInitializeAllAsmParsers();
LLVMInitializeAllDisassemblers();
LLVMInitializeNativeTarget();
switch (build_context.metrics.arch) {
case TargetArch_amd64:
case TargetArch_386:
LLVMInitializeX86TargetInfo();
LLVMInitializeX86Target();
LLVMInitializeX86TargetMC();
LLVMInitializeX86AsmPrinter();
LLVMInitializeX86AsmParser();
LLVMInitializeX86Disassembler();
break;
case TargetArch_arm64:
LLVMInitializeAArch64TargetInfo();
LLVMInitializeAArch64Target();
LLVMInitializeAArch64TargetMC();
LLVMInitializeAArch64AsmPrinter();
LLVMInitializeAArch64AsmParser();
LLVMInitializeAArch64Disassembler();
break;
case TargetArch_wasm32:
LLVMInitializeWebAssemblyTargetInfo();
LLVMInitializeWebAssemblyTarget();
LLVMInitializeWebAssemblyTargetMC();
LLVMInitializeWebAssemblyAsmPrinter();
LLVMInitializeWebAssemblyAsmParser();
LLVMInitializeWebAssemblyDisassembler();
break;
default:
LLVMInitializeAllTargetInfos();
LLVMInitializeAllTargets();
LLVMInitializeAllTargetMCs();
LLVMInitializeAllAsmPrinters();
LLVMInitializeAllAsmParsers();
LLVMInitializeAllDisassemblers();
break;
}
if (build_context.microarch == "native") {
LLVMInitializeNativeTarget();
}
char const *target_triple = alloc_cstring(permanent_allocator(), build_context.metrics.target_triplet);
for_array(i, gen->modules.entries) {
@@ -1174,6 +1207,14 @@ void lb_generate_code(lbGenerator *gen) {
if (gb_strcmp(llvm_cpu, host_cpu_name) == 0) {
llvm_features = LLVMGetHostCPUFeatures();
}
} else if (build_context.metrics.arch == TargetArch_amd64) {
// NOTE(bill): x86-64-v2 is more than enough for everyone
//
// x86-64: CMOV, CMPXCHG8B, FPU, FXSR, MMX, FXSR, SCE, SSE, SSE2
// x86-64-v2: (close to Nehalem) CMPXCHG16B, LAHF-SAHF, POPCNT, SSE3, SSE4.1, SSE4.2, SSSE3
// x86-64-v3: (close to Haswell) AVX, AVX2, BMI1, BMI2, F16C, FMA, LZCNT, MOVBE, XSAVE
// x86-64-v4: AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL
llvm_cpu = "x86-64-v2";
}
// GB_ASSERT_MSG(LLVMTargetHasAsmBackend(target));
@@ -1640,6 +1681,7 @@ void lb_generate_code(lbGenerator *gen) {
code_gen_file_type = LLVMAssemblyFile;
}
for_array(j, gen->modules.entries) {
lbModule *m = gen->modules.entries[j].value;
if (LLVMVerifyModule(m->mod, LLVMReturnStatusAction, &llvm_error)) {
@@ -1684,7 +1726,6 @@ void lb_generate_code(lbGenerator *gen) {
}
}
TIME_SECTION("LLVM Add Foreign Library Paths");
for_array(j, gen->modules.entries) {

View File

@@ -509,12 +509,16 @@ LLVMValueRef llvm_matrix_column_major_load(lbProcedure *p, lbValue lhs) {
GB_ASSERT(mt->kind == Type_Matrix);
GB_ASSERT(lb_matrix_elem_simple(mt));
unsigned total_elem_count = cast(unsigned)matrix_type_total_elems(mt);
i64 stride = matrix_type_stride_in_elems(mt);
i64 rows = mt->Matrix.row_count;
i64 columns = mt->Matrix.column_count;
unsigned elem_count = cast(unsigned)(rows*columns);
Type *elem = mt->Matrix.elem;
LLVMTypeRef elem_type = lb_type(m, elem);
LLVMTypeRef vector_type = LLVMVectorType(elem_type, total_elem_count);
LLVMTypeRef vector_type = LLVMVectorType(elem_type, elem_count);
LLVMTypeRef types[] = {vector_type};
char const *name = "llvm.matrix.column.major.load";
@@ -524,44 +528,18 @@ LLVMValueRef llvm_matrix_column_major_load(lbProcedure *p, lbValue lhs) {
lbValue ptr = lb_address_from_load_or_generate_local(p, lhs);
ptr = lb_emit_matrix_epi(p, ptr, 0, 0);
LLVMValueRef values[5] = {};
values[0] = ptr.value;
values[1] = lb_const_int(m, t_u64, 8*matrix_type_stride(mt)).value; // bit width
values[1] = lb_const_int(m, t_u64, stride).value;
values[2] = LLVMConstNull(lb_type(m, t_llvm_bool));
values[3] = lb_const_int(m, t_u32, mt->Matrix.row_count).value;
values[4] = lb_const_int(m, t_u32, mt->Matrix.column_count).value;
return LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
}
LLVMValueRef llvm_matrix_column_major_load_from_ptr(lbProcedure *p, lbValue ptr) {
lbModule *m = p->module;
Type *mt = base_type(type_deref(ptr.type));
GB_ASSERT(mt->kind == Type_Matrix);
GB_ASSERT(lb_matrix_elem_simple(mt));
unsigned total_elem_count = cast(unsigned)matrix_type_total_elems(mt);
Type *elem = mt->Matrix.elem;
LLVMTypeRef elem_type = lb_type(m, elem);
LLVMTypeRef vector_type = LLVMVectorType(elem_type, total_elem_count);
LLVMTypeRef types[] = {vector_type};
char const *name = "llvm.matrix.column.major.load";
unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
LLVMValueRef ip = LLVMGetIntrinsicDeclaration(m->mod, id, types, gb_count_of(types));
LLVMValueRef values[5] = {};
values[0] = lb_emit_matrix_epi(p, ptr, 0, 0).value;
values[1] = lb_const_int(m, t_u64, 8*matrix_type_stride(mt)).value; // bit width
values[2] = LLVMConstNull(lb_type(m, t_llvm_bool));
values[3] = lb_const_int(m, t_u32, mt->Matrix.row_count).value;
values[4] = lb_const_int(m, t_u32, mt->Matrix.column_count).value;
return LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
LLVMValueRef call = LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
gb_printf_err("%s\n", LLVMPrintValueToString(call));
// LLVMAddAttributeAtIndex(call, 0, lb_create_enum_attribute(p->module->ctx, "align", cast(u64)type_align_of(mt)));
return call;
}
void llvm_matrix_column_major_store(lbProcedure *p, lbAddr addr, LLVMValueRef vector_value) {
@@ -571,12 +549,7 @@ void llvm_matrix_column_major_store(lbProcedure *p, lbAddr addr, LLVMValueRef ve
GB_ASSERT(mt->kind == Type_Matrix);
GB_ASSERT(lb_matrix_elem_simple(mt));
unsigned total_elem_count = cast(unsigned)matrix_type_total_elems(mt);
Type *elem = mt->Matrix.elem;
LLVMTypeRef elem_type = lb_type(m, elem);
LLVMTypeRef vector_type = LLVMVectorType(elem_type, total_elem_count);
LLVMTypeRef vector_type = LLVMTypeOf(vector_value);
LLVMTypeRef types[] = {vector_type};
char const *name = "llvm.matrix.column.major.store";
@@ -587,55 +560,25 @@ void llvm_matrix_column_major_store(lbProcedure *p, lbAddr addr, LLVMValueRef ve
lbValue ptr = lb_addr_get_ptr(p, addr);
ptr = lb_emit_matrix_epi(p, ptr, 0, 0);
GB_ASSERT(LLVMTypeOf(vector_value) == vector_type);
unsigned vector_size = LLVMGetVectorSize(vector_type);
GB_ASSERT((mt->Matrix.row_count*mt->Matrix.column_count) == cast(i64)vector_size);
i64 stride = matrix_type_stride_in_elems(mt);
LLVMValueRef values[6] = {};
values[0] = vector_value;
values[1] = ptr.value;
values[2] = lb_const_int(m, t_u64, 8*matrix_type_stride(mt)).value; // bit width
values[2] = lb_const_int(m, t_u64, stride).value;
values[3] = LLVMConstNull(lb_type(m, t_llvm_bool));
values[4] = lb_const_int(m, t_u32, mt->Matrix.row_count).value;
values[5] = lb_const_int(m, t_u32, mt->Matrix.column_count).value;
LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
LLVMValueRef call = LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
gb_printf_err("%s\n", LLVMPrintValueToString(call));
// LLVMAddAttributeAtIndex(call, 1, lb_create_enum_attribute(p->module->ctx, "align", cast(u64)type_align_of(mt)));
gb_unused(call);
}
void llvm_matrix_column_major_store_to_raw_ptr(lbProcedure *p, Type *mt, lbValue ptr, LLVMValueRef vector_value) {
lbModule *m = p->module;
mt = base_type(mt);
GB_ASSERT(mt->kind == Type_Matrix);
GB_ASSERT(lb_matrix_elem_simple(mt));
unsigned total_elem_count = cast(unsigned)matrix_type_total_elems(mt);
Type *elem = mt->Matrix.elem;
LLVMTypeRef elem_type = lb_type(m, elem);
LLVMTypeRef vector_type = LLVMVectorType(elem_type, total_elem_count);
LLVMTypeRef types[] = {vector_type};
char const *name = "llvm.matrix.column.major.store";
unsigned id = LLVMLookupIntrinsicID(name, gb_strlen(name));
GB_ASSERT_MSG(id != 0, "Unable to find %s", name);
LLVMValueRef ip = LLVMGetIntrinsicDeclaration(m->mod, id, types, gb_count_of(types));
GB_ASSERT(LLVMTypeOf(vector_value) == vector_type);
unsigned vector_size = LLVMGetVectorSize(vector_type);
GB_ASSERT((mt->Matrix.row_count*mt->Matrix.column_count) == cast(i64)vector_size);
LLVMValueRef values[6] = {};
values[0] = vector_value;
values[1] = ptr.value;
values[2] = lb_const_int(m, t_u64, 8*matrix_type_stride(mt)).value; // bit width
values[3] = LLVMConstNull(lb_type(m, t_llvm_bool));
values[4] = lb_const_int(m, t_u32, mt->Matrix.row_count).value;
values[5] = lb_const_int(m, t_u32, mt->Matrix.column_count).value;
LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
}
LLVMValueRef llvm_matrix_multiply(lbProcedure *p, LLVMValueRef a, LLVMValueRef b, i64 outer_rows, i64 inner, i64 outer_columns) {
lbModule *m = p->module;
@@ -648,6 +591,7 @@ LLVMValueRef llvm_matrix_multiply(lbProcedure *p, LLVMValueRef a, LLVMValueRef b
LLVMTypeRef elem_type = LLVMGetElementType(a_type);
LLVMTypeRef res_vector_type = LLVMVectorType(elem_type, cast(unsigned)(outer_rows*outer_columns));
LLVMTypeRef types[] = {res_vector_type, a_type, b_type};
char const *name = "llvm.matrix.multiply";
@@ -662,7 +606,9 @@ LLVMValueRef llvm_matrix_multiply(lbProcedure *p, LLVMValueRef a, LLVMValueRef b
values[3] = lb_const_int(m, t_u32, inner).value;
values[4] = lb_const_int(m, t_u32, outer_columns).value;
return LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
LLVMValueRef call = LLVMBuildCall(p->builder, ip, values, gb_count_of(values), "");
gb_printf_err("%s\n", LLVMPrintValueToString(call));
return call;
}
@@ -684,19 +630,13 @@ lbValue lb_emit_matrix_mul(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type)
// TODO(bill): LLVM ERROR: Do not know how to split the result of this operator!
lbAddr res = lb_add_local_generated(p, type, true);
lbValue res_ptr = lb_addr_get_ptr(p, res);
res_ptr = lb_emit_matrix_epi(p, res_ptr, 0, 0);
lbValue lhs_ptr = lb_address_from_load_or_generate_local(p, lhs);
lbValue rhs_ptr = lb_address_from_load_or_generate_local(p, rhs);
LLVMValueRef a = llvm_matrix_column_major_load_from_ptr(p, lhs_ptr);
LLVMValueRef b = llvm_matrix_column_major_load_from_ptr(p, rhs_ptr);
LLVMValueRef c = llvm_matrix_multiply(p, a, b, xt->Matrix.row_count, xt->Matrix.column_count, yt->Matrix.column_count);
llvm_matrix_column_major_store_to_raw_ptr(p, type, res_ptr, c);
LLVMValueRef a = llvm_matrix_column_major_load(p, lhs); gb_unused(a);
LLVMValueRef b = llvm_matrix_column_major_load(p, rhs); gb_unused(b);
LLVMValueRef c = llvm_matrix_multiply(p, a, b, xt->Matrix.row_count, xt->Matrix.column_count, yt->Matrix.column_count); gb_unused(c);
llvm_matrix_column_major_store(p, res, c);
return lb_addr_load(p, res);
}
}
slow_form:
{
@@ -704,18 +644,21 @@ slow_form:
lbAddr res = lb_add_local_generated(p, type, true);
for (i64 i = 0; i < xt->Matrix.row_count; i++) {
for (i64 j = 0; j < yt->Matrix.column_count; j++) {
for (i64 k = 0; k < xt->Matrix.column_count; k++) {
i64 outer_rows = xt->Matrix.row_count;
i64 inner = xt->Matrix.column_count;
i64 outer_columns = yt->Matrix.column_count;
for (i64 j = 0; j < outer_columns; j++) {
for (i64 i = 0; i < outer_rows; i++) {
for (i64 k = 0; k < inner; k++) {
lbValue dst = lb_emit_matrix_epi(p, res.addr, i, j);
lbValue d0 = lb_emit_load(p, dst);
lbValue a = lb_emit_matrix_ev(p, lhs, i, k);
lbValue b = lb_emit_matrix_ev(p, rhs, k, j);
lbValue c = lb_emit_arith(p, Token_Mul, a, b, elem);
lbValue d = lb_emit_load(p, dst);
lbValue e = lb_emit_arith(p, Token_Add, d, c, elem);
lb_emit_store(p, dst, e);
lbValue d = lb_emit_arith(p, Token_Add, d0, c, elem);
lb_emit_store(p, dst, d);
}
}
}
@@ -724,6 +667,72 @@ slow_form:
}
}
lbValue lb_emit_matrix_mul_vector(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
Type *mt = base_type(lhs.type);
Type *vt = base_type(rhs.type);
GB_ASSERT(is_type_matrix(mt));
GB_ASSERT(is_type_array_like(vt));
i64 vector_count = get_array_type_count(vt);
GB_ASSERT(mt->Matrix.column_count == vector_count);
GB_ASSERT(are_types_identical(mt->Matrix.elem, base_array_type(vt)));
Type *elem = mt->Matrix.elem;
lbAddr res = lb_add_local_generated(p, type, true);
for (i64 i = 0; i < mt->Matrix.row_count; i++) {
for (i64 j = 0; j < mt->Matrix.column_count; j++) {
lbValue dst = lb_emit_matrix_epi(p, res.addr, i, 0);
lbValue d0 = lb_emit_load(p, dst);
lbValue a = lb_emit_matrix_ev(p, lhs, i, j);
lbValue b = lb_emit_struct_ev(p, rhs, cast(i32)j);
lbValue c = lb_emit_arith(p, Token_Mul, a, b, elem);
lbValue d = lb_emit_arith(p, Token_Add, d0, c, elem);
lb_emit_store(p, dst, d);
}
}
return lb_addr_load(p, res);
}
lbValue lb_emit_vector_mul_matrix(lbProcedure *p, lbValue lhs, lbValue rhs, Type *type) {
Type *mt = base_type(rhs.type);
Type *vt = base_type(lhs.type);
GB_ASSERT(is_type_matrix(mt));
GB_ASSERT(is_type_array_like(vt));
i64 vector_count = get_array_type_count(vt);
GB_ASSERT(mt->Matrix.row_count == vector_count);
GB_ASSERT(are_types_identical(mt->Matrix.elem, base_array_type(vt)));
Type *elem = mt->Matrix.elem;
lbAddr res = lb_add_local_generated(p, type, true);
for (i64 j = 0; j < mt->Matrix.column_count; j++) {
for (i64 k = 0; k < mt->Matrix.row_count; k++) {
lbValue dst = lb_emit_matrix_epi(p, res.addr, 0, j);
lbValue d0 = lb_emit_load(p, dst);
lbValue a = lb_emit_struct_ev(p, lhs, cast(i32)k);
lbValue b = lb_emit_matrix_ev(p, rhs, k, j);
lbValue c = lb_emit_arith(p, Token_Mul, a, b, elem);
lbValue d = lb_emit_arith(p, Token_Add, d0, c, elem);
lb_emit_store(p, dst, d);
}
}
return lb_addr_load(p, res);
}
lbValue lb_emit_arith_matrix(lbProcedure *p, TokenKind op, lbValue lhs, lbValue rhs, Type *type) {
GB_ASSERT(is_type_matrix(lhs.type) || is_type_matrix(rhs.type));
@@ -735,7 +744,12 @@ lbValue lb_emit_arith_matrix(lbProcedure *p, TokenKind op, lbValue lhs, lbValue
if (xt->kind == Type_Matrix) {
if (yt->kind == Type_Matrix) {
return lb_emit_matrix_mul(p, lhs, rhs, type);
} else if (is_type_array_like(yt)) {
return lb_emit_matrix_mul_vector(p, lhs, rhs, type);
}
} else if (is_type_array_like(xt)) {
GB_ASSERT(yt->kind == Type_Matrix);
return lb_emit_vector_mul_matrix(p, lhs, rhs, type);
}
} else {
@@ -1036,6 +1050,13 @@ lbValue lb_build_binary_expr(lbProcedure *p, Ast *expr) {
ast_node(be, BinaryExpr, expr);
TypeAndValue tv = type_and_value_of_expr(expr);
if (is_type_matrix(be->left->tav.type) || is_type_matrix(be->right->tav.type)) {
lbValue left = lb_build_expr(p, be->left);
lbValue right = lb_build_expr(p, be->right);
return lb_emit_arith_matrix(p, be->op.kind, left, right, default_type(tv.type));
}
switch (be->op.kind) {
case Token_Add:

View File

@@ -1937,7 +1937,7 @@ LLVMTypeRef lb_type_internal(lbModule *m, Type *type) {
i64 elem_size = type_size_of(type->Matrix.elem);
GB_ASSERT(elem_size > 0);
i64 elem_count = size/elem_size;
GB_ASSERT(elem_count > 0);
GB_ASSERT_MSG(elem_count > 0, "%s", type_to_string(type));
m->internal_type_level -= 1;
@@ -2611,8 +2611,10 @@ lbAddr lb_add_local(lbProcedure *p, Type *type, Entity *e, bool zero_init, i32 p
LLVMTypeRef llvm_type = lb_type(p->module, type);
LLVMValueRef ptr = LLVMBuildAlloca(p->builder, llvm_type, name);
// unsigned alignment = 16; // TODO(bill): Make this configurable
unsigned alignment = cast(unsigned)lb_alignof(llvm_type);
unsigned alignment = cast(unsigned)gb_max(type_align_of(type), lb_alignof(llvm_type));
if (is_type_matrix(type)) {
alignment *= 2; // NOTE(bill): Just in case
}
LLVMSetAlignment(ptr, alignment);
LLVMPositionBuilderAtEnd(p->builder, p->curr_block->block);

View File

@@ -1224,12 +1224,14 @@ lbValue lb_emit_ptr_offset(lbProcedure *p, lbValue ptr, lbValue index) {
lbValue lb_emit_matrix_epi(lbProcedure *p, lbValue s, isize row, isize column) {
Type *t = s.type;
GB_ASSERT(is_type_pointer(t));
Type *st = base_type(type_deref(t));
GB_ASSERT_MSG(is_type_matrix(st), "%s", type_to_string(st));
Type *mt = base_type(type_deref(t));
GB_ASSERT_MSG(is_type_matrix(mt), "%s", type_to_string(mt));
Type *ptr = base_array_type(st);
Type *ptr = base_array_type(mt);
isize index = row*column;
i64 stride_elems = matrix_type_stride_in_elems(mt);
isize index = row + column*stride_elems;
GB_ASSERT(0 <= index);
LLVMValueRef indices[2] = {

View File

@@ -1249,6 +1249,7 @@ bool is_type_matrix(Type *t) {
}
i64 matrix_type_stride(Type *t) {
// TODO(bill): precompute matrix stride
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 align = type_align_of(t);
@@ -1258,6 +1259,7 @@ i64 matrix_type_stride(Type *t) {
}
i64 matrix_type_stride_in_elems(Type *t) {
// TODO(bill): precompute matrix stride
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 stride = matrix_type_stride(t);
@@ -1266,6 +1268,7 @@ i64 matrix_type_stride_in_elems(Type *t) {
i64 matrix_type_total_elems(Type *t) {
// TODO(bill): precompute matrix total elems
t = base_type(t);
GB_ASSERT(t->kind == Type_Matrix);
i64 size = type_size_of(t);