Write demo for v0.5.0

This commit is contained in:
Ginger Bill
2017-06-26 21:34:54 +01:00
parent d0d8da8c08
commit 260089431e
4 changed files with 443 additions and 20 deletions

View File

@@ -1,5 +1,411 @@
import "fmt.odin";
proc general_stuff() {
// Complex numbers
var a = 3 + 4i;
var b: complex64 = 3 + 4i;
var c: complex128 = 3 + 4i;
var d = complex(2, 3);
var e = a / conj(a);
fmt.println("(3+4i)/(3-4i) =", e);
fmt.println(real(e), "+", imag(e), "i");
// C-style variadic procedures
foreign __llvm_core {
// The variadic part allows for extra type checking too which C does not provide
proc c_printf(fmt: ^u8, #c_vararg args: ..any) -> i32 #link_name "printf";
}
type Foo struct {
x: int,
y: f32,
z: string,
}
var foo = Foo{123, 0.513, "A string"};
var x, y, z = expand_to_tuple(foo);
fmt.println(x, y, z);
// By default, all variables are zeroed
// This can be overridden with the "uninitialized value"
var undef_int: int = ---;
// Context system is now implemented using Implicit Parameter Passing (IPP)
// The previous implementation was Thread Local Storage (TLS)
// IPP has the advantage that it works on systems without TLS and that you can
// link the context to the stack frame and thus look at previous contexts
//
// It does mean that a pointer is implicitly passed procedures with the default
// Odin calling convention (#cc_odin)
// This can be overridden with something like #cc_contextless or #cc_c
}
proc foreign_blocks() {
// See sys/windows.odin
}
proc default_arguments() {
proc hello(a: int = 9, b: int = 9) {
fmt.printf("a is %d; b is %d\n", a, b);
}
fmt.println("\nTesting default arguments:");
hello(1, 2);
hello(1);
hello();
}
proc named_arguments() {
type Colour enum {
Red,
Orange,
Yellow,
Green,
Blue,
Octarine,
};
using Colour;
proc make_character(name, catch_phrase: string, favorite_color, least_favorite_color: Colour) {
fmt.println();
fmt.printf("My name is %v and I like %v. %v\n", name, favorite_color, catch_phrase);
}
make_character("Frank", "¡Ay, caramba!", Blue, Green);
// As the procedures have more and more parameters, it is very easy
// to get many of the arguments in the wrong order
make_character("¡Ay, caramba!", "Frank", Green, Blue);
// Named arguments help to disambiguate this problem
make_character(catch_phrase = "¡Ay, caramba!", name = "Frank",
least_favorite_color = Green, favorite_color = Blue);
// The named arguments can be specifed in any order.
make_character(favorite_color = Octarine, catch_phrase = "U wot m8!",
least_favorite_color = Green, name = "Dennis");
// NOTE: You cannot mix named arguments with normal values
/*
make_character("Dennis",
favorite_color = Octarine, catch_phrase = "U wot m8!",
least_favorite_color = Green);
*/
// Named arguments can also aid with default arguments
proc numerous_things(s : string, a = 1, b = 2, c = 3.14, d = "The Best String!", e = false, f = 10.3/3.1, g = false) {
var g_str = g ? "true" : "false";
fmt.printf("How many?! %s: %v\n", s, g_str);
}
numerous_things("First");
numerous_things(s = "Second", g = true);
// Default values can be placed anywhere, not just at the end like in other languages
proc weird(pre: string, mid: int = 0, post: string) {
fmt.println(pre, mid, post);
}
weird("How many things", 42, "huh?");
weird(pre = "Prefix", post = "Pat");
}
proc default_return_values() {
proc foo(x: int) -> (first: string = "Hellope", second = "world!") {
match x {
case 0: return;
case 1: return "Goodbye";
case 2: return "Goodbye", "cruel world...";
case 3: return second = "cruel world...", first = "Goodbye";
}
return second = "my old friend.";
}
fmt.printf("%s %s\n", foo(0));
fmt.printf("%s %s\n", foo(1));
fmt.printf("%s %s\n", foo(2));
fmt.printf("%s %s\n", foo(3));
fmt.printf("%s %s\n", foo(4));
fmt.println();
// A more "real" example
type Error enum {
None,
WhyTheNumberThree,
TenIsTooBig,
};
type Entity struct {
name: string,
id: u32,
}
proc some_thing(input: int) -> (result: ^Entity = nil, err = Error.None) {
match {
case input == 3: return err = Error.WhyTheNumberThree;
case input >= 10: return err = Error.TenIsTooBig;
}
var e = new(Entity);
e.id = u32(input);
return result = e;
}
}
proc call_location() {
proc amazing(n: int, using loc = #caller_location) {
fmt.printf("%s(%d:%d) just asked to do something amazing to %d.\n",
fully_pathed_filename, line, column);
fmt.printf("Amazing -> %d\n", n+1);
}
var loc = #location(main);
fmt.println("`main` is located at", loc);
fmt.println("This line is located at", #location());
fmt.println();
amazing(3);
amazing(4, #location(call_location));
// See _preload.odin for the implementations of `assert` and `panic`
}
proc explicit_parametric_polymorphic_procedures() {
// This is how `new` is actually implemented, see _preload.odin
proc alloc_type(T: type) -> ^T {
return ^T(alloc(size_of(T), align_of(T)));
}
var int_ptr = alloc_type(int);
defer free(int_ptr);
int_ptr^ = 137;
fmt.println(int_ptr, int_ptr^);
// Named arguments work too!
var another_ptr = alloc_type(T = f32);
defer free(another_ptr);
proc add(T: type, args: ..T) -> T {
var res: T;
for arg in args {
res += arg;
}
return res;
}
fmt.println("add =", add(int, 1, 2, 3, 4, 5, 6));
proc swap(T: type, a, b: ^T) {
var tmp = a^;
a^ = b^;
b^ = tmp;
}
var a, b: int = 3, 4;
fmt.println("Pre-swap:", a, b);
swap(int, &a, &b);
fmt.println("Post-swap:", a, b);
a, b = b, a; // Or use this syntax for this silly example case
// A more complicated example using subtyping
// Something like this could be used a game
type Vector2 struct {x, y: f32};
type Entity struct {
using position: Vector2,
flags: u64,
id: u64,
batch_index: u32,
slot_index: u32,
portable_id: u32,
derived: any,
}
type Rock struct {
using entity: ^Entity,
heavy: bool,
}
type Door struct {
using entity: ^Entity,
open: bool,
}
type Monster struct {
using entity: ^Entity,
is_robot: bool,
is_zombie: bool,
}
type EntityManager struct {
batches: [dynamic]^EntityBatch,
next_portable_id: u32,
}
const ENTITIES_PER_BATCH = 16;
type EntityBatch struct {
data: [ENTITIES_PER_BATCH]Entity,
occupied: [ENTITIES_PER_BATCH]bool,
batch_index: u32,
}
proc use_empty_slot(manager: ^EntityManager, batch: ^EntityBatch) -> ^Entity {
for ok, i in batch.occupied {
if ok -> continue;
batch.occupied[i] = true;
var e = &batch.data[i];
e.batch_index = u32(batch.batch_index);
e.slot_index = u32(i);
e.portable_id = manager.next_portable_id;
manager.next_portable_id++;
return e;
}
return nil;
}
proc gen_new_entity(manager: ^EntityManager) -> ^Entity {
for b in manager.batches {
var e = use_empty_slot(manager, b);
if e != nil -> return e;
}
var new_batch = new(EntityBatch);
append(manager.batches, new_batch);
new_batch.batch_index = u32(len(manager.batches)-1);
return use_empty_slot(manager, new_batch);
}
proc new_entity(manager: ^EntityManager, Type: type, x, y: int) -> ^Type {
var result = new(Type);
result.entity = gen_new_entity(manager);
result.derived.data = result;
result.derived.type_info = type_info(Type);
result.position.x = f32(x);
result.position.y = f32(y);
return result;
}
var manager: EntityManager;
var entities: [dynamic]^Entity;
var rock = new_entity(&manager, Rock, 3, 5);
// Named arguments work too!
var door = new_entity(manager = &manager, Type = Door, x = 3, y = 6);
// And named arguments can be any order
var monster = new_entity(
y = 1,
x = 2,
manager = &manager,
Type = Monster,
);
append(entities, rock, door, monster);
// An alternative to `union`s
for entity in entities {
match e in entity.derived {
case Rock: fmt.println("Rock", e.portable_id);
case Door: fmt.println("Door", e.portable_id);
case Monster: fmt.println("Monster", e.portable_id);
}
}
}
proc main() {
general_stuff();
foreign_blocks();
default_arguments();
named_arguments();
default_return_values();
call_location();
explicit_parametric_polymorphic_procedures();
// Command line argument(s)!
// -opt=0,1,2,3
/*************/
/* Questions */
/*************/
/*
I'm questioning if I should change the declaration syntax back to Jai-like
as I've found solutions to the problems I had with it before.
Should I change back to Jai-like declarations or keep with the Pascal-like?
Jai-like
x: int;
x: int = 123;
x := 123;
foo : int : 123;
foo :: 123;
MyInt :: int;
BarType :: proc();
bar :: proc() {
}
foreign lib {
foreign_bar :: proc() ---;
}
Pascal-like
var x: int;
var x: int = 123;
var x = 123;
const foo: int = 123;
const foo = 123;
type MyInt int;
type BarType proc();
proc bar() {
}
foreign lib {
proc foreign_bar();
}
*/
}
/*
proc main() {
var program = "+ + * - /";
var accumulator = 0;
@@ -17,3 +423,5 @@ proc main() {
fmt.printf("The program \"%s\" calculates the value %d\n",
program, accumulator);
}
*/

View File

@@ -45,6 +45,11 @@ Type *check_init_variable(Checker *c, Entity *e, Operand *operand, String contex
}
t = default_type(t);
}
if (is_type_gen_proc(t)) {
error(e->token, "Invalid use of a generic procedure in %.*s", LIT(context_name));
e->type = t_invalid;
return NULL;
}
if (is_type_bit_field_value(t)) {
t = default_bit_field_value_type(t);
}
@@ -361,7 +366,12 @@ void check_proc_decl(Checker *c, Entity *e, DeclInfo *d) {
if (pt->is_generic) {
if (pd->body == NULL) {
error(e->token, "Generic procedures must have a body");
error(e->token, "Polymorphic procedures must have a body");
}
if (is_foreign) {
error(e->token, "A foreign procedures cannot be a polymorphic");
return;
}
}
@@ -387,6 +397,8 @@ void check_proc_decl(Checker *c, Entity *e, DeclInfo *d) {
pt->require_results = is_require_results;
}
if (is_foreign) {
String name = e->token.string;
if (pd->link_name.len > 0) {

View File

@@ -12,7 +12,6 @@ enum CallArgumentError {
CallArgumentError_ParameterNotFound,
CallArgumentError_ParameterMissing,
CallArgumentError_DuplicateParameter,
CallArgumentError_GenericProcedureNotSupported,
};
enum CallArgumentErrorMode {
@@ -285,9 +284,11 @@ i64 check_distance_between_types(Checker *c, Operand *operand, Type *type) {
if (is_type_any(dst)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return 10;
if (!is_type_gen_proc(src)) {
// NOTE(bill): Anything can cast to `Any`
add_type_info_type(c, s);
return 10;
}
}
@@ -4241,13 +4242,17 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
case BuiltinProc_type_of:
// proc type_of_val(val: Type) -> type(Type)
check_assignment(c, operand, NULL, str_lit("argument of `type_of_val`"));
// proc type_of(val: Type) -> type(Type)
check_assignment(c, operand, NULL, str_lit("argument of `type_of`"));
if (operand->mode == Addressing_Invalid || operand->mode == Addressing_Builtin) {
return false;
}
if (operand->type == NULL || operand->type == t_invalid || is_type_gen_proc(operand->type)) {
error(operand->expr, "Invalid argument to `type_of_val`");
if (operand->type == NULL || operand->type == t_invalid) {
error(operand->expr, "Invalid argument to `type_of`");
return false;
}
if (is_type_gen_proc(operand->type)) {
error(operand->expr, "`type_of` of generic procedure cannot be determined");
return false;
}
operand->mode = Addressing_Type;
@@ -4999,10 +5004,10 @@ Entity *find_or_generate_polymorphic_procedure(Checker *c, Entity *base_entity,
Type *final_proc_type = make_type_proc(c->allocator, c->context.scope, NULL, 0, NULL, 0, false, pt->calling_convention);
check_procedure_type(c, final_proc_type, pt->node, operands);
auto *found = map_get(&c->info.gen_procs, hash_pointer(base_entity->identifier));
if (found) {
for_array(i, *found) {
Entity *other = (*found)[i];
auto *found_gen_procs = map_get(&c->info.gen_procs, hash_pointer(base_entity->identifier));
if (found_gen_procs) {
for_array(i, *found_gen_procs) {
Entity *other = (*found_gen_procs)[i];
if (are_types_identical(other->type, final_proc_type)) {
// NOTE(bill): This scope is not needed any more, destroy it
destroy_scope(scope);
@@ -5041,13 +5046,13 @@ Entity *find_or_generate_polymorphic_procedure(Checker *c, Entity *base_entity,
proc_info.body = pd->body;
proc_info.tags = tags;
if (found) {
array_add(found, entity);
if (found_gen_procs) {
array_add(found_gen_procs, entity);
} else {
Array<Entity *> array = {};
array_init(&array, heap_allocator());
array_add(&array, entity);
map_set(&c->info.gen_procs, hash_pointer(entity->identifier), array);
map_set(&c->info.gen_procs, hash_pointer(base_entity->identifier), array);
}
GB_ASSERT(entity != NULL);
@@ -5373,7 +5378,6 @@ CALL_ARGUMENT_CHECKER(check_named_call_arguments) {
Entity *gen_entity = NULL;
if (pt->is_generic && err == CallArgumentError_None) {
// err = CallArgumentError_GenericProcedureNotSupported;
ProcedureInfo proc_info = {};
gen_entity = find_or_generate_polymorphic_procedure(c, entity, &ordered_operands, &proc_info);
if (gen_entity != NULL) {

View File

@@ -87,7 +87,7 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_COUNT] = {
{STR_LIT("size_of"), 1, false, Expr_Expr},
{STR_LIT("align_of"), 1, false, Expr_Expr},
{STR_LIT("offset_of"), 2, false, Expr_Expr},
{STR_LIT("type_of_val"), 1, false, Expr_Expr},
{STR_LIT("type_of"), 1, false, Expr_Expr},
{STR_LIT("type_info"), 1, false, Expr_Expr},
{STR_LIT("compile_assert"), 1, false, Expr_Expr},
@@ -1456,7 +1456,7 @@ void check_procedure_overloading(Checker *c, Entity *e) {
TypeProc *ptq = &base_type(q->type)->Proc;
if (ptq->is_generic) {
q->type = t_invalid;
error(q->token, "Generic procedure `%.*s` cannot be overloaded", LIT(name));
error(q->token, "Polymorphic procedure `%.*s` cannot be overloaded", LIT(name));
continue;
}
}
@@ -2269,7 +2269,6 @@ void check_parsed_files(Checker *c) {
if (pi->decl->gen_proc_type == NULL) {
continue;
}
// gb_printf_err("Generic procedure `%.*s` -> %s\n", LIT(pi->token.string), type_to_string(pi->decl->gen_proc_type));
}
add_curr_ast_file(c, pi->file);