Merge pull request #3971 from jasonKercher/os2-process-linux

os2 process linux implementation
This commit is contained in:
gingerBill
2024-08-16 12:38:27 +01:00
committed by GitHub
12 changed files with 902 additions and 115 deletions

View File

@@ -23,6 +23,7 @@ General_Error :: enum u32 {
Invalid_Dir,
Invalid_Path,
Invalid_Callback,
Invalid_Command,
Pattern_Has_Separator,
@@ -69,6 +70,7 @@ error_string :: proc(ferr: Error) -> string {
case .Invalid_Dir: return "invalid directory"
case .Invalid_Path: return "invalid path"
case .Invalid_Callback: return "invalid callback"
case .Invalid_Command: return "invalid command"
case .Unsupported: return "unsupported"
case .Pattern_Has_Separator: return "pattern has separator"
}

View File

@@ -19,33 +19,18 @@ File_Impl :: struct {
}
_stdin := File{
impl = &File_Impl{
name = "/proc/self/fd/0",
fd = 0,
allocator = file_allocator(),
},
stream = {
procedure = _file_stream_proc,
},
fstat = _fstat,
}
_stdout := File{
impl = &File_Impl{
name = "/proc/self/fd/1",
fd = 1,
allocator = file_allocator(),
},
stream = {
procedure = _file_stream_proc,
},
fstat = _fstat,
}
_stderr := File{
impl = &File_Impl{
name = "/proc/self/fd/2",
fd = 2,
allocator = file_allocator(),
},
stream = {
procedure = _file_stream_proc,
},
@@ -54,10 +39,33 @@ _stderr := File{
@init
_standard_stream_init :: proc() {
// cannot define these manually because cyclic reference
_stdin.stream.data = &_stdin
_stdout.stream.data = &_stdout
_stderr.stream.data = &_stderr
@static stdin_impl := File_Impl {
name = "/proc/self/fd/0",
fd = 0,
}
@static stdout_impl := File_Impl {
name = "/proc/self/fd/1",
fd = 1,
}
@static stderr_impl := File_Impl {
name = "/proc/self/fd/2",
fd = 2,
}
stdin_impl.allocator = file_allocator()
stdout_impl.allocator = file_allocator()
stderr_impl.allocator = file_allocator()
_stdin.impl = &stdin_impl
_stdout.impl = &stdout_impl
_stderr.impl = &stderr_impl
// cannot define these initially because cyclic reference
_stdin.stream.data = &stdin_impl
_stdout.stream.data = &stdout_impl
_stderr.stream.data = &stderr_impl
stdin = &_stdin
stdout = &_stdout
@@ -72,7 +80,7 @@ _open :: proc(name: string, flags: File_Flags, perm: int) -> (f: ^File, err: Err
// terminal would be incredibly rare. This has no effect on files while
// allowing us to open serial devices.
sys_flags: linux.Open_Flags = {.NOCTTY, .CLOEXEC}
switch flags & O_RDONLY|O_WRONLY|O_RDWR {
switch flags & (O_RDONLY|O_WRONLY|O_RDWR) {
case O_RDONLY:
case O_WRONLY: sys_flags += {.WRONLY}
case O_RDWR: sys_flags += {.RDWR}
@@ -217,12 +225,18 @@ _write_at :: proc(f: ^File_Impl, p: []byte, offset: i64) -> (i64, Error) {
}
_file_size :: proc(f: ^File_Impl) -> (n: i64, err: Error) {
// TODO: Identify 0-sized "pseudo" files and return No_Size. This would
// eliminate the need for the _read_entire_pseudo_file procs.
s: linux.Stat = ---
errno := linux.fstat(f.fd, &s)
if errno != .NONE {
return -1, _get_platform_error(errno)
}
return i64(s.size), nil
if s.mode & linux.S_IFMT == linux.S_IFREG {
return i64(s.size), nil
}
return 0, .No_Size
}
_sync :: proc(f: ^File) -> Error {
@@ -390,21 +404,15 @@ _fchtimes :: proc(f: ^File, atime, mtime: time.Time) -> Error {
_exists :: proc(name: string) -> bool {
TEMP_ALLOCATOR_GUARD()
name_cstr, _ := temp_cstring(name)
res, errno := linux.access(name_cstr, linux.F_OK)
return !res && errno == .NONE
return linux.access(name_cstr, linux.F_OK) == .NONE
}
/* Certain files in the Linux file system are not actual
* files (e.g. everything in /proc/). Therefore, the
* read_entire_file procs fail to actually read anything
* since these "files" stat to a size of 0. Here, we just
* read until there is nothing left.
*/
/* For reading Linux system files that stat to size 0 */
_read_entire_pseudo_file :: proc { _read_entire_pseudo_file_string, _read_entire_pseudo_file_cstring }
_read_entire_pseudo_file_string :: proc(name: string, allocator: runtime.Allocator) -> (b: []u8, e: Error) {
name_cstr := clone_to_cstring(name, allocator) or_return
defer delete(name, allocator)
TEMP_ALLOCATOR_GUARD()
name_cstr := clone_to_cstring(name, temp_allocator()) or_return
return _read_entire_pseudo_file_cstring(name_cstr, allocator)
}
@@ -434,7 +442,6 @@ _read_entire_pseudo_file_cstring :: proc(name: cstring, allocator: runtime.Alloc
}
resize(&contents, i + n)
return contents[:], nil
}

View File

@@ -126,5 +126,3 @@ random_string :: proc(buf: []byte) -> string {
buf[i] = digits[u % b]
return string(buf[i:])
}

View File

@@ -1,6 +1,7 @@
//+private
package os2
import "core:strings"
import "core:strconv"
import "base:runtime"
import "core:sys/linux"
@@ -75,14 +76,6 @@ _mkdir_all :: proc(path: string, perm: int) -> Error {
return nil if has_created else .Exist
}
dirent64 :: struct {
d_ino: u64,
d_off: u64,
d_reclen: u16,
d_type: u8,
d_name: [1]u8,
}
_remove_all :: proc(path: string) -> Error {
DT_DIR :: 4
@@ -105,26 +98,18 @@ _remove_all :: proc(path: string) -> Error {
return _get_platform_error(errno)
}
d: ^dirent64
offset: int
for d in linux.dirent_iterate_buf(buf[:buflen], &offset) {
d_name_str := linux.dirent_name(d)
d_name_cstr := strings.unsafe_string_to_cstring(d_name_str)
for i := 0; i < buflen; i += int(d.d_reclen) {
d = (^dirent64)(rawptr(&buf[i]))
d_name_cstr := cstring(&d.d_name[0])
buf_len := uintptr(d.d_reclen) - offset_of(d.d_name)
/* check for current directory (.) */
#no_bounds_check if buf_len > 1 && d.d_name[0] == '.' && d.d_name[1] == 0 {
/* check for current or parent directory (. or ..) */
if d_name_str == "." || d_name_str == ".." {
continue
}
/* check for parent directory (..) */
#no_bounds_check if buf_len > 2 && d.d_name[0] == '.' && d.d_name[1] == '.' && d.d_name[2] == 0 {
continue
}
switch d.d_type {
case DT_DIR:
#partial switch d.type {
case .DIR:
new_dfd: linux.Fd
new_dfd, errno = linux.openat(dfd, d_name_cstr, _OPENDIR_FLAGS)
if errno != .NONE {

View File

@@ -5,13 +5,13 @@ import "core:sys/linux"
_pipe :: proc() -> (r, w: ^File, err: Error) {
fds: [2]linux.Fd
errno := linux.pipe2(&fds, {})
errno := linux.pipe2(&fds, {.CLOEXEC})
if errno != .NONE {
return nil, nil,_get_platform_error(errno)
}
r = _new_file(uintptr(fds[0])) or_return
w = _new_file(uintptr(fds[1])) or_return
return
}

View File

@@ -1,68 +1,380 @@
//+build linux
//+private file
package os2
import "base:runtime"
import "base:intrinsics"
import "core:time"
import "core:slice"
import "core:strings"
import "core:strconv"
import "core:sys/linux"
import "core:path/filepath"
PIDFD_UNASSIGNED :: ~uintptr(0)
@(private="package")
_exit :: proc "contextless" (code: int) -> ! {
linux.exit(i32(code))
linux.exit_group(i32(code))
}
@(private="package")
_get_uid :: proc() -> int {
return -1
return int(linux.getuid())
}
@(private="package")
_get_euid :: proc() -> int {
return -1
return int(linux.geteuid())
}
@(private="package")
_get_gid :: proc() -> int {
return -1
return int(linux.getgid())
}
@(private="package")
_get_egid :: proc() -> int {
return -1
return int(linux.getegid())
}
@(private="package")
_get_pid :: proc() -> int {
return -1
return int(linux.getpid())
}
@(private="package")
_get_ppid :: proc() -> int {
return -1
return int(linux.getppid())
}
@(private="package")
_process_list :: proc(allocator: runtime.Allocator) -> (list: []int, err: Error) {
TEMP_ALLOCATOR_GUARD()
dir_fd: linux.Fd
errno: linux.Errno
#partial switch dir_fd, errno = linux.open("/proc/", _OPENDIR_FLAGS); errno {
case .ENOTDIR:
return {}, .Invalid_Dir
case .ENOENT:
return {}, .Not_Exist
case .NONE:
case:
return {}, _get_platform_error(errno)
}
defer linux.close(dir_fd)
dynamic_list := make([dynamic]int, temp_allocator()) or_return
buf := make([dynamic]u8, 128, 128, temp_allocator()) or_return
loop: for {
buflen: int
buflen, errno = linux.getdents(dir_fd, buf[:])
#partial switch errno {
case .EINVAL:
resize(&buf, len(buf) * 2)
continue loop
case .NONE:
if buflen == 0 { break loop }
case:
return {}, _get_platform_error(errno)
}
offset: int
for d in linux.dirent_iterate_buf(buf[:buflen], &offset) {
d_name_str := linux.dirent_name(d)
if pid, ok := strconv.parse_int(d_name_str); ok {
append(&dynamic_list, pid)
}
}
}
list, err = slice.clone(dynamic_list[:], allocator)
return
}
@(private="package")
_process_info_by_pid :: proc(pid: int, selection: Process_Info_Fields, allocator: runtime.Allocator) -> (info: Process_Info, err: Error) {
TEMP_ALLOCATOR_GUARD()
info.pid = pid
// Use this to make cstrings without copying.
path_backing: [48]u8
path_builder := strings.builder_from_bytes(path_backing[:])
strings.write_string(&path_builder, "/proc/")
strings.write_int(&path_builder, pid)
proc_fd, errno := linux.open(strings.to_cstring(&path_builder), _OPENDIR_FLAGS)
if errno != .NONE {
err = _get_platform_error(errno)
return
}
defer linux.close(proc_fd)
username_if: if .Username in selection {
s: linux.Stat
if errno = linux.fstat(proc_fd, &s); errno != .NONE {
err = _get_platform_error(errno)
break username_if
}
passwd_bytes: []u8
passwd_err: Error
passwd_bytes, passwd_err = _read_entire_pseudo_file_cstring("/etc/passwd", temp_allocator())
if passwd_err != nil {
err = passwd_err
break username_if
}
passwd := string(passwd_bytes)
for len(passwd) > 0 {
n := strings.index_byte(passwd, ':')
if n == -1 {
break
}
username := passwd[:n]
passwd = passwd[n+1:]
// skip password field
passwd = passwd[strings.index_byte(passwd, ':') + 1:]
n = strings.index_byte(passwd, ':')
uid: int
ok: bool
if uid, ok = strconv.parse_int(passwd[:n]); ok && uid == int(s.uid) {
info.username = strings.clone(username, allocator) or_return
info.fields += {.Username}
break
} else if !ok {
err = .Invalid_File
break username_if
}
eol := strings.index_byte(passwd, '\n')
if eol == -1 {
break
}
passwd = passwd[eol + 1:]
}
}
cmdline_if: if selection & {.Working_Dir, .Command_Line, .Command_Args, .Executable_Path} != {} {
strings.builder_reset(&path_builder)
strings.write_string(&path_builder, "/proc/")
strings.write_int(&path_builder, pid)
strings.write_string(&path_builder, "/cmdline")
cmdline_bytes, cmdline_err := _read_entire_pseudo_file(strings.to_cstring(&path_builder), temp_allocator())
if cmdline_err != nil || len(cmdline_bytes) == 0 {
err = cmdline_err
break cmdline_if
}
cmdline := string(cmdline_bytes)
terminator := strings.index_byte(cmdline, 0)
assert(terminator > 0)
command_line_exec := cmdline[:terminator]
// Still need cwd if the execution on the command line is relative.
cwd: string
cwd_err: Error
if .Working_Dir in selection || (.Executable_Path in selection && command_line_exec[0] != '/') {
strings.builder_reset(&path_builder)
strings.write_string(&path_builder, "/proc/")
strings.write_int(&path_builder, pid)
strings.write_string(&path_builder, "/cwd")
cwd, cwd_err = _read_link_cstr(strings.to_cstring(&path_builder), temp_allocator()) // allowed to fail
if cwd_err == nil && .Working_Dir in selection {
info.working_dir = strings.clone(cwd, allocator) or_return
info.fields += {.Working_Dir}
} else if cwd_err != nil {
err = cwd_err
break cmdline_if
}
}
if .Executable_Path in selection {
if cmdline[0] == '/' {
info.executable_path = strings.clone(cmdline[:terminator], allocator) or_return
info.fields += {.Executable_Path}
} else if cwd_err == nil {
info.executable_path = filepath.join({ cwd, cmdline[:terminator] }, allocator) or_return
info.fields += {.Executable_Path}
} else {
break cmdline_if
}
}
if selection & {.Command_Line, .Command_Args} != {} {
// skip to first arg
//cmdline = cmdline[terminator + 1:]
command_line_builder: strings.Builder
command_args_list: [dynamic]string
if .Command_Line in selection {
command_line_builder = strings.builder_make(allocator) or_return
info.fields += {.Command_Line}
}
for i := 0; len(cmdline) > 0; i += 1 {
if terminator = strings.index_byte(cmdline, 0); terminator == -1 {
break
}
if .Command_Line in selection {
if i > 0 {
strings.write_byte(&command_line_builder, ' ')
}
strings.write_string(&command_line_builder, cmdline[:terminator])
}
if .Command_Args in selection {
if i == 1 {
command_args_list = make([dynamic]string, allocator) or_return
info.fields += {.Command_Args}
}
if i > 0 {
arg := strings.clone(cmdline[:terminator], allocator) or_return
append(&command_args_list, arg) or_return
}
}
cmdline = cmdline[terminator + 1:]
}
info.command_line = strings.to_string(command_line_builder)
info.command_args = command_args_list[:]
}
}
stat_if: if selection & {.PPid, .Priority} != {} {
strings.builder_reset(&path_builder)
strings.write_string(&path_builder, "/proc/")
strings.write_int(&path_builder, pid)
strings.write_string(&path_builder, "/stat")
proc_stat_bytes, stat_err := _read_entire_pseudo_file(strings.to_cstring(&path_builder), temp_allocator())
if stat_err != nil {
err = stat_err
break stat_if
}
if len(proc_stat_bytes) <= 0 {
break stat_if
}
// Skip to the first field after the executable name
stats: string
if start := strings.last_index_byte(string(proc_stat_bytes), ')'); start != -1 {
stats = string(proc_stat_bytes[start + 2:])
} else {
break stat_if
}
// NOTE: index 0 corresponds to field 3 (state) from `man 5 proc_pid_stat`
// because we skipped passed the executable name above.
Fields :: enum {
State,
PPid,
PGrp,
Session,
Tty_Nr,
TpGid,
Flags,
MinFlt,
CMinFlt,
MajFlt,
CMajFlt,
UTime,
STime,
CUTime,
CSTime,
Priority,
Nice,
//... etc,
}
stat_fields := strings.split(stats, " ", temp_allocator()) or_return
if len(stat_fields) <= int(Fields.Nice) {
break stat_if
}
if .PPid in selection {
if ppid, ok := strconv.parse_int(stat_fields[Fields.PPid]); ok {
info.ppid = ppid
info.fields += {.PPid}
} else {
err = .Invalid_File
break stat_if
}
}
if .Priority in selection {
if nice, ok := strconv.parse_int(stat_fields[Fields.Nice]); ok {
info.priority = nice
info.fields += {.Priority}
} else {
err = .Invalid_File
break stat_if
}
}
}
if .Environment in selection {
strings.builder_reset(&path_builder)
strings.write_string(&path_builder, "/proc/")
strings.write_int(&path_builder, pid)
strings.write_string(&path_builder, "/environ")
if env_bytes, env_err := _read_entire_pseudo_file(strings.to_cstring(&path_builder), temp_allocator()); env_err == nil {
env := string(env_bytes)
env_list := make([dynamic]string, allocator) or_return
for len(env) > 0 {
terminator := strings.index_byte(env, 0)
if terminator == -1 || terminator == 0 {
break
}
e := strings.clone(env[:terminator], allocator) or_return
append(&env_list, e) or_return
env = env[terminator + 1:]
}
info.environment = env_list[:]
info.fields += {.Environment}
} else if err == nil {
err = env_err
}
}
return
}
@(private="package")
_process_info_by_handle :: proc(process: Process, selection: Process_Info_Fields, allocator: runtime.Allocator) -> (info: Process_Info, err: Error) {
return
return _process_info_by_pid(process.pid, selection, allocator)
}
@(private="package")
_current_process_info :: proc(selection: Process_Info_Fields, allocator: runtime.Allocator) -> (info: Process_Info, err: Error) {
return
return _process_info_by_pid(get_pid(), selection, allocator)
}
@(private="package")
_process_open :: proc(pid: int, flags: Process_Open_Flags) -> (process: Process, err: Error) {
_process_open :: proc(pid: int, _: Process_Open_Flags) -> (process: Process, err: Error) {
process.pid = pid
process.handle = PIDFD_UNASSIGNED
pidfd, errno := linux.pidfd_open(linux.Pid(pid), {})
if errno == .ENOSYS {
return process, .Unsupported
}
if errno != .NONE {
return process, _get_platform_error(errno)
}
process.handle = uintptr(pidfd)
return
}
@@ -71,25 +383,486 @@ _Sys_Process_Attributes :: struct {}
@(private="package")
_process_start :: proc(desc: Process_Desc) -> (process: Process, err: Error) {
has_executable_permissions :: proc(fd: linux.Fd) -> bool {
backing: [48]u8
b := strings.builder_from_bytes(backing[:])
strings.write_string(&b, "/proc/self/fd/")
strings.write_int(&b, int(fd))
return linux.access(strings.to_cstring(&b), linux.X_OK) == .NONE
}
TEMP_ALLOCATOR_GUARD()
if len(desc.command) == 0 {
return process, .Invalid_Command
}
dir_fd := linux.AT_FDCWD
errno: linux.Errno
if desc.working_dir != "" {
dir_cstr := temp_cstring(desc.working_dir) or_return
if dir_fd, errno = linux.open(dir_cstr, _OPENDIR_FLAGS); errno != .NONE {
return process, _get_platform_error(errno)
}
}
defer if desc.working_dir != "" {
linux.close(dir_fd)
}
// search PATH if just a plain name is provided
exe_fd: linux.Fd
executable_name := desc.command[0]
if strings.index_byte(executable_name, '/') == -1 {
path_env := get_env("PATH", temp_allocator())
path_dirs := filepath.split_list(path_env, temp_allocator()) or_return
exe_builder := strings.builder_make(temp_allocator()) or_return
found: bool
for dir in path_dirs {
strings.builder_reset(&exe_builder)
strings.write_string(&exe_builder, dir)
strings.write_byte(&exe_builder, '/')
strings.write_string(&exe_builder, executable_name)
exe_path := strings.to_cstring(&exe_builder)
if exe_fd, errno = linux.openat(dir_fd, exe_path, {.PATH, .CLOEXEC}); errno != .NONE {
continue
}
if !has_executable_permissions(exe_fd) {
linux.close(exe_fd)
continue
}
found = true
break
}
if !found {
// check in cwd to match windows behavior
strings.builder_reset(&exe_builder)
strings.write_string(&exe_builder, "./")
strings.write_string(&exe_builder, executable_name)
exe_path := strings.to_cstring(&exe_builder)
if exe_fd, errno = linux.openat(dir_fd, exe_path, {.PATH, .CLOEXEC}); errno != .NONE {
return process, .Not_Exist
}
if !has_executable_permissions(exe_fd) {
linux.close(exe_fd)
return process, .Permission_Denied
}
}
} else {
exe_path := temp_cstring(executable_name) or_return
if exe_fd, errno = linux.openat(dir_fd, exe_path, {.PATH, .CLOEXEC}); errno != .NONE {
return process, _get_platform_error(errno)
}
if !has_executable_permissions(exe_fd) {
linux.close(exe_fd)
return process, .Permission_Denied
}
}
// At this point, we have an executable.
defer linux.close(exe_fd)
// args and environment need to be a list of cstrings
// that are terminated by a nil pointer.
cargs := make([]cstring, len(desc.command) + 1, temp_allocator()) or_return
for command, i in desc.command {
cargs[i] = temp_cstring(command) or_return
}
// Use current process' environment if description didn't provide it.
env: [^]cstring
if desc.env == nil {
// take this process's current environment
env = raw_data(export_cstring_environment(temp_allocator()))
} else {
cenv := make([]cstring, len(desc.env) + 1, temp_allocator()) or_return
for env, i in desc.env {
cenv[i] = temp_cstring(env) or_return
}
env = &cenv[0]
}
child_pipe_fds: [2]linux.Fd
if errno = linux.pipe2(&child_pipe_fds, {.CLOEXEC}); errno != .NONE {
return process, _get_platform_error(errno)
}
defer linux.close(child_pipe_fds[WRITE])
defer linux.close(child_pipe_fds[READ])
// TODO: This is the traditional textbook implementation with fork.
// A more efficient implementation with vfork:
//
// 1. retrieve signal handlers
// 2. block all signals
// 3. allocate some stack space
// 4. vfork (waits for child exit or execve); In child:
// a. set child signal handlers
// b. set up any necessary pipes
// c. execve
// 5. restore signal handlers
//
pid: linux.Pid
if pid, errno = linux.fork(); errno != .NONE {
return process, _get_platform_error(errno)
}
STDIN :: linux.Fd(0)
STDOUT :: linux.Fd(1)
STDERR :: linux.Fd(2)
READ :: 0
WRITE :: 1
if pid == 0 {
// in child process now
write_errno_to_parent_and_abort :: proc(parent_fd: linux.Fd, errno: linux.Errno) -> ! {
error_byte: [1]u8 = { u8(errno) }
linux.write(parent_fd, error_byte[:])
intrinsics.trap()
}
stdin_fd: linux.Fd
stdout_fd: linux.Fd
stderr_fd: linux.Fd
if desc.stdin != nil {
stdin_fd = linux.Fd(fd(desc.stdin))
} else {
stdin_fd, errno = linux.open("/dev/null", {})
if errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
}
write_devnull: linux.Fd = -1
if desc.stdout != nil {
stdout_fd = linux.Fd(fd(desc.stdout))
} else {
write_devnull, errno = linux.open("/dev/null", {.WRONLY})
if errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
stdout_fd = write_devnull
}
if desc.stderr != nil {
stderr_fd = linux.Fd(fd(desc.stderr))
} else {
if write_devnull == -1 {
write_devnull, errno = linux.open("/dev/null", {.WRONLY})
if errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
}
stderr_fd = write_devnull
}
if _, errno = linux.dup2(stdin_fd, STDIN); errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
if _, errno = linux.dup2(stdout_fd, STDOUT); errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
if _, errno = linux.dup2(stderr_fd, STDERR); errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
success_byte: [1]u8
linux.write(child_pipe_fds[WRITE], success_byte[:])
if errno = linux.execveat(exe_fd, "", &cargs[0], env, {.AT_EMPTY_PATH}); errno != .NONE {
write_errno_to_parent_and_abort(child_pipe_fds[WRITE], errno)
}
unreachable()
}
process.pid = int(pid)
n: int
child_byte: [1]u8
errno = .EINTR
for errno == .EINTR {
n, errno = linux.read(child_pipe_fds[READ], child_byte[:])
}
// If the read failed, something weird happened. Do not return the read
// error so the user knows to wait on it.
if errno == .NONE {
child_errno := linux.Errno(child_byte[0])
if child_errno != .NONE {
// We can assume it trapped here.
_reap_terminated(process)
process.pid = 0
return process, _get_platform_error(child_errno)
}
}
process, _ = process_open(int(pid))
return
}
@(private="package")
_process_wait :: proc(process: Process, timeout: time.Duration) -> (process_state: Process_State, err: Error) {
_process_state_update_times :: proc(state: ^Process_State) -> (err: Error) {
TEMP_ALLOCATOR_GUARD()
stat_path_buf: [48]u8
path_builder := strings.builder_from_bytes(stat_path_buf[:])
strings.write_string(&path_builder, "/proc/")
strings.write_int(&path_builder, int(state.pid))
strings.write_string(&path_builder, "/stat")
stat_buf: []u8
stat_buf, err = _read_entire_pseudo_file(strings.to_cstring(&path_builder), temp_allocator())
if err != nil {
return
}
// ')' will be the end of the executable name (item 2)
idx := strings.last_index_byte(string(stat_buf), ')')
stats := string(stat_buf[idx + 2:])
// utime and stime are the 14 and 15th items, respectively, and we are
// currently on item 3. Skip 11 items here.
for _ in 0..<11 {
stats = stats[strings.index_byte(stats, ' ') + 1:]
}
idx = strings.index_byte(stats, ' ')
utime_str := stats[:idx]
stats = stats[idx + 1:]
stime_str := stats[:strings.index_byte(stats, ' ')]
utime, stime: int
ok: bool
if utime, ok = strconv.parse_int(utime_str, 10); !ok {
return .Invalid_File
}
if stime, ok = strconv.parse_int(stime_str, 10); !ok {
return .Invalid_File
}
// NOTE: Assuming HZ of 100, 1 jiffy == 10 ms
state.user_time = time.Duration(utime) * 10 * time.Millisecond
state.system_time = time.Duration(stime) * 10 * time.Millisecond
return
}
_reap_terminated :: proc(process: Process) -> (state: Process_State, err: Error) {
state.pid = process.pid
_process_state_update_times(&state)
info: linux.Sig_Info
errno := linux.Errno.EINTR
for errno == .EINTR {
errno = linux.waitid(.PID, linux.Id(process.pid), &info, {.WEXITED}, nil)
}
err = _get_platform_error(errno)
switch linux.Sig_Child_Code(info.code) {
case .NONE, .CONTINUED, .STOPPED:
unreachable()
case .EXITED:
state.exited = true
state.exit_code = int(info.status)
state.success = state.exit_code == 0
case .KILLED, .DUMPED, .TRAPPED:
state.exited = true
state.exit_code = int(info.status)
state.success = false
}
return
}
_timed_wait_on_handle :: proc(process: Process, timeout: time.Duration) -> (process_state: Process_State, err: Error) {
timeout := timeout
process_state.pid = process.pid
pidfd := linux.Fd(process.handle)
pollfd: [1]linux.Poll_Fd = {
{
fd = pidfd,
events = {.IN},
},
}
start_tick := time.tick_now()
mask: bit_set[0..<64; u64]
mask += { int(linux.Signal.SIGCHLD) - 1 }
sigchld_set := transmute(linux.Sig_Set)(mask)
info: linux.Sig_Info
for {
if timeout <= 0 {
_process_state_update_times(&process_state)
err = .Timeout
return
}
ts: linux.Time_Spec = {
time_sec = uint(timeout / time.Second),
time_nsec = uint(timeout % time.Second),
}
n, errno := linux.ppoll(pollfd[:], &ts, &sigchld_set)
if errno != .NONE {
if errno == .EINTR {
timeout -= time.tick_since(start_tick)
start_tick = time.tick_now()
continue
}
return process_state, _get_platform_error(errno)
}
if n == 0 { // timeout with no events
_process_state_update_times(&process_state)
err = .Timeout
return
}
if errno = linux.waitid(.PIDFD, linux.Id(process.handle), &info, {.WEXITED, .WNOHANG, .WNOWAIT}, nil); errno != .NONE {
return process_state, _get_platform_error(errno)
}
if info.signo == .SIGCHLD {
break
}
timeout -= time.tick_since(start_tick)
start_tick = time.tick_now()
}
// _reap_terminated for pidfd
{
_process_state_update_times(&process_state)
errno := linux.Errno.EINTR
for errno == .EINTR {
errno = linux.waitid(.PIDFD, linux.Id(process.handle), &info, {.WEXITED}, nil)
}
err = _get_platform_error(errno)
switch linux.Sig_Child_Code(info.code) {
case .NONE, .CONTINUED, .STOPPED:
unreachable()
case .EXITED:
process_state.exited = true
process_state.exit_code = int(info.status)
process_state.success = process_state.exit_code == 0
case .KILLED, .DUMPED, .TRAPPED:
process_state.exited = true
process_state.exit_code = int(info.status)
process_state.success = false
}
}
return
}
_timed_wait_on_pid :: proc(process: Process, timeout: time.Duration) -> (process_state: Process_State, err: Error) {
timeout := timeout
process_state.pid = process.pid
mask: bit_set[0..<64; u64]
mask += { int(linux.Signal.SIGCHLD) - 1 }
sigchld_set := transmute(linux.Sig_Set)(mask)
start_tick := time.tick_now()
org_sigset: linux.Sig_Set
errno := linux.rt_sigprocmask(.SIG_BLOCK, &sigchld_set, &org_sigset)
if errno != .NONE {
return process_state, _get_platform_error(errno)
}
defer linux.rt_sigprocmask(.SIG_SETMASK, &org_sigset, nil)
// In case there was a signal handler on SIGCHLD, avoid race
// condition by checking wait first.
info: linux.Sig_Info
errno = linux.waitid(.PID, linux.Id(process.pid), &info, {.WNOWAIT, .WEXITED, .WNOHANG}, nil)
for errno != .NONE || info.code == 0 || info.pid != linux.Pid(process.pid) {
if timeout <= 0 {
_process_state_update_times(&process_state)
err = .Timeout
return
}
ts: linux.Time_Spec = {
time_sec = uint(timeout / time.Second),
time_nsec = uint(timeout % time.Second),
}
_, errno = linux.rt_sigtimedwait(&sigchld_set, &info, &ts)
#partial switch errno {
case .EAGAIN: // timeout
_process_state_update_times(&process_state)
err = .Timeout
return
case .EINTR:
timeout -= time.tick_since(start_tick)
start_tick = time.tick_now()
case .EINVAL:
return process_state, _get_platform_error(errno)
}
}
return _reap_terminated(process)
}
@(private="package")
_process_wait :: proc(process: Process, timeout: time.Duration) -> (Process_State, Error) {
if timeout > 0 {
if process.handle == PIDFD_UNASSIGNED {
return _timed_wait_on_pid(process, timeout)
} else {
return _timed_wait_on_handle(process, timeout)
}
}
process_state: Process_State = {
pid = process.pid,
}
errno: linux.Errno
options: linux.Wait_Options = {.WEXITED}
if timeout == 0 {
options += {.WNOHANG}
}
info: linux.Sig_Info
errno = .EINTR
for errno == .EINTR {
errno = linux.waitid(.PID, linux.Id(process.pid), &info, options + {.WNOWAIT}, nil)
}
if errno == .EAGAIN || (errno == .NONE && info.signo != .SIGCHLD) {
_process_state_update_times(&process_state)
return process_state, .Timeout
}
if errno != .NONE {
return process_state, _get_platform_error(errno)
}
return _reap_terminated(process)
}
@(private="package")
_process_close :: proc(process: Process) -> Error {
return nil
if process.handle == 0 || process.handle == PIDFD_UNASSIGNED {
return nil
}
pidfd := linux.Fd(process.handle)
return _get_platform_error(linux.close(pidfd))
}
@(private="package")
_process_kill :: proc(process: Process) -> Error {
return nil
return _get_platform_error(linux.kill(linux.Pid(process.pid), .SIGKILL))
}
@(private="package")
_process_exe_by_pid :: proc(pid: int, allocator: runtime.Allocator) -> (exe_path: string, err: Error) {
return
}

View File

@@ -2,6 +2,7 @@
// To process paths such as URLs that depend on forward slashes regardless of the OS, use the path package
package filepath
import "base:runtime"
import "core:strings"
SEPARATOR_CHARS :: `/\`
@@ -244,7 +245,7 @@ long_ext :: proc(path: string) -> string {
If the result of the path is an empty string, the returned path with be `"."`.
*/
clean :: proc(path: string, allocator := context.allocator) -> string {
clean :: proc(path: string, allocator := context.allocator) -> (cleaned: string, err: runtime.Allocator_Error) #optional_allocator_error {
context.allocator = allocator
path := path
@@ -256,9 +257,9 @@ clean :: proc(path: string, allocator := context.allocator) -> string {
if vol_len > 1 && original_path[1] != ':' {
s, ok := from_slash(original_path)
if !ok {
s = strings.clone(s)
s = strings.clone(s) or_return
}
return s
return s, nil
}
return strings.concatenate({original_path, "."})
}
@@ -275,7 +276,7 @@ clean :: proc(path: string, allocator := context.allocator) -> string {
r, dot_dot := 0, 0
if rooted {
lazy_buffer_append(out, SEPARATOR)
lazy_buffer_append(out, SEPARATOR) or_return
r, dot_dot = 1, 1
}
@@ -295,33 +296,35 @@ clean :: proc(path: string, allocator := context.allocator) -> string {
}
case !rooted:
if out.w > 0 {
lazy_buffer_append(out, SEPARATOR)
lazy_buffer_append(out, SEPARATOR) or_return
}
lazy_buffer_append(out, '.')
lazy_buffer_append(out, '.')
lazy_buffer_append(out, '.') or_return
lazy_buffer_append(out, '.') or_return
dot_dot = out.w
}
case:
if rooted && out.w != 1 || !rooted && out.w != 0 {
lazy_buffer_append(out, SEPARATOR)
lazy_buffer_append(out, SEPARATOR) or_return
}
for ; r < n && !is_separator(path[r]); r += 1 {
lazy_buffer_append(out, path[r])
lazy_buffer_append(out, path[r]) or_return
}
}
}
if out.w == 0 {
lazy_buffer_append(out, '.')
lazy_buffer_append(out, '.') or_return
}
s := lazy_buffer_string(out)
cleaned, new_allocation := from_slash(s)
s := lazy_buffer_string(out) or_return
new_allocation: bool
cleaned, new_allocation = from_slash(s)
if new_allocation {
delete(s)
}
return cleaned
return
}
// Returns the result of replacing each forward slash `/` character in the path with the separate OS specific character.
@@ -453,9 +456,9 @@ dir :: proc(path: string, allocator := context.allocator) -> string {
// An empty string returns nil. A non-empty string with no separators returns a 1-element array.
// Any empty components will be included, e.g. `a::b` will return a 3-element array, as will `::`.
// Separators within pairs of double-quotes will be ignored and stripped, e.g. `"a:b"c:d` will return []{`a:bc`, `d`}.
split_list :: proc(path: string, allocator := context.allocator) -> []string {
split_list :: proc(path: string, allocator := context.allocator) -> (list: []string, err: runtime.Allocator_Error) #optional_allocator_error {
if path == "" {
return nil
return nil, nil
}
start: int
@@ -475,7 +478,7 @@ split_list :: proc(path: string, allocator := context.allocator) -> []string {
}
start, quote = 0, false
list := make([]string, count + 1, allocator)
list = make([]string, count + 1, allocator) or_return
index := 0
for i := 0; i < len(path); i += 1 {
c := path[i]
@@ -494,12 +497,12 @@ split_list :: proc(path: string, allocator := context.allocator) -> []string {
for s0, i in list {
s, new := strings.replace_all(s0, `"`, ``, allocator)
if !new {
s = strings.clone(s, allocator)
s = strings.clone(s, allocator) or_return
}
list[i] = s
}
return list
return list, nil
}
@@ -526,33 +529,35 @@ lazy_buffer_index :: proc(lb: ^Lazy_Buffer, i: int) -> byte {
return lb.s[i]
}
@(private)
lazy_buffer_append :: proc(lb: ^Lazy_Buffer, c: byte) {
lazy_buffer_append :: proc(lb: ^Lazy_Buffer, c: byte) -> (err: runtime.Allocator_Error) {
if lb.b == nil {
if lb.w < len(lb.s) && lb.s[lb.w] == c {
lb.w += 1
return
}
lb.b = make([]byte, len(lb.s))
lb.b = make([]byte, len(lb.s)) or_return
copy(lb.b, lb.s[:lb.w])
}
lb.b[lb.w] = c
lb.w += 1
return
}
@(private)
lazy_buffer_string :: proc(lb: ^Lazy_Buffer) -> string {
lazy_buffer_string :: proc(lb: ^Lazy_Buffer) -> (s: string, err: runtime.Allocator_Error) {
if lb.b == nil {
return strings.clone(lb.vol_and_path[:lb.vol_len+lb.w])
}
x := lb.vol_and_path[:lb.vol_len]
y := string(lb.b[:lb.w])
z := make([]byte, len(x)+len(y))
z := make([]byte, len(x)+len(y)) or_return
copy(z, x)
copy(z[len(x):], y)
return string(z)
return string(z), nil
}
@(private)
lazy_buffer_destroy :: proc(lb: ^Lazy_Buffer) {
delete(lb.b)
lazy_buffer_destroy :: proc(lb: ^Lazy_Buffer) -> runtime.Allocator_Error {
err := delete(lb.b)
lb^ = {}
return err
}

View File

@@ -38,15 +38,15 @@ abs :: proc(path: string, allocator := context.allocator) -> (string, bool) {
return path_str, true
}
join :: proc(elems: []string, allocator := context.allocator) -> string {
join :: proc(elems: []string, allocator := context.allocator) -> (joined: string, err: runtime.Allocator_Error) #optional_allocator_error {
for e, i in elems {
if e != "" {
runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD(ignore = context.temp_allocator == allocator)
p := strings.join(elems[i:], SEPARATOR_STRING, context.temp_allocator)
p := strings.join(elems[i:], SEPARATOR_STRING, context.temp_allocator) or_return
return clean(p, allocator)
}
}
return ""
return "", nil
}
@(private)

View File

@@ -2063,7 +2063,10 @@ replace :: proc(s, old, new: string, n: int, allocator := context.allocator, loc
}
t := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator, loc)
t, err := make([]byte, len(s) + byte_count*(len(new) - len(old)), allocator, loc)
if err != nil {
return
}
was_allocation = true
w := 0

View File

@@ -983,6 +983,20 @@ Sig_Action_Flag :: enum u32 {
RESETHAND = 31,
}
/*
Translation of code in Sig_Info for when signo is SIGCHLD
*/
Sig_Child_Code :: enum {
NONE,
EXITED,
KILLED,
DUMPED,
TRAPPED,
STOPPED,
CONTINUED,
}
/*
Type of socket to create
- For TCP you want to use SOCK_STREAM

View File

@@ -290,13 +290,13 @@ writev :: proc "contextless" (fd: Fd, iov: []IO_Vec) -> (int, Errno) {
Available since Linux 1.0.
For ARM64 available since Linux 2.6.16.
*/
access :: proc "contextless" (name: cstring, mode: Mode = F_OK) -> (bool, Errno) {
access :: proc "contextless" (name: cstring, mode: Mode = F_OK) -> (Errno) {
when ODIN_ARCH == .arm64 {
ret := syscall(SYS_faccessat, AT_FDCWD, cast(rawptr) name, transmute(u32) mode)
return errno_unwrap(ret, bool)
return Errno(-ret)
} else {
ret := syscall(SYS_access, cast(rawptr) name, transmute(u32) mode)
return errno_unwrap(ret, bool)
return Errno(-ret)
}
}
@@ -2627,9 +2627,9 @@ fchmodat :: proc "contextless" (dirfd: Fd, name: cstring, mode: Mode, flags: FD_
Checks the user permissions for a file at specified dirfd.
Available since Linux 2.6.16.
*/
faccessat :: proc "contextless" (dirfd: Fd, name: cstring, mode: Mode = F_OK) -> (bool, Errno) {
faccessat :: proc "contextless" (dirfd: Fd, name: cstring, mode: Mode = F_OK) -> (Errno) {
ret := syscall(SYS_faccessat, dirfd, cast(rawptr) name, transmute(u32) mode)
return errno_unwrap(ret, bool)
return Errno(-ret)
}
/*
@@ -2927,9 +2927,9 @@ pidfd_getfd :: proc "contextless" (pidfd: Pid_FD, fd: Fd, flags: i32 = 0) -> (Fd
Checks the user permissions for a file at specified dirfd (with flags).
Available since Linux 5.8.
*/
faccessat2 :: proc "contextless" (dirfd: Fd, name: cstring, mode: Mode = F_OK, flags: FD_Flags = FD_Flags{}) -> (bool, Errno) {
faccessat2 :: proc "contextless" (dirfd: Fd, name: cstring, mode: Mode = F_OK, flags: FD_Flags = FD_Flags{}) -> (Errno) {
ret := syscall(SYS_faccessat2, dirfd, cast(rawptr) name, transmute(u32) mode, transmute(i32) flags)
return errno_unwrap(ret, bool)
return Errno(-ret)
}
// TODO(flysand): process_madvise

0
core/sys/windows/kernel32.odin Executable file → Normal file
View File