big: Finish log, fix sqr.

This commit is contained in:
Jeroen van Rijn
2021-07-24 13:40:36 +02:00
parent 5f63e3952e
commit 31c94bd7f8
4 changed files with 113 additions and 33 deletions

View File

@@ -898,7 +898,7 @@ _int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
/*
Grow `t` to maximum needed size, or `_DEFAULT_DIGIT_COUNT`, whichever is bigger.
*/
if err = grow(t, min((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)); err != .None { return err; }
if err = grow(t, max((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)); err != .None { return err; }
t.used = (2 * pa) + 1;
for ix = 0; ix < pa; ix += 1 {
@@ -906,13 +906,12 @@ _int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
/*
First calculate the digit at 2*ix; calculate double precision result.
*/
r := _WORD(t.digit[ix+ix]) + _WORD(src.digit[ix] * src.digit[ix]);
r := _WORD(t.digit[ix+ix]) + (_WORD(src.digit[ix]) * _WORD(src.digit[ix]));
/*
Store lower part in result.
*/
t.digit[ix+ix] = DIGIT(r & _WORD(_MASK));
/*
Get the carry.
*/
@@ -924,7 +923,7 @@ _int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
*/
r = _WORD(src.digit[ix]) * _WORD(src.digit[iy]);
/* Now calculate the double precision result. Nte we use
/* Now calculate the double precision result. Nóte we use
* addition instead of *2 since it's easier to optimize
*/
r = _WORD(t.digit[ix+iy]) + r + r + _WORD(carry);

View File

@@ -57,14 +57,8 @@ demo :: proc() {
a, b, c := &Int{}, &Int{}, &Int{};
defer destroy(a, b, c);
for base in -3..=3 {
for power in -3..=3 {
err = pow(a, base, power);
fmt.printf("err: %v | pow(%v, %v) = ", err, base, power); print("", a, 10);
}
}
err = set(a, 5125);
print("a", a);
}
main :: proc() {

View File

@@ -75,7 +75,7 @@ int_copy :: proc(dest, src: ^Int, allocator := context.allocator) -> (err: Error
/*
Copy everything over and zero high digits.
*/
for v, i in src.digit[:src.used+1] {
for v, i in src.digit[:src.used] {
dest.digit[i] = v;
}
dest.used = src.used;
@@ -533,6 +533,19 @@ clear_if_uninitialized :: proc(dest: ^Int, minimize := false) -> (err: Error) {
return .None;
}
/*
Allocates several `Int`s at once.
*/
_int_init_multi :: proc(integers: ..^Int) -> (err: Error) {
integers := integers;
for a in &integers {
if err = clear(a); err != .None { return err; }
}
return .None;
}
_init_multi :: proc { _int_init_multi, };
_copy_digits :: proc(dest, src: ^Int, digits: int) -> (err: Error) {
digits := digits;
if err = clear_if_uninitialized(src); err != .None { return err; }

View File

@@ -13,36 +13,22 @@ int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {
if base < 2 || DIGIT(base) > _DIGIT_MAX {
return -1, .Invalid_Argument;
}
if err = clear_if_uninitialized(a); err != .None {
return -1, err;
}
if n, _ := is_neg(a); n {
return -1, .Invalid_Argument;
}
if z, _ := is_zero(a); z {
return -1, .Invalid_Argument;
}
if err = clear_if_uninitialized(a); err != .None { return -1, err; }
if n, _ := is_neg(a); n { return -1, .Invalid_Argument; }
if z, _ := is_zero(a); z { return -1, .Invalid_Argument; }
/*
Fast path for bases that are a power of two.
*/
if is_power_of_two(int(base)) {
return _log_power_of_two(a, base);
}
if is_power_of_two(int(base)) { return _log_power_of_two(a, base); }
/*
Fast path for `Int`s that fit within a single `DIGIT`.
*/
if a.used == 1 {
return log(a.digit[0], DIGIT(base));
}
if a.used == 1 { return log(a.digit[0], DIGIT(base)); }
// if (MP_HAS(S_MP_LOG)) {
// return s_mp_log(a, (mp_digit)base, c);
// }
return _int_log(a, base);
return -1, .Unimplemented;
}
log :: proc { int_log, int_log_digit, };
@@ -222,4 +208,92 @@ int_log_digit :: proc(a: DIGIT, base: DIGIT) -> (log: int, err: Error) {
} else {
return low, .None;
}
}
/*
Internal implementation of log.
*/
_int_log :: proc(a: ^Int, base: DIGIT) -> (res: int, err: Error) {
bracket_low, bracket_high, bracket_mid, t, bi_base := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
cnt := 0;
ic, _ := cmp(a, base);
if ic == -1 || ic == 0 {
return 1 if ic == 0 else 0, .None;
}
if err = set(bi_base, base); err != .None { return -1, err; }
if err = _init_multi(bracket_mid, t); err != .None { return -1, err; }
if err = one(bracket_low); err != .None { return -1, err; }
if err = set(bracket_high, base); err != .None { return -1, err; }
low := 0; high := 1;
/*
A kind of Giant-step/baby-step algorithm.
Idea shamelessly stolen from https://programmingpraxis.com/2010/05/07/integer-logarithms/2/
The effect is asymptotic, hence needs benchmarks to test if the Giant-step should be skipped
for small n.
*/
for {
/*
Iterate until `a` is bracketed between low + high.
*/
if bc, _ := cmp(bracket_high, a); bc != -1 {
break;
}
low = high;
if err = copy(bracket_low, bracket_high); err != .None {
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return -1, err;
}
high <<= 1;
if err = sqr(bracket_high, bracket_high); err != .None {
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return -1, err;
}
cnt += 1;
if cnt == 7 {
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return -2, .Max_Iterations_Reached;
}
}
for (high - low) > 1 {
mid := (high + low) >> 1;
if err = pow(t, bi_base, mid - low); err != .None {
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return -1, err;
}
if err = mul(bracket_mid, bracket_low, t); err != .None {
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return -1, err;
}
mc, _ := cmp(a, bracket_mid);
if mc == -1 {
high = mid;
swap(bracket_mid, bracket_high);
}
if mc == 1 {
low = mid;
swap(bracket_mid, bracket_low);
}
if mc == 0 {
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return mid, .None;
}
}
fc, _ := cmp(bracket_high, a);
res = high if fc == 0 else low;
destroy(bracket_low, bracket_high, bracket_mid, t, bi_base);
return;
}