Merge pull request #3928 from Yawning/feature/aes-ni

core/crypto: Support AES-NI + PCLMUL
This commit is contained in:
Jeroen van Rijn
2024-07-15 18:41:21 +02:00
committed by GitHub
22 changed files with 1165 additions and 126 deletions

33
.gitignore vendored
View File

@@ -24,38 +24,6 @@ bld/
![Cc]ore/[Ll]og/
tests/documentation/verify/
tests/documentation/all.odin-doc
tests/internal/test_map
tests/internal/test_pow
tests/internal/test_rtti
tests/core/test_base64
tests/core/test_cbor
tests/core/test_core_compress
tests/core/test_core_container
tests/core/test_core_filepath
tests/core/test_core_fmt
tests/core/test_core_i18n
tests/core/test_core_image
tests/core/test_core_libc
tests/core/test_core_match
tests/core/test_core_math
tests/core/test_core_net
tests/core/test_core_os_exit
tests/core/test_core_reflect
tests/core/test_core_strings
tests/core/test_core_time
tests/core/test_crypto
tests/core/test_hash
tests/core/test_hex
tests/core/test_hxa
tests/core/test_json
tests/core/test_linalg_glsl_math
tests/core/test_noise
tests/core/test_varint
tests/core/test_xml
tests/core/test_core_slice
tests/core/test_core_thread
tests/core/test_core_runtime
tests/vendor/vendor_botan
# Visual Studio 2015 cache/options directory
.vs/
# Visual Studio Code options directory
@@ -63,6 +31,7 @@ tests/vendor/vendor_botan
# Uncomment if you have tasks that create the project's static files in wwwroot
#wwwroot/
demo
benchmark
# MSTest test Results
[Tt]est[Rr]esult*/

View File

@@ -1167,3 +1167,28 @@ fields_proc :: proc(s: []byte, f: proc(rune) -> bool, allocator := context.alloc
return subslices[:]
}
// alias returns true iff a and b have a non-zero length, and any part of
// a overlaps with b.
alias :: proc "contextless" (a, b: []byte) -> bool {
a_len, b_len := len(a), len(b)
if a_len == 0 || b_len == 0 {
return false
}
a_start, b_start := uintptr(raw_data(a)), uintptr(raw_data(b))
a_end, b_end := a_start + uintptr(a_len-1), b_start + uintptr(b_len-1)
return a_start <= b_end && b_start <= a_end
}
// alias_inexactly returns true iff a and b have a non-zero length,
// the base pointer of a and b are NOT equal, and any part of a overlaps
// with b (ie: `alias(a, b)` with an exception that returns false for
// `a == b`, `b = a[:len(a)-69]` and similar conditions).
alias_inexactly :: proc "contextless" (a, b: []byte) -> bool {
if raw_data(a) == raw_data(b) {
return false
}
return alias(a, b)
}

View File

@@ -7,9 +7,8 @@ STRIDE :: 4
// Context is a keyed AES (ECB) instance.
Context :: struct {
_sk_exp: [120]u64,
_num_rounds: int,
_is_initialized: bool,
_sk_exp: [120]u64,
_num_rounds: int,
}
// init initializes a context for AES with the provided key.
@@ -18,13 +17,10 @@ init :: proc(ctx: ^Context, key: []byte) {
ctx._num_rounds = keysched(skey[:], key)
skey_expand(ctx._sk_exp[:], skey[:], ctx._num_rounds)
ctx._is_initialized = true
}
// encrypt_block sets `dst` to `AES-ECB-Encrypt(src)`.
encrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
assert(ctx._is_initialized)
q: [8]u64
load_blockx1(&q, src)
_encrypt(&q, ctx._sk_exp[:], ctx._num_rounds)
@@ -33,8 +29,6 @@ encrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
// encrypt_block sets `dst` to `AES-ECB-Decrypt(src)`.
decrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
assert(ctx._is_initialized)
q: [8]u64
load_blockx1(&q, src)
_decrypt(&q, ctx._sk_exp[:], ctx._num_rounds)
@@ -43,8 +37,6 @@ decrypt_block :: proc(ctx: ^Context, dst, src: []byte) {
// encrypt_blocks sets `dst` to `AES-ECB-Encrypt(src[0], .. src[n])`.
encrypt_blocks :: proc(ctx: ^Context, dst, src: [][]byte) {
assert(ctx._is_initialized)
q: [8]u64 = ---
src, dst := src, dst
@@ -67,8 +59,6 @@ encrypt_blocks :: proc(ctx: ^Context, dst, src: [][]byte) {
// decrypt_blocks sets dst to `AES-ECB-Decrypt(src[0], .. src[n])`.
decrypt_blocks :: proc(ctx: ^Context, dst, src: [][]byte) {
assert(ctx._is_initialized)
q: [8]u64 = ---
src, dst := src, dst

View File

@@ -0,0 +1,43 @@
//+build amd64
package aes_hw_intel
import "core:sys/info"
// is_supporte returns true iff hardware accelerated AES
// is supported.
is_supported :: proc "contextless" () -> bool {
features, ok := info.cpu_features.?
if !ok {
return false
}
// Note: Everything with AES-NI and PCLMULQDQ has support for
// the required SSE extxtensions.
req_features :: info.CPU_Features{
.sse2,
.ssse3,
.sse41,
.aes,
.pclmulqdq,
}
return features >= req_features
}
// Context is a keyed AES (ECB) instance.
Context :: struct {
// Note: The ideal thing to do is for the expanded round keys to be
// arrays of `__m128i`, however that implies alignment (or using AVX).
//
// All the people using e-waste processors that don't support an
// insturction set that has been around for over 10 years are why
// we can't have nice things.
_sk_exp_enc: [15][16]byte,
_sk_exp_dec: [15][16]byte,
_num_rounds: int,
}
// init initializes a context for AES with the provided key.
init :: proc(ctx: ^Context, key: []byte) {
keysched(ctx, key)
}

View File

@@ -0,0 +1,281 @@
// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//+build amd64
package aes_hw_intel
import "base:intrinsics"
import "core:crypto/_aes"
import "core:simd"
import "core:simd/x86"
@(private = "file")
GHASH_STRIDE_HW :: 4
@(private = "file")
GHASH_STRIDE_BYTES_HW :: GHASH_STRIDE_HW * _aes.GHASH_BLOCK_SIZE
// GHASH is defined over elements of GF(2^128) with "full little-endian"
// representation: leftmost byte is least significant, and, within each
// byte, leftmost _bit_ is least significant. The natural ordering in
// x86 is "mixed little-endian": bytes are ordered from least to most
// significant, but bits within a byte are in most-to-least significant
// order. Going to full little-endian representation would require
// reversing bits within each byte, which is doable but expensive.
//
// Instead, we go to full big-endian representation, by swapping bytes
// around, which is done with a single _mm_shuffle_epi8() opcode (it
// comes with SSSE3; all CPU that offer pclmulqdq also have SSSE3). We
// can use a full big-endian representation because in a carryless
// multiplication, we have a nice bit reversal property:
//
// rev_128(x) * rev_128(y) = rev_255(x * y)
//
// So by using full big-endian, we still get the right result, except
// that it is right-shifted by 1 bit. The left-shift is relatively
// inexpensive, and it can be mutualised.
//
// Since SSE2 opcodes do not have facilities for shitfting full 128-bit
// values with bit precision, we have to break down values into 64-bit
// chunks. We number chunks from 0 to 3 in left to right order.
@(private = "file")
byteswap_index := transmute(x86.__m128i)simd.i8x16{
// Note: simd.i8x16 is reverse order from x86._mm_set_epi8.
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
}
@(private = "file", require_results, enable_target_feature = "sse2,ssse3")
byteswap :: #force_inline proc "contextless" (x: x86.__m128i) -> x86.__m128i {
return x86._mm_shuffle_epi8(x, byteswap_index)
}
// From a 128-bit value kw, compute kx as the XOR of the two 64-bit
// halves of kw (into the right half of kx; left half is unspecified),
// and return kx.
@(private = "file", require_results, enable_target_feature = "sse2")
bk :: #force_inline proc "contextless" (kw: x86.__m128i) -> x86.__m128i {
return x86._mm_xor_si128(kw, x86._mm_shuffle_epi32(kw, 0x0e))
}
// Combine two 64-bit values (k0:k1) into a 128-bit (kw) value and
// the XOR of the two values (kx), and return (kw, kx).
@(private = "file", enable_target_feature = "sse2")
pbk :: #force_inline proc "contextless" (k0, k1: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
kw := x86._mm_unpacklo_epi64(k1, k0)
kx := x86._mm_xor_si128(k0, k1)
return kw, kx
}
// Left-shift by 1 bit a 256-bit value (in four 64-bit words).
@(private = "file", require_results, enable_target_feature = "sse2")
sl_256 :: #force_inline proc "contextless" (x0, x1, x2, x3: x86.__m128i) -> (x86.__m128i, x86.__m128i, x86.__m128i, x86.__m128i) {
x0, x1, x2, x3 := x0, x1, x2, x3
x0 = x86._mm_or_si128(x86._mm_slli_epi64(x0, 1), x86._mm_srli_epi64(x1, 63))
x1 = x86._mm_or_si128(x86._mm_slli_epi64(x1, 1), x86._mm_srli_epi64(x2, 63))
x2 = x86._mm_or_si128(x86._mm_slli_epi64(x2, 1), x86._mm_srli_epi64(x3, 63))
x3 = x86._mm_slli_epi64(x3, 1)
return x0, x1, x2, x3
}
// Perform reduction in GF(2^128).
@(private = "file", require_results, enable_target_feature = "sse2")
reduce_f128 :: #force_inline proc "contextless" (x0, x1, x2, x3: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
x0, x1, x2 := x0, x1, x2
x1 = x86._mm_xor_si128(
x1,
x86._mm_xor_si128(
x86._mm_xor_si128(
x3,
x86._mm_srli_epi64(x3, 1)),
x86._mm_xor_si128(
x86._mm_srli_epi64(x3, 2),
x86._mm_srli_epi64(x3, 7))))
x2 = x86._mm_xor_si128(
x86._mm_xor_si128(
x2,
x86._mm_slli_epi64(x3, 63)),
x86._mm_xor_si128(
x86._mm_slli_epi64(x3, 62),
x86._mm_slli_epi64(x3, 57)))
x0 = x86._mm_xor_si128(
x0,
x86._mm_xor_si128(
x86._mm_xor_si128(
x2,
x86._mm_srli_epi64(x2, 1)),
x86._mm_xor_si128(
x86._mm_srli_epi64(x2, 2),
x86._mm_srli_epi64(x2, 7))))
x1 = x86._mm_xor_si128(
x86._mm_xor_si128(
x1,
x86._mm_slli_epi64(x2, 63)),
x86._mm_xor_si128(
x86._mm_slli_epi64(x2, 62),
x86._mm_slli_epi64(x2, 57)))
return x0, x1
}
// Square value kw in GF(2^128) into (dw,dx).
@(private = "file", require_results, enable_target_feature = "sse2,pclmul")
square_f128 :: #force_inline proc "contextless" (kw: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
z1 := x86._mm_clmulepi64_si128(kw, kw, 0x11)
z3 := x86._mm_clmulepi64_si128(kw, kw, 0x00)
z0 := x86._mm_shuffle_epi32(z1, 0x0E)
z2 := x86._mm_shuffle_epi32(z3, 0x0E)
z0, z1, z2, z3 = sl_256(z0, z1, z2, z3)
z0, z1 = reduce_f128(z0, z1, z2, z3)
return pbk(z0, z1)
}
// ghash calculates the GHASH of data, with the key `key`, and input `dst`
// and `data`, and stores the resulting digest in `dst`.
//
// Note: `dst` is both an input and an output, to support easy implementation
// of GCM.
@(enable_target_feature = "sse2,ssse3,pclmul")
ghash :: proc "contextless" (dst, key, data: []byte) #no_bounds_check {
if len(dst) != _aes.GHASH_BLOCK_SIZE || len(key) != _aes.GHASH_BLOCK_SIZE {
intrinsics.trap()
}
// Note: BearSSL opts to copy the remainder into a zero-filled
// 64-byte buffer. We do something slightly more simple.
// Load key and dst (h and y).
yw := intrinsics.unaligned_load((^x86.__m128i)(raw_data(dst)))
h1w := intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
yw = byteswap(yw)
h1w = byteswap(h1w)
h1x := bk(h1w)
// Process 4 blocks at a time
buf := data
l := len(buf)
if l >= GHASH_STRIDE_BYTES_HW {
// Compute h2 = h^2
h2w, h2x := square_f128(h1w)
// Compute h3 = h^3 = h*(h^2)
t1 := x86._mm_clmulepi64_si128(h1w, h2w, 0x11)
t3 := x86._mm_clmulepi64_si128(h1w, h2w, 0x00)
t2 := x86._mm_xor_si128(
x86._mm_clmulepi64_si128(h1x, h2x, 0x00),
x86._mm_xor_si128(t1, t3))
t0 := x86._mm_shuffle_epi32(t1, 0x0E)
t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
t0, t1 = reduce_f128(t0, t1, t2, t3)
h3w, h3x := pbk(t0, t1)
// Compute h4 = h^4 = (h^2)^2
h4w, h4x := square_f128(h2w)
for l >= GHASH_STRIDE_BYTES_HW {
aw0 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf)))
aw1 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[16:])))
aw2 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[32:])))
aw3 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(buf[48:])))
aw0 = byteswap(aw0)
aw1 = byteswap(aw1)
aw2 = byteswap(aw2)
aw3 = byteswap(aw3)
buf, l = buf[GHASH_STRIDE_BYTES_HW:], l - GHASH_STRIDE_BYTES_HW
aw0 = x86._mm_xor_si128(aw0, yw)
ax1 := bk(aw1)
ax2 := bk(aw2)
ax3 := bk(aw3)
ax0 := bk(aw0)
t1 = x86._mm_xor_si128(
x86._mm_xor_si128(
x86._mm_clmulepi64_si128(aw0, h4w, 0x11),
x86._mm_clmulepi64_si128(aw1, h3w, 0x11)),
x86._mm_xor_si128(
x86._mm_clmulepi64_si128(aw2, h2w, 0x11),
x86._mm_clmulepi64_si128(aw3, h1w, 0x11)))
t3 = x86._mm_xor_si128(
x86._mm_xor_si128(
x86._mm_clmulepi64_si128(aw0, h4w, 0x00),
x86._mm_clmulepi64_si128(aw1, h3w, 0x00)),
x86._mm_xor_si128(
x86._mm_clmulepi64_si128(aw2, h2w, 0x00),
x86._mm_clmulepi64_si128(aw3, h1w, 0x00)))
t2 = x86._mm_xor_si128(
x86._mm_xor_si128(
x86._mm_clmulepi64_si128(ax0, h4x, 0x00),
x86._mm_clmulepi64_si128(ax1, h3x, 0x00)),
x86._mm_xor_si128(
x86._mm_clmulepi64_si128(ax2, h2x, 0x00),
x86._mm_clmulepi64_si128(ax3, h1x, 0x00)))
t2 = x86._mm_xor_si128(t2, x86._mm_xor_si128(t1, t3))
t0 = x86._mm_shuffle_epi32(t1, 0x0E)
t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
t0, t1 = reduce_f128(t0, t1, t2, t3)
yw = x86._mm_unpacklo_epi64(t1, t0)
}
}
// Process 1 block at a time
src: []byte
for l > 0 {
if l >= _aes.GHASH_BLOCK_SIZE {
src = buf
buf = buf[_aes.GHASH_BLOCK_SIZE:]
l -= _aes.GHASH_BLOCK_SIZE
} else {
tmp: [_aes.GHASH_BLOCK_SIZE]byte
copy(tmp[:], buf)
src = tmp[:]
l = 0
}
aw := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
aw = byteswap(aw)
aw = x86._mm_xor_si128(aw, yw)
ax := bk(aw)
t1 := x86._mm_clmulepi64_si128(aw, h1w, 0x11)
t3 := x86._mm_clmulepi64_si128(aw, h1w, 0x00)
t2 := x86._mm_clmulepi64_si128(ax, h1x, 0x00)
t2 = x86._mm_xor_si128(t2, x86._mm_xor_si128(t1, t3))
t0 := x86._mm_shuffle_epi32(t1, 0x0E)
t1 = x86._mm_xor_si128(t1, x86._mm_shuffle_epi32(t2, 0x0E))
t2 = x86._mm_xor_si128(t2, x86._mm_shuffle_epi32(t3, 0x0E))
t0, t1, t2, t3 = sl_256(t0, t1, t2, t3)
t0, t1 = reduce_f128(t0, t1, t2, t3)
yw = x86._mm_unpacklo_epi64(t1, t0)
}
// Write back the hash (dst, aka y)
yw = byteswap(yw)
intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), yw)
}

View File

@@ -0,0 +1,178 @@
// Copyright (c) 2017 Thomas Pornin <pornin@bolet.org>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHORS “AS IS” AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//+build amd64
package aes_hw_intel
import "base:intrinsics"
import "core:crypto/_aes"
import "core:mem"
import "core:simd/x86"
// Intel AES-NI based implementation. Inspiration taken from BearSSL.
//
// Note: This assumes that the SROA optimization pass is enabled to be
// anything resembling performat otherwise, LLVM will not elide a massive
// number of redundant loads/stores it generates for every intrinsic call.
@(private = "file", require_results, enable_target_feature = "sse2")
expand_step128 :: #force_inline proc(k1, k2: x86.__m128i) -> x86.__m128i {
k1, k2 := k1, k2
k2 = x86._mm_shuffle_epi32(k2, 0xff)
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
return x86._mm_xor_si128(k1, k2)
}
@(private = "file", require_results, enable_target_feature = "sse,sse2")
expand_step192a :: #force_inline proc (k1_, k2_: ^x86.__m128i, k3: x86.__m128i) -> (x86.__m128i, x86.__m128i) {
k1, k2, k3 := k1_^, k2_^, k3
k3 = x86._mm_shuffle_epi32(k3, 0x55)
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, k3)
tmp := k2
k2 = x86._mm_xor_si128(k2, x86._mm_slli_si128(k2, 0x04))
k2 = x86._mm_xor_si128(k2, x86._mm_shuffle_epi32(k1, 0xff))
k1_, k2_ := k1_, k2_
k1_^, k2_^ = k1, k2
r1 := transmute(x86.__m128i)(x86._mm_shuffle_ps(transmute(x86.__m128)(tmp), transmute(x86.__m128)(k1), 0x44))
r2 := transmute(x86.__m128i)(x86._mm_shuffle_ps(transmute(x86.__m128)(k1), transmute(x86.__m128)(k2), 0x4e))
return r1, r2
}
@(private = "file", require_results, enable_target_feature = "sse2")
expand_step192b :: #force_inline proc (k1_, k2_: ^x86.__m128i, k3: x86.__m128i) -> x86.__m128i {
k1, k2, k3 := k1_^, k2_^, k3
k3 = x86._mm_shuffle_epi32(k3, 0x55)
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, k3)
k2 = x86._mm_xor_si128(k2, x86._mm_slli_si128(k2, 0x04))
k2 = x86._mm_xor_si128(k2, x86._mm_shuffle_epi32(k1, 0xff))
k1_, k2_ := k1_, k2_
k1_^, k2_^ = k1, k2
return k1
}
@(private = "file", require_results, enable_target_feature = "sse2")
expand_step256b :: #force_inline proc(k1, k2: x86.__m128i) -> x86.__m128i {
k1, k2 := k1, k2
k2 = x86._mm_shuffle_epi32(k2, 0xaa)
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
k1 = x86._mm_xor_si128(k1, x86._mm_slli_si128(k1, 0x04))
return x86._mm_xor_si128(k1, k2)
}
@(private = "file", enable_target_feature = "aes")
derive_dec_keys :: proc(ctx: ^Context, sks: ^[15]x86.__m128i, num_rounds: int) {
intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[0]), sks[num_rounds])
for i in 1 ..< num_rounds {
tmp := x86._mm_aesimc_si128(sks[i])
intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[num_rounds - i]), tmp)
}
intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_dec[num_rounds]), sks[0])
}
@(private, enable_target_feature = "sse,sse2,aes")
keysched :: proc(ctx: ^Context, key: []byte) {
sks: [15]x86.__m128i = ---
// Compute the encryption keys.
num_rounds, key_len := 0, len(key)
switch key_len {
case _aes.KEY_SIZE_128:
sks[0] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
sks[1] = expand_step128(sks[0], x86._mm_aeskeygenassist_si128(sks[0], 0x01))
sks[2] = expand_step128(sks[1], x86._mm_aeskeygenassist_si128(sks[1], 0x02))
sks[3] = expand_step128(sks[2], x86._mm_aeskeygenassist_si128(sks[2], 0x04))
sks[4] = expand_step128(sks[3], x86._mm_aeskeygenassist_si128(sks[3], 0x08))
sks[5] = expand_step128(sks[4], x86._mm_aeskeygenassist_si128(sks[4], 0x10))
sks[6] = expand_step128(sks[5], x86._mm_aeskeygenassist_si128(sks[5], 0x20))
sks[7] = expand_step128(sks[6], x86._mm_aeskeygenassist_si128(sks[6], 0x40))
sks[8] = expand_step128(sks[7], x86._mm_aeskeygenassist_si128(sks[7], 0x80))
sks[9] = expand_step128(sks[8], x86._mm_aeskeygenassist_si128(sks[8], 0x1b))
sks[10] = expand_step128(sks[9], x86._mm_aeskeygenassist_si128(sks[9], 0x36))
num_rounds = _aes.ROUNDS_128
case _aes.KEY_SIZE_192:
k0 := intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
k1 := x86.__m128i{
intrinsics.unaligned_load((^i64)(raw_data(key[16:]))),
0,
}
sks[0] = k0
sks[1], sks[2] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x01))
sks[3] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x02))
sks[4], sks[5] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x04))
sks[6] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x08))
sks[7], sks[8] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x10))
sks[9] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x20))
sks[10], sks[11] = expand_step192a(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x40))
sks[12] = expand_step192b(&k0, &k1, x86._mm_aeskeygenassist_si128(k1, 0x80))
num_rounds = _aes.ROUNDS_192
case _aes.KEY_SIZE_256:
sks[0] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key)))
sks[1] = intrinsics.unaligned_load((^x86.__m128i)(raw_data(key[16:])))
sks[2] = expand_step128(sks[0], x86._mm_aeskeygenassist_si128(sks[1], 0x01))
sks[3] = expand_step256b(sks[1], x86._mm_aeskeygenassist_si128(sks[2], 0x01))
sks[4] = expand_step128(sks[2], x86._mm_aeskeygenassist_si128(sks[3], 0x02))
sks[5] = expand_step256b(sks[3], x86._mm_aeskeygenassist_si128(sks[4], 0x02))
sks[6] = expand_step128(sks[4], x86._mm_aeskeygenassist_si128(sks[5], 0x04))
sks[7] = expand_step256b(sks[5], x86._mm_aeskeygenassist_si128(sks[6], 0x04))
sks[8] = expand_step128(sks[6], x86._mm_aeskeygenassist_si128(sks[7], 0x08))
sks[9] = expand_step256b(sks[7], x86._mm_aeskeygenassist_si128(sks[8], 0x08))
sks[10] = expand_step128(sks[8], x86._mm_aeskeygenassist_si128(sks[9], 0x10))
sks[11] = expand_step256b(sks[9], x86._mm_aeskeygenassist_si128(sks[10], 0x10))
sks[12] = expand_step128(sks[10], x86._mm_aeskeygenassist_si128(sks[11], 0x20))
sks[13] = expand_step256b(sks[11], x86._mm_aeskeygenassist_si128(sks[12], 0x20))
sks[14] = expand_step128(sks[12], x86._mm_aeskeygenassist_si128(sks[13], 0x40))
num_rounds = _aes.ROUNDS_256
case:
panic("crypto/aes: invalid AES key size")
}
for i in 0 ..= num_rounds {
intrinsics.unaligned_store((^x86.__m128i)(&ctx._sk_exp_enc[i]), sks[i])
}
// Compute the decryption keys. GCM and CTR do not need this, however
// ECB, CBC, OCB3, etc do.
derive_dec_keys(ctx, &sks, num_rounds)
ctx._num_rounds = num_rounds
mem.zero_explicit(&sks, size_of(sks))
}

View File

@@ -6,7 +6,6 @@ See:
- https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
- https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
*/
package aes
import "core:crypto/_aes"

View File

@@ -1,5 +1,6 @@
package aes
import "core:bytes"
import "core:crypto/_aes/ct64"
import "core:encoding/endian"
import "core:math/bits"
@@ -37,14 +38,15 @@ init_ctr :: proc(ctx: ^Context_CTR, key, iv: []byte, impl := Implementation.Hard
xor_bytes_ctr :: proc(ctx: ^Context_CTR, dst, src: []byte) {
assert(ctx._is_initialized)
// TODO: Enforcing that dst and src alias exactly or not at all
// is a good idea, though odd aliasing should be extremely uncommon.
src, dst := src, dst
if dst_len := len(dst); dst_len < len(src) {
src = src[:dst_len]
}
if bytes.alias_inexactly(dst, src) {
panic("crypto/aes: dst and src alias inexactly")
}
for remaining := len(src); remaining > 0; {
// Process multiple blocks at once
if ctx._off == BLOCK_SIZE {
@@ -123,8 +125,8 @@ reset_ctr :: proc "contextless" (ctx: ^Context_CTR) {
ctx._is_initialized = false
}
@(private)
ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) {
@(private = "file")
ctr_blocks :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) #no_bounds_check {
// Use the optimized hardware implementation if available.
if _, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
ctr_blocks_hw(ctx, dst, src, nr_blocks)
@@ -183,17 +185,17 @@ xor_blocks :: #force_inline proc "contextless" (dst, src: []byte, blocks: [][]by
// performance of this implementation matters to where that
// optimization would be worth it, use chacha20poly1305, or a
// CPU that isn't e-waste.
if src != nil {
#no_bounds_check {
for i in 0 ..< len(blocks) {
off := i * BLOCK_SIZE
for j in 0 ..< BLOCK_SIZE {
blocks[i][j] ~= src[off + j]
#no_bounds_check {
if src != nil {
for i in 0 ..< len(blocks) {
off := i * BLOCK_SIZE
for j in 0 ..< BLOCK_SIZE {
blocks[i][j] ~= src[off + j]
}
}
}
}
for i in 0 ..< len(blocks) {
copy(dst[i * BLOCK_SIZE:], blocks[i])
}
}
for i in 0 ..< len(blocks) {
copy(dst[i * BLOCK_SIZE:], blocks[i])
}
}

View File

@@ -0,0 +1,151 @@
//+build amd64
package aes
import "base:intrinsics"
import "core:crypto/_aes"
import "core:math/bits"
import "core:mem"
import "core:simd/x86"
@(private)
CTR_STRIDE_HW :: 4
@(private)
CTR_STRIDE_BYTES_HW :: CTR_STRIDE_HW * BLOCK_SIZE
@(private, enable_target_feature = "sse2,aes")
ctr_blocks_hw :: proc(ctx: ^Context_CTR, dst, src: []byte, nr_blocks: int) #no_bounds_check {
hw_ctx := ctx._impl.(Context_Impl_Hardware)
sks: [15]x86.__m128i = ---
for i in 0 ..= hw_ctx._num_rounds {
sks[i] = intrinsics.unaligned_load((^x86.__m128i)(&hw_ctx._sk_exp_enc[i]))
}
hw_inc_ctr := #force_inline proc "contextless" (hi, lo: u64) -> (x86.__m128i, u64, u64) {
ret := x86.__m128i{
i64(intrinsics.byte_swap(hi)),
i64(intrinsics.byte_swap(lo)),
}
hi, lo := hi, lo
carry: u64
lo, carry = bits.add_u64(lo, 1, 0)
hi, _ = bits.add_u64(hi, 0, carry)
return ret, hi, lo
}
// The latency of AESENC depends on mfg and microarchitecture:
// - 7 -> up to Broadwell
// - 4 -> AMD and Skylake - Cascade Lake
// - 3 -> Ice Lake and newer
//
// This implementation does 4 blocks at once, since performance
// should be "adequate" across most CPUs.
src, dst := src, dst
nr_blocks := nr_blocks
ctr_hi, ctr_lo := ctx._ctr_hi, ctx._ctr_lo
blks: [CTR_STRIDE_HW]x86.__m128i = ---
for nr_blocks >= CTR_STRIDE_HW {
#unroll for i in 0..< CTR_STRIDE_HW {
blks[i], ctr_hi, ctr_lo = hw_inc_ctr(ctr_hi, ctr_lo)
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_xor_si128(blks[i], sks[0])
}
#unroll for i in 1 ..= 9 {
#unroll for j in 0 ..< CTR_STRIDE_HW {
blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
}
}
switch hw_ctx._num_rounds {
case _aes.ROUNDS_128:
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_aesenclast_si128(blks[i], sks[10])
}
case _aes.ROUNDS_192:
#unroll for i in 10 ..= 11 {
#unroll for j in 0 ..< CTR_STRIDE_HW {
blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
}
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_aesenclast_si128(blks[i], sks[12])
}
case _aes.ROUNDS_256:
#unroll for i in 10 ..= 13 {
#unroll for j in 0 ..< CTR_STRIDE_HW {
blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
}
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_aesenclast_si128(blks[i], sks[14])
}
}
xor_blocks_hw(dst, src, blks[:])
if src != nil {
src = src[CTR_STRIDE_BYTES_HW:]
}
dst = dst[CTR_STRIDE_BYTES_HW:]
nr_blocks -= CTR_STRIDE_HW
}
// Handle the remainder.
for nr_blocks > 0 {
blks[0], ctr_hi, ctr_lo = hw_inc_ctr(ctr_hi, ctr_lo)
blks[0] = x86._mm_xor_si128(blks[0], sks[0])
#unroll for i in 1 ..= 9 {
blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
}
switch hw_ctx._num_rounds {
case _aes.ROUNDS_128:
blks[0] = x86._mm_aesenclast_si128(blks[0], sks[10])
case _aes.ROUNDS_192:
#unroll for i in 10 ..= 11 {
blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
}
blks[0] = x86._mm_aesenclast_si128(blks[0], sks[12])
case _aes.ROUNDS_256:
#unroll for i in 10 ..= 13 {
blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
}
blks[0] = x86._mm_aesenclast_si128(blks[0], sks[14])
}
xor_blocks_hw(dst, src, blks[:1])
if src != nil {
src = src[BLOCK_SIZE:]
}
dst = dst[BLOCK_SIZE:]
nr_blocks -= 1
}
// Write back the counter.
ctx._ctr_hi, ctx._ctr_lo = ctr_hi, ctr_lo
mem.zero_explicit(&blks, size_of(blks))
mem.zero_explicit(&sks, size_of(sks))
}
@(private, enable_target_feature = "sse2")
xor_blocks_hw :: proc(dst, src: []byte, blocks: []x86.__m128i) {
#no_bounds_check {
if src != nil {
for i in 0 ..< len(blocks) {
off := i * BLOCK_SIZE
tmp := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src[off:])))
blocks[i] = x86._mm_xor_si128(blocks[i], tmp)
}
}
for i in 0 ..< len(blocks) {
intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst[i * BLOCK_SIZE:])), blocks[i])
}
}
}

View File

@@ -0,0 +1,58 @@
//+build amd64
package aes
import "base:intrinsics"
import "core:crypto/_aes"
import "core:simd/x86"
@(private, enable_target_feature = "sse2,aes")
encrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
blk := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
blk = x86._mm_xor_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[0])))
#unroll for i in 1 ..= 9 {
blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
}
switch ctx._num_rounds {
case _aes.ROUNDS_128:
blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[10])))
case _aes.ROUNDS_192:
#unroll for i in 10 ..= 11 {
blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
}
blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[12])))
case _aes.ROUNDS_256:
#unroll for i in 10 ..= 13 {
blk = x86._mm_aesenc_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i])))
}
blk = x86._mm_aesenclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[14])))
}
intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), blk)
}
@(private, enable_target_feature = "sse2,aes")
decrypt_block_hw :: proc(ctx: ^Context_Impl_Hardware, dst, src: []byte) {
blk := intrinsics.unaligned_load((^x86.__m128i)(raw_data(src)))
blk = x86._mm_xor_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[0])))
#unroll for i in 1 ..= 9 {
blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
}
switch ctx._num_rounds {
case _aes.ROUNDS_128:
blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[10])))
case _aes.ROUNDS_192:
#unroll for i in 10 ..= 11 {
blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
}
blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[12])))
case _aes.ROUNDS_256:
#unroll for i in 10 ..= 13 {
blk = x86._mm_aesdec_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[i])))
}
blk = x86._mm_aesdeclast_si128(blk, intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_dec[14])))
}
intrinsics.unaligned_store((^x86.__m128i)(raw_data(dst)), blk)
}

View File

@@ -1,13 +1,16 @@
package aes
import "core:bytes"
import "core:crypto"
import "core:crypto/_aes"
import "core:crypto/_aes/ct64"
import "core:encoding/endian"
import "core:mem"
// GCM_NONCE_SIZE is the size of the GCM nonce in bytes.
// GCM_NONCE_SIZE is the default size of the GCM nonce in bytes.
GCM_NONCE_SIZE :: 12
// GCM_NONCE_SIZE_MAX is the maximum size of the GCM nonce in bytes.
GCM_NONCE_SIZE_MAX :: 0x2000000000000000 // floor((2^64 - 1) / 8) bits
// GCM_TAG_SIZE is the size of a GCM tag in bytes.
GCM_TAG_SIZE :: _aes.GHASH_TAG_SIZE
@@ -39,6 +42,9 @@ seal_gcm :: proc(ctx: ^Context_GCM, dst, tag, nonce, aad, plaintext: []byte) {
if len(dst) != len(plaintext) {
panic("crypto/aes: invalid destination ciphertext size")
}
if bytes.alias_inexactly(dst, plaintext) {
panic("crypto/aes: dst and plaintext alias inexactly")
}
if impl, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
gcm_seal_hw(&impl, dst, tag, nonce, aad, plaintext)
@@ -47,17 +53,19 @@ seal_gcm :: proc(ctx: ^Context_GCM, dst, tag, nonce, aad, plaintext: []byte) {
h: [_aes.GHASH_KEY_SIZE]byte
j0: [_aes.GHASH_BLOCK_SIZE]byte
j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
s: [_aes.GHASH_TAG_SIZE]byte
init_ghash_ct64(ctx, &h, &j0, nonce)
init_ghash_ct64(ctx, &h, &j0, &j0_enc, nonce)
// Note: Our GHASH implementation handles appending padding.
ct64.ghash(s[:], h[:], aad)
gctr_ct64(ctx, dst, &s, plaintext, &h, nonce, true)
final_ghash_ct64(&s, &h, &j0, len(aad), len(plaintext))
gctr_ct64(ctx, dst, &s, plaintext, &h, &j0, true)
final_ghash_ct64(&s, &h, &j0_enc, len(aad), len(plaintext))
copy(tag, s[:])
mem.zero_explicit(&h, len(h))
mem.zero_explicit(&j0, len(j0))
mem.zero_explicit(&j0_enc, len(j0_enc))
}
// open_gcm authenticates the aad and ciphertext, and decrypts the ciphertext,
@@ -73,6 +81,9 @@ open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) ->
if len(dst) != len(ciphertext) {
panic("crypto/aes: invalid destination plaintext size")
}
if bytes.alias_inexactly(dst, ciphertext) {
panic("crypto/aes: dst and ciphertext alias inexactly")
}
if impl, is_hw := ctx._impl.(Context_Impl_Hardware); is_hw {
return gcm_open_hw(&impl, dst, nonce, aad, ciphertext, tag)
@@ -80,12 +91,13 @@ open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) ->
h: [_aes.GHASH_KEY_SIZE]byte
j0: [_aes.GHASH_BLOCK_SIZE]byte
j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
s: [_aes.GHASH_TAG_SIZE]byte
init_ghash_ct64(ctx, &h, &j0, nonce)
init_ghash_ct64(ctx, &h, &j0, &j0_enc, nonce)
ct64.ghash(s[:], h[:], aad)
gctr_ct64(ctx, dst, &s, ciphertext, &h, nonce, false)
final_ghash_ct64(&s, &h, &j0, len(aad), len(ciphertext))
gctr_ct64(ctx, dst, &s, ciphertext, &h, &j0, false)
final_ghash_ct64(&s, &h, &j0_enc, len(aad), len(ciphertext))
ok := crypto.compare_constant_time(s[:], tag) == 1
if !ok {
@@ -94,6 +106,7 @@ open_gcm :: proc(ctx: ^Context_GCM, dst, nonce, aad, ciphertext, tag: []byte) ->
mem.zero_explicit(&h, len(h))
mem.zero_explicit(&j0, len(j0))
mem.zero_explicit(&j0_enc, len(j0_enc))
mem.zero_explicit(&s, len(s))
return ok
@@ -106,19 +119,14 @@ reset_gcm :: proc "contextless" (ctx: ^Context_GCM) {
ctx._is_initialized = false
}
@(private)
@(private = "file")
gcm_validate_common_slice_sizes :: proc(tag, nonce, aad, text: []byte) {
if len(tag) != GCM_TAG_SIZE {
panic("crypto/aes: invalid GCM tag size")
}
// The specification supports nonces in the range [1, 2^64) bits
// however per NIST SP 800-38D 5.2.1.1:
//
// > For IVs, it is recommended that implementations restrict support
// > to the length of 96 bits, to promote interoperability, efficiency,
// > and simplicity of design.
if len(nonce) != GCM_NONCE_SIZE {
// The specification supports nonces in the range [1, 2^64) bits.
if l := len(nonce); l == 0 || u64(l) >= GCM_NONCE_SIZE_MAX {
panic("crypto/aes: invalid GCM nonce size")
}
@@ -135,6 +143,7 @@ init_ghash_ct64 :: proc(
ctx: ^Context_GCM,
h: ^[_aes.GHASH_KEY_SIZE]byte,
j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
j0_enc: ^[_aes.GHASH_BLOCK_SIZE]byte,
nonce: []byte,
) {
impl := &ctx._impl.(ct64.Context)
@@ -142,12 +151,25 @@ init_ghash_ct64 :: proc(
// 1. Let H = CIPH(k, 0^128)
ct64.encrypt_block(impl, h[:], h[:])
// Define a block, J0, as follows:
if l := len(nonce); l == GCM_NONCE_SIZE {
// if len(IV) = 96, then let J0 = IV || 0^31 || 1
copy(j0[:], nonce)
j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
} else {
// If len(IV) != 96, then let s = 128 ceil(len(IV)/128) - len(IV),
// and let J0 = GHASHH(IV || 0^(s+64) || ceil(len(IV))^64).
ct64.ghash(j0[:], h[:], nonce)
tmp: [_aes.GHASH_BLOCK_SIZE]byte
endian.unchecked_put_u64be(tmp[8:], u64(l) * 8)
ct64.ghash(j0[:], h[:], tmp[:])
}
// ECB encrypt j0, so that we can just XOR with the tag. In theory
// this could be processed along with the final GCTR block, to
// potentially save a call to AES-ECB, but... just use AES-NI.
copy(j0[:], nonce)
j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
ct64.encrypt_block(impl, j0[:], j0[:])
ct64.encrypt_block(impl, j0_enc[:], j0[:])
}
@(private = "file")
@@ -175,33 +197,27 @@ gctr_ct64 :: proc(
s: ^[_aes.GHASH_BLOCK_SIZE]byte,
src: []byte,
h: ^[_aes.GHASH_KEY_SIZE]byte,
nonce: []byte,
nonce: ^[_aes.GHASH_BLOCK_SIZE]byte,
is_seal: bool,
) {
) #no_bounds_check {
ct64_inc_ctr32 := #force_inline proc "contextless" (dst: []byte, ctr: u32) -> u32 {
endian.unchecked_put_u32be(dst[12:], ctr)
return ctr + 1
}
// 2. Define a block J_0 as follows:
// if len(IV) = 96, then let J0 = IV || 0^31 || 1
//
// Note: We only support 96 bit IVs.
// Setup the counter blocks.
tmp, tmp2: [ct64.STRIDE][BLOCK_SIZE]byte = ---, ---
ctrs, blks: [ct64.STRIDE][]byte = ---, ---
ctr: u32 = 2
ctr := endian.unchecked_get_u32be(nonce[GCM_NONCE_SIZE:]) + 1
for i in 0 ..< ct64.STRIDE {
// Setup scratch space for the keystream.
blks[i] = tmp2[i][:]
// Pre-copy the IV to all the counter blocks.
ctrs[i] = tmp[i][:]
copy(ctrs[i], nonce)
copy(ctrs[i], nonce[:GCM_NONCE_SIZE])
}
// We stitch the GCTR and GHASH operations together, so that only
// one pass over the ciphertext is required.
impl := &ctx._impl.(ct64.Context)
src, dst := src, dst

View File

@@ -0,0 +1,243 @@
//+build amd64
package aes
import "base:intrinsics"
import "core:crypto"
import "core:crypto/_aes"
import "core:crypto/_aes/hw_intel"
import "core:encoding/endian"
import "core:mem"
import "core:simd/x86"
@(private)
gcm_seal_hw :: proc(ctx: ^Context_Impl_Hardware, dst, tag, nonce, aad, plaintext: []byte) {
h: [_aes.GHASH_KEY_SIZE]byte
j0: [_aes.GHASH_BLOCK_SIZE]byte
j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
s: [_aes.GHASH_TAG_SIZE]byte
init_ghash_hw(ctx, &h, &j0, &j0_enc, nonce)
// Note: Our GHASH implementation handles appending padding.
hw_intel.ghash(s[:], h[:], aad)
gctr_hw(ctx, dst, &s, plaintext, &h, &j0, true)
final_ghash_hw(&s, &h, &j0_enc, len(aad), len(plaintext))
copy(tag, s[:])
mem.zero_explicit(&h, len(h))
mem.zero_explicit(&j0, len(j0))
mem.zero_explicit(&j0_enc, len(j0_enc))
}
@(private)
gcm_open_hw :: proc(ctx: ^Context_Impl_Hardware, dst, nonce, aad, ciphertext, tag: []byte) -> bool {
h: [_aes.GHASH_KEY_SIZE]byte
j0: [_aes.GHASH_BLOCK_SIZE]byte
j0_enc: [_aes.GHASH_BLOCK_SIZE]byte
s: [_aes.GHASH_TAG_SIZE]byte
init_ghash_hw(ctx, &h, &j0, &j0_enc, nonce)
hw_intel.ghash(s[:], h[:], aad)
gctr_hw(ctx, dst, &s, ciphertext, &h, &j0, false)
final_ghash_hw(&s, &h, &j0_enc, len(aad), len(ciphertext))
ok := crypto.compare_constant_time(s[:], tag) == 1
if !ok {
mem.zero_explicit(raw_data(dst), len(dst))
}
mem.zero_explicit(&h, len(h))
mem.zero_explicit(&j0, len(j0))
mem.zero_explicit(&j0_enc, len(j0_enc))
mem.zero_explicit(&s, len(s))
return ok
}
@(private = "file")
init_ghash_hw :: proc(
ctx: ^Context_Impl_Hardware,
h: ^[_aes.GHASH_KEY_SIZE]byte,
j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
j0_enc: ^[_aes.GHASH_BLOCK_SIZE]byte,
nonce: []byte,
) {
// 1. Let H = CIPH(k, 0^128)
encrypt_block_hw(ctx, h[:], h[:])
// Define a block, J0, as follows:
if l := len(nonce); l == GCM_NONCE_SIZE {
// if len(IV) = 96, then let J0 = IV || 0^31 || 1
copy(j0[:], nonce)
j0[_aes.GHASH_BLOCK_SIZE - 1] = 1
} else {
// If len(IV) != 96, then let s = 128 ceil(len(IV)/128) - len(IV),
// and let J0 = GHASHH(IV || 0^(s+64) || ceil(len(IV))^64).
hw_intel.ghash(j0[:], h[:], nonce)
tmp: [_aes.GHASH_BLOCK_SIZE]byte
endian.unchecked_put_u64be(tmp[8:], u64(l) * 8)
hw_intel.ghash(j0[:], h[:], tmp[:])
}
// ECB encrypt j0, so that we can just XOR with the tag.
encrypt_block_hw(ctx, j0_enc[:], j0[:])
}
@(private = "file", enable_target_feature = "sse2")
final_ghash_hw :: proc(
s: ^[_aes.GHASH_BLOCK_SIZE]byte,
h: ^[_aes.GHASH_KEY_SIZE]byte,
j0: ^[_aes.GHASH_BLOCK_SIZE]byte,
a_len: int,
t_len: int,
) {
blk: [_aes.GHASH_BLOCK_SIZE]byte
endian.unchecked_put_u64be(blk[0:], u64(a_len) * 8)
endian.unchecked_put_u64be(blk[8:], u64(t_len) * 8)
hw_intel.ghash(s[:], h[:], blk[:])
j0_vec := intrinsics.unaligned_load((^x86.__m128i)(j0))
s_vec := intrinsics.unaligned_load((^x86.__m128i)(s))
s_vec = x86._mm_xor_si128(s_vec, j0_vec)
intrinsics.unaligned_store((^x86.__m128i)(s), s_vec)
}
@(private = "file", enable_target_feature = "sse2,sse4.1,aes")
gctr_hw :: proc(
ctx: ^Context_Impl_Hardware,
dst: []byte,
s: ^[_aes.GHASH_BLOCK_SIZE]byte,
src: []byte,
h: ^[_aes.GHASH_KEY_SIZE]byte,
nonce: ^[_aes.GHASH_BLOCK_SIZE]byte,
is_seal: bool,
) #no_bounds_check {
sks: [15]x86.__m128i = ---
for i in 0 ..= ctx._num_rounds {
sks[i] = intrinsics.unaligned_load((^x86.__m128i)(&ctx._sk_exp_enc[i]))
}
// Setup the counter block
ctr_blk := intrinsics.unaligned_load((^x86.__m128i)(nonce))
ctr := endian.unchecked_get_u32be(nonce[GCM_NONCE_SIZE:]) + 1
src, dst := src, dst
// Note: Instead of doing GHASH and CTR separately, it is more
// performant to interleave (stitch) the two operations together.
// This results in an unreadable mess, so we opt for simplicity
// as performance is adequate.
blks: [CTR_STRIDE_HW]x86.__m128i = ---
nr_blocks := len(src) / BLOCK_SIZE
for nr_blocks >= CTR_STRIDE_HW {
if !is_seal {
hw_intel.ghash(s[:], h[:], src[:CTR_STRIDE_BYTES_HW])
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i], ctr = hw_inc_ctr32(&ctr_blk, ctr)
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_xor_si128(blks[i], sks[0])
}
#unroll for i in 1 ..= 9 {
#unroll for j in 0 ..< CTR_STRIDE_HW {
blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
}
}
switch ctx._num_rounds {
case _aes.ROUNDS_128:
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_aesenclast_si128(blks[i], sks[10])
}
case _aes.ROUNDS_192:
#unroll for i in 10 ..= 11 {
#unroll for j in 0 ..< CTR_STRIDE_HW {
blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
}
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_aesenclast_si128(blks[i], sks[12])
}
case _aes.ROUNDS_256:
#unroll for i in 10 ..= 13 {
#unroll for j in 0 ..< CTR_STRIDE_HW {
blks[j] = x86._mm_aesenc_si128(blks[j], sks[i])
}
}
#unroll for i in 0 ..< CTR_STRIDE_HW {
blks[i] = x86._mm_aesenclast_si128(blks[i], sks[14])
}
}
xor_blocks_hw(dst, src, blks[:])
if is_seal {
hw_intel.ghash(s[:], h[:], dst[:CTR_STRIDE_BYTES_HW])
}
src = src[CTR_STRIDE_BYTES_HW:]
dst = dst[CTR_STRIDE_BYTES_HW:]
nr_blocks -= CTR_STRIDE_HW
}
// Handle the remainder.
for n := len(src); n > 0; {
l := min(n, BLOCK_SIZE)
if !is_seal {
hw_intel.ghash(s[:], h[:], src[:l])
}
blks[0], ctr = hw_inc_ctr32(&ctr_blk, ctr)
blks[0] = x86._mm_xor_si128(blks[0], sks[0])
#unroll for i in 1 ..= 9 {
blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
}
switch ctx._num_rounds {
case _aes.ROUNDS_128:
blks[0] = x86._mm_aesenclast_si128(blks[0], sks[10])
case _aes.ROUNDS_192:
#unroll for i in 10 ..= 11 {
blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
}
blks[0] = x86._mm_aesenclast_si128(blks[0], sks[12])
case _aes.ROUNDS_256:
#unroll for i in 10 ..= 13 {
blks[0] = x86._mm_aesenc_si128(blks[0], sks[i])
}
blks[0] = x86._mm_aesenclast_si128(blks[0], sks[14])
}
if l == BLOCK_SIZE {
xor_blocks_hw(dst, src, blks[:1])
} else {
blk: [BLOCK_SIZE]byte
copy(blk[:], src)
xor_blocks_hw(blk[:], blk[:], blks[:1])
copy(dst, blk[:l])
}
if is_seal {
hw_intel.ghash(s[:], h[:], dst[:l])
}
dst = dst[l:]
src = src[l:]
n -= l
}
mem.zero_explicit(&blks, size_of(blks))
mem.zero_explicit(&sks, size_of(sks))
}
// BUG: Sticking this in gctr_hw (like the other implementations) crashes
// the compiler.
//
// src/check_expr.cpp(7892): Assertion Failure: `c->curr_proc_decl->entity`
@(private = "file", enable_target_feature = "sse4.1")
hw_inc_ctr32 :: #force_inline proc "contextless" (src: ^x86.__m128i, ctr: u32) -> (x86.__m128i, u32) {
ret := x86._mm_insert_epi32(src^, i32(intrinsics.byte_swap(ctr)), 3)
return ret, ctr + 1
}

View File

@@ -1,3 +1,4 @@
//+build !amd64
package aes
@(private = "file")

View File

@@ -0,0 +1,18 @@
//+build amd64
package aes
import "core:crypto/_aes/hw_intel"
// is_hardware_accelerated returns true iff hardware accelerated AES
// is supported.
is_hardware_accelerated :: proc "contextless" () -> bool {
return hw_intel.is_supported()
}
@(private)
Context_Impl_Hardware :: hw_intel.Context
@(private, enable_target_feature = "sse2,aes")
init_impl_hw :: proc(ctx: ^Context_Impl_Hardware, key: []byte) {
hw_intel.init(ctx, key)
}

View File

@@ -7,6 +7,7 @@ See:
*/
package chacha20
import "core:bytes"
import "core:encoding/endian"
import "core:math/bits"
import "core:mem"
@@ -121,14 +122,15 @@ seek :: proc(ctx: ^Context, block_nr: u64) {
xor_bytes :: proc(ctx: ^Context, dst, src: []byte) {
assert(ctx._is_initialized)
// TODO: Enforcing that dst and src alias exactly or not at all
// is a good idea, though odd aliasing should be extremely uncommon.
src, dst := src, dst
if dst_len := len(dst); dst_len < len(src) {
src = src[:dst_len]
}
if bytes.alias_inexactly(dst, src) {
panic("crypto/chacha20: dst and src alias inexactly")
}
for remaining := len(src); remaining > 0; {
// Process multiple blocks at once
if ctx._off == _BLOCK_SIZE {

View File

@@ -60,7 +60,11 @@ rand_bytes :: proc (dst: []byte) {
_rand_bytes(dst)
}
// random_generator returns a `runtime.Random_Generator` backed by the
// system entropy source.
//
// Support for the system entropy source can be checked with the
// `HAS_RAND_BYTES` boolean constant.
random_generator :: proc() -> runtime.Random_Generator {
return {
procedure = proc(data: rawptr, mode: runtime.Random_Generator_Mode, p: []byte) {

View File

@@ -2,33 +2,33 @@
package simd_x86
@(require_results, enable_target_feature = "aes")
_mm_aesdec :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
_mm_aesdec_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
return aesdec(a, b)
}
@(require_results, enable_target_feature = "aes")
_mm_aesdeclast :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
_mm_aesdeclast_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
return aesdeclast(a, b)
}
@(require_results, enable_target_feature = "aes")
_mm_aesenc :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
_mm_aesenc_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
return aesenc(a, b)
}
@(require_results, enable_target_feature = "aes")
_mm_aesenclast :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
_mm_aesenclast_si128 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
return aesenclast(a, b)
}
@(require_results, enable_target_feature = "aes")
_mm_aesimc :: #force_inline proc "c" (a: __m128i) -> __m128i {
_mm_aesimc_si128 :: #force_inline proc "c" (a: __m128i) -> __m128i {
return aesimc(a)
}
@(require_results, enable_target_feature = "aes")
_mm_aeskeygenassist :: #force_inline proc "c" (a: __m128i, $IMM8: u8) -> __m128i {
return aeskeygenassist(a, u8(IMM8))
_mm_aeskeygenassist_si128 :: #force_inline proc "c" (a: __m128i, $IMM8: u8) -> __m128i {
return aeskeygenassist(a, IMM8)
}
@@ -45,5 +45,5 @@ foreign _ {
@(link_name = "llvm.x86.aesni.aesimc")
aesimc :: proc(a: __m128i) -> __m128i ---
@(link_name = "llvm.x86.aesni.aeskeygenassist")
aeskeygenassist :: proc(a: __m128i, imm8: u8) -> __m128i ---
aeskeygenassist :: proc(a: __m128i, #const imm8: u8) -> __m128i ---
}

View File

@@ -144,19 +144,26 @@ _mm_subs_epu16 :: #force_inline proc "c" (a, b: __m128i) -> __m128i {
_mm_slli_si128_impl :: #force_inline proc "c" (a: __m128i, $IMM8: u32) -> __m128i {
shift :: IMM8 & 0xff
// This needs to emit behavior identical to PSLLDQ which is as follows:
//
// TEMP := COUNT
// IF (TEMP > 15) THEN TEMP := 16; FI
// DEST := DEST << (TEMP * 8)
// DEST[MAXVL-1:128] (Unmodified)
return transmute(__m128i)simd.shuffle(
transmute(i8x16)a,
i8x16(0),
0 when shift > 15 else (16 - shift + 0),
1 when shift > 15 else (16 - shift + 1),
2 when shift > 15 else (16 - shift + 2),
3 when shift > 15 else (16 - shift + 3),
4 when shift > 15 else (16 - shift + 4),
5 when shift > 15 else (16 - shift + 5),
6 when shift > 15 else (16 - shift + 6),
7 when shift > 15 else (16 - shift + 7),
8 when shift > 15 else (16 - shift + 8),
9 when shift > 15 else (16 - shift + 9),
transmute(i8x16)a,
0 when shift > 15 else (16 - shift + 0),
1 when shift > 15 else (16 - shift + 1),
2 when shift > 15 else (16 - shift + 2),
3 when shift > 15 else (16 - shift + 3),
4 when shift > 15 else (16 - shift + 4),
5 when shift > 15 else (16 - shift + 5),
6 when shift > 15 else (16 - shift + 6),
7 when shift > 15 else (16 - shift + 7),
8 when shift > 15 else (16 - shift + 8),
9 when shift > 15 else (16 - shift + 9),
10 when shift > 15 else (16 - shift + 10),
11 when shift > 15 else (16 - shift + 11),
12 when shift > 15 else (16 - shift + 12),
@@ -435,7 +442,7 @@ _mm_store_si128 :: #force_inline proc "c" (mem_addr: ^__m128i, a: __m128i) {
}
@(enable_target_feature="sse2")
_mm_storeu_si128 :: #force_inline proc "c" (mem_addr: ^__m128i, a: __m128i) {
storeudq(mem_addr, a)
intrinsics.unaligned_store(mem_addr, a)
}
@(enable_target_feature="sse2")
_mm_storel_epi64 :: #force_inline proc "c" (mem_addr: ^__m128i, a: __m128i) {
@@ -1178,8 +1185,6 @@ foreign _ {
cvttsd2si :: proc(a: __m128d) -> i32 ---
@(link_name="llvm.x86.sse2.cvttps2dq")
cvttps2dq :: proc(a: __m128) -> i32x4 ---
@(link_name="llvm.x86.sse2.storeu.dq")
storeudq :: proc(mem_addr: rawptr, a: __m128i) ---
@(link_name="llvm.x86.sse2.storeu.pd")
storeupd :: proc(mem_addr: rawptr, a: __m128d) ---

View File

@@ -28,6 +28,32 @@ benchmark_crypto :: proc(t: ^testing.T) {
strings.builder_destroy(&str)
}
{
name := "AES256-CTR 64 bytes"
options := &time.Benchmark_Options {
rounds = 1_000,
bytes = 64,
setup = _setup_sized_buf,
bench = _benchmark_aes256_ctr,
teardown = _teardown_sized_buf,
}
err := time.benchmark(options, context.allocator)
testing.expect(t, err == nil, name)
benchmark_print(&str, name, options)
name = "AES256-CTR 1024 bytes"
options.bytes = 1024
err = time.benchmark(options, context.allocator)
testing.expect(t, err == nil, name)
benchmark_print(&str, name, options)
name = "AES256-CTR 65536 bytes"
options.bytes = 65536
err = time.benchmark(options, context.allocator)
testing.expect(t, err == nil, name)
benchmark_print(&str, name, options)
}
{
name := "ChaCha20 64 bytes"
options := &time.Benchmark_Options {
@@ -323,6 +349,36 @@ _benchmark_chacha20poly1305 :: proc(
return nil
}
@(private)
_benchmark_aes256_ctr :: proc(
options: ^time.Benchmark_Options,
allocator := context.allocator,
) -> (
err: time.Benchmark_Error,
) {
buf := options.input
key := [aes.KEY_SIZE_256]byte {
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
0xde, 0xad, 0xbe, 0xef, 0xde, 0xad, 0xbe, 0xef,
}
nonce := [aes.CTR_IV_SIZE]byte {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
ctx: aes.Context_CTR = ---
aes.init_ctr(&ctx, key[:], nonce[:])
for _ in 0 ..= options.rounds {
aes.xor_bytes_ctr(&ctx, buf, buf)
}
options.count = options.rounds
options.processed = options.rounds * options.bytes
return nil
}
_benchmark_aes256_gcm :: proc(
options: ^time.Benchmark_Options,
allocator := context.allocator,

View File

@@ -12,8 +12,6 @@ import "core:crypto/sha2"
test_aes :: proc(t: ^testing.T) {
runtime.DEFAULT_TEMP_ALLOCATOR_TEMP_GUARD()
log.info("Testing AES")
impls := make([dynamic]aes.Implementation, 0, 2)
defer delete(impls)
append(&impls, aes.Implementation.Portable)
@@ -29,7 +27,7 @@ test_aes :: proc(t: ^testing.T) {
}
test_aes_ecb :: proc(t: ^testing.T, impl: aes.Implementation) {
log.infof("Testing AES-ECB/%v", impl)
log.debugf("Testing AES-ECB/%v", impl)
test_vectors := []struct {
key: string,
@@ -136,7 +134,7 @@ test_aes_ecb :: proc(t: ^testing.T, impl: aes.Implementation) {
}
test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
log.infof("Testing AES-CTR/%v", impl)
log.debugf("Testing AES-CTR/%v", impl)
test_vectors := []struct {
key: string,
@@ -200,7 +198,7 @@ test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
ctx: aes.Context_CTR
key: [aes.KEY_SIZE_256]byte
nonce: [aes.CTR_IV_SIZE]byte
aes.init_ctr(&ctx, key[:], nonce[:])
aes.init_ctr(&ctx, key[:], nonce[:], impl)
h_ctx: sha2.Context_512
sha2.init_512_256(&h_ctx)
@@ -226,7 +224,7 @@ test_aes_ctr :: proc(t: ^testing.T, impl: aes.Implementation) {
}
test_aes_gcm :: proc(t: ^testing.T, impl: aes.Implementation) {
log.infof("Testing AES-GCM/%v", impl)
log.debugf("Testing AES-GCM/%v", impl)
// NIST did a reorg of their site, so the source of the test vectors
// is only available from an archive. The commented out tests are
@@ -431,7 +429,7 @@ test_aes_gcm :: proc(t: ^testing.T, impl: aes.Implementation) {
testing.expectf(
t,
ok && dst_str == v.plaintext,
"AES-GCM/%v: Expected: (%s, true) for open(%s, %s, %s, %s, %s), but got (%s, %s) instead",
"AES-GCM/%v: Expected: (%s, true) for open(%s, %s, %s, %s, %s), but got (%s, %v) instead",
impl,
v.plaintext,
v.key,

View File

@@ -58,9 +58,9 @@ test_sqrt_ratio_m1 :: proc(t: ^testing.T) {
v_bytes, _ := hex.decode(transmute([]byte)(v.v), context.temp_allocator)
r_bytes, _ := hex.decode(transmute([]byte)(v.r), context.temp_allocator)
u_ := transmute(^[32]byte)(raw_data(u_bytes))
v_ := transmute(^[32]byte)(raw_data(v_bytes))
r_ := transmute(^[32]byte)(raw_data(r_bytes))
u_ := (^[32]byte)(raw_data(u_bytes))
v_ := (^[32]byte)(raw_data(v_bytes))
r_ := (^[32]byte)(raw_data(r_bytes))
u, vee, r: field.Tight_Field_Element
field.fe_from_bytes(&u, u_)

View File

@@ -161,7 +161,7 @@ test_pbkdf2 :: proc(t: ^testing.T) {
testing.expectf(
t,
dst_str == v.dk,
"HMAC-%s: Expected: %s for input of (%s, %s, %d), but got %s instead",
"PBKDF2-%s: Expected: %s for input of (%s, %s, %d), but got %s instead",
algo_name,
v.dk,
v.password,