transmute(type)x; Minor code clean up

This commit is contained in:
Ginger Bill
2017-07-30 14:52:42 +01:00
parent 655931f0ea
commit 62a72f0163
16 changed files with 808 additions and 188 deletions

View File

@@ -1,55 +1,598 @@
import (
"fmt.odin";
"strconv.odin";
"thread.odin";
win32 "sys/windows.odin";
"mem.odin";
"thread.odin" when ODIN_OS == "windows";
win32 "sys/windows.odin" when ODIN_OS == "windows";
/*
"atomics.odin";
"bits.odin";
"hash.odin";
"math.odin";
"opengl.odin";
"os.odin";
"raw.odin";
"sort.odin";
"strings.odin";
"sync.odin";
"types.odin";
"utf8.odin";
"utf16.odin";
*/
)
general_stuff :: proc() {
{ // `do` for inline statmes rather than block
foo :: proc() do fmt.println("Foo!");
if false do foo();
for false do foo();
when false do foo();
if false do foo();
else do foo();
}
{ // Removal of `++` and `--` (again)
x: int;
x += 1;
x -= 1;
}
{ // Casting syntaxes
i := i32(137);
ptr := &i;
fp1 := (^f32)(ptr);
// ^f32(ptr) == ^(f32(ptr))
fp2 := cast(^f32)ptr;
f1 := (^f32)(ptr)^;
f2 := (cast(^f32)ptr)^;
// Questions: Should there be two ways to do it?
}
/*
* Remove *_val_of built-in procedures
* size_of, align_of, offset_of
* type_of, type_info_of
*/
{ // `expand_to_tuple` built-in procedure
Foo :: struct {
x: int;
b: bool;
}
f := Foo{137, true};
x, b := expand_to_tuple(f);
fmt.println(x, b);
fmt.println(expand_to_tuple(f));
}
{
// .. half-closed range
// ... open range
for in 0..2 {} // 0, 1
for in 0...2 {} // 0, 1, 2
}
}
nested_struct_declarations :: proc() {
{
FooInteger :: int;
Foo :: struct {
i: FooInteger;
};
f := Foo{FooInteger(137)};
}
{
Foo :: struct {
Integer :: int;
i: Integer;
}
f := Foo{Foo.Integer(137)};
}
}
default_struct_values :: proc() {
{
Vector3 :: struct {
x: f32;
y: f32;
z: f32;
}
v: Vector3;
fmt.println(v);
}
{
// Default values must be constants
Vector3 :: struct {
x: f32 = 1;
y: f32 = 4;
z: f32 = 9;
}
v: Vector3;
fmt.println(v);
v = Vector3{};
fmt.println(v);
// Uses the same semantics as a default values in a procedure
v = Vector3{137};
fmt.println(v);
v = Vector3{z = 137};
fmt.println(v);
}
{
Vector3 :: struct {
x := 1.0;
y := 4.0;
z := 9.0;
}
stack_default: Vector3;
stack_literal := Vector3{};
heap_one := new(Vector3); defer free(heap_one);
heap_two := new_clone(Vector3{}); defer free(heap_two);
fmt.println("stack_default - ", stack_default);
fmt.println("stack_literal - ", stack_literal);
fmt.println("heap_one - ", heap_one^);
fmt.println("heap_two - ", heap_two^);
N :: 4;
stack_array: [N]Vector3;
heap_array := new([N]Vector3); defer free(heap_array);
heap_slice := make([]Vector3, N); defer free(heap_slice);
fmt.println("stack_array[1] - ", stack_array[1]);
fmt.println("heap_array[1] - ", heap_array[1]);
fmt.println("heap_slice[1] - ", heap_slice[1]);
}
}
union_type :: proc() {
{
val: union{int, bool};
val = 137;
if i, ok := val.(int); ok {
fmt.println(i);
}
val = true;
fmt.println(val);
val = nil;
match v in val {
case int: fmt.println("int", v);
case bool: fmt.println("bool", v);
case: fmt.println("nil");
}
}
{
// There is a duality between `any` and `union`
// An `any` has a pointer to the data and allows for any type (open)
// A `union` has as binary blob to store the data and allows only certain types (closed)
// The following code is with `any` but has the same syntax
val: any;
val = 137;
if i, ok := val.(int); ok {
fmt.println(i);
}
val = true;
fmt.println(val);
val = nil;
match v in val {
case int: fmt.println("int", v);
case bool: fmt.println("bool", v);
case: fmt.println("nil");
}
}
Vector3 :: struct {
x, y, z: f32;
};
Quaternion :: struct {
x, y, z: f32;
w: f32 = 1;
};
// More realistic examples
{
// NOTE(bill): For the above basic examples, you may not have any
// particular use for it. However, my main use for them is not for these
// simple cases. My main use is for hierarchical types. Many prefer
// subtyping, embedding the base data into the derived types. Below is
// an example of this for a basic game Entity.
Entity :: struct {
id: u64;
name: string;
position: Vector3;
orientation: Quaternion;
derived: any;
}
Frog :: struct {
using entity: Entity;
jump_height: f32;
}
Monster :: struct {
using entity: Entity;
is_robot: bool;
is_zombie: bool;
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc(T: type) -> ^Entity {
t := new(T);
t.derived = t^;
return t;
}
entity := new_entity(Monster);
match e in entity.derived {
case Frog:
fmt.println("Ribbit");
case Monster:
if e.is_robot do fmt.println("Robotic");
if e.is_zombie do fmt.println("Grrrr!");
}
}
{
// NOTE(bill): A union can be used to achieve something similar. Instead
// of embedding the base data into the derived types, the derived data
// in embedded into the base type. Below is the same example of the
// basic game Entity but using an union.
Entity :: struct {
id: u64;
name: string;
position: Vector3;
orientation: Quaternion;
derived: union {Frog, Monster};
}
Frog :: struct {
using entity: ^Entity;
jump_height: f32;
}
Monster :: struct {
using entity: ^Entity;
is_robot: bool;
is_zombie: bool;
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc(T: type) -> ^Entity {
t := new(Entity);
t.derived = T{entity = t};
return t;
}
entity := new_entity(Monster);
match e in entity.derived {
case Frog:
fmt.println("Ribbit");
case Monster:
if e.is_robot do fmt.println("Robotic");
if e.is_zombie do fmt.println("Grrrr!");
}
// NOTE(bill): As you can see, the usage code has not changed, only its
// memory layout. Both approaches have their own advantages but they can
// be used together to achieve different results. The subtyping approach
// can allow for a greater control of the memory layout and memory
// allocation, e.g. storing the derivatives together. However, this is
// also its disadvantage. You must either preallocate arrays for each
// derivative separation (which can be easily missed) or preallocate a
// bunch of "raw" memory; determining the maximum size of the derived
// types would require the aid of metaprogramming. Unions solve this
// particular problem as the data is stored with the base data.
// Therefore, it is possible to preallocate, e.g. [100]Entity.
// It should be noted that the union approach can have the same memory
// layout as the any and with the same type restrictions by using a
// pointer type for the derivatives.
/*
Entity :: struct {
...
derived: union{^Frog, ^Monster};
}
Frog :: struct {
using entity: Entity;
...
}
Monster :: struct {
using entity: Entity;
...
}
new_entity :: proc(T: type) -> ^Entity {
t := new(T);
t.derived = t;
return t;
}
*/
}
}
parametric_polymorphism :: proc() {
print_value :: proc(value: $T) {
fmt.printf("print_value: %v %v\n", value, value);
}
v1: int = 1;
v2: f32 = 2.1;
v3: f64 = 3.14;
v4: string = "message";
print_value(v1);
print_value(v2);
print_value(v3);
print_value(v4);
fmt.println();
add :: proc(p, q: $T) -> T {
x: T = p + q;
return x;
}
a := add(3, 4);
fmt.printf("a: %T = %v\n", a, a);
b := add(3.2, 4.3);
fmt.printf("b: %T = %v\n", b, b);
// This is how `new` is implemented
alloc_type :: proc(T: type) -> ^T {
t := cast(^T)alloc(size_of(T), align_of(T));
t^ = T{}; // Use default initialization value
return t;
}
copy :: proc(dst, src: []$T) -> int {
n := min(len(dst), len(src));
if n > 0 {
mem.copy(&dst[0], &src[0], n*size_of(T));
}
return n;
}
double_params :: proc(a: $A, b: $B) -> A {
return a + A(b);
}
fmt.println(double_params(12, 1.345));
{ // Polymorphic Types and Type Specialization
Table :: struct(Key, Value: type) {
Slot :: struct {
occupied: bool;
hash: u32;
key: Key;
value: Value;
}
SIZE_MIN :: 32;
count: int;
allocator: Allocator;
slots: []Slot;
}
// Only allow types that are specializations of a (polymorphic) slice
make_slice :: proc(T: type/[]$E, len: int) -> T {
return make(T, len);
}
// Only allow types that are specializations of `Table`
allocate :: proc(table: ^$T/Table, capacity: int) {
c := context;
if table.allocator.procedure != nil do c.allocator = table.allocator;
push_context c {
table.slots = make_slice([]T.Slot, max(capacity, T.SIZE_MIN));
}
}
expand :: proc(table: ^$T/Table) {
c := context;
if table.allocator.procedure != nil do c.allocator = table.allocator;
push_context c {
old_slots := table.slots;
cap := max(2*cap(table.slots), T.SIZE_MIN);
allocate(table, cap);
for s in old_slots do if s.occupied {
put(table, s.key, s.value);
}
free(old_slots);
}
}
// Polymorphic determination of a polymorphic struct
// put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
hash := get_hash(key); // Ad-hoc method which would fail in a different scope
index := find_index(table, key, hash);
if index < 0 {
if f64(table.count) >= 0.75*f64(cap(table.slots)) {
expand(table);
}
assert(table.count <= cap(table.slots));
hash := get_hash(key);
index = int(hash % u32(cap(table.slots)));
for table.slots[index].occupied {
if index += 1; index >= cap(table.slots) {
index = 0;
}
}
table.count += 1;
}
slot := &table.slots[index];
slot.occupied = true;
slot.hash = hash;
slot.key = key;
slot.value = value;
}
// find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
hash := get_hash(key);
index := find_index(table, key, hash);
if index < 0 {
return Value{}, false;
}
return table.slots[index].value, true;
}
find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
if cap(table.slots) <= 0 do return -1;
index := int(hash % u32(cap(table.slots)));
for table.slots[index].occupied {
if table.slots[index].hash == hash {
if table.slots[index].key == key {
return index;
}
}
if index += 1; index >= cap(table.slots) {
index = 0;
}
}
return -1;
}
get_hash :: proc(s: string) -> u32 { // djb2
hash: u32 = 0x1505;
for i in 0..len(s) do hash = (hash<<5) + hash + u32(s[i]);
return hash;
}
table: Table(string, int);
for i in 0..36 do put(&table, "Hellope", i);
for i in 0..42 do put(&table, "World!", i);
found, _ := find(&table, "Hellope");
fmt.printf("`found` is %v\n", found);
found, _ = find(&table, "World!");
fmt.printf("`found` is %v\n", found);
// I would not personally design a hash table like this in production
// but this is a nice basic example
// A better approach would either use a `u64` or equivalent for the key
// and let the user specify the hashing function or make the user store
// the hashing procedure with the table
}
}
prefix_table := [...]string{
"White",
"Red",
"Orange",
"Yellow",
"Green",
"Blue",
"Octarine",
"Black",
};
worker_proc :: proc(t: ^thread.Thread) -> int {
for iteration in 1...5 {
fmt.printf("Th/read %d is on iteration %d\n", t.user_index, iteration);
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
win32.sleep(1);
}
return 0;
}
main :: proc() {
threads := make([]^thread.Thread, 0, len(prefix_table));
for i in 0..len(prefix_table) {
if t := thread.create(worker_proc); t != nil {
t.init_context = context;
t.use_init_context = true;
t.user_index = len(threads);
append(&threads, t);
thread.start(t);
threading_example :: proc() {
when ODIN_OS == "windows" {
unordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
__bounds_check_error_loc(loc, index, len(array));
array[index] = array[len(array)-1];
pop(array);
}
ordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
__bounds_check_error_loc(loc, index, len(array));
copy(array[index..], array[index+1..]);
pop(array);
}
}
for len(threads) > 0 {
for i := 0; i < len(threads); i += 1 {
if t := threads[i]; thread.is_done(t) {
fmt.printf("Thread %d is done\n", t.user_index);
thread.destroy(t);
worker_proc :: proc(t: ^thread.Thread) -> int {
for iteration in 1...5 {
fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
win32.sleep(1);
}
return 0;
}
threads[i] = threads[len(threads)-1];
pop(&threads);
i -= 1;
threads := make([]^thread.Thread, 0, len(prefix_table));
defer free(threads);
for i in 0..len(prefix_table) {
if t := thread.create(worker_proc); t != nil {
t.init_context = context;
t.use_init_context = true;
t.user_index = len(threads);
append(&threads, t);
thread.start(t);
}
}
for len(threads) > 0 {
for i := 0; i < len(threads); {
if t := threads[i]; thread.is_done(t) {
fmt.printf("Thread %d is done\n", t.user_index);
thread.destroy(t);
ordered_remove(&threads, i);
} else {
i += 1;
}
}
}
}
}
main :: proc() {
if true {
fmt.println("\ngeneral_stuff:"); general_stuff();
fmt.println("\nnested_struct_declarations:"); nested_struct_declarations();
fmt.println("\ndefault_struct_values:"); default_struct_values();
fmt.println("\nunion_type:"); union_type();
fmt.println("\nparametric_polymorphism:"); parametric_polymorphism();
}
fmt.println("\nthreading_example:"); threading_example();
}

View File

@@ -160,11 +160,10 @@ Allocator :: struct #ordered {
Context :: struct #ordered {
allocator: Allocator;
thread_id: int;
allocator: Allocator;
user_data: rawptr;
user_data: any;
user_index: int;
derived: any; // May be used for derived data types
@@ -173,9 +172,9 @@ Context :: struct #ordered {
DEFAULT_ALIGNMENT :: align_of([vector 4]f32);
SourceCodeLocation :: struct #ordered {
fully_pathed_filename: string;
line, column: i64;
procedure: string;
file_path: string;
line, column: i64;
procedure: string;
}
@@ -371,7 +370,7 @@ pop :: proc(array: ^$T/[]$E) -> E #cc_contextless {
if array == nil do return E{};
assert(len(array) > 0);
res := array[len(array)-1];
(cast(^raw.Slice)array).len -= 1;
(^raw.Slice)(array).len -= 1;
return res;
}
@@ -379,7 +378,7 @@ pop :: proc(array: ^$T/[dynamic]$E) -> E #cc_contextless {
if array == nil do return E{};
assert(len(array) > 0);
res := array[len(array)-1];
(cast(^raw.DynamicArray)array).len -= 1;
(^raw.DynamicArray)(array).len -= 1;
return res;
}
@@ -445,25 +444,25 @@ __get_map_key :: proc(key: $K) -> __MapKey #cc_contextless {
match _ in ti {
case TypeInfo.Integer:
match 8*size_of(key) {
case 8: map_key.hash = u128((cast( ^u8)&key)^);
case 16: map_key.hash = u128((cast( ^u16)&key)^);
case 32: map_key.hash = u128((cast( ^u32)&key)^);
case 64: map_key.hash = u128((cast( ^u64)&key)^);
case 128: map_key.hash = u128((cast(^u128)&key)^);
case 8: map_key.hash = u128(( ^u8)(&key)^);
case 16: map_key.hash = u128(( ^u16)(&key)^);
case 32: map_key.hash = u128(( ^u32)(&key)^);
case 64: map_key.hash = u128(( ^u64)(&key)^);
case 128: map_key.hash = u128((^u128)(&key)^);
case: panic("Unhandled integer size");
}
case TypeInfo.Rune:
map_key.hash = u128((cast(^rune)&key)^);
case TypeInfo.Pointer:
map_key.hash = u128(uint((cast(^rawptr)&key)^));
map_key.hash = u128(uint((^rawptr)(&key)^));
case TypeInfo.Float:
match 8*size_of(key) {
case 32: map_key.hash = u128((cast(^u32)&key)^);
case 64: map_key.hash = u128((cast(^u64)&key)^);
case 32: map_key.hash = u128((^u32)(&key)^);
case 64: map_key.hash = u128((^u64)(&key)^);
case: panic("Unhandled float size");
}
case TypeInfo.String:
str := (cast(^string)&key)^;
str := (^string)(&key)^;
map_key.hash = __default_hash_string(str);
map_key.str = str;
case:
@@ -494,9 +493,9 @@ new_clone :: proc(data: $T) -> ^T #inline {
}
free :: proc(ptr: rawptr) do free_ptr(ptr);
free :: proc(str: $T/string) do free_ptr((cast(^raw.String)&str).data);
free :: proc(array: $T/[dynamic]$E) do free_ptr((cast(^raw.DynamicArray)&array).data);
free :: proc(slice: $T/[]$E) do free_ptr((cast(^raw.Slice)&slice).data);
free :: proc(str: $T/string) do free_ptr((^raw.String )(&str).data);
free :: proc(array: $T/[dynamic]$E) do free_ptr((^raw.DynamicArray)(&array).data);
free :: proc(slice: $T/[]$E) do free_ptr((^raw.Slice )(&slice).data);
free :: proc(m: $T/map[$K]$V) {
raw := cast(^raw.DynamicMap)&m;
free(raw.hashes);
@@ -508,14 +507,14 @@ free :: proc(m: $T/map[$K]$V) {
/*
make :: proc(T: type/[]$E, len: int, using location := #caller_location) -> T {
cap := len;
__slice_expr_error(fully_pathed_filename, int(line), int(column), 0, len, cap);
__slice_expr_error(file_path, int(line), int(column), 0, len, cap);
data := cast(^E)alloc(len * size_of(E), align_of(E));
for i in 0..len do (data+i)^ = E{};
s := raw.Slice{data = data, len = len, cap = len};
return (cast(^T)&s)^;
}
make :: proc(T: type/[]$E, len, cap: int, using location := #caller_location) -> T {
__slice_expr_error(fully_pathed_filename, int(line), int(column), 0, len, cap);
__slice_expr_error(file_path, int(line), int(column), 0, len, cap);
data := cast(^E)alloc(len * size_of(E), align_of(E));
for i in 0..len do (data+i)^ = E{};
s := raw.Slice{data = data, len = len, cap = len};
@@ -523,14 +522,14 @@ make :: proc(T: type/[]$E, len, cap: int, using location := #caller_location) ->
}
make :: proc(T: type/[dynamic]$E, len: int = 8, using location := #caller_location) -> T {
cap := len;
__slice_expr_error(fully_pathed_filename, int(line), int(column), 0, len, cap);
__slice_expr_error(file_path, int(line), int(column), 0, len, cap);
data := cast(^E)alloc(cap * size_of(E), align_of(E));
for i in 0..len do (data+i)^ = E{};
s := raw.DynamicArray{data = data, len = len, cap = cap, allocator = context.allocator};
return (cast(^T)&s)^;
}
make :: proc(T: type/[dynamic]$E, len, cap: int, using location := #caller_location) -> T {
__slice_expr_error(fully_pathed_filename, int(line), int(column), 0, len, cap);
__slice_expr_error(file_path, int(line), int(column), 0, len, cap);
data := cast(^E)alloc(cap * size_of(E), align_of(E));
for i in 0..len do (data+i)^ = E{};
s := raw.DynamicArray{data = data, len = len, cap = cap, allocator = context.allocator};
@@ -604,9 +603,9 @@ default_allocator :: proc() -> Allocator {
assert :: proc(condition: bool, message := "", using location := #caller_location) -> bool #cc_contextless {
if !condition {
if len(message) > 0 {
fmt.fprintf(os.stderr, "%s(%d:%d) Runtime assertion: %s\n", fully_pathed_filename, line, column, message);
fmt.fprintf(os.stderr, "%s(%d:%d) Runtime assertion: %s\n", file_path, line, column, message);
} else {
fmt.fprintf(os.stderr, "%s(%d:%d) Runtime assertion\n", fully_pathed_filename, line, column);
fmt.fprintf(os.stderr, "%s(%d:%d) Runtime assertion\n", file_path, line, column);
}
__debug_trap();
}
@@ -615,9 +614,9 @@ assert :: proc(condition: bool, message := "", using location := #caller_locatio
panic :: proc(message := "", using location := #caller_location) #cc_contextless {
if len(message) > 0 {
fmt.fprintf(os.stderr, "%s(%d:%d) Panic: %s\n", fully_pathed_filename, line, column, message);
fmt.fprintf(os.stderr, "%s(%d:%d) Panic: %s\n", file_path, line, column, message);
} else {
fmt.fprintf(os.stderr, "%s(%d:%d) Panic\n", fully_pathed_filename, line, column);
fmt.fprintf(os.stderr, "%s(%d:%d) Panic\n", file_path, line, column);
}
__debug_trap();
}
@@ -683,6 +682,15 @@ __string_decode_rune :: proc(s: string) -> (rune, int) #cc_contextless #inline {
return utf8.decode_rune(s);
}
__bounds_check_error_loc :: proc(using loc := #caller_location, index, count: int) #cc_contextless {
__bounds_check_error(file_path, int(line), int(column), index, count);
}
__slice_expr_error_loc :: proc(using loc := #caller_location, low, high, max: int) #cc_contextless {
__slice_expr_error(file_path, int(line), int(column), low, high, max);
}
__substring_expr_error_loc :: proc(using loc := #caller_location, low, high: int) #cc_contextless {
__substring_expr_error(file_path, int(line), int(column), low, high);
}
__mem_set :: proc(data: rawptr, value: i32, len: int) -> rawptr #cc_contextless {
if data == nil do return nil;

View File

@@ -5,17 +5,16 @@ __multi3 :: proc(a, b: u128) -> u128 #cc_c #link_name "__multi3" {
lower_mask :: u128(~u64(0) >> bits_in_dword_2);
when ODIN_ENDIAN == "bit" {
TWords :: struct #raw_union {
all: u128;
using _: struct {lo, hi: u64;};
TWords :: struct #raw_union {
all: u128;
using _: struct {
when ODIN_ENDIAN == "big" {
lo, hi: u64;
} else {
hi, lo: u64;
}
};
} else {
TWords :: struct #raw_union {
all: u128;
using _: struct {hi, lo: u64;};
};
}
};
r: TWords;
t: u64;
@@ -63,13 +62,13 @@ __i128_quo_mod :: proc(a, b: i128, rem: ^i128) -> (quo: i128) #cc_c #link_name "
b = (a~s) - s;
uquo: u128;
urem := __u128_quo_mod(transmute(u128, a), transmute(u128, b), &uquo);
iquo := transmute(i128, uquo);
irem := transmute(i128, urem);
urem := __u128_quo_mod(transmute(u128)a, transmute(u128)b, &uquo);
iquo := transmute(i128)uquo;
irem := transmute(i128)urem;
iquo = (iquo~s) - s;
irem = (irem~s) - s;
if rem != nil { rem^ = irem; }
if rem != nil do rem^ = irem;
return iquo;
}
@@ -78,7 +77,7 @@ __u128_quo_mod :: proc(a, b: u128, rem: ^u128) -> (quo: u128) #cc_c #link_name "
alo, ahi := u64(a), u64(a>>64);
blo, bhi := u64(b), u64(b>>64);
if b == 0 {
if rem != nil { rem^ = 0; }
if rem != nil do rem^ = 0;
return u128(alo/blo);
}

View File

@@ -149,8 +149,7 @@ aprintf :: proc(fmt: string, args: ...any) -> string {
}
// bprint* procedures return a string that was allocated with the current context
// They must be freed accordingly
// bprint* procedures return a string using a buffer from an array
bprint :: proc(buf: []u8, args: ...any) -> string {
sb := StringBuffer(buf[..0..len(buf)]);
return sbprint(&sb, ...args);

View File

@@ -60,19 +60,19 @@ sign :: proc(x: f64) -> f64 { if x >= 0 do return +1; return -1; }
copy_sign :: proc(x, y: f32) -> f32 {
ix := transmute(u32, x);
iy := transmute(u32, y);
ix := transmute(u32)x;
iy := transmute(u32)y;
ix &= 0x7fff_ffff;
ix |= iy & 0x8000_0000;
return transmute(f32, ix);
return transmute(f32)ix;
}
copy_sign :: proc(x, y: f64) -> f64 {
ix := transmute(u64, x);
iy := transmute(u64, y);
ix := transmute(u64)x;
iy := transmute(u64)y;
ix &= 0x7fff_ffff_ffff_ff;
ix |= iy & 0x8000_0000_0000_0000;
return transmute(f64, ix);
return transmute(f64)ix;
}
round :: proc(x: f32) -> f32 { if x >= 0 do return floor(x + 0.5); return ceil(x - 0.5); }

View File

@@ -226,10 +226,10 @@ generic_ftoa :: proc(buf: []u8, val: f64, fmt: u8, prec, bit_size: int) -> []u8
flt: ^FloatInfo;
match bit_size {
case 32:
bits = u64(transmute(u32, f32(val)));
bits = u64(transmute(u32)f32(val));
flt = &_f32_info;
case 64:
bits = transmute(u64, val);
bits = transmute(u64)val;
flt = &_f64_info;
case:
panic("strconv: invalid bit_size");

View File

@@ -5,7 +5,7 @@ import win32 "sys/windows.odin";
Thread :: struct {
using specific: OsSpecific;
procedure: Proc;
data: rawptr;
data: any;
user_index: int;
init_context: Context;

View File

@@ -160,6 +160,7 @@ String odin_root_dir(void) {
}
array_init_count(&path_buf, heap_allocator(), 300);
defer (array_free(&path_buf));
len = 0;
for (;;) {
@@ -179,7 +180,10 @@ String odin_root_dir(void) {
tmp = gb_temp_arena_memory_begin(&string_buffer_arena);
defer (gb_temp_arena_memory_end(tmp));
text = gb_alloc_array(string_buffer_allocator, u8, len + 1);
gb_memmove(text, &path_buf[0], len);
path = make_string(text, len);
@@ -194,10 +198,6 @@ String odin_root_dir(void) {
global_module_path = path;
global_module_path_set = true;
gb_temp_arena_memory_end(tmp);
array_free(&path_buf);
return path;
}
#endif
@@ -267,7 +267,7 @@ String get_fullpath_core(gbAllocator a, String path) {
}
String const ODIN_VERSION = str_lit("0.6.0-dev");
String const ODIN_VERSION = str_lit("0.6.0");
void init_build_context(void) {
BuildContext *bc = &build_context;

View File

@@ -319,14 +319,12 @@ bool are_signatures_similar_enough(Type *a_, Type *b_) {
if (is_type_integer(x) && is_type_integer(y)) {
GB_ASSERT(x->kind == Type_Basic);
GB_ASSERT(y->kind == Type_Basic);
if (x->Basic.size == y->Basic.size) {
continue;
}
i64 sx = type_size_of(heap_allocator(), x);
i64 sy = type_size_of(heap_allocator(), y);
if (sx == sy) continue;
}
if (!are_types_identical(x, y)) {
return false;
}
if (!are_types_identical(x, y)) return false;
}
for (isize i = 0; i < a->result_count; i++) {
Type *x = base_type(a->results->Tuple.variables[i]->type);
@@ -338,9 +336,9 @@ bool are_signatures_similar_enough(Type *a_, Type *b_) {
if (is_type_integer(x) && is_type_integer(y)) {
GB_ASSERT(x->kind == Type_Basic);
GB_ASSERT(y->kind == Type_Basic);
if (x->Basic.size == y->Basic.size) {
continue;
}
i64 sx = type_size_of(heap_allocator(), x);
i64 sy = type_size_of(heap_allocator(), y);
if (sx == sy) continue;
}
if (!are_types_identical(x, y)) {

View File

@@ -2121,6 +2121,10 @@ Type *check_get_params(Checker *c, Scope *scope, AstNode *_params, bool *is_vari
type = determine_type_from_polymorphic(c, type, op);
if (type == t_invalid) {
success = false;
} else if (!c->context.no_polymorphic_errors) {
// NOTE(bill): The type should be determined now and thus, no need to determine the type any more
is_type_polymorphic_type = false;
// is_type_polymorphic_type = is_type_polymorphic(base_type(type));
}
}
@@ -3959,6 +3963,43 @@ void check_cast(Checker *c, Operand *x, Type *type) {
x->type = type;
}
bool check_transmute(Checker *c, AstNode *node, Operand *o, Type *t) {
if (o->mode == Addressing_Constant) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute a constant expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
if (is_type_untyped(o->type)) {
gbString expr_str = expr_to_string(o->expr);
error(o->expr, "Cannot transmute untyped expression: `%s`", expr_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
i64 srcz = type_size_of(c->allocator, o->type);
i64 dstz = type_size_of(c->allocator, t);
if (srcz != dstz) {
gbString expr_str = expr_to_string(o->expr);
gbString type_str = type_to_string(t);
error(o->expr, "Cannot transmute `%s` to `%s`, %lld vs %lld bytes", expr_str, type_str, srcz, dstz);
gb_string_free(type_str);
gb_string_free(expr_str);
o->mode = Addressing_Invalid;
o->expr = node;
return false;
}
o->mode = Addressing_Value;
o->type = t;
return true;
}
bool check_binary_vector_expr(Checker *c, Token op, Operand *x, Operand *y) {
if (is_type_vector(x->type) && !is_type_vector(y->type)) {
if (check_is_assignable_to(c, y, x->type)) {
@@ -4870,7 +4911,6 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
case BuiltinProc_align_of:
case BuiltinProc_offset_of:
case BuiltinProc_type_info_of:
case BuiltinProc_transmute:
// NOTE(bill): The first arg may be a Type, this will be checked case by case
break;
default:
@@ -5891,6 +5931,7 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
}
} break;
#if 0
case BuiltinProc_transmute: {
Operand op = {};
check_expr_or_type(c, &op, ce->args[0]);
@@ -5940,6 +5981,7 @@ bool check_builtin_procedure(Checker *c, Operand *operand, AstNode *call, i32 id
o->mode = Addressing_Value;
o->type = t;
} break;
#endif
}
return true;
@@ -7814,7 +7856,18 @@ ExprKind check_expr_base_internal(Checker *c, Operand *o, AstNode *node, Type *t
Type *type = o->type;
check_expr_base(c, o, tc->expr, type);
if (o->mode != Addressing_Invalid) {
check_cast(c, o, type);
switch (tc->token.kind) {
case Token_transmute:
check_transmute(c, node, o, type);
break;
case Token_cast:
check_cast(c, o, type);
break;
default:
error(node, "Invalid AST: Invalid casting expression");
o->mode = Addressing_Invalid;
break;
}
}
return Expr_Expr;
case_end;

View File

@@ -61,8 +61,6 @@ enum BuiltinProcId {
BuiltinProc_abs,
BuiltinProc_clamp,
BuiltinProc_transmute,
BuiltinProc_DIRECTIVE, // NOTE(bill): This is used for specialized hash-prefixed procedures
BuiltinProc_COUNT,
@@ -107,8 +105,6 @@ gb_global BuiltinProc builtin_procs[BuiltinProc_COUNT] = {
{STR_LIT("abs"), 1, false, Expr_Expr},
{STR_LIT("clamp"), 3, false, Expr_Expr},
{STR_LIT("transmute"), 2, false, Expr_Expr},
{STR_LIT(""), 0, true, Expr_Expr}, // DIRECTIVE
};
@@ -2172,33 +2168,37 @@ void check_import_entities(Checker *c, Map<Scope *> *file_scopes) {
scope->has_been_imported = true;
if (id->import_name.string == ".") {
// NOTE(bill): Add imported entities to this file's scope
for_array(elem_index, scope->elements.entries) {
Entity *e = scope->elements.entries[elem_index].value;
if (e->scope == parent_scope) {
continue;
}
if (!is_entity_kind_exported(e->kind)) {
continue;
}
if (id->is_import) {
if (is_entity_exported(e)) {
// TODO(bill): Should these entities be imported but cause an error when used?
bool ok = add_entity(c, parent_scope, e->identifier, e);
if (ok) {
map_set(&parent_scope->implicit, hash_entity(e), true);
}
if (parent_scope->is_global) {
error(id->import_name, "#shared_global_scope imports cannot use .");
} else {
// NOTE(bill): Add imported entities to this file's scope
for_array(elem_index, scope->elements.entries) {
Entity *e = scope->elements.entries[elem_index].value;
if (e->scope == parent_scope) {
continue;
}
if (!is_entity_kind_exported(e->kind)) {
continue;
}
if (id->is_import) {
if (is_entity_exported(e)) {
// TODO(bill): Should these entities be imported but cause an error when used?
bool ok = add_entity(c, parent_scope, e->identifier, e);
if (ok) {
map_set(&parent_scope->implicit, hash_entity(e), true);
}
}
} else {
add_entity(c, parent_scope, e->identifier, e);
}
} else {
add_entity(c, parent_scope, e->identifier, e);
}
}
} else {
String import_name = path_to_entity_name(id->import_name.string, id->fullpath);
if (is_blank_ident(import_name)) {
error(token, "File name, %.*s, cannot be as an import name as it is not a valid identifier", LIT(id->import_name.string));
error(token, "File name, %.*s, cannot be use as an import name as it is not a valid identifier", LIT(id->import_name.string));
} else {
GB_ASSERT(id->import_name.pos.line != 0);
id->import_name.string = import_name;

View File

@@ -2435,52 +2435,69 @@ irValue *ir_emit_struct_ev(irProcedure *proc, irValue *s, i32 index) {
Type *t = base_type(ir_type(s));
Type *result_type = nullptr;
if (is_type_struct(t)) {
switch (t->kind) {
case Type_Basic:
switch (t->Basic.kind) {
case Basic_string:
switch (index) {
case 0: result_type = t_u8_ptr; break;
case 1: result_type = t_int; break;
}
break;
case Basic_any:
switch (index) {
case 0: result_type = t_rawptr; break;
case 1: result_type = t_type_info_ptr; break;
}
break;
case Basic_complex64: case Basic_complex128:
{
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
}
} break;
}
break;
case Type_Struct:
result_type = t->Struct.fields[index]->type;
} else if (is_type_union(t)) {
break;
case Type_Union:
GB_ASSERT(index == -1);
return ir_emit_union_tag_value(proc, s);
} else if (is_type_tuple(t)) {
case Type_Tuple:
GB_ASSERT(t->Tuple.variables.count > 0);
result_type = t->Tuple.variables[index]->type;
} else if (is_type_complex(t)) {
Type *ft = base_complex_elem_type(t);
switch (index) {
case 0: result_type = ft; break;
case 1: result_type = ft; break;
}
} else if (is_type_slice(t)) {
break;
case Type_Slice:
switch (index) {
case 0: result_type = make_type_pointer(a, t->Slice.elem); break;
case 1: result_type = t_int; break;
case 2: result_type = t_int; break;
}
} else if (is_type_string(t)) {
switch (index) {
case 0: result_type = t_u8_ptr; break;
case 1: result_type = t_int; break;
}
} else if (is_type_any(t)) {
switch (index) {
case 0: result_type = t_rawptr; break;
case 1: result_type = t_type_info_ptr; break;
}
} else if (is_type_dynamic_array(t)) {
break;
case Type_DynamicArray:
switch (index) {
case 0: result_type = make_type_pointer(a, t->DynamicArray.elem); break;
case 1: result_type = t_int; break;
case 2: result_type = t_int; break;
case 3: result_type = t_allocator; break;
}
} else if (is_type_map(t)) {
break;
case Type_Map: {
generate_map_internal_types(a, t);
Type *gst = t->Map.generated_struct_type;
switch (index) {
case 0: result_type = gst->Struct.fields[0]->type; break;
case 1: result_type = gst->Struct.fields[1]->type; break;
}
} else {
} break;
default:
GB_PANIC("TODO(bill): struct_ev type: %s, %d", type_to_string(ir_type(s)), index);
break;
}
GB_ASSERT(result_type != nullptr);
@@ -2492,6 +2509,7 @@ irValue *ir_emit_struct_ev(irProcedure *proc, irValue *s, i32 index) {
irValue *ir_emit_deep_field_gep(irProcedure *proc, irValue *e, Selection sel) {
GB_ASSERT(sel.index.count > 0);
Type *type = type_deref(ir_type(e));
gbAllocator a = proc->module->allocator;
for_array(i, sel.index) {
i32 index = cast(i32)sel.index[i];
@@ -2502,21 +2520,23 @@ irValue *ir_emit_deep_field_gep(irProcedure *proc, irValue *e, Selection sel) {
}
type = core_type(type);
if (is_type_raw_union(type)) {
type = type->Struct.fields[index]->type;
e = ir_emit_conv(proc, e, make_type_pointer(proc->module->allocator, type));
e = ir_emit_conv(proc, e, make_type_pointer(a, type));
} else if (type->kind == Type_Union) {
GB_ASSERT(index == -1);
type = t_type_info_ptr;
e = ir_emit_struct_ep(proc, e, index);
} else if (type->kind == Type_Struct) {
type = type->Struct.fields[index]->type;
e = ir_emit_struct_ep(proc, e, index);
if (type->Struct.is_raw_union) {
} else {
e = ir_emit_struct_ep(proc, e, index);
}
} else if (type->kind == Type_Tuple) {
type = type->Tuple.variables[index]->type;
e = ir_emit_struct_ep(proc, e, index);
}else if (type->kind == Type_Basic) {
} else if (type->kind == Type_Basic) {
switch (type->Basic.kind) {
case Basic_any: {
if (index == 0) {
@@ -3867,11 +3887,6 @@ irValue *ir_build_builtin_proc(irProcedure *proc, AstNode *expr, TypeAndValue tv
return ir_type_info(proc, t);
} break;
case BuiltinProc_transmute: {
irValue *x = ir_build_expr(proc, ce->args[1]);
return ir_emit_transmute(proc, x, tv.type);
}
case BuiltinProc_len: {
irValue *v = ir_build_expr(proc, ce->args[0]);
Type *t = base_type(ir_type(v));
@@ -4694,7 +4709,13 @@ irValue *ir_build_expr(irProcedure *proc, AstNode *expr) {
case_ast_node(tc, TypeCast, expr);
irValue *e = ir_build_expr(proc, tc->expr);
return ir_emit_conv(proc, e, tv.type);
switch (tc->token.kind) {
case Token_cast:
return ir_emit_conv(proc, e, tv.type);
case Token_transmute:
return ir_emit_transmute(proc, e, tv.type);
}
GB_PANIC("Invalid AST TypeCast");
case_end;
case_ast_node(ue, UnaryExpr, expr);

View File

@@ -275,7 +275,7 @@ void ir_print_type(irFileBuffer *f, irModule *m, Type *t) {
case Type_DynamicArray:
ir_fprintf(f, "{");
ir_print_type(f, m, t->DynamicArray.elem);
ir_fprintf(f, "*, i%lld, i%lld,", word_bits, word_bits);
ir_fprintf(f, "*, i%lld, i%lld, ", word_bits, word_bits);
ir_print_type(f, m, t_allocator);
ir_fprintf(f, "}");
return;
@@ -523,7 +523,7 @@ void ir_print_exact_value(irFileBuffer *f, irModule *m, ExactValue value, Type *
if (!has_defaults) {
ir_fprintf(f, "zeroinitializer");
} else {
ir_print_compound_element(f, m, empty_exact_value, type);
ir_print_exact_value(f, m, empty_exact_value, type);
}
break;
}
@@ -881,9 +881,6 @@ void ir_print_instr(irFileBuffer *f, irModule *m, irValue *value) {
case irInstr_Store: {
Type *type = type_deref(ir_type(instr->Store.address));
ir_fprintf(f, "store ");
if (instr->Store.atomic) {
ir_fprintf(f, "atomic ");
}
ir_print_type(f, m, type);
ir_fprintf(f, " ");
ir_print_value(f, m, instr->Store.value, type);
@@ -891,29 +888,17 @@ void ir_print_instr(irFileBuffer *f, irModule *m, irValue *value) {
ir_print_type(f, m, type);
ir_fprintf(f, "* ");
ir_print_value(f, m, instr->Store.address, type);
if (instr->Store.atomic) {
// TODO(bill): Do ordering
ir_fprintf(f, " unordered");
ir_fprintf(f, ", align %lld\n", type_align_of(m->allocator, type));
}
ir_fprintf(f, "\n");
} break;
case irInstr_Load: {
Type *type = instr->Load.type;
ir_fprintf(f, "%%%d = load ", value->index);
// if (is_type_atomic(type)) {
// ir_fprintf(f, "atomic ");
// }
ir_print_type(f, m, type);
ir_fprintf(f, ", ");
ir_print_type(f, m, type);
ir_fprintf(f, "* ");
ir_print_value(f, m, instr->Load.address, type);
// if (is_type_atomic(type)) {
// TODO(bill): Do ordering
// ir_fprintf(f, " unordered");
// }
ir_fprintf(f, ", align %lld\n", type_align_of(m->allocator, type));
} break;
@@ -1409,7 +1394,7 @@ void ir_print_instr(irFileBuffer *f, irModule *m, irValue *value) {
if (param_index > 0) ir_fprintf(f, ", ");
ir_print_type(f, m, t_context_ptr);
ir_fprintf(f, " noalias nonnull");
ir_fprintf(f, " noalias nonnull ");
ir_print_value(f, m, call->context_ptr, t_context_ptr);
}
ir_fprintf(f, ")\n");
@@ -1568,26 +1553,27 @@ void ir_print_instr(irFileBuffer *f, irModule *m, irValue *value) {
#endif
case irInstr_DebugDeclare: {
/* irInstrDebugDeclare *dd = &instr->DebugDeclare;
irInstrDebugDeclare *dd = &instr->DebugDeclare;
Type *vt = ir_type(dd->value);
irDebugInfo *di = dd->debug_info;
Entity *e = dd->entity;
String name = e->token.string;
TokenPos pos = e->token.pos;
// gb_printf("debug_declare %.*s\n", LIT(dd->entity->token.string));
ir_fprintf(f, "; ");
ir_fprintf(f, "call void @llvm.dbg.declare(");
ir_fprintf(f, "metadata ");
ir_print_type(f, m, vt);
ir_fprintf(f, " ");
ir_print_value(f, m, dd->value, vt);
ir_fprintf(f, ", metadata !DILocalVariable(name: \"");
ir_print_escape_string(f, name, false);
ir_print_escape_string(f, name, false, false);
ir_fprintf(f, "\", scope: !%d, line: %td)", di->id, pos.line);
ir_fprintf(f, ", metadata !DIExpression()");
ir_fprintf(f, ")");
ir_fprintf(f, ", !dbg !DILocation(line: %td, column: %td, scope: !%d)", pos.line, pos.column, di->id);
ir_fprintf(f, "\n"); */
ir_fprintf(f, "\n");
} break;
}
}

View File

@@ -2850,6 +2850,13 @@ AstNode *parse_unary_expr(AstFile *f, bool lhs) {
Token close = expect_token(f, Token_CloseParen);
return ast_type_cast(f, token, type, parse_unary_expr(f, lhs));
} break;
case Token_transmute: {
Token token = expect_token(f, Token_transmute);
Token open = expect_token_after(f, Token_OpenParen, "transmute");
AstNode *type = parse_type(f);
Token close = expect_token(f, Token_CloseParen);
return ast_type_cast(f, token, type, parse_unary_expr(f, lhs));
} break;
}
AstNode *operand = parse_operand(f, lhs);

View File

@@ -114,6 +114,7 @@ TOKEN_KIND(Token__KeywordBegin, "_KeywordBegin"), \
TOKEN_KIND(Token_static, "static"), \
TOKEN_KIND(Token_dynamic, "dynamic"), \
TOKEN_KIND(Token_cast, "cast"), \
TOKEN_KIND(Token_transmute, "transmute"), \
TOKEN_KIND(Token_using, "using"), \
TOKEN_KIND(Token_context, "context"), \
TOKEN_KIND(Token_push_context, "push_context"), \

View File

@@ -2141,7 +2141,7 @@ i64 type_size_of_internal(gbAllocator allocator, Type *t, TypePath *path) {
i64 type_offset_of(gbAllocator allocator, Type *t, i32 index) {
t = base_type(t);
if (t->kind == Type_Struct && !t->Struct.is_raw_union) {
if (t->kind == Type_Struct) {
type_set_offsets(allocator, t);
if (gb_is_between(index, 0, t->Struct.fields.count-1)) {
return t->Struct.offsets[index];
@@ -2155,7 +2155,7 @@ i64 type_offset_of(gbAllocator allocator, Type *t, i32 index) {
if (t->Basic.kind == Basic_string) {
switch (index) {
case 0: return 0; // data
case 1: return build_context.word_size; // count
case 1: return build_context.word_size; // len
}
} else if (t->Basic.kind == Basic_any) {
switch (index) {
@@ -2166,16 +2166,21 @@ i64 type_offset_of(gbAllocator allocator, Type *t, i32 index) {
} else if (t->kind == Type_Slice) {
switch (index) {
case 0: return 0; // data
case 1: return 1*build_context.word_size; // count
case 2: return 2*build_context.word_size; // capacity
case 1: return 1*build_context.word_size; // len
case 2: return 2*build_context.word_size; // cap
}
} else if (t->kind == Type_DynamicArray) {
switch (index) {
case 0: return 0; // data
case 1: return 1*build_context.word_size; // count
case 2: return 2*build_context.word_size; // capacity
case 1: return 1*build_context.word_size; // len
case 2: return 2*build_context.word_size; // cap
case 3: return 3*build_context.word_size; // allocator
}
} else if (t->kind == Type_Union) {
i64 s = type_size_of(allocator, t);
switch (index) {
case -1: return align_formula(t->Union.variant_block_size, build_context.word_size); // __type_info
}
}
return 0;
}