transmute(type)x; Minor code clean up

This commit is contained in:
Ginger Bill
2017-07-30 14:52:42 +01:00
parent 655931f0ea
commit 62a72f0163
16 changed files with 808 additions and 188 deletions

View File

@@ -1,55 +1,598 @@
import (
"fmt.odin";
"strconv.odin";
"thread.odin";
win32 "sys/windows.odin";
"mem.odin";
"thread.odin" when ODIN_OS == "windows";
win32 "sys/windows.odin" when ODIN_OS == "windows";
/*
"atomics.odin";
"bits.odin";
"hash.odin";
"math.odin";
"opengl.odin";
"os.odin";
"raw.odin";
"sort.odin";
"strings.odin";
"sync.odin";
"types.odin";
"utf8.odin";
"utf16.odin";
*/
)
general_stuff :: proc() {
{ // `do` for inline statmes rather than block
foo :: proc() do fmt.println("Foo!");
if false do foo();
for false do foo();
when false do foo();
if false do foo();
else do foo();
}
{ // Removal of `++` and `--` (again)
x: int;
x += 1;
x -= 1;
}
{ // Casting syntaxes
i := i32(137);
ptr := &i;
fp1 := (^f32)(ptr);
// ^f32(ptr) == ^(f32(ptr))
fp2 := cast(^f32)ptr;
f1 := (^f32)(ptr)^;
f2 := (cast(^f32)ptr)^;
// Questions: Should there be two ways to do it?
}
/*
* Remove *_val_of built-in procedures
* size_of, align_of, offset_of
* type_of, type_info_of
*/
{ // `expand_to_tuple` built-in procedure
Foo :: struct {
x: int;
b: bool;
}
f := Foo{137, true};
x, b := expand_to_tuple(f);
fmt.println(x, b);
fmt.println(expand_to_tuple(f));
}
{
// .. half-closed range
// ... open range
for in 0..2 {} // 0, 1
for in 0...2 {} // 0, 1, 2
}
}
nested_struct_declarations :: proc() {
{
FooInteger :: int;
Foo :: struct {
i: FooInteger;
};
f := Foo{FooInteger(137)};
}
{
Foo :: struct {
Integer :: int;
i: Integer;
}
f := Foo{Foo.Integer(137)};
}
}
default_struct_values :: proc() {
{
Vector3 :: struct {
x: f32;
y: f32;
z: f32;
}
v: Vector3;
fmt.println(v);
}
{
// Default values must be constants
Vector3 :: struct {
x: f32 = 1;
y: f32 = 4;
z: f32 = 9;
}
v: Vector3;
fmt.println(v);
v = Vector3{};
fmt.println(v);
// Uses the same semantics as a default values in a procedure
v = Vector3{137};
fmt.println(v);
v = Vector3{z = 137};
fmt.println(v);
}
{
Vector3 :: struct {
x := 1.0;
y := 4.0;
z := 9.0;
}
stack_default: Vector3;
stack_literal := Vector3{};
heap_one := new(Vector3); defer free(heap_one);
heap_two := new_clone(Vector3{}); defer free(heap_two);
fmt.println("stack_default - ", stack_default);
fmt.println("stack_literal - ", stack_literal);
fmt.println("heap_one - ", heap_one^);
fmt.println("heap_two - ", heap_two^);
N :: 4;
stack_array: [N]Vector3;
heap_array := new([N]Vector3); defer free(heap_array);
heap_slice := make([]Vector3, N); defer free(heap_slice);
fmt.println("stack_array[1] - ", stack_array[1]);
fmt.println("heap_array[1] - ", heap_array[1]);
fmt.println("heap_slice[1] - ", heap_slice[1]);
}
}
union_type :: proc() {
{
val: union{int, bool};
val = 137;
if i, ok := val.(int); ok {
fmt.println(i);
}
val = true;
fmt.println(val);
val = nil;
match v in val {
case int: fmt.println("int", v);
case bool: fmt.println("bool", v);
case: fmt.println("nil");
}
}
{
// There is a duality between `any` and `union`
// An `any` has a pointer to the data and allows for any type (open)
// A `union` has as binary blob to store the data and allows only certain types (closed)
// The following code is with `any` but has the same syntax
val: any;
val = 137;
if i, ok := val.(int); ok {
fmt.println(i);
}
val = true;
fmt.println(val);
val = nil;
match v in val {
case int: fmt.println("int", v);
case bool: fmt.println("bool", v);
case: fmt.println("nil");
}
}
Vector3 :: struct {
x, y, z: f32;
};
Quaternion :: struct {
x, y, z: f32;
w: f32 = 1;
};
// More realistic examples
{
// NOTE(bill): For the above basic examples, you may not have any
// particular use for it. However, my main use for them is not for these
// simple cases. My main use is for hierarchical types. Many prefer
// subtyping, embedding the base data into the derived types. Below is
// an example of this for a basic game Entity.
Entity :: struct {
id: u64;
name: string;
position: Vector3;
orientation: Quaternion;
derived: any;
}
Frog :: struct {
using entity: Entity;
jump_height: f32;
}
Monster :: struct {
using entity: Entity;
is_robot: bool;
is_zombie: bool;
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc(T: type) -> ^Entity {
t := new(T);
t.derived = t^;
return t;
}
entity := new_entity(Monster);
match e in entity.derived {
case Frog:
fmt.println("Ribbit");
case Monster:
if e.is_robot do fmt.println("Robotic");
if e.is_zombie do fmt.println("Grrrr!");
}
}
{
// NOTE(bill): A union can be used to achieve something similar. Instead
// of embedding the base data into the derived types, the derived data
// in embedded into the base type. Below is the same example of the
// basic game Entity but using an union.
Entity :: struct {
id: u64;
name: string;
position: Vector3;
orientation: Quaternion;
derived: union {Frog, Monster};
}
Frog :: struct {
using entity: ^Entity;
jump_height: f32;
}
Monster :: struct {
using entity: ^Entity;
is_robot: bool;
is_zombie: bool;
}
// See `parametric_polymorphism` procedure for details
new_entity :: proc(T: type) -> ^Entity {
t := new(Entity);
t.derived = T{entity = t};
return t;
}
entity := new_entity(Monster);
match e in entity.derived {
case Frog:
fmt.println("Ribbit");
case Monster:
if e.is_robot do fmt.println("Robotic");
if e.is_zombie do fmt.println("Grrrr!");
}
// NOTE(bill): As you can see, the usage code has not changed, only its
// memory layout. Both approaches have their own advantages but they can
// be used together to achieve different results. The subtyping approach
// can allow for a greater control of the memory layout and memory
// allocation, e.g. storing the derivatives together. However, this is
// also its disadvantage. You must either preallocate arrays for each
// derivative separation (which can be easily missed) or preallocate a
// bunch of "raw" memory; determining the maximum size of the derived
// types would require the aid of metaprogramming. Unions solve this
// particular problem as the data is stored with the base data.
// Therefore, it is possible to preallocate, e.g. [100]Entity.
// It should be noted that the union approach can have the same memory
// layout as the any and with the same type restrictions by using a
// pointer type for the derivatives.
/*
Entity :: struct {
...
derived: union{^Frog, ^Monster};
}
Frog :: struct {
using entity: Entity;
...
}
Monster :: struct {
using entity: Entity;
...
}
new_entity :: proc(T: type) -> ^Entity {
t := new(T);
t.derived = t;
return t;
}
*/
}
}
parametric_polymorphism :: proc() {
print_value :: proc(value: $T) {
fmt.printf("print_value: %v %v\n", value, value);
}
v1: int = 1;
v2: f32 = 2.1;
v3: f64 = 3.14;
v4: string = "message";
print_value(v1);
print_value(v2);
print_value(v3);
print_value(v4);
fmt.println();
add :: proc(p, q: $T) -> T {
x: T = p + q;
return x;
}
a := add(3, 4);
fmt.printf("a: %T = %v\n", a, a);
b := add(3.2, 4.3);
fmt.printf("b: %T = %v\n", b, b);
// This is how `new` is implemented
alloc_type :: proc(T: type) -> ^T {
t := cast(^T)alloc(size_of(T), align_of(T));
t^ = T{}; // Use default initialization value
return t;
}
copy :: proc(dst, src: []$T) -> int {
n := min(len(dst), len(src));
if n > 0 {
mem.copy(&dst[0], &src[0], n*size_of(T));
}
return n;
}
double_params :: proc(a: $A, b: $B) -> A {
return a + A(b);
}
fmt.println(double_params(12, 1.345));
{ // Polymorphic Types and Type Specialization
Table :: struct(Key, Value: type) {
Slot :: struct {
occupied: bool;
hash: u32;
key: Key;
value: Value;
}
SIZE_MIN :: 32;
count: int;
allocator: Allocator;
slots: []Slot;
}
// Only allow types that are specializations of a (polymorphic) slice
make_slice :: proc(T: type/[]$E, len: int) -> T {
return make(T, len);
}
// Only allow types that are specializations of `Table`
allocate :: proc(table: ^$T/Table, capacity: int) {
c := context;
if table.allocator.procedure != nil do c.allocator = table.allocator;
push_context c {
table.slots = make_slice([]T.Slot, max(capacity, T.SIZE_MIN));
}
}
expand :: proc(table: ^$T/Table) {
c := context;
if table.allocator.procedure != nil do c.allocator = table.allocator;
push_context c {
old_slots := table.slots;
cap := max(2*cap(table.slots), T.SIZE_MIN);
allocate(table, cap);
for s in old_slots do if s.occupied {
put(table, s.key, s.value);
}
free(old_slots);
}
}
// Polymorphic determination of a polymorphic struct
// put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
hash := get_hash(key); // Ad-hoc method which would fail in a different scope
index := find_index(table, key, hash);
if index < 0 {
if f64(table.count) >= 0.75*f64(cap(table.slots)) {
expand(table);
}
assert(table.count <= cap(table.slots));
hash := get_hash(key);
index = int(hash % u32(cap(table.slots)));
for table.slots[index].occupied {
if index += 1; index >= cap(table.slots) {
index = 0;
}
}
table.count += 1;
}
slot := &table.slots[index];
slot.occupied = true;
slot.hash = hash;
slot.key = key;
slot.value = value;
}
// find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
hash := get_hash(key);
index := find_index(table, key, hash);
if index < 0 {
return Value{}, false;
}
return table.slots[index].value, true;
}
find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
if cap(table.slots) <= 0 do return -1;
index := int(hash % u32(cap(table.slots)));
for table.slots[index].occupied {
if table.slots[index].hash == hash {
if table.slots[index].key == key {
return index;
}
}
if index += 1; index >= cap(table.slots) {
index = 0;
}
}
return -1;
}
get_hash :: proc(s: string) -> u32 { // djb2
hash: u32 = 0x1505;
for i in 0..len(s) do hash = (hash<<5) + hash + u32(s[i]);
return hash;
}
table: Table(string, int);
for i in 0..36 do put(&table, "Hellope", i);
for i in 0..42 do put(&table, "World!", i);
found, _ := find(&table, "Hellope");
fmt.printf("`found` is %v\n", found);
found, _ = find(&table, "World!");
fmt.printf("`found` is %v\n", found);
// I would not personally design a hash table like this in production
// but this is a nice basic example
// A better approach would either use a `u64` or equivalent for the key
// and let the user specify the hashing function or make the user store
// the hashing procedure with the table
}
}
prefix_table := [...]string{
"White",
"Red",
"Orange",
"Yellow",
"Green",
"Blue",
"Octarine",
"Black",
};
worker_proc :: proc(t: ^thread.Thread) -> int {
for iteration in 1...5 {
fmt.printf("Th/read %d is on iteration %d\n", t.user_index, iteration);
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
win32.sleep(1);
}
return 0;
}
main :: proc() {
threads := make([]^thread.Thread, 0, len(prefix_table));
for i in 0..len(prefix_table) {
if t := thread.create(worker_proc); t != nil {
t.init_context = context;
t.use_init_context = true;
t.user_index = len(threads);
append(&threads, t);
thread.start(t);
threading_example :: proc() {
when ODIN_OS == "windows" {
unordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
__bounds_check_error_loc(loc, index, len(array));
array[index] = array[len(array)-1];
pop(array);
}
ordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
__bounds_check_error_loc(loc, index, len(array));
copy(array[index..], array[index+1..]);
pop(array);
}
}
for len(threads) > 0 {
for i := 0; i < len(threads); i += 1 {
if t := threads[i]; thread.is_done(t) {
fmt.printf("Thread %d is done\n", t.user_index);
thread.destroy(t);
worker_proc :: proc(t: ^thread.Thread) -> int {
for iteration in 1...5 {
fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
win32.sleep(1);
}
return 0;
}
threads[i] = threads[len(threads)-1];
pop(&threads);
i -= 1;
threads := make([]^thread.Thread, 0, len(prefix_table));
defer free(threads);
for i in 0..len(prefix_table) {
if t := thread.create(worker_proc); t != nil {
t.init_context = context;
t.use_init_context = true;
t.user_index = len(threads);
append(&threads, t);
thread.start(t);
}
}
for len(threads) > 0 {
for i := 0; i < len(threads); {
if t := threads[i]; thread.is_done(t) {
fmt.printf("Thread %d is done\n", t.user_index);
thread.destroy(t);
ordered_remove(&threads, i);
} else {
i += 1;
}
}
}
}
}
main :: proc() {
if true {
fmt.println("\ngeneral_stuff:"); general_stuff();
fmt.println("\nnested_struct_declarations:"); nested_struct_declarations();
fmt.println("\ndefault_struct_values:"); default_struct_values();
fmt.println("\nunion_type:"); union_type();
fmt.println("\nparametric_polymorphism:"); parametric_polymorphism();
}
fmt.println("\nthreading_example:"); threading_example();
}