mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-03 19:52:30 +00:00
transmute(type)x; Minor code clean up
This commit is contained in:
609
code/demo.odin
609
code/demo.odin
@@ -1,55 +1,598 @@
|
||||
|
||||
import (
|
||||
"fmt.odin";
|
||||
"strconv.odin";
|
||||
"thread.odin";
|
||||
win32 "sys/windows.odin";
|
||||
"mem.odin";
|
||||
"thread.odin" when ODIN_OS == "windows";
|
||||
win32 "sys/windows.odin" when ODIN_OS == "windows";
|
||||
|
||||
/*
|
||||
"atomics.odin";
|
||||
"bits.odin";
|
||||
"hash.odin";
|
||||
"math.odin";
|
||||
"opengl.odin";
|
||||
"os.odin";
|
||||
"raw.odin";
|
||||
"sort.odin";
|
||||
"strings.odin";
|
||||
"sync.odin";
|
||||
"types.odin";
|
||||
"utf8.odin";
|
||||
"utf16.odin";
|
||||
*/
|
||||
)
|
||||
|
||||
general_stuff :: proc() {
|
||||
{ // `do` for inline statmes rather than block
|
||||
foo :: proc() do fmt.println("Foo!");
|
||||
if false do foo();
|
||||
for false do foo();
|
||||
when false do foo();
|
||||
|
||||
if false do foo();
|
||||
else do foo();
|
||||
}
|
||||
|
||||
{ // Removal of `++` and `--` (again)
|
||||
x: int;
|
||||
x += 1;
|
||||
x -= 1;
|
||||
}
|
||||
{ // Casting syntaxes
|
||||
i := i32(137);
|
||||
ptr := &i;
|
||||
|
||||
fp1 := (^f32)(ptr);
|
||||
// ^f32(ptr) == ^(f32(ptr))
|
||||
fp2 := cast(^f32)ptr;
|
||||
|
||||
f1 := (^f32)(ptr)^;
|
||||
f2 := (cast(^f32)ptr)^;
|
||||
|
||||
// Questions: Should there be two ways to do it?
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove *_val_of built-in procedures
|
||||
* size_of, align_of, offset_of
|
||||
* type_of, type_info_of
|
||||
*/
|
||||
|
||||
{ // `expand_to_tuple` built-in procedure
|
||||
Foo :: struct {
|
||||
x: int;
|
||||
b: bool;
|
||||
}
|
||||
f := Foo{137, true};
|
||||
x, b := expand_to_tuple(f);
|
||||
fmt.println(x, b);
|
||||
fmt.println(expand_to_tuple(f));
|
||||
}
|
||||
|
||||
{
|
||||
// .. half-closed range
|
||||
// ... open range
|
||||
|
||||
for in 0..2 {} // 0, 1
|
||||
for in 0...2 {} // 0, 1, 2
|
||||
}
|
||||
}
|
||||
|
||||
nested_struct_declarations :: proc() {
|
||||
{
|
||||
FooInteger :: int;
|
||||
Foo :: struct {
|
||||
i: FooInteger;
|
||||
};
|
||||
f := Foo{FooInteger(137)};
|
||||
}
|
||||
{
|
||||
Foo :: struct {
|
||||
Integer :: int;
|
||||
|
||||
i: Integer;
|
||||
}
|
||||
f := Foo{Foo.Integer(137)};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
default_struct_values :: proc() {
|
||||
{
|
||||
Vector3 :: struct {
|
||||
x: f32;
|
||||
y: f32;
|
||||
z: f32;
|
||||
}
|
||||
v: Vector3;
|
||||
fmt.println(v);
|
||||
}
|
||||
{
|
||||
// Default values must be constants
|
||||
Vector3 :: struct {
|
||||
x: f32 = 1;
|
||||
y: f32 = 4;
|
||||
z: f32 = 9;
|
||||
}
|
||||
v: Vector3;
|
||||
fmt.println(v);
|
||||
|
||||
v = Vector3{};
|
||||
fmt.println(v);
|
||||
|
||||
// Uses the same semantics as a default values in a procedure
|
||||
v = Vector3{137};
|
||||
fmt.println(v);
|
||||
|
||||
v = Vector3{z = 137};
|
||||
fmt.println(v);
|
||||
}
|
||||
|
||||
{
|
||||
Vector3 :: struct {
|
||||
x := 1.0;
|
||||
y := 4.0;
|
||||
z := 9.0;
|
||||
}
|
||||
stack_default: Vector3;
|
||||
stack_literal := Vector3{};
|
||||
heap_one := new(Vector3); defer free(heap_one);
|
||||
heap_two := new_clone(Vector3{}); defer free(heap_two);
|
||||
|
||||
fmt.println("stack_default - ", stack_default);
|
||||
fmt.println("stack_literal - ", stack_literal);
|
||||
fmt.println("heap_one - ", heap_one^);
|
||||
fmt.println("heap_two - ", heap_two^);
|
||||
|
||||
|
||||
N :: 4;
|
||||
stack_array: [N]Vector3;
|
||||
heap_array := new([N]Vector3); defer free(heap_array);
|
||||
heap_slice := make([]Vector3, N); defer free(heap_slice);
|
||||
fmt.println("stack_array[1] - ", stack_array[1]);
|
||||
fmt.println("heap_array[1] - ", heap_array[1]);
|
||||
fmt.println("heap_slice[1] - ", heap_slice[1]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
union_type :: proc() {
|
||||
{
|
||||
val: union{int, bool};
|
||||
val = 137;
|
||||
if i, ok := val.(int); ok {
|
||||
fmt.println(i);
|
||||
}
|
||||
val = true;
|
||||
fmt.println(val);
|
||||
|
||||
val = nil;
|
||||
|
||||
match v in val {
|
||||
case int: fmt.println("int", v);
|
||||
case bool: fmt.println("bool", v);
|
||||
case: fmt.println("nil");
|
||||
}
|
||||
}
|
||||
{
|
||||
// There is a duality between `any` and `union`
|
||||
// An `any` has a pointer to the data and allows for any type (open)
|
||||
// A `union` has as binary blob to store the data and allows only certain types (closed)
|
||||
// The following code is with `any` but has the same syntax
|
||||
val: any;
|
||||
val = 137;
|
||||
if i, ok := val.(int); ok {
|
||||
fmt.println(i);
|
||||
}
|
||||
val = true;
|
||||
fmt.println(val);
|
||||
|
||||
val = nil;
|
||||
|
||||
match v in val {
|
||||
case int: fmt.println("int", v);
|
||||
case bool: fmt.println("bool", v);
|
||||
case: fmt.println("nil");
|
||||
}
|
||||
}
|
||||
|
||||
Vector3 :: struct {
|
||||
x, y, z: f32;
|
||||
};
|
||||
Quaternion :: struct {
|
||||
x, y, z: f32;
|
||||
w: f32 = 1;
|
||||
};
|
||||
|
||||
// More realistic examples
|
||||
{
|
||||
// NOTE(bill): For the above basic examples, you may not have any
|
||||
// particular use for it. However, my main use for them is not for these
|
||||
// simple cases. My main use is for hierarchical types. Many prefer
|
||||
// subtyping, embedding the base data into the derived types. Below is
|
||||
// an example of this for a basic game Entity.
|
||||
|
||||
Entity :: struct {
|
||||
id: u64;
|
||||
name: string;
|
||||
position: Vector3;
|
||||
orientation: Quaternion;
|
||||
|
||||
derived: any;
|
||||
}
|
||||
|
||||
Frog :: struct {
|
||||
using entity: Entity;
|
||||
jump_height: f32;
|
||||
}
|
||||
|
||||
Monster :: struct {
|
||||
using entity: Entity;
|
||||
is_robot: bool;
|
||||
is_zombie: bool;
|
||||
}
|
||||
|
||||
// See `parametric_polymorphism` procedure for details
|
||||
new_entity :: proc(T: type) -> ^Entity {
|
||||
t := new(T);
|
||||
t.derived = t^;
|
||||
return t;
|
||||
}
|
||||
|
||||
entity := new_entity(Monster);
|
||||
|
||||
match e in entity.derived {
|
||||
case Frog:
|
||||
fmt.println("Ribbit");
|
||||
case Monster:
|
||||
if e.is_robot do fmt.println("Robotic");
|
||||
if e.is_zombie do fmt.println("Grrrr!");
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
// NOTE(bill): A union can be used to achieve something similar. Instead
|
||||
// of embedding the base data into the derived types, the derived data
|
||||
// in embedded into the base type. Below is the same example of the
|
||||
// basic game Entity but using an union.
|
||||
|
||||
Entity :: struct {
|
||||
id: u64;
|
||||
name: string;
|
||||
position: Vector3;
|
||||
orientation: Quaternion;
|
||||
|
||||
derived: union {Frog, Monster};
|
||||
}
|
||||
|
||||
Frog :: struct {
|
||||
using entity: ^Entity;
|
||||
jump_height: f32;
|
||||
}
|
||||
|
||||
Monster :: struct {
|
||||
using entity: ^Entity;
|
||||
is_robot: bool;
|
||||
is_zombie: bool;
|
||||
}
|
||||
|
||||
// See `parametric_polymorphism` procedure for details
|
||||
new_entity :: proc(T: type) -> ^Entity {
|
||||
t := new(Entity);
|
||||
t.derived = T{entity = t};
|
||||
return t;
|
||||
}
|
||||
|
||||
entity := new_entity(Monster);
|
||||
|
||||
match e in entity.derived {
|
||||
case Frog:
|
||||
fmt.println("Ribbit");
|
||||
case Monster:
|
||||
if e.is_robot do fmt.println("Robotic");
|
||||
if e.is_zombie do fmt.println("Grrrr!");
|
||||
}
|
||||
|
||||
// NOTE(bill): As you can see, the usage code has not changed, only its
|
||||
// memory layout. Both approaches have their own advantages but they can
|
||||
// be used together to achieve different results. The subtyping approach
|
||||
// can allow for a greater control of the memory layout and memory
|
||||
// allocation, e.g. storing the derivatives together. However, this is
|
||||
// also its disadvantage. You must either preallocate arrays for each
|
||||
// derivative separation (which can be easily missed) or preallocate a
|
||||
// bunch of "raw" memory; determining the maximum size of the derived
|
||||
// types would require the aid of metaprogramming. Unions solve this
|
||||
// particular problem as the data is stored with the base data.
|
||||
// Therefore, it is possible to preallocate, e.g. [100]Entity.
|
||||
|
||||
// It should be noted that the union approach can have the same memory
|
||||
// layout as the any and with the same type restrictions by using a
|
||||
// pointer type for the derivatives.
|
||||
|
||||
/*
|
||||
Entity :: struct {
|
||||
...
|
||||
derived: union{^Frog, ^Monster};
|
||||
}
|
||||
|
||||
Frog :: struct {
|
||||
using entity: Entity;
|
||||
...
|
||||
}
|
||||
Monster :: struct {
|
||||
using entity: Entity;
|
||||
...
|
||||
|
||||
}
|
||||
new_entity :: proc(T: type) -> ^Entity {
|
||||
t := new(T);
|
||||
t.derived = t;
|
||||
return t;
|
||||
}
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
parametric_polymorphism :: proc() {
|
||||
print_value :: proc(value: $T) {
|
||||
fmt.printf("print_value: %v %v\n", value, value);
|
||||
}
|
||||
|
||||
v1: int = 1;
|
||||
v2: f32 = 2.1;
|
||||
v3: f64 = 3.14;
|
||||
v4: string = "message";
|
||||
|
||||
print_value(v1);
|
||||
print_value(v2);
|
||||
print_value(v3);
|
||||
print_value(v4);
|
||||
|
||||
fmt.println();
|
||||
|
||||
add :: proc(p, q: $T) -> T {
|
||||
x: T = p + q;
|
||||
return x;
|
||||
}
|
||||
|
||||
a := add(3, 4);
|
||||
fmt.printf("a: %T = %v\n", a, a);
|
||||
|
||||
b := add(3.2, 4.3);
|
||||
fmt.printf("b: %T = %v\n", b, b);
|
||||
|
||||
// This is how `new` is implemented
|
||||
alloc_type :: proc(T: type) -> ^T {
|
||||
t := cast(^T)alloc(size_of(T), align_of(T));
|
||||
t^ = T{}; // Use default initialization value
|
||||
return t;
|
||||
}
|
||||
|
||||
copy :: proc(dst, src: []$T) -> int {
|
||||
n := min(len(dst), len(src));
|
||||
if n > 0 {
|
||||
mem.copy(&dst[0], &src[0], n*size_of(T));
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
double_params :: proc(a: $A, b: $B) -> A {
|
||||
return a + A(b);
|
||||
}
|
||||
|
||||
fmt.println(double_params(12, 1.345));
|
||||
|
||||
|
||||
|
||||
{ // Polymorphic Types and Type Specialization
|
||||
Table :: struct(Key, Value: type) {
|
||||
Slot :: struct {
|
||||
occupied: bool;
|
||||
hash: u32;
|
||||
key: Key;
|
||||
value: Value;
|
||||
}
|
||||
SIZE_MIN :: 32;
|
||||
|
||||
count: int;
|
||||
allocator: Allocator;
|
||||
slots: []Slot;
|
||||
}
|
||||
|
||||
// Only allow types that are specializations of a (polymorphic) slice
|
||||
make_slice :: proc(T: type/[]$E, len: int) -> T {
|
||||
return make(T, len);
|
||||
}
|
||||
|
||||
|
||||
// Only allow types that are specializations of `Table`
|
||||
allocate :: proc(table: ^$T/Table, capacity: int) {
|
||||
c := context;
|
||||
if table.allocator.procedure != nil do c.allocator = table.allocator;
|
||||
|
||||
push_context c {
|
||||
table.slots = make_slice([]T.Slot, max(capacity, T.SIZE_MIN));
|
||||
}
|
||||
}
|
||||
|
||||
expand :: proc(table: ^$T/Table) {
|
||||
c := context;
|
||||
if table.allocator.procedure != nil do c.allocator = table.allocator;
|
||||
|
||||
push_context c {
|
||||
old_slots := table.slots;
|
||||
|
||||
cap := max(2*cap(table.slots), T.SIZE_MIN);
|
||||
allocate(table, cap);
|
||||
|
||||
for s in old_slots do if s.occupied {
|
||||
put(table, s.key, s.value);
|
||||
}
|
||||
|
||||
free(old_slots);
|
||||
}
|
||||
}
|
||||
|
||||
// Polymorphic determination of a polymorphic struct
|
||||
// put :: proc(table: ^$T/Table, key: T.Key, value: T.Value) {
|
||||
put :: proc(table: ^Table($Key, $Value), key: Key, value: Value) {
|
||||
hash := get_hash(key); // Ad-hoc method which would fail in a different scope
|
||||
index := find_index(table, key, hash);
|
||||
if index < 0 {
|
||||
if f64(table.count) >= 0.75*f64(cap(table.slots)) {
|
||||
expand(table);
|
||||
}
|
||||
assert(table.count <= cap(table.slots));
|
||||
|
||||
hash := get_hash(key);
|
||||
index = int(hash % u32(cap(table.slots)));
|
||||
|
||||
for table.slots[index].occupied {
|
||||
if index += 1; index >= cap(table.slots) {
|
||||
index = 0;
|
||||
}
|
||||
}
|
||||
|
||||
table.count += 1;
|
||||
}
|
||||
|
||||
slot := &table.slots[index];
|
||||
slot.occupied = true;
|
||||
slot.hash = hash;
|
||||
slot.key = key;
|
||||
slot.value = value;
|
||||
}
|
||||
|
||||
|
||||
// find :: proc(table: ^$T/Table, key: T.Key) -> (T.Value, bool) {
|
||||
find :: proc(table: ^Table($Key, $Value), key: Key) -> (Value, bool) {
|
||||
hash := get_hash(key);
|
||||
index := find_index(table, key, hash);
|
||||
if index < 0 {
|
||||
return Value{}, false;
|
||||
}
|
||||
return table.slots[index].value, true;
|
||||
}
|
||||
|
||||
find_index :: proc(table: ^Table($Key, $Value), key: Key, hash: u32) -> int {
|
||||
if cap(table.slots) <= 0 do return -1;
|
||||
|
||||
index := int(hash % u32(cap(table.slots)));
|
||||
for table.slots[index].occupied {
|
||||
if table.slots[index].hash == hash {
|
||||
if table.slots[index].key == key {
|
||||
return index;
|
||||
}
|
||||
}
|
||||
|
||||
if index += 1; index >= cap(table.slots) {
|
||||
index = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
get_hash :: proc(s: string) -> u32 { // djb2
|
||||
hash: u32 = 0x1505;
|
||||
for i in 0..len(s) do hash = (hash<<5) + hash + u32(s[i]);
|
||||
return hash;
|
||||
}
|
||||
|
||||
|
||||
table: Table(string, int);
|
||||
|
||||
for i in 0..36 do put(&table, "Hellope", i);
|
||||
for i in 0..42 do put(&table, "World!", i);
|
||||
|
||||
found, _ := find(&table, "Hellope");
|
||||
fmt.printf("`found` is %v\n", found);
|
||||
|
||||
found, _ = find(&table, "World!");
|
||||
fmt.printf("`found` is %v\n", found);
|
||||
|
||||
// I would not personally design a hash table like this in production
|
||||
// but this is a nice basic example
|
||||
// A better approach would either use a `u64` or equivalent for the key
|
||||
// and let the user specify the hashing function or make the user store
|
||||
// the hashing procedure with the table
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
prefix_table := [...]string{
|
||||
"White",
|
||||
"Red",
|
||||
"Orange",
|
||||
"Yellow",
|
||||
"Green",
|
||||
"Blue",
|
||||
"Octarine",
|
||||
"Black",
|
||||
};
|
||||
|
||||
worker_proc :: proc(t: ^thread.Thread) -> int {
|
||||
for iteration in 1...5 {
|
||||
fmt.printf("Th/read %d is on iteration %d\n", t.user_index, iteration);
|
||||
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
|
||||
win32.sleep(1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
main :: proc() {
|
||||
threads := make([]^thread.Thread, 0, len(prefix_table));
|
||||
|
||||
for i in 0..len(prefix_table) {
|
||||
if t := thread.create(worker_proc); t != nil {
|
||||
t.init_context = context;
|
||||
t.use_init_context = true;
|
||||
t.user_index = len(threads);
|
||||
append(&threads, t);
|
||||
thread.start(t);
|
||||
threading_example :: proc() {
|
||||
when ODIN_OS == "windows" {
|
||||
unordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
|
||||
__bounds_check_error_loc(loc, index, len(array));
|
||||
array[index] = array[len(array)-1];
|
||||
pop(array);
|
||||
}
|
||||
ordered_remove :: proc(array: ^[]$T, index: int, loc := #caller_location) {
|
||||
__bounds_check_error_loc(loc, index, len(array));
|
||||
copy(array[index..], array[index+1..]);
|
||||
pop(array);
|
||||
}
|
||||
}
|
||||
|
||||
for len(threads) > 0 {
|
||||
for i := 0; i < len(threads); i += 1 {
|
||||
if t := threads[i]; thread.is_done(t) {
|
||||
fmt.printf("Thread %d is done\n", t.user_index);
|
||||
thread.destroy(t);
|
||||
worker_proc :: proc(t: ^thread.Thread) -> int {
|
||||
for iteration in 1...5 {
|
||||
fmt.printf("Thread %d is on iteration %d\n", t.user_index, iteration);
|
||||
fmt.printf("`%s`: iteration %d\n", prefix_table[t.user_index], iteration);
|
||||
win32.sleep(1);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
threads[i] = threads[len(threads)-1];
|
||||
pop(&threads);
|
||||
i -= 1;
|
||||
threads := make([]^thread.Thread, 0, len(prefix_table));
|
||||
defer free(threads);
|
||||
|
||||
for i in 0..len(prefix_table) {
|
||||
if t := thread.create(worker_proc); t != nil {
|
||||
t.init_context = context;
|
||||
t.use_init_context = true;
|
||||
t.user_index = len(threads);
|
||||
append(&threads, t);
|
||||
thread.start(t);
|
||||
}
|
||||
}
|
||||
|
||||
for len(threads) > 0 {
|
||||
for i := 0; i < len(threads); {
|
||||
if t := threads[i]; thread.is_done(t) {
|
||||
fmt.printf("Thread %d is done\n", t.user_index);
|
||||
thread.destroy(t);
|
||||
|
||||
ordered_remove(&threads, i);
|
||||
} else {
|
||||
i += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
main :: proc() {
|
||||
if true {
|
||||
fmt.println("\ngeneral_stuff:"); general_stuff();
|
||||
fmt.println("\nnested_struct_declarations:"); nested_struct_declarations();
|
||||
fmt.println("\ndefault_struct_values:"); default_struct_values();
|
||||
fmt.println("\nunion_type:"); union_type();
|
||||
fmt.println("\nparametric_polymorphism:"); parametric_polymorphism();
|
||||
}
|
||||
fmt.println("\nthreading_example:"); threading_example();
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user