mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-02 11:12:31 +00:00
big: Move division internals.
This commit is contained in:
@@ -290,351 +290,6 @@ int_choose_digit :: proc(res: ^Int, n, k: int) -> (err: Error) {
|
||||
}
|
||||
choose :: proc { int_choose_digit, };
|
||||
|
||||
|
||||
/*
|
||||
Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
|
||||
*/
|
||||
_int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
|
||||
pa := src.used;
|
||||
|
||||
t := &Int{}; ix, iy: int;
|
||||
/*
|
||||
Grow `t` to maximum needed size, or `_DEFAULT_DIGIT_COUNT`, whichever is bigger.
|
||||
*/
|
||||
if err = grow(t, max((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
||||
t.used = (2 * pa) + 1;
|
||||
|
||||
#no_bounds_check for ix = 0; ix < pa; ix += 1 {
|
||||
carry := DIGIT(0);
|
||||
/*
|
||||
First calculate the digit at 2*ix; calculate double precision result.
|
||||
*/
|
||||
r := _WORD(t.digit[ix+ix]) + (_WORD(src.digit[ix]) * _WORD(src.digit[ix]));
|
||||
|
||||
/*
|
||||
Store lower part in result.
|
||||
*/
|
||||
t.digit[ix+ix] = DIGIT(r & _WORD(_MASK));
|
||||
/*
|
||||
Get the carry.
|
||||
*/
|
||||
carry = DIGIT(r >> _DIGIT_BITS);
|
||||
|
||||
#no_bounds_check for iy = ix + 1; iy < pa; iy += 1 {
|
||||
/*
|
||||
First calculate the product.
|
||||
*/
|
||||
r = _WORD(src.digit[ix]) * _WORD(src.digit[iy]);
|
||||
|
||||
/* Now calculate the double precision result. Nóte we use
|
||||
* addition instead of *2 since it's easier to optimize
|
||||
*/
|
||||
r = _WORD(t.digit[ix+iy]) + r + r + _WORD(carry);
|
||||
|
||||
/*
|
||||
Store lower part.
|
||||
*/
|
||||
t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
|
||||
|
||||
/*
|
||||
Get carry.
|
||||
*/
|
||||
carry = DIGIT(r >> _DIGIT_BITS);
|
||||
}
|
||||
/*
|
||||
Propagate upwards.
|
||||
*/
|
||||
#no_bounds_check for carry != 0 {
|
||||
r = _WORD(t.digit[ix+iy]) + _WORD(carry);
|
||||
t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
|
||||
carry = DIGIT(r >> _WORD(_DIGIT_BITS));
|
||||
iy += 1;
|
||||
}
|
||||
}
|
||||
|
||||
err = clamp(t);
|
||||
swap(dest, t);
|
||||
destroy(t);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
Divide by three (based on routine from MPI and the GMP manual).
|
||||
*/
|
||||
_int_div_3 :: proc(quotient, numerator: ^Int) -> (remainder: DIGIT, err: Error) {
|
||||
/*
|
||||
b = 2**MP_DIGIT_BIT / 3
|
||||
*/
|
||||
b := _WORD(1) << _WORD(_DIGIT_BITS) / _WORD(3);
|
||||
|
||||
q := &Int{};
|
||||
if err = grow(q, numerator.used); err != nil { return 0, err; }
|
||||
q.used = numerator.used;
|
||||
q.sign = numerator.sign;
|
||||
|
||||
w, t: _WORD;
|
||||
for ix := numerator.used; ix >= 0; ix -= 1 {
|
||||
w = (w << _WORD(_DIGIT_BITS)) | _WORD(numerator.digit[ix]);
|
||||
if w >= 3 {
|
||||
/*
|
||||
Multiply w by [1/3].
|
||||
*/
|
||||
t = (w * b) >> _WORD(_DIGIT_BITS);
|
||||
|
||||
/*
|
||||
Now subtract 3 * [w/3] from w, to get the remainder.
|
||||
*/
|
||||
w -= t+t+t;
|
||||
|
||||
/*
|
||||
Fixup the remainder as required since the optimization is not exact.
|
||||
*/
|
||||
for w >= 3 {
|
||||
t += 1;
|
||||
w -= 3;
|
||||
}
|
||||
} else {
|
||||
t = 0;
|
||||
}
|
||||
q.digit[ix] = DIGIT(t);
|
||||
}
|
||||
remainder = DIGIT(w);
|
||||
|
||||
/*
|
||||
[optional] store the quotient.
|
||||
*/
|
||||
if quotient != nil {
|
||||
err = clamp(q);
|
||||
swap(q, quotient);
|
||||
}
|
||||
destroy(q);
|
||||
return remainder, nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Signed Integer Division
|
||||
|
||||
c*b + d == a [i.e. a/b, c=quotient, d=remainder], HAC pp.598 Algorithm 14.20
|
||||
|
||||
Note that the description in HAC is horribly incomplete.
|
||||
For example, it doesn't consider the case where digits are removed from 'x' in
|
||||
the inner loop.
|
||||
|
||||
It also doesn't consider the case that y has fewer than three digits, etc.
|
||||
The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
||||
*/
|
||||
_int_div_school :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
|
||||
if err = error_if_immutable(quotient, remainder); err != nil { return err; }
|
||||
if err = clear_if_uninitialized(quotient, numerator, denominator); err != nil { return err; }
|
||||
|
||||
q, x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(q, x, y, t1, t2);
|
||||
|
||||
if err = grow(q, numerator.used + 2); err != nil { return err; }
|
||||
q.used = numerator.used + 2;
|
||||
|
||||
if err = init_multi(t1, t2); err != nil { return err; }
|
||||
if err = copy(x, numerator); err != nil { return err; }
|
||||
if err = copy(y, denominator); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Fix the sign.
|
||||
*/
|
||||
neg := numerator.sign != denominator.sign;
|
||||
x.sign = .Zero_or_Positive;
|
||||
y.sign = .Zero_or_Positive;
|
||||
|
||||
/*
|
||||
Normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT]
|
||||
*/
|
||||
norm, _ := count_bits(y);
|
||||
norm %= _DIGIT_BITS;
|
||||
|
||||
if norm < _DIGIT_BITS - 1 {
|
||||
norm = (_DIGIT_BITS - 1) - norm;
|
||||
if err = shl(x, x, norm); err != nil { return err; }
|
||||
if err = shl(y, y, norm); err != nil { return err; }
|
||||
} else {
|
||||
norm = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
Note: HAC does 0 based, so if used==5 then it's 0,1,2,3,4, i.e. use 4
|
||||
*/
|
||||
n := x.used - 1;
|
||||
t := y.used - 1;
|
||||
|
||||
/*
|
||||
while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} }
|
||||
y = y*b**{n-t}
|
||||
*/
|
||||
|
||||
if err = shl_digit(y, n - t); err != nil { return err; }
|
||||
|
||||
c, _ := cmp(x, y);
|
||||
for c != -1 {
|
||||
q.digit[n - t] += 1;
|
||||
if err = sub(x, x, y); err != nil { return err; }
|
||||
c, _ = cmp(x, y);
|
||||
}
|
||||
|
||||
/*
|
||||
Reset y by shifting it back down.
|
||||
*/
|
||||
shr_digit(y, n - t);
|
||||
|
||||
/*
|
||||
Step 3. for i from n down to (t + 1).
|
||||
*/
|
||||
for i := n; i >= (t + 1); i -= 1 {
|
||||
if (i > x.used) { continue; }
|
||||
|
||||
/*
|
||||
step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt
|
||||
*/
|
||||
if x.digit[i] == y.digit[t] {
|
||||
q.digit[(i - t) - 1] = 1 << (_DIGIT_BITS - 1);
|
||||
} else {
|
||||
|
||||
tmp := _WORD(x.digit[i]) << _DIGIT_BITS;
|
||||
tmp |= _WORD(x.digit[i - 1]);
|
||||
tmp /= _WORD(y.digit[t]);
|
||||
if tmp > _WORD(_MASK) {
|
||||
tmp = _WORD(_MASK);
|
||||
}
|
||||
q.digit[(i - t) - 1] = DIGIT(tmp & _WORD(_MASK));
|
||||
}
|
||||
|
||||
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
||||
xi * b**2 + xi-1 * b + xi-2
|
||||
|
||||
do q{i-t-1} -= 1;
|
||||
*/
|
||||
|
||||
iter := 0;
|
||||
|
||||
q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] + 1) & _MASK;
|
||||
for {
|
||||
q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK;
|
||||
|
||||
/*
|
||||
Find left hand.
|
||||
*/
|
||||
zero(t1);
|
||||
t1.digit[0] = ((t - 1) < 0) ? 0 : y.digit[t - 1];
|
||||
t1.digit[1] = y.digit[t];
|
||||
t1.used = 2;
|
||||
if err = mul(t1, t1, q.digit[(i - t) - 1]); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Find right hand.
|
||||
*/
|
||||
t2.digit[0] = ((i - 2) < 0) ? 0 : x.digit[i - 2];
|
||||
t2.digit[1] = x.digit[i - 1]; /* i >= 1 always holds */
|
||||
t2.digit[2] = x.digit[i];
|
||||
t2.used = 3;
|
||||
|
||||
if t1_t2, _ := cmp_mag(t1, t2); t1_t2 != 1 {
|
||||
break;
|
||||
}
|
||||
iter += 1; if iter > 100 { return .Max_Iterations_Reached; }
|
||||
}
|
||||
|
||||
/*
|
||||
Step 3.3 x = x - q{i-t-1} * y * b**{i-t-1}
|
||||
*/
|
||||
if err = int_mul_digit(t1, y, q.digit[(i - t) - 1]); err != nil { return err; }
|
||||
if err = shl_digit(t1, (i - t) - 1); err != nil { return err; }
|
||||
if err = sub(x, x, t1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; }
|
||||
*/
|
||||
if x.sign == .Negative {
|
||||
if err = copy(t1, y); err != nil { return err; }
|
||||
if err = shl_digit(t1, (i - t) - 1); err != nil { return err; }
|
||||
if err = add(x, x, t1); err != nil { return err; }
|
||||
|
||||
q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Now q is the quotient and x is the remainder, [which we have to normalize]
|
||||
Get sign before writing to c.
|
||||
*/
|
||||
z, _ := is_zero(x);
|
||||
x.sign = .Zero_or_Positive if z else numerator.sign;
|
||||
|
||||
if quotient != nil {
|
||||
clamp(q);
|
||||
swap(q, quotient);
|
||||
quotient.sign = .Negative if neg else .Zero_or_Positive;
|
||||
}
|
||||
|
||||
if remainder != nil {
|
||||
if err = shr(x, x, norm); err != nil { return err; }
|
||||
swap(x, remainder);
|
||||
}
|
||||
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Slower bit-bang division... also smaller.
|
||||
*/
|
||||
@(deprecated="Use `_int_div_school`, it's 3.5x faster.")
|
||||
_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
|
||||
|
||||
ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{};
|
||||
c: int;
|
||||
|
||||
goto_end: for {
|
||||
if err = one(tq); err != nil { break goto_end; }
|
||||
|
||||
num_bits, _ := count_bits(numerator);
|
||||
den_bits, _ := count_bits(denominator);
|
||||
n := num_bits - den_bits;
|
||||
|
||||
if err = abs(ta, numerator); err != nil { break goto_end; }
|
||||
if err = abs(tb, denominator); err != nil { break goto_end; }
|
||||
if err = shl(tb, tb, n); err != nil { break goto_end; }
|
||||
if err = shl(tq, tq, n); err != nil { break goto_end; }
|
||||
|
||||
for n >= 0 {
|
||||
if c, _ = cmp_mag(ta, tb); c == 0 || c == 1 {
|
||||
// ta -= tb
|
||||
if err = sub(ta, ta, tb); err != nil { break goto_end; }
|
||||
// q += tq
|
||||
if err = add( q, q, tq); err != nil { break goto_end; }
|
||||
}
|
||||
if err = shr1(tb, tb); err != nil { break goto_end; }
|
||||
if err = shr1(tq, tq); err != nil { break goto_end; }
|
||||
|
||||
n -= 1;
|
||||
}
|
||||
|
||||
/*
|
||||
Now q == quotient and ta == remainder.
|
||||
*/
|
||||
neg := numerator.sign != denominator.sign;
|
||||
if quotient != nil {
|
||||
swap(quotient, q);
|
||||
z, _ := is_zero(quotient);
|
||||
quotient.sign = .Negative if neg && !z else .Zero_or_Positive;
|
||||
}
|
||||
if remainder != nil {
|
||||
swap(remainder, ta);
|
||||
z, _ := is_zero(numerator);
|
||||
remainder.sign = .Zero_or_Positive if z else numerator.sign;
|
||||
}
|
||||
|
||||
break goto_end;
|
||||
}
|
||||
destroy(ta, tb, tq, q);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
Function computing both GCD and (if target isn't `nil`) also LCM.
|
||||
*/
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
@echo off
|
||||
odin run . -vet
|
||||
:odin run . -vet
|
||||
: -o:size
|
||||
:odin build . -build-mode:shared -show-timings -o:minimal -no-bounds-check
|
||||
:odin build . -build-mode:shared -show-timings -o:size -no-bounds-check
|
||||
:odin build . -build-mode:shared -show-timings -o:size
|
||||
:odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check
|
||||
odin build . -build-mode:shared -show-timings -o:speed -no-bounds-check
|
||||
:odin build . -build-mode:shared -show-timings -o:speed
|
||||
|
||||
:python test.py
|
||||
python test.py
|
||||
@@ -608,7 +608,7 @@ internal_int_mul :: proc(dest, src, multiplier: ^Int, allocator := context.alloc
|
||||
/* Fast comba? */
|
||||
// err = s_mp_sqr_comba(a, c);
|
||||
} else {
|
||||
err = _int_sqr(dest, src);
|
||||
err = _private_int_sqr(dest, src);
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
@@ -680,14 +680,13 @@ internal_int_divmod :: proc(quotient, remainder, numerator, denominator: ^Int, a
|
||||
// err = _int_div_recursive(quotient, remainder, numerator, denominator);
|
||||
} else {
|
||||
when true {
|
||||
err = _int_div_school(quotient, remainder, numerator, denominator);
|
||||
err = _private_int_div_school(quotient, remainder, numerator, denominator);
|
||||
} else {
|
||||
/*
|
||||
NOTE(Jeroen): We no longer need or use `_int_div_small`.
|
||||
NOTE(Jeroen): We no longer need or use `_private_int_div_small`.
|
||||
We'll keep it around for a bit until we're reasonably certain div_school is bug free.
|
||||
err = _int_div_small(quotient, remainder, numerator, denominator);
|
||||
*/
|
||||
err = _int_div_small(quotient, remainder, numerator, denominator);
|
||||
err = _private_int_div_small(quotient, remainder, numerator, denominator);
|
||||
}
|
||||
}
|
||||
return;
|
||||
@@ -744,7 +743,7 @@ internal_int_divmod_digit :: proc(quotient, numerator: ^Int, denominator: DIGIT)
|
||||
Three?
|
||||
*/
|
||||
if denominator == 3 {
|
||||
return _int_div_3(quotient, numerator);
|
||||
return _private_int_div_3(quotient, numerator);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -1049,8 +1048,6 @@ _private_int_mul_comba :: proc(dest, a, b: ^Int, digits: int) -> (err: Error) {
|
||||
/*
|
||||
Now extract the previous digit [below the carry].
|
||||
*/
|
||||
// for ix = 0; ix < pa; ix += 1 { dest.digit[ix] = W[ix]; }
|
||||
|
||||
copy_slice(dest.digit[0:], W[:pa]);
|
||||
|
||||
/*
|
||||
@@ -1065,6 +1062,350 @@ _private_int_mul_comba :: proc(dest, a, b: ^Int, digits: int) -> (err: Error) {
|
||||
return clamp(dest);
|
||||
}
|
||||
|
||||
/*
|
||||
Low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16
|
||||
*/
|
||||
_private_int_sqr :: proc(dest, src: ^Int) -> (err: Error) {
|
||||
pa := src.used;
|
||||
|
||||
t := &Int{}; ix, iy: int;
|
||||
/*
|
||||
Grow `t` to maximum needed size, or `_DEFAULT_DIGIT_COUNT`, whichever is bigger.
|
||||
*/
|
||||
if err = grow(t, max((2 * pa) + 1, _DEFAULT_DIGIT_COUNT)); err != nil { return err; }
|
||||
t.used = (2 * pa) + 1;
|
||||
|
||||
#no_bounds_check for ix = 0; ix < pa; ix += 1 {
|
||||
carry := DIGIT(0);
|
||||
/*
|
||||
First calculate the digit at 2*ix; calculate double precision result.
|
||||
*/
|
||||
r := _WORD(t.digit[ix+ix]) + (_WORD(src.digit[ix]) * _WORD(src.digit[ix]));
|
||||
|
||||
/*
|
||||
Store lower part in result.
|
||||
*/
|
||||
t.digit[ix+ix] = DIGIT(r & _WORD(_MASK));
|
||||
/*
|
||||
Get the carry.
|
||||
*/
|
||||
carry = DIGIT(r >> _DIGIT_BITS);
|
||||
|
||||
#no_bounds_check for iy = ix + 1; iy < pa; iy += 1 {
|
||||
/*
|
||||
First calculate the product.
|
||||
*/
|
||||
r = _WORD(src.digit[ix]) * _WORD(src.digit[iy]);
|
||||
|
||||
/* Now calculate the double precision result. Nóte we use
|
||||
* addition instead of *2 since it's easier to optimize
|
||||
*/
|
||||
r = _WORD(t.digit[ix+iy]) + r + r + _WORD(carry);
|
||||
|
||||
/*
|
||||
Store lower part.
|
||||
*/
|
||||
t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
|
||||
|
||||
/*
|
||||
Get carry.
|
||||
*/
|
||||
carry = DIGIT(r >> _DIGIT_BITS);
|
||||
}
|
||||
/*
|
||||
Propagate upwards.
|
||||
*/
|
||||
#no_bounds_check for carry != 0 {
|
||||
r = _WORD(t.digit[ix+iy]) + _WORD(carry);
|
||||
t.digit[ix+iy] = DIGIT(r & _WORD(_MASK));
|
||||
carry = DIGIT(r >> _WORD(_DIGIT_BITS));
|
||||
iy += 1;
|
||||
}
|
||||
}
|
||||
|
||||
err = clamp(t);
|
||||
swap(dest, t);
|
||||
destroy(t);
|
||||
return err;
|
||||
}
|
||||
|
||||
/*
|
||||
Divide by three (based on routine from MPI and the GMP manual).
|
||||
*/
|
||||
_private_int_div_3 :: proc(quotient, numerator: ^Int) -> (remainder: DIGIT, err: Error) {
|
||||
/*
|
||||
b = 2^_DIGIT_BITS / 3
|
||||
*/
|
||||
b := _WORD(1) << _WORD(_DIGIT_BITS) / _WORD(3);
|
||||
|
||||
q := &Int{};
|
||||
if err = grow(q, numerator.used); err != nil { return 0, err; }
|
||||
q.used = numerator.used;
|
||||
q.sign = numerator.sign;
|
||||
|
||||
w, t: _WORD;
|
||||
#no_bounds_check for ix := numerator.used; ix >= 0; ix -= 1 {
|
||||
w = (w << _WORD(_DIGIT_BITS)) | _WORD(numerator.digit[ix]);
|
||||
if w >= 3 {
|
||||
/*
|
||||
Multiply w by [1/3].
|
||||
*/
|
||||
t = (w * b) >> _WORD(_DIGIT_BITS);
|
||||
|
||||
/*
|
||||
Now subtract 3 * [w/3] from w, to get the remainder.
|
||||
*/
|
||||
w -= t+t+t;
|
||||
|
||||
/*
|
||||
Fixup the remainder as required since the optimization is not exact.
|
||||
*/
|
||||
for w >= 3 {
|
||||
t += 1;
|
||||
w -= 3;
|
||||
}
|
||||
} else {
|
||||
t = 0;
|
||||
}
|
||||
q.digit[ix] = DIGIT(t);
|
||||
}
|
||||
remainder = DIGIT(w);
|
||||
|
||||
/*
|
||||
[optional] store the quotient.
|
||||
*/
|
||||
if quotient != nil {
|
||||
err = clamp(q);
|
||||
swap(q, quotient);
|
||||
}
|
||||
destroy(q);
|
||||
return remainder, nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Signed Integer Division
|
||||
|
||||
c*b + d == a [i.e. a/b, c=quotient, d=remainder], HAC pp.598 Algorithm 14.20
|
||||
|
||||
Note that the description in HAC is horribly incomplete.
|
||||
For example, it doesn't consider the case where digits are removed from 'x' in
|
||||
the inner loop.
|
||||
|
||||
It also doesn't consider the case that y has fewer than three digits, etc.
|
||||
The overall algorithm is as described as 14.20 from HAC but fixed to treat these cases.
|
||||
*/
|
||||
_private_int_div_school :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
|
||||
// if err = error_if_immutable(quotient, remainder); err != nil { return err; }
|
||||
// if err = clear_if_uninitialized(quotient, numerator, denominator); err != nil { return err; }
|
||||
|
||||
q, x, y, t1, t2 := &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
|
||||
defer destroy(q, x, y, t1, t2);
|
||||
|
||||
if err = grow(q, numerator.used + 2); err != nil { return err; }
|
||||
q.used = numerator.used + 2;
|
||||
|
||||
if err = init_multi(t1, t2); err != nil { return err; }
|
||||
if err = copy(x, numerator); err != nil { return err; }
|
||||
if err = copy(y, denominator); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Fix the sign.
|
||||
*/
|
||||
neg := numerator.sign != denominator.sign;
|
||||
x.sign = .Zero_or_Positive;
|
||||
y.sign = .Zero_or_Positive;
|
||||
|
||||
/*
|
||||
Normalize both x and y, ensure that y >= b/2, [b == 2**MP_DIGIT_BIT]
|
||||
*/
|
||||
norm, _ := count_bits(y);
|
||||
norm %= _DIGIT_BITS;
|
||||
|
||||
if norm < _DIGIT_BITS - 1 {
|
||||
norm = (_DIGIT_BITS - 1) - norm;
|
||||
if err = shl(x, x, norm); err != nil { return err; }
|
||||
if err = shl(y, y, norm); err != nil { return err; }
|
||||
} else {
|
||||
norm = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
Note: HAC does 0 based, so if used==5 then it's 0,1,2,3,4, i.e. use 4
|
||||
*/
|
||||
n := x.used - 1;
|
||||
t := y.used - 1;
|
||||
|
||||
/*
|
||||
while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} }
|
||||
y = y*b**{n-t}
|
||||
*/
|
||||
|
||||
if err = shl_digit(y, n - t); err != nil { return err; }
|
||||
|
||||
c, _ := cmp(x, y);
|
||||
for c != -1 {
|
||||
q.digit[n - t] += 1;
|
||||
if err = sub(x, x, y); err != nil { return err; }
|
||||
c, _ = cmp(x, y);
|
||||
}
|
||||
|
||||
/*
|
||||
Reset y by shifting it back down.
|
||||
*/
|
||||
shr_digit(y, n - t);
|
||||
|
||||
/*
|
||||
Step 3. for i from n down to (t + 1).
|
||||
*/
|
||||
#no_bounds_check for i := n; i >= (t + 1); i -= 1 {
|
||||
if (i > x.used) { continue; }
|
||||
|
||||
/*
|
||||
step 3.1 if xi == yt then set q{i-t-1} to b-1, otherwise set q{i-t-1} to (xi*b + x{i-1})/yt
|
||||
*/
|
||||
if x.digit[i] == y.digit[t] {
|
||||
q.digit[(i - t) - 1] = 1 << (_DIGIT_BITS - 1);
|
||||
} else {
|
||||
|
||||
tmp := _WORD(x.digit[i]) << _DIGIT_BITS;
|
||||
tmp |= _WORD(x.digit[i - 1]);
|
||||
tmp /= _WORD(y.digit[t]);
|
||||
if tmp > _WORD(_MASK) {
|
||||
tmp = _WORD(_MASK);
|
||||
}
|
||||
q.digit[(i - t) - 1] = DIGIT(tmp & _WORD(_MASK));
|
||||
}
|
||||
|
||||
/* while (q{i-t-1} * (yt * b + y{t-1})) >
|
||||
xi * b**2 + xi-1 * b + xi-2
|
||||
|
||||
do q{i-t-1} -= 1;
|
||||
*/
|
||||
|
||||
iter := 0;
|
||||
|
||||
q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] + 1) & _MASK;
|
||||
#no_bounds_check for {
|
||||
q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK;
|
||||
|
||||
/*
|
||||
Find left hand.
|
||||
*/
|
||||
zero(t1);
|
||||
t1.digit[0] = ((t - 1) < 0) ? 0 : y.digit[t - 1];
|
||||
t1.digit[1] = y.digit[t];
|
||||
t1.used = 2;
|
||||
if err = mul(t1, t1, q.digit[(i - t) - 1]); err != nil { return err; }
|
||||
|
||||
/*
|
||||
Find right hand.
|
||||
*/
|
||||
t2.digit[0] = ((i - 2) < 0) ? 0 : x.digit[i - 2];
|
||||
t2.digit[1] = x.digit[i - 1]; /* i >= 1 always holds */
|
||||
t2.digit[2] = x.digit[i];
|
||||
t2.used = 3;
|
||||
|
||||
if t1_t2, _ := cmp_mag(t1, t2); t1_t2 != 1 {
|
||||
break;
|
||||
}
|
||||
iter += 1; if iter > 100 { return .Max_Iterations_Reached; }
|
||||
}
|
||||
|
||||
/*
|
||||
Step 3.3 x = x - q{i-t-1} * y * b**{i-t-1}
|
||||
*/
|
||||
if err = int_mul_digit(t1, y, q.digit[(i - t) - 1]); err != nil { return err; }
|
||||
if err = shl_digit(t1, (i - t) - 1); err != nil { return err; }
|
||||
if err = sub(x, x, t1); err != nil { return err; }
|
||||
|
||||
/*
|
||||
if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; }
|
||||
*/
|
||||
if x.sign == .Negative {
|
||||
if err = copy(t1, y); err != nil { return err; }
|
||||
if err = shl_digit(t1, (i - t) - 1); err != nil { return err; }
|
||||
if err = add(x, x, t1); err != nil { return err; }
|
||||
|
||||
q.digit[(i - t) - 1] = (q.digit[(i - t) - 1] - 1) & _MASK;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Now q is the quotient and x is the remainder, [which we have to normalize]
|
||||
Get sign before writing to c.
|
||||
*/
|
||||
z, _ := is_zero(x);
|
||||
x.sign = .Zero_or_Positive if z else numerator.sign;
|
||||
|
||||
if quotient != nil {
|
||||
clamp(q);
|
||||
swap(q, quotient);
|
||||
quotient.sign = .Negative if neg else .Zero_or_Positive;
|
||||
}
|
||||
|
||||
if remainder != nil {
|
||||
if err = shr(x, x, norm); err != nil { return err; }
|
||||
swap(x, remainder);
|
||||
}
|
||||
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Slower bit-bang division... also smaller.
|
||||
*/
|
||||
@(deprecated="Use `_int_div_school`, it's 3.5x faster.")
|
||||
_private_int_div_small :: proc(quotient, remainder, numerator, denominator: ^Int) -> (err: Error) {
|
||||
|
||||
ta, tb, tq, q := &Int{}, &Int{}, &Int{}, &Int{};
|
||||
c: int;
|
||||
|
||||
goto_end: for {
|
||||
if err = one(tq); err != nil { break goto_end; }
|
||||
|
||||
num_bits, _ := count_bits(numerator);
|
||||
den_bits, _ := count_bits(denominator);
|
||||
n := num_bits - den_bits;
|
||||
|
||||
if err = abs(ta, numerator); err != nil { break goto_end; }
|
||||
if err = abs(tb, denominator); err != nil { break goto_end; }
|
||||
if err = shl(tb, tb, n); err != nil { break goto_end; }
|
||||
if err = shl(tq, tq, n); err != nil { break goto_end; }
|
||||
|
||||
for n >= 0 {
|
||||
if c, _ = cmp_mag(ta, tb); c == 0 || c == 1 {
|
||||
// ta -= tb
|
||||
if err = sub(ta, ta, tb); err != nil { break goto_end; }
|
||||
// q += tq
|
||||
if err = add( q, q, tq); err != nil { break goto_end; }
|
||||
}
|
||||
if err = shr1(tb, tb); err != nil { break goto_end; }
|
||||
if err = shr1(tq, tq); err != nil { break goto_end; }
|
||||
|
||||
n -= 1;
|
||||
}
|
||||
|
||||
/*
|
||||
Now q == quotient and ta == remainder.
|
||||
*/
|
||||
neg := numerator.sign != denominator.sign;
|
||||
if quotient != nil {
|
||||
swap(quotient, q);
|
||||
z, _ := is_zero(quotient);
|
||||
quotient.sign = .Negative if neg && !z else .Zero_or_Positive;
|
||||
}
|
||||
if remainder != nil {
|
||||
swap(remainder, ta);
|
||||
z, _ := is_zero(numerator);
|
||||
remainder.sign = .Zero_or_Positive if z else numerator.sign;
|
||||
}
|
||||
|
||||
break goto_end;
|
||||
}
|
||||
destroy(ta, tb, tq, q);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
|
||||
@@ -17,7 +17,7 @@ EXIT_ON_FAIL = False
|
||||
# We skip randomized tests altogether if NO_RANDOM_TESTS is set.
|
||||
#
|
||||
NO_RANDOM_TESTS = True
|
||||
#NO_RANDOM_TESTS = False
|
||||
NO_RANDOM_TESTS = False
|
||||
|
||||
#
|
||||
# If TIMED_TESTS == False and FAST_TESTS == True, we cut down the number of iterations.
|
||||
@@ -96,11 +96,11 @@ class Error(Enum):
|
||||
# Set up exported procedures
|
||||
#
|
||||
|
||||
# try:
|
||||
l = cdll.LoadLibrary(LIB_PATH)
|
||||
# except:
|
||||
# print("Couldn't find or load " + LIB_PATH + ".")
|
||||
# exit(1)
|
||||
try:
|
||||
l = cdll.LoadLibrary(LIB_PATH)
|
||||
except:
|
||||
print("Couldn't find or load " + LIB_PATH + ".")
|
||||
exit(1)
|
||||
|
||||
def load(export_name, args, res):
|
||||
export_name.argtypes = args
|
||||
|
||||
Reference in New Issue
Block a user