big: Add internal_int_exponent_mod.

This commit is contained in:
Jeroen van Rijn
2021-08-31 16:43:07 +02:00
parent c3a70ac277
commit 65a15e9c06
13 changed files with 294 additions and 46 deletions

View File

@@ -1,14 +1,15 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-2 license.
Made available under Odin's BSD-3 license.
An arbitrary precision mathematics implementation in Odin.
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
This file collects public proc maps and their aliases.
*/
package math_big
/*
=== === === === === === === === === === === === === === === === === === === === === === === ===
Basic arithmetic.

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -8,6 +6,7 @@ package math_big
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
*/
package math_big
import "core:intrinsics"
@@ -57,10 +56,10 @@ when #config(MATH_BIG_EXE, true) {
debugged where necessary.
*/
_DEFAULT_MUL_KARATSUBA_CUTOFF :: #config(MUL_KARATSUBA_CUTOFF, 80);
_DEFAULT_SQR_KARATSUBA_CUTOFF :: #config(SQR_KARATSUBA_CUTOFF, 120);
_DEFAULT_MUL_TOOM_CUTOFF :: #config(MUL_TOOM_CUTOFF, 350);
_DEFAULT_SQR_TOOM_CUTOFF :: #config(SQR_TOOM_CUTOFF, 400);
_DEFAULT_MUL_KARATSUBA_CUTOFF :: #config(MATH_BIG_MUL_KARATSUBA_CUTOFF, 80);
_DEFAULT_SQR_KARATSUBA_CUTOFF :: #config(MATH_BIG_SQR_KARATSUBA_CUTOFF, 120);
_DEFAULT_MUL_TOOM_CUTOFF :: #config(MATH_BIG_MUL_TOOM_CUTOFF, 350);
_DEFAULT_SQR_TOOM_CUTOFF :: #config(MATH_BIG_SQR_TOOM_CUTOFF, 400);
MAX_ITERATIONS_ROOT_N := 500;
@@ -85,15 +84,22 @@ FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS := 100;
2) Optimizations thanks to precomputed masks wouldn't work.
*/
MATH_BIG_FORCE_64_BIT :: #config(MATH_BIG_FORCE_64_BIT, false);
MATH_BIG_FORCE_32_BIT :: #config(MATH_BIG_FORCE_32_BIT, false);
MATH_BIG_FORCE_64_BIT :: #config(MATH_BIG_FORCE_64_BIT, false);
MATH_BIG_FORCE_32_BIT :: #config(MATH_BIG_FORCE_32_BIT, false);
when (MATH_BIG_FORCE_32_BIT && MATH_BIG_FORCE_64_BIT) { #panic("Cannot force 32-bit and 64-bit big backend simultaneously."); };
_LOW_MEMORY :: #config(BIGINT_SMALL_MEMORY, false);
/*
Trade a smaller memory footprint for more processing overhead?
*/
_LOW_MEMORY :: #config(MATH_BIG_SMALL_MEMORY, false);
when _LOW_MEMORY {
_DEFAULT_DIGIT_COUNT :: 8;
_DEFAULT_DIGIT_COUNT :: 8;
_TAB_SIZE :: 32;
_MAX_WIN_SIZE :: 5;
} else {
_DEFAULT_DIGIT_COUNT :: 32;
_DEFAULT_DIGIT_COUNT :: 32;
_TAB_SIZE :: 256;
_MAX_WIN_SIZE :: 0;
}
/*

View File

@@ -1,6 +1,4 @@
//+ignore
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -9,6 +7,8 @@ package math_big
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
*/
package math_big
import "core:fmt"
import "core:mem"
@@ -18,11 +18,14 @@ print_configation :: proc() {
`
Configuration:
_DIGIT_BITS %v
_SMALL_MEMORY %v
_MIN_DIGIT_COUNT %v
_MAX_DIGIT_COUNT %v
_DEFAULT_DIGIT_COUNT %v
_MAX_COMBA %v
_WARRAY %v
_TAB_SIZE %v
_MAX_WIN_SIZE %v
Runtime tunable:
MUL_KARATSUBA_CUTOFF %v
SQR_KARATSUBA_CUTOFF %v
@@ -34,11 +37,14 @@ Runtime tunable:
FACTORIAL_BINARY_SPLIT_MAX_RECURSIONS %v
`, _DIGIT_BITS,
_LOW_MEMORY,
_MIN_DIGIT_COUNT,
_MAX_DIGIT_COUNT,
_DEFAULT_DIGIT_COUNT,
_MAX_COMBA,
_WARRAY,
_TAB_SIZE,
_MAX_WIN_SIZE,
MUL_KARATSUBA_CUTOFF,
SQR_KARATSUBA_CUTOFF,
MUL_TOOM_CUTOFF,
@@ -203,8 +209,18 @@ int_to_byte_little :: proc(v: ^Int) {
}
demo :: proc() {
// a, b, c, d, e, f := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
// defer destroy(a, b, c, d, e, f);
a, b, c, d, e, f, res := &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{}, &Int{};
defer destroy(a, b, c, d, e, f, res);
set(a, 42);
set(b, 6);
set(c, 5);
if err := internal_int_exponent_mod(res, a, b, c, 0); err != nil {
fmt.printf("Error: %v\n", err);
}
print("res: ", res);
}
main :: proc() {

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -8,6 +6,7 @@ package math_big
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
*/
package math_big
import "core:intrinsics"
import rnd "core:math/rand"

View File

@@ -1,6 +1,4 @@
//+ignore
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -31,6 +29,7 @@ package math_big
TODO: Handle +/- Infinity and NaN.
*/
package math_big
import "core:mem"
import "core:intrinsics"

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -10,6 +8,7 @@ package math_big
This file contains logical operations like `and`, `or` and `xor`.
*/
package math_big
/*
The `and`, `or` and `xor` binops differ in two lines only.

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -10,6 +8,7 @@ package math_big
This file contains prime finding operations.
*/
package math_big
/*
Determines if an Integer is divisible by one of the _PRIME_TABLE primes.
@@ -223,7 +222,7 @@ internal_int_reduce :: proc(x, m, mu: ^Int, allocator := context.allocator) -> (
/*
q = x
*/
copy(q, x) or_return;
internal_copy(q, x) or_return;
/*
q1 = x / b**(k-1)
@@ -234,7 +233,7 @@ internal_int_reduce :: proc(x, m, mu: ^Int, allocator := context.allocator) -> (
According to HAC this optimization is ok.
*/
if DIGIT(um) > DIGIT(1) << (_DIGIT_BITS - 1) {
mul(q, q, mu) or_return;
internal_mul(q, q, mu) or_return;
} else {
_private_int_mul_high(q, q, mu, um) or_return;
}
@@ -435,32 +434,257 @@ internal_int_reduce_2k_setup :: proc(a: ^Int, allocator := context.allocator) ->
/*
Determines the setup value.
Assumes `a` is not `nil`.
Assumes `mu` and `P` are not `nil`.
d := (1 << a.bits) - a;
*/
internal_int_reduce_2k_setup_l :: proc(a, d: ^Int, allocator := context.allocator) -> (err: Error) {
internal_int_reduce_2k_setup_l :: proc(mu, P: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
tmp := &Int{};
defer internal_destroy(tmp);
internal_zero(tmp) or_return;
internal_int_power_of_two(tmp, internal_count_bits(a)) or_return;
internal_sub(d, tmp, a) or_return;
internal_int_power_of_two(tmp, internal_count_bits(P)) or_return;
internal_sub(mu, tmp, P) or_return;
return nil;
}
/*
Pre-calculate the value required for Barrett reduction.
For a given modulus "b" it calulates the value required in "a"
For a given modulus "P" it calulates the value required in "mu"
Assumes `mu` and `P` are not `nil`.
*/
internal_int_reduce_setup :: proc(a, b: ^Int, allocator := context.allocator) -> (err: Error) {
internal_int_reduce_setup :: proc(mu, P: ^Int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
internal_int_power_of_two(a, b.used * 2 * _DIGIT_BITS) or_return;
return internal_int_div(a, a, b);
internal_int_power_of_two(mu, P.used * 2 * _DIGIT_BITS) or_return;
return internal_int_div(mu, mu, P);
}
/*
Computes res == G**X mod P.
Assumes `res`, `G`, `X` and `P` to not be `nil` and for `G`, `X` and `P` to have been initialized.
*/
internal_int_exponent_mod :: proc(res, G, X, P: ^Int, redmode: int, allocator := context.allocator) -> (err: Error) {
context.allocator = allocator;
M := [_TAB_SIZE]Int{};
winsize: uint;
redux: #type proc(x, m, mu: ^Int, allocator := context.allocator) -> (err: Error);
defer {
internal_destroy(&M[1]);
for x := 1 << (winsize - 1); x < (1 << winsize); x += 1 {
internal_destroy(&M[x]);
}
}
/*
Find window size.
*/
x := internal_count_bits(X);
switch {
case x <= 7:
winsize = 2;
case x <= 36:
winsize = 3;
case x <= 140:
winsize = 4;
case x <= 450:
winsize = 5;
case x <= 1303:
winsize = 6;
case x <= 3529:
winsize = 7;
case:
winsize = 8;
}
winsize = min(_MAX_WIN_SIZE, winsize) if _MAX_WIN_SIZE > 0 else winsize;
/*
Init M array.
Init first cell.
*/
internal_zero(&M[1]) or_return;
/*
Now init the second half of the array.
*/
for x = 1 << (winsize - 1); x < (1 << winsize); x += 1 {
internal_zero(&M[x]) or_return;
}
/*
Create `mu`, used for Barrett reduction.
*/
mu := &Int{};
defer internal_destroy(mu);
internal_zero(mu) or_return;
if redmode == 0 {
internal_int_reduce_setup(mu, P) or_return;
redux = internal_int_reduce;
} else {
internal_int_reduce_2k_setup_l(mu, P) or_return;
redux = internal_int_reduce_2k_l;
}
/*
Create M table.
The M table contains powers of the base, e.g. M[x] = G**x mod P.
The first half of the table is not computed, though, except for M[0] and M[1].
*/
internal_int_mod(&M[1], G, P) or_return;
/*
Compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times.
TODO: This can probably be replaced by computing the power and using `pow` to raise to it
instead of repeated squaring.
*/
slot := 1 << (winsize - 1);
internal_copy(&M[slot], &M[1]) or_return;
for x = 0; x < int(winsize - 1); x += 1 {
/*
Square it.
*/
internal_sqr(&M[slot], &M[slot]) or_return;
/*
Reduce modulo P
*/
redux(&M[slot], P, mu) or_return;
}
/*
Create upper table, that is M[x] = M[x-1] * M[1] (mod P)
for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
*/
for x = slot + 1; x < (1 << winsize); x += 1 {
internal_mul(&M[x], &M[x - 1], &M[1]) or_return;
redux(&M[x], P, mu) or_return;
}
/*
Setup result.
*/
internal_one(res) or_return;
/*
Set initial mode and bit cnt.
*/
mode := 0;
bitcnt := 1;
buf := DIGIT(0);
digidx := X.used - 1;
bitcpy := uint(0);
bitbuf := DIGIT(0);
for {
/*
Grab next digit as required.
*/
bitcnt -= 1;
if bitcnt == 0 {
/*
If digidx == -1 we are out of digits.
*/
if digidx == -1 { break; }
/*
Read next digit and reset the bitcnt.
*/
buf = X.digit[digidx];
digidx -= 1;
bitcnt = _DIGIT_BITS;
}
/*
Grab the next msb from the exponent.
*/
y := buf >> (_DIGIT_BITS - 1) & 1;
buf <<= 1;
/*
If the bit is zero and mode == 0 then we ignore it.
These represent the leading zero bits before the first 1 bit
in the exponent. Technically this opt is not required but it
does lower the # of trivial squaring/reductions used.
*/
if mode == 0 && y == 0 {
continue;
}
/*
If the bit is zero and mode == 1 then we square.
*/
if mode == 1 && y == 0 {
internal_sqr(res, res) or_return;
redux(res, P, mu) or_return;
continue;
}
/*
Else we add it to the window.
*/
bitcpy += 1;
bitbuf |= (y << (winsize - bitcpy));
mode = 2;
if (bitcpy == winsize) {
/*
Window is filled so square as required and multiply.
Square first.
*/
for x = 0; x < int(winsize); x += 1 {
internal_sqr(res, res) or_return;
redux(res, P, mu) or_return;
}
/*
Then multiply.
*/
internal_mul(res, res, &M[bitbuf]) or_return;
redux(res, P, mu) or_return;
/*
Empty window and reset.
*/
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/*
If bits remain then square/multiply.
*/
if mode == 2 && bitcpy > 0 {
/*
Square then multiply if the bit is set.
*/
for x = 0; x < int(bitcpy); x += 1 {
internal_sqr(res, res) or_return;
redux(res, P, mu) or_return;
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/*
Then multiply.
*/
internal_mul(res, res, &M[1]) or_return;
redux(res, P, mu) or_return;
}
}
}
return err;
}
/*
Returns the number of Rabin-Miller trials needed for a given bit size.

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -17,6 +15,7 @@ package math_big
These aren't exported for the same reasons.
*/
package math_big
import "core:intrinsics"
import "core:mem"

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -10,6 +8,7 @@ package math_big
This file contains basic arithmetic operations like `add`, `sub`, `mul`, `div`, ...
*/
package math_big
/*
===========================

View File

@@ -1,5 +1,3 @@
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -14,6 +12,7 @@ package math_big
- Use Barrett reduction for non-powers-of-two.
- Also look at extracting and splatting several digits at once.
*/
package math_big
import "core:intrinsics"
import "core:mem"

View File

@@ -1,6 +1,4 @@
//+ignore
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -11,6 +9,7 @@ package math_big
This file exports procedures for use with the test.py test suite.
*/
package math_big
/*
TODO: Write tests for `internal_*` and test reusing parameters with the public implementations.

View File

@@ -1,3 +1,12 @@
#
# Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
# Made available under Odin's BSD-3 license.
#
# A BigInt implementation in Odin.
# For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
# The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
#
from ctypes import *
from random import *
import math

View File

@@ -1,6 +1,4 @@
//+ignore
package math_big
/*
Copyright 2021 Jeroen van Rijn <nom@duclavier.com>.
Made available under Odin's BSD-3 license.
@@ -9,6 +7,7 @@ package math_big
For the theoretical underpinnings, see Knuth's The Art of Computer Programming, Volume 2, section 4.3.
The code started out as an idiomatic source port of libTomMath, which is in the public domain, with thanks.
*/
package math_big
import "core:fmt"
import "core:time"