mirror of
https://github.com/odin-lang/Odin.git
synced 2026-01-06 04:57:55 +00:00
Add @(require_results) core:math/linalg procedures
This commit is contained in:
@@ -3,6 +3,7 @@ package linalg
|
||||
import "core:builtin"
|
||||
import "core:math"
|
||||
|
||||
@(require_results)
|
||||
to_radians :: proc(degrees: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -14,6 +15,7 @@ to_radians :: proc(degrees: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
to_degrees :: proc(radians: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -25,6 +27,7 @@ to_degrees :: proc(radians: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
min_double :: proc(a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -36,6 +39,7 @@ min_double :: proc(a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
min_single :: proc(a: $T) -> (out: ELEM_TYPE(T)) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
N :: len(T)
|
||||
@@ -56,12 +60,14 @@ min_single :: proc(a: $T) -> (out: ELEM_TYPE(T)) where IS_NUMERIC(ELEM_TYPE(T))
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
min_triple :: proc(a, b, c: $T) -> T where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return min_double(a, min_double(b, c))
|
||||
}
|
||||
|
||||
min :: proc{min_single, min_double, min_triple}
|
||||
|
||||
@(require_results)
|
||||
max_double :: proc(a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -73,6 +79,7 @@ max_double :: proc(a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
max_single :: proc(a: $T) -> (out: ELEM_TYPE(T)) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
N :: len(T)
|
||||
@@ -95,12 +102,14 @@ max_single :: proc(a: $T) -> (out: ELEM_TYPE(T)) where IS_NUMERIC(ELEM_TYPE(T))
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
max_triple :: proc(a, b, c: $T) -> T where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return max_double(a, max_double(b, c))
|
||||
}
|
||||
|
||||
max :: proc{max_single, max_double, max_triple}
|
||||
|
||||
@(require_results)
|
||||
abs :: proc(a: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -112,6 +121,7 @@ abs :: proc(a: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
sign :: proc(a: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -123,6 +133,7 @@ sign :: proc(a: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
clamp :: proc(x, a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -135,10 +146,12 @@ clamp :: proc(x, a, b: $T) -> (out: T) where IS_NUMERIC(ELEM_TYPE(T)) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
saturate :: proc(x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return clamp(x, 0.0, 1.0)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
lerp :: proc(a, b, t: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -149,6 +162,7 @@ lerp :: proc(a, b, t: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
mix :: proc(a, b, t: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -160,10 +174,12 @@ mix :: proc(a, b, t: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
unlerp :: proc(a, b, x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return (x - a) / (b - a)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
step :: proc(e, x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -175,17 +191,20 @@ step :: proc(e, x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
smoothstep :: proc(e0, e1, x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
t := saturate(unlerp(e0, e1, x))
|
||||
return t * t * (3.0 - 2.0 * t)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
smootherstep :: proc(e0, e1, x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
t := saturate(unlerp(e0, e1, x))
|
||||
return t * t * t * (t * (6*t - 15) + 10)
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
sqrt :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -197,6 +216,7 @@ sqrt :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
inverse_sqrt :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -208,6 +228,7 @@ inverse_sqrt :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
cos :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -219,6 +240,7 @@ cos :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
sin :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -230,6 +252,7 @@ sin :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
tan :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -241,6 +264,7 @@ tan :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
acos :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -252,6 +276,7 @@ acos :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
asin :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -263,6 +288,7 @@ asin :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
atan :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -273,6 +299,7 @@ atan :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
atan2 :: proc(y, x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -285,6 +312,7 @@ atan2 :: proc(y, x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
ln :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -296,6 +324,7 @@ ln :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
log2 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -307,6 +336,7 @@ log2 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
log10 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -318,6 +348,7 @@ log10 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
log :: proc(x, b: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -329,6 +360,7 @@ log :: proc(x, b: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
exp :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -340,6 +372,7 @@ exp :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
exp2 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -351,6 +384,7 @@ exp2 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
exp10 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -362,6 +396,7 @@ exp10 :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
pow :: proc(x, e: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -374,6 +409,7 @@ pow :: proc(x, e: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
ceil :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -385,6 +421,7 @@ ceil :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
floor :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -396,6 +433,7 @@ floor :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
round :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
when IS_ARRAY(T) {
|
||||
for i in 0..<len(T) {
|
||||
@@ -407,29 +445,35 @@ round :: proc(x: $T) -> (out: T) where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
fract :: proc(x: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
f := #force_inline floor(x)
|
||||
return x - f
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
mod :: proc(x, m: $T) -> T where IS_FLOAT(ELEM_TYPE(T)) {
|
||||
f := #force_inline floor(x / m)
|
||||
return x - f * m
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
face_forward :: proc(N, I, N_ref: $T) -> (out: T) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
|
||||
return dot(N_ref, I) < 0 ? N : -N
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
distance :: proc(p0, p1: $V/[$N]$E) -> E where IS_NUMERIC(E) {
|
||||
return length(p1 - p0)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
reflect :: proc(I, N: $T) -> (out: T) where IS_ARRAY(T), IS_FLOAT(ELEM_TYPE(T)) {
|
||||
b := N * (2 * dot(N, I))
|
||||
return I - b
|
||||
}
|
||||
@(require_results)
|
||||
refract :: proc(I, Normal: $V/[$N]$E, eta: E) -> (out: V) where IS_ARRAY(V), IS_FLOAT(ELEM_TYPE(V)) {
|
||||
dv := dot(Normal, I)
|
||||
k := 1 - eta*eta * (1 - dv*dv)
|
||||
@@ -441,10 +485,12 @@ refract :: proc(I, Normal: $V/[$N]$E, eta: E) -> (out: V) where IS_ARRAY(V), IS_
|
||||
|
||||
|
||||
|
||||
@(require_results)
|
||||
is_nan_single :: proc(x: $T) -> bool where IS_FLOAT(T) {
|
||||
return #force_inline math.is_nan(x)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
is_nan_array :: proc(x: $A/[$N]$T) -> (out: [N]bool) where IS_FLOAT(T) {
|
||||
for i in 0..<N {
|
||||
out[i] = #force_inline is_nan(x[i])
|
||||
@@ -452,10 +498,12 @@ is_nan_array :: proc(x: $A/[$N]$T) -> (out: [N]bool) where IS_FLOAT(T) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
is_inf_single :: proc(x: $T) -> bool where IS_FLOAT(T) {
|
||||
return #force_inline math.is_inf(x)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
is_inf_array :: proc(x: $A/[$N]$T) -> (out: [N]bool) where IS_FLOAT(T) {
|
||||
for i in 0..<N {
|
||||
out[i] = #force_inline is_inf(x[i])
|
||||
@@ -463,10 +511,12 @@ is_inf_array :: proc(x: $A/[$N]$T) -> (out: [N]bool) where IS_FLOAT(T) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
classify_single :: proc(x: $T) -> math.Float_Class where IS_FLOAT(T) {
|
||||
return #force_inline math.classify(x)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
classify_array :: proc(x: $A/[$N]$T) -> (out: [N]math.Float_Class) where IS_FLOAT(T) {
|
||||
for i in 0..<N {
|
||||
out[i] = #force_inline classify_single(x[i])
|
||||
@@ -479,43 +529,49 @@ is_inf :: proc{is_inf_single, is_inf_array}
|
||||
classify :: proc{classify_single, classify_array}
|
||||
|
||||
|
||||
less_than_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x < y }
|
||||
less_than_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x <= y }
|
||||
greater_than_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x > y }
|
||||
greater_than_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x >= y }
|
||||
equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x == y }
|
||||
not_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x != y }
|
||||
@(require_results) less_than_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x < y }
|
||||
@(require_results) less_than_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x <= y }
|
||||
@(require_results) greater_than_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x > y }
|
||||
@(require_results) greater_than_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x >= y }
|
||||
@(require_results) equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x == y }
|
||||
@(require_results) not_equal_single :: proc(x, y: $T) -> (out: bool) where !IS_ARRAY(T), IS_FLOAT(T) { return x != y }
|
||||
|
||||
@(require_results)
|
||||
less_than_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
|
||||
for i in 0..<N {
|
||||
out[i] = x[i] < y[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
less_than_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
|
||||
for i in 0..<N {
|
||||
out[i] = x[i] <= y[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
greater_than_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
|
||||
for i in 0..<N {
|
||||
out[i] = x[i] > y[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
greater_than_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
|
||||
for i in 0..<N {
|
||||
out[i] = x[i] >= y[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
|
||||
for i in 0..<N {
|
||||
out[i] = x[i] == y[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
not_equal_array :: proc(x, y: $A/[$N]$T) -> (out: [N]bool) where IS_ARRAY(A), IS_FLOAT(ELEM_TYPE(A)) {
|
||||
for i in 0..<N {
|
||||
out[i] = x[i] != y[i]
|
||||
@@ -530,6 +586,7 @@ greater_than_equal :: proc{greater_than_equal_single, greater_than_equal_array}
|
||||
equal :: proc{equal_single, equal_array}
|
||||
not_equal :: proc{not_equal_single, not_equal_array}
|
||||
|
||||
@(require_results)
|
||||
any :: proc(x: $A/[$N]bool) -> (out: bool) {
|
||||
for e in x {
|
||||
if e {
|
||||
@@ -538,6 +595,7 @@ any :: proc(x: $A/[$N]bool) -> (out: bool) {
|
||||
}
|
||||
return false
|
||||
}
|
||||
@(require_results)
|
||||
all :: proc(x: $A/[$N]bool) -> (out: bool) {
|
||||
for e in x {
|
||||
if !e {
|
||||
@@ -546,6 +604,7 @@ all :: proc(x: $A/[$N]bool) -> (out: bool) {
|
||||
}
|
||||
return true
|
||||
}
|
||||
@(require_results)
|
||||
not :: proc(x: $A/[$N]bool) -> (out: A) {
|
||||
for e, i in x {
|
||||
out[i] = !e
|
||||
|
||||
@@ -38,22 +38,27 @@ DEG_PER_RAD :: 360.0/TAU
|
||||
@private ELEM_TYPE :: intrinsics.type_elem_type
|
||||
|
||||
|
||||
@(require_results)
|
||||
scalar_dot :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
|
||||
return a * b
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector_dot :: proc(a, b: $T/[$N]$E) -> (c: E) where IS_NUMERIC(E) #no_bounds_check {
|
||||
for i in 0..<N {
|
||||
c += a[i] * b[i]
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
quaternion64_dot :: proc(a, b: $T/quaternion64) -> (c: f16) {
|
||||
return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
|
||||
}
|
||||
@(require_results)
|
||||
quaternion128_dot :: proc(a, b: $T/quaternion128) -> (c: f32) {
|
||||
return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
|
||||
}
|
||||
@(require_results)
|
||||
quaternion256_dot :: proc(a, b: $T/quaternion256) -> (c: f64) {
|
||||
return a.w*a.w + a.x*b.x + a.y*b.y + a.z*b.z
|
||||
}
|
||||
@@ -63,19 +68,23 @@ dot :: proc{scalar_dot, vector_dot, quaternion64_dot, quaternion128_dot, quatern
|
||||
inner_product :: dot
|
||||
outer_product :: builtin.outer_product
|
||||
|
||||
@(require_results)
|
||||
quaternion_inverse :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
return conj(q) * quaternion(1.0/dot(q, q), 0, 0, 0)
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
scalar_cross :: proc(a, b: $T) -> T where IS_FLOAT(T), !IS_ARRAY(T) {
|
||||
return a * b
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector_cross2 :: proc(a, b: $T/[2]$E) -> E where IS_NUMERIC(E) {
|
||||
return a[0]*b[1] - b[0]*a[1]
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
|
||||
c[0] = a[1]*b[2] - b[1]*a[2]
|
||||
c[1] = a[2]*b[0] - b[2]*a[0]
|
||||
@@ -83,6 +92,7 @@ vector_cross3 :: proc(a, b: $T/[3]$E) -> (c: T) where IS_NUMERIC(E) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
|
||||
q3.x = q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y
|
||||
q3.y = q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z
|
||||
@@ -94,18 +104,22 @@ quaternion_cross :: proc(q1, q2: $Q) -> (q3: Q) where IS_QUATERNION(Q) {
|
||||
vector_cross :: proc{scalar_cross, vector_cross2, vector_cross3}
|
||||
cross :: proc{scalar_cross, vector_cross2, vector_cross3, quaternion_cross}
|
||||
|
||||
@(require_results)
|
||||
vector_normalize :: proc(v: $T/[$N]$E) -> T where IS_FLOAT(E) {
|
||||
return v / length(v)
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_normalize :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
return q/abs(q)
|
||||
}
|
||||
normalize :: proc{vector_normalize, quaternion_normalize}
|
||||
|
||||
@(require_results)
|
||||
vector_normalize0 :: proc(v: $T/[$N]$E) -> T where IS_FLOAT(E) {
|
||||
m := length(v)
|
||||
return 0 if m == 0 else v/m
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
m := abs(q)
|
||||
return 0 if m == 0 else q/m
|
||||
@@ -113,22 +127,27 @@ quaternion_normalize0 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
normalize0 :: proc{vector_normalize0, quaternion_normalize0}
|
||||
|
||||
|
||||
@(require_results)
|
||||
vector_length :: proc(v: $T/[$N]$E) -> E where IS_FLOAT(E) {
|
||||
return math.sqrt(dot(v, v))
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector_length2 :: proc(v: $T/[$N]$E) -> E where IS_NUMERIC(E) {
|
||||
return dot(v, v)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_length :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
return abs(q)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_length2 :: proc(q: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
return dot(q, q)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
|
||||
// a . (b x c)
|
||||
// b . (c x a)
|
||||
@@ -136,6 +155,7 @@ scalar_triple_product :: proc(a, b, c: $T/[$N]$E) -> E where IS_NUMERIC(E) {
|
||||
return dot(a, cross(b, c))
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
|
||||
// a x (b x c)
|
||||
// (a . c)b - (a . b)c
|
||||
@@ -146,10 +166,12 @@ vector_triple_product :: proc(a, b, c: $T/[$N]$E) -> T where IS_NUMERIC(E) {
|
||||
length :: proc{vector_length, quaternion_length}
|
||||
length2 :: proc{vector_length2, quaternion_length2}
|
||||
|
||||
@(require_results)
|
||||
projection :: proc(x, normal: $T/[$N]$E) -> T where IS_NUMERIC(E) {
|
||||
return dot(x, normal) / dot(normal, normal) * normal
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
identity :: proc($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
|
||||
for i in 0..<N {
|
||||
m[i][i] = E(1)
|
||||
@@ -160,31 +182,37 @@ identity :: proc($T: typeid/[$N][N]$E) -> (m: T) #no_bounds_check {
|
||||
trace :: builtin.matrix_trace
|
||||
transpose :: builtin.transpose
|
||||
|
||||
@(require_results)
|
||||
matrix_mul :: proc(a, b: $M/matrix[$N, N]$E) -> (c: M)
|
||||
where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
|
||||
return a * b
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix_comp_mul :: proc(a, b: $M/matrix[$I, $J]$E) -> (c: M)
|
||||
where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
|
||||
return hadamard_product(a, b)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix_mul_differ :: proc(a: $A/matrix[$I, $J]$E, b: $B/matrix[J, $K]E) -> (c: matrix[I, K]E)
|
||||
where !IS_ARRAY(E), IS_NUMERIC(E), I != K #no_bounds_check {
|
||||
return a * b
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix_mul_vector :: proc(a: $A/matrix[$I, $J]$E, b: $B/[J]E) -> (c: B)
|
||||
where !IS_ARRAY(E), IS_NUMERIC(E) #no_bounds_check {
|
||||
return a * b
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_mul_quaternion :: proc(q1, q2: $Q) -> Q where IS_QUATERNION(Q) {
|
||||
return q1 * q2
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion64_mul_vector3 :: proc(q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
|
||||
Raw_Quaternion :: struct {xyz: [3]f16, r: f16}
|
||||
|
||||
@@ -194,6 +222,7 @@ quaternion64_mul_vector3 :: proc(q: $Q/quaternion64, v: $V/[3]$F/f16) -> V {
|
||||
t := cross(2*q.xyz, v)
|
||||
return V(v + q.r*t + cross(q.xyz, t))
|
||||
}
|
||||
@(require_results)
|
||||
quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
|
||||
Raw_Quaternion :: struct {xyz: [3]f32, r: f32}
|
||||
|
||||
@@ -203,6 +232,7 @@ quaternion128_mul_vector3 :: proc(q: $Q/quaternion128, v: $V/[3]$F/f32) -> V {
|
||||
t := cross(2*q.xyz, v)
|
||||
return V(v + q.r*t + cross(q.xyz, t))
|
||||
}
|
||||
@(require_results)
|
||||
quaternion256_mul_vector3 :: proc(q: $Q/quaternion256, v: $V/[3]$F/f64) -> V {
|
||||
Raw_Quaternion :: struct {xyz: [3]f64, r: f64}
|
||||
|
||||
@@ -224,9 +254,11 @@ mul :: proc{
|
||||
quaternion_mul_quaternion,
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector_to_ptr :: proc(v: ^$V/[$N]$E) -> ^E where IS_NUMERIC(E), N > 0 #no_bounds_check {
|
||||
return &v[0]
|
||||
}
|
||||
@(require_results)
|
||||
matrix_to_ptr :: proc(m: ^$A/matrix[$I, $J]$E) -> ^E where IS_NUMERIC(E), I > 0, J > 0 #no_bounds_check {
|
||||
return &m[0, 0]
|
||||
}
|
||||
@@ -239,6 +271,7 @@ to_ptr :: proc{vector_to_ptr, matrix_to_ptr}
|
||||
|
||||
// Splines
|
||||
|
||||
@(require_results)
|
||||
vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T {
|
||||
cos_alpha := dot(x, y)
|
||||
alpha := math.acos(cos_alpha)
|
||||
@@ -250,6 +283,7 @@ vector_slerp :: proc(x, y: $T/[$N]$E, a: E) -> T {
|
||||
return x * t1 + y * t2
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
|
||||
s2 := s*s
|
||||
s3 := s2*s
|
||||
@@ -262,6 +296,7 @@ catmull_rom :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
|
||||
return (f1 * v1 + f2 * v2 + f3 * v3 + f4 * v4) * 0.5
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
|
||||
s2 := s*s
|
||||
s3 := s2*s
|
||||
@@ -274,12 +309,14 @@ hermite :: proc(v1, t1, v2, t2: $T/[$N]$E, s: E) -> T {
|
||||
return f1 * v1 + f2 * v2 + f3 * t1 + f4 * t2
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
cubic :: proc(v1, v2, v3, v4: $T/[$N]$E, s: E) -> T {
|
||||
return ((v1 * s + v2) * s + v3) * s + v4
|
||||
}
|
||||
|
||||
|
||||
|
||||
@(require_results)
|
||||
array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bounds_check {
|
||||
for i in 0..<N {
|
||||
w[i] = Elem_Type(v[i])
|
||||
@@ -287,6 +324,7 @@ array_cast :: proc(v: $A/[$N]$T, $Elem_Type: typeid) -> (w: [N]Elem_Type) #no_bo
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix_cast :: proc(v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M, N]Elem_Type) #no_bounds_check {
|
||||
for j in 0..<N {
|
||||
for i in 0..<M {
|
||||
@@ -296,24 +334,24 @@ matrix_cast :: proc(v: $A/matrix[$M, $N]$T, $Elem_Type: typeid) -> (w: matrix[M,
|
||||
return
|
||||
}
|
||||
|
||||
to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
|
||||
to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
|
||||
@(require_results) to_f32 :: #force_inline proc(v: $A/[$N]$T) -> [N]f32 { return array_cast(v, f32) }
|
||||
@(require_results) to_f64 :: #force_inline proc(v: $A/[$N]$T) -> [N]f64 { return array_cast(v, f64) }
|
||||
|
||||
to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
|
||||
to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
|
||||
to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
|
||||
to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
|
||||
to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
|
||||
@(require_results) to_i8 :: #force_inline proc(v: $A/[$N]$T) -> [N]i8 { return array_cast(v, i8) }
|
||||
@(require_results) to_i16 :: #force_inline proc(v: $A/[$N]$T) -> [N]i16 { return array_cast(v, i16) }
|
||||
@(require_results) to_i32 :: #force_inline proc(v: $A/[$N]$T) -> [N]i32 { return array_cast(v, i32) }
|
||||
@(require_results) to_i64 :: #force_inline proc(v: $A/[$N]$T) -> [N]i64 { return array_cast(v, i64) }
|
||||
@(require_results) to_int :: #force_inline proc(v: $A/[$N]$T) -> [N]int { return array_cast(v, int) }
|
||||
|
||||
to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
|
||||
to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
|
||||
to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
|
||||
to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
|
||||
to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
|
||||
@(require_results) to_u8 :: #force_inline proc(v: $A/[$N]$T) -> [N]u8 { return array_cast(v, u8) }
|
||||
@(require_results) to_u16 :: #force_inline proc(v: $A/[$N]$T) -> [N]u16 { return array_cast(v, u16) }
|
||||
@(require_results) to_u32 :: #force_inline proc(v: $A/[$N]$T) -> [N]u32 { return array_cast(v, u32) }
|
||||
@(require_results) to_u64 :: #force_inline proc(v: $A/[$N]$T) -> [N]u64 { return array_cast(v, u64) }
|
||||
@(require_results) to_uint :: #force_inline proc(v: $A/[$N]$T) -> [N]uint { return array_cast(v, uint) }
|
||||
|
||||
to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
|
||||
to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
|
||||
to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
|
||||
to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
|
||||
to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
|
||||
to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }
|
||||
@(require_results) to_complex32 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex32 { return array_cast(v, complex32) }
|
||||
@(require_results) to_complex64 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex64 { return array_cast(v, complex64) }
|
||||
@(require_results) to_complex128 :: #force_inline proc(v: $A/[$N]$T) -> [N]complex128 { return array_cast(v, complex128) }
|
||||
@(require_results) to_quaternion64 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion64 { return array_cast(v, quaternion64) }
|
||||
@(require_results) to_quaternion128 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion128 { return array_cast(v, quaternion128) }
|
||||
@(require_results) to_quaternion256 :: #force_inline proc(v: $A/[$N]$T) -> [N]quaternion256 { return array_cast(v, quaternion256) }
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -2,6 +2,7 @@ package linalg
|
||||
|
||||
import "core:math"
|
||||
|
||||
@(require_results)
|
||||
euler_angles_from_matrix3_f16 :: proc(m: Matrix3f16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix3(m)
|
||||
@@ -19,6 +20,7 @@ euler_angles_from_matrix3_f16 :: proc(m: Matrix3f16, order: Euler_Angle_Order) -
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_from_matrix4_f16 :: proc(m: Matrix4f16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m)
|
||||
@@ -36,6 +38,7 @@ euler_angles_from_matrix4_f16 :: proc(m: Matrix4f16, order: Euler_Angle_Order) -
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_from_quaternion_f16 :: proc(m: Quaternionf16, order: Euler_Angle_Order) -> (t1, t2, t3: f16) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m)
|
||||
@@ -54,6 +57,7 @@ euler_angles_from_quaternion_f16 :: proc(m: Quaternionf16, order: Euler_Angle_Or
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> (m: Matrix3f16) {
|
||||
switch order {
|
||||
case .XYZ: return matrix3_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
||||
@@ -71,6 +75,7 @@ matrix3_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order)
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> (m: Matrix4f16) {
|
||||
switch order {
|
||||
case .XYZ: return matrix4_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
||||
@@ -89,6 +94,7 @@ matrix4_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order)
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Order) -> Quaternionf16 {
|
||||
X :: quaternion_from_euler_angle_x
|
||||
Y :: quaternion_from_euler_angle_y
|
||||
@@ -117,16 +123,20 @@ quaternion_from_euler_angles_f16 :: proc(t1, t2, t3: f16, order: Euler_Angle_Ord
|
||||
|
||||
// Quaternionf16s
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (q: Quaternionf16) {
|
||||
return quaternion_angle_axis_f16(angle_x, {1, 0, 0})
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (q: Quaternionf16) {
|
||||
return quaternion_angle_axis_f16(angle_y, {0, 1, 0})
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (q: Quaternionf16) {
|
||||
return quaternion_angle_axis_f16(angle_z, {0, 0, 1})
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_pitch_yaw_roll_f16 :: proc(pitch, yaw, roll: f16) -> Quaternionf16 {
|
||||
a, b, c := pitch, yaw, roll
|
||||
|
||||
@@ -142,10 +152,12 @@ quaternion_from_pitch_yaw_roll_f16 :: proc(pitch, yaw, roll: f16) -> Quaternionf
|
||||
return q
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
||||
return math.atan2(2 * q.x*q.y + q.w*q.z, q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
pitch_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
||||
y := 2 * (q.y*q.z + q.w*q.w)
|
||||
x := q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z
|
||||
@@ -157,11 +169,13 @@ pitch_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
||||
return math.atan2(y, x)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
yaw_from_quaternion_f16 :: proc(q: Quaternionf16) -> f16 {
|
||||
return math.asin(clamp(-2 * (q.x*q.z - q.w*q.y), -1, 1))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
pitch_yaw_roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> (pitch, yaw, roll: f16) {
|
||||
pitch = pitch_from_quaternion(q)
|
||||
yaw = yaw_from_quaternion(q)
|
||||
@@ -169,39 +183,51 @@ pitch_yaw_roll_from_quaternion_f16 :: proc(q: Quaternionf16) -> (pitch, yaw, rol
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_xyz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_yxz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_xzx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_xyx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_yxy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_yzy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_zyz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_zxz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_xzy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_yzx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_zyx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f16) {
|
||||
return euler_angles_zxy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@@ -210,6 +236,7 @@ euler_angles_zxy_from_quaternion_f16 :: proc(q: Quaternionf16) -> (t1, t2, t3: f
|
||||
// Matrix3
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix3f16) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
m[0, 0] = 1
|
||||
@@ -219,6 +246,7 @@ matrix3_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix3f16) {
|
||||
m[2, 2] = +cos_x
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix3f16) {
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
m[0, 0] = +cos_y
|
||||
@@ -228,6 +256,7 @@ matrix3_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix3f16) {
|
||||
m[2, 2] = +cos_y
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix3f16) {
|
||||
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
|
||||
m[0, 0] = +cos_z
|
||||
@@ -239,6 +268,7 @@ matrix3_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix3f16) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x: f16) -> (m: Matrix3f16) {
|
||||
cos_x := math.cos(angle_x) * angular_velocity_x
|
||||
sin_x := math.sin(angle_x) * angular_velocity_x
|
||||
@@ -249,6 +279,7 @@ matrix3_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x:
|
||||
m[2, 2] = +cos_x
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y: f16) -> (m: Matrix3f16) {
|
||||
cos_y := math.cos(angle_y) * angular_velocity_y
|
||||
sin_y := math.sin(angle_y) * angular_velocity_y
|
||||
@@ -259,6 +290,7 @@ matrix3_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y:
|
||||
m[2, 2] = +cos_y
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z: f16) -> (m: Matrix3f16) {
|
||||
cos_z := math.cos(angle_z) * angular_velocity_z
|
||||
sin_z := math.sin(angle_z) * angular_velocity_z
|
||||
@@ -271,6 +303,7 @@ matrix3_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z:
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix3f16) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -286,6 +319,7 @@ matrix3_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix3f1
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix3f16) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -300,20 +334,25 @@ matrix3_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix3f1
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xz_f16 :: proc(angle_x, angle_z: f16) -> (m: Matrix3f16) {
|
||||
return mul(matrix3_from_euler_angle_x(angle_x), matrix3_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zx_f16 :: proc(angle_z, angle_x: f16) -> (m: Matrix3f16) {
|
||||
return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_x(angle_x))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yz_f16 :: proc(angle_y, angle_z: f16) -> (m: Matrix3f16) {
|
||||
return mul(matrix3_from_euler_angle_y(angle_y), matrix3_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zy_f16 :: proc(angle_z, angle_y: f16) -> (m: Matrix3f16) {
|
||||
return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_y(angle_y))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(-t1)
|
||||
c2 := math.cos(-t2)
|
||||
@@ -334,6 +373,7 @@ matrix3_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -354,6 +394,7 @@ matrix3_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -374,6 +415,7 @@ matrix3_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -394,6 +436,7 @@ matrix3_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -414,6 +457,7 @@ matrix3_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -434,6 +478,7 @@ matrix3_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -454,6 +499,7 @@ matrix3_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -475,6 +521,7 @@ matrix3_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -495,6 +542,7 @@ matrix3_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -515,6 +563,7 @@ matrix3_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -535,6 +584,7 @@ matrix3_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -556,6 +606,7 @@ matrix3_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix3f16) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -576,6 +627,7 @@ matrix3_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix3f16
|
||||
return m
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
|
||||
@@ -589,6 +641,7 @@ euler_angles_xyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[0, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
|
||||
@@ -602,6 +655,7 @@ euler_angles_yxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[2, 0], m[1, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -615,6 +669,7 @@ euler_angles_xzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 0], -m[2, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -628,6 +683,7 @@ euler_angles_xyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[0, 1], m[2, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -641,6 +697,7 @@ euler_angles_yxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[2, 1], -m[0, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -653,6 +710,7 @@ euler_angles_yzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
t3 = T3
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 2], m[0, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -666,6 +724,7 @@ euler_angles_zyz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[0, 2], -m[1, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -679,6 +738,7 @@ euler_angles_zxz_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[2, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
|
||||
@@ -692,6 +752,7 @@ euler_angles_xzy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(-m[2, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
|
||||
@@ -705,6 +766,7 @@ euler_angles_yzx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
|
||||
@@ -718,6 +780,7 @@ euler_angles_zyx_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(-m[0, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
|
||||
@@ -735,6 +798,7 @@ euler_angles_zxy_from_matrix3_f16 :: proc(m: Matrix3f16) -> (t1, t2, t3: f16) {
|
||||
// Matrix4
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix4f16) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
m[0, 0] = 1
|
||||
@@ -745,6 +809,7 @@ matrix4_from_euler_angle_x_f16 :: proc(angle_x: f16) -> (m: Matrix4f16) {
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix4f16) {
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
m[0, 0] = +cos_y
|
||||
@@ -755,6 +820,7 @@ matrix4_from_euler_angle_y_f16 :: proc(angle_y: f16) -> (m: Matrix4f16) {
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix4f16) {
|
||||
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
|
||||
m[0, 0] = +cos_z
|
||||
@@ -767,6 +833,7 @@ matrix4_from_euler_angle_z_f16 :: proc(angle_z: f16) -> (m: Matrix4f16) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x: f16) -> (m: Matrix4f16) {
|
||||
cos_x := math.cos(angle_x) * angular_velocity_x
|
||||
sin_x := math.sin(angle_x) * angular_velocity_x
|
||||
@@ -778,6 +845,7 @@ matrix4_from_derived_euler_angle_x_f16 :: proc(angle_x: f16, angular_velocity_x:
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y: f16) -> (m: Matrix4f16) {
|
||||
cos_y := math.cos(angle_y) * angular_velocity_y
|
||||
sin_y := math.sin(angle_y) * angular_velocity_y
|
||||
@@ -789,6 +857,7 @@ matrix4_from_derived_euler_angle_y_f16 :: proc(angle_y: f16, angular_velocity_y:
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z: f16) -> (m: Matrix4f16) {
|
||||
cos_z := math.cos(angle_z) * angular_velocity_z
|
||||
sin_z := math.sin(angle_z) * angular_velocity_z
|
||||
@@ -802,6 +871,7 @@ matrix4_from_derived_euler_angle_z_f16 :: proc(angle_z: f16, angular_velocity_z:
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix4f16) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -818,6 +888,7 @@ matrix4_from_euler_angles_xy_f16 :: proc(angle_x, angle_y: f16) -> (m: Matrix4f1
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix4f16) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -833,20 +904,25 @@ matrix4_from_euler_angles_yx_f16 :: proc(angle_y, angle_x: f16) -> (m: Matrix4f1
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xz_f16 :: proc(angle_x, angle_z: f16) -> (m: Matrix4f16) {
|
||||
return mul(matrix4_from_euler_angle_x(angle_x), matrix4_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zx_f16 :: proc(angle_z, angle_x: f16) -> (m: Matrix4f16) {
|
||||
return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_x(angle_x))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yz_f16 :: proc(angle_y, angle_z: f16) -> (m: Matrix4f16) {
|
||||
return mul(matrix4_from_euler_angle_y(angle_y), matrix4_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zy_f16 :: proc(angle_z, angle_y: f16) -> (m: Matrix4f16) {
|
||||
return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_y(angle_y))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(-t1)
|
||||
c2 := math.cos(-t2)
|
||||
@@ -874,6 +950,7 @@ matrix4_from_euler_angles_xyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -901,6 +978,7 @@ matrix4_from_euler_angles_yxz_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -928,6 +1006,7 @@ matrix4_from_euler_angles_xzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -955,6 +1034,7 @@ matrix4_from_euler_angles_xyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -982,6 +1062,7 @@ matrix4_from_euler_angles_yxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1009,6 +1090,7 @@ matrix4_from_euler_angles_yzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1036,6 +1118,7 @@ matrix4_from_euler_angles_zyz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1064,6 +1147,7 @@ matrix4_from_euler_angles_zxz_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1091,6 +1175,7 @@ matrix4_from_euler_angles_xzy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1118,6 +1203,7 @@ matrix4_from_euler_angles_yzx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1145,6 +1231,7 @@ matrix4_from_euler_angles_zyx_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1173,6 +1260,7 @@ matrix4_from_euler_angles_zxy_f16 :: proc(t1, t2, t3: f16) -> (m: Matrix4f16) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -1200,6 +1288,7 @@ matrix4_from_yaw_pitch_roll_f16 :: proc(yaw, pitch, roll: f16) -> (m: Matrix4f16
|
||||
return m
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
|
||||
@@ -1213,6 +1302,7 @@ euler_angles_xyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[0, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
|
||||
@@ -1226,6 +1316,7 @@ euler_angles_yxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[2, 0], m[1, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -1239,6 +1330,7 @@ euler_angles_xzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 0], -m[2, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -1252,6 +1344,7 @@ euler_angles_xyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[0, 1], m[2, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -1265,6 +1358,7 @@ euler_angles_yxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[2, 1], -m[0, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -1277,6 +1371,7 @@ euler_angles_yzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
t3 = T3
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 2], m[0, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -1290,6 +1385,7 @@ euler_angles_zyz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[0, 2], -m[1, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -1303,6 +1399,7 @@ euler_angles_zxz_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[2, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
|
||||
@@ -1316,6 +1413,7 @@ euler_angles_xzy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(-m[2, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
|
||||
@@ -1329,6 +1427,7 @@ euler_angles_yzx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(m[1, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
|
||||
@@ -1342,6 +1441,7 @@ euler_angles_zyx_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_matrix4_f16 :: proc(m: Matrix4f16) -> (t1, t2, t3: f16) {
|
||||
T1 := math.atan2(-m[0, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
|
||||
|
||||
@@ -2,6 +2,7 @@ package linalg
|
||||
|
||||
import "core:math"
|
||||
|
||||
@(require_results)
|
||||
euler_angles_from_matrix3_f32 :: proc(m: Matrix3f32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix3(m)
|
||||
@@ -19,6 +20,7 @@ euler_angles_from_matrix3_f32 :: proc(m: Matrix3f32, order: Euler_Angle_Order) -
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_from_matrix4_f32 :: proc(m: Matrix4f32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m)
|
||||
@@ -36,6 +38,7 @@ euler_angles_from_matrix4_f32 :: proc(m: Matrix4f32, order: Euler_Angle_Order) -
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_from_quaternion_f32 :: proc(m: Quaternionf32, order: Euler_Angle_Order) -> (t1, t2, t3: f32) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m)
|
||||
@@ -54,6 +57,7 @@ euler_angles_from_quaternion_f32 :: proc(m: Quaternionf32, order: Euler_Angle_Or
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order) -> (m: Matrix3f32) {
|
||||
switch order {
|
||||
case .XYZ: return matrix3_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
||||
@@ -71,6 +75,7 @@ matrix3_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order)
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order) -> (m: Matrix4f32) {
|
||||
switch order {
|
||||
case .XYZ: return matrix4_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
||||
@@ -89,6 +94,7 @@ matrix4_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order)
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Order) -> Quaternionf32 {
|
||||
X :: quaternion_from_euler_angle_x
|
||||
Y :: quaternion_from_euler_angle_y
|
||||
@@ -117,16 +123,20 @@ quaternion_from_euler_angles_f32 :: proc(t1, t2, t3: f32, order: Euler_Angle_Ord
|
||||
|
||||
// Quaternionf32s
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (q: Quaternionf32) {
|
||||
return quaternion_angle_axis_f32(angle_x, {1, 0, 0})
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_y_f32 :: proc(angle_y: f32) -> (q: Quaternionf32) {
|
||||
return quaternion_angle_axis_f32(angle_y, {0, 1, 0})
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_z_f32 :: proc(angle_z: f32) -> (q: Quaternionf32) {
|
||||
return quaternion_angle_axis_f32(angle_z, {0, 0, 1})
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_pitch_yaw_roll_f32 :: proc(pitch, yaw, roll: f32) -> Quaternionf32 {
|
||||
a, b, c := pitch, yaw, roll
|
||||
|
||||
@@ -142,10 +152,12 @@ quaternion_from_pitch_yaw_roll_f32 :: proc(pitch, yaw, roll: f32) -> Quaternionf
|
||||
return q
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
roll_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 {
|
||||
return math.atan2(2 * q.x*q.y + q.w*q.z, q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
pitch_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 {
|
||||
y := 2 * (q.y*q.z + q.w*q.w)
|
||||
x := q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z
|
||||
@@ -157,11 +169,13 @@ pitch_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 {
|
||||
return math.atan2(y, x)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
yaw_from_quaternion_f32 :: proc(q: Quaternionf32) -> f32 {
|
||||
return math.asin(clamp(-2 * (q.x*q.z - q.w*q.y), -1, 1))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
pitch_yaw_roll_from_quaternion_f32 :: proc(q: Quaternionf32) -> (pitch, yaw, roll: f32) {
|
||||
pitch = pitch_from_quaternion(q)
|
||||
yaw = yaw_from_quaternion(q)
|
||||
@@ -169,39 +183,51 @@ pitch_yaw_roll_from_quaternion_f32 :: proc(q: Quaternionf32) -> (pitch, yaw, rol
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_xyz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_yxz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_xzx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_xyx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_yxy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_yzy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_zyz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_zxz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_xzy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_yzx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_zyx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f32) {
|
||||
return euler_angles_zxy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@@ -210,6 +236,7 @@ euler_angles_zxy_from_quaternion_f32 :: proc(q: Quaternionf32) -> (t1, t2, t3: f
|
||||
// Matrix3
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix3f32) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
m[0, 0] = 1
|
||||
@@ -219,6 +246,7 @@ matrix3_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix3f32) {
|
||||
m[2, 2] = +cos_x
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_y_f32 :: proc(angle_y: f32) -> (m: Matrix3f32) {
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
m[0, 0] = +cos_y
|
||||
@@ -228,6 +256,7 @@ matrix3_from_euler_angle_y_f32 :: proc(angle_y: f32) -> (m: Matrix3f32) {
|
||||
m[2, 2] = +cos_y
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_z_f32 :: proc(angle_z: f32) -> (m: Matrix3f32) {
|
||||
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
|
||||
m[0, 0] = +cos_z
|
||||
@@ -239,6 +268,7 @@ matrix3_from_euler_angle_z_f32 :: proc(angle_z: f32) -> (m: Matrix3f32) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_x_f32 :: proc(angle_x: f32, angular_velocity_x: f32) -> (m: Matrix3f32) {
|
||||
cos_x := math.cos(angle_x) * angular_velocity_x
|
||||
sin_x := math.sin(angle_x) * angular_velocity_x
|
||||
@@ -249,6 +279,7 @@ matrix3_from_derived_euler_angle_x_f32 :: proc(angle_x: f32, angular_velocity_x:
|
||||
m[2, 2] = +cos_x
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_y_f32 :: proc(angle_y: f32, angular_velocity_y: f32) -> (m: Matrix3f32) {
|
||||
cos_y := math.cos(angle_y) * angular_velocity_y
|
||||
sin_y := math.sin(angle_y) * angular_velocity_y
|
||||
@@ -259,6 +290,7 @@ matrix3_from_derived_euler_angle_y_f32 :: proc(angle_y: f32, angular_velocity_y:
|
||||
m[2, 2] = +cos_y
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_z_f32 :: proc(angle_z: f32, angular_velocity_z: f32) -> (m: Matrix3f32) {
|
||||
cos_z := math.cos(angle_z) * angular_velocity_z
|
||||
sin_z := math.sin(angle_z) * angular_velocity_z
|
||||
@@ -271,6 +303,7 @@ matrix3_from_derived_euler_angle_z_f32 :: proc(angle_z: f32, angular_velocity_z:
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xy_f32 :: proc(angle_x, angle_y: f32) -> (m: Matrix3f32) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -286,6 +319,7 @@ matrix3_from_euler_angles_xy_f32 :: proc(angle_x, angle_y: f32) -> (m: Matrix3f3
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yx_f32 :: proc(angle_y, angle_x: f32) -> (m: Matrix3f32) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -300,20 +334,25 @@ matrix3_from_euler_angles_yx_f32 :: proc(angle_y, angle_x: f32) -> (m: Matrix3f3
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xz_f32 :: proc(angle_x, angle_z: f32) -> (m: Matrix3f32) {
|
||||
return mul(matrix3_from_euler_angle_x(angle_x), matrix3_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zx_f32 :: proc(angle_z, angle_x: f32) -> (m: Matrix3f32) {
|
||||
return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_x(angle_x))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yz_f32 :: proc(angle_y, angle_z: f32) -> (m: Matrix3f32) {
|
||||
return mul(matrix3_from_euler_angle_y(angle_y), matrix3_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zy_f32 :: proc(angle_z, angle_y: f32) -> (m: Matrix3f32) {
|
||||
return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_y(angle_y))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(-t1)
|
||||
c2 := math.cos(-t2)
|
||||
@@ -334,6 +373,7 @@ matrix3_from_euler_angles_xyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yxz_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix3f32) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -354,6 +394,7 @@ matrix3_from_euler_angles_yxz_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix3f
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -374,6 +415,7 @@ matrix3_from_euler_angles_xzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -394,6 +436,7 @@ matrix3_from_euler_angles_xyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -414,6 +457,7 @@ matrix3_from_euler_angles_yxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -434,6 +478,7 @@ matrix3_from_euler_angles_yzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -454,6 +499,7 @@ matrix3_from_euler_angles_zyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zxz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -475,6 +521,7 @@ matrix3_from_euler_angles_zxz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -495,6 +542,7 @@ matrix3_from_euler_angles_xzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -515,6 +563,7 @@ matrix3_from_euler_angles_yzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -535,6 +584,7 @@ matrix3_from_euler_angles_zyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -556,6 +606,7 @@ matrix3_from_euler_angles_zxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix3f32) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_yaw_pitch_roll_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix3f32) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -576,6 +627,7 @@ matrix3_from_yaw_pitch_roll_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix3f32
|
||||
return m
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
|
||||
@@ -589,6 +641,7 @@ euler_angles_xyz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[0, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
|
||||
@@ -602,6 +655,7 @@ euler_angles_yxz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[2, 0], m[1, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -615,6 +669,7 @@ euler_angles_xzx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 0], -m[2, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -628,6 +683,7 @@ euler_angles_xyx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[0, 1], m[2, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -641,6 +697,7 @@ euler_angles_yxy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[2, 1], -m[0, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -653,6 +710,7 @@ euler_angles_yzy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
t3 = T3
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 2], m[0, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -666,6 +724,7 @@ euler_angles_zyz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[0, 2], -m[1, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -679,6 +738,7 @@ euler_angles_zxz_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[2, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
|
||||
@@ -692,6 +752,7 @@ euler_angles_xzy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(-m[2, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
|
||||
@@ -705,6 +766,7 @@ euler_angles_yzx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
|
||||
@@ -718,6 +780,7 @@ euler_angles_zyx_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(-m[0, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
|
||||
@@ -735,6 +798,7 @@ euler_angles_zxy_from_matrix3_f32 :: proc(m: Matrix3f32) -> (t1, t2, t3: f32) {
|
||||
// Matrix4
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix4f32) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
m[0, 0] = 1
|
||||
@@ -745,6 +809,7 @@ matrix4_from_euler_angle_x_f32 :: proc(angle_x: f32) -> (m: Matrix4f32) {
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_y_f32 :: proc(angle_y: f32) -> (m: Matrix4f32) {
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
m[0, 0] = +cos_y
|
||||
@@ -755,6 +820,7 @@ matrix4_from_euler_angle_y_f32 :: proc(angle_y: f32) -> (m: Matrix4f32) {
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_z_f32 :: proc(angle_z: f32) -> (m: Matrix4f32) {
|
||||
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
|
||||
m[0, 0] = +cos_z
|
||||
@@ -767,6 +833,7 @@ matrix4_from_euler_angle_z_f32 :: proc(angle_z: f32) -> (m: Matrix4f32) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_x_f32 :: proc(angle_x: f32, angular_velocity_x: f32) -> (m: Matrix4f32) {
|
||||
cos_x := math.cos(angle_x) * angular_velocity_x
|
||||
sin_x := math.sin(angle_x) * angular_velocity_x
|
||||
@@ -778,6 +845,7 @@ matrix4_from_derived_euler_angle_x_f32 :: proc(angle_x: f32, angular_velocity_x:
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_y_f32 :: proc(angle_y: f32, angular_velocity_y: f32) -> (m: Matrix4f32) {
|
||||
cos_y := math.cos(angle_y) * angular_velocity_y
|
||||
sin_y := math.sin(angle_y) * angular_velocity_y
|
||||
@@ -789,6 +857,7 @@ matrix4_from_derived_euler_angle_y_f32 :: proc(angle_y: f32, angular_velocity_y:
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_z_f32 :: proc(angle_z: f32, angular_velocity_z: f32) -> (m: Matrix4f32) {
|
||||
cos_z := math.cos(angle_z) * angular_velocity_z
|
||||
sin_z := math.sin(angle_z) * angular_velocity_z
|
||||
@@ -802,6 +871,7 @@ matrix4_from_derived_euler_angle_z_f32 :: proc(angle_z: f32, angular_velocity_z:
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xy_f32 :: proc(angle_x, angle_y: f32) -> (m: Matrix4f32) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -818,6 +888,7 @@ matrix4_from_euler_angles_xy_f32 :: proc(angle_x, angle_y: f32) -> (m: Matrix4f3
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yx_f32 :: proc(angle_y, angle_x: f32) -> (m: Matrix4f32) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -833,20 +904,25 @@ matrix4_from_euler_angles_yx_f32 :: proc(angle_y, angle_x: f32) -> (m: Matrix4f3
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xz_f32 :: proc(angle_x, angle_z: f32) -> (m: Matrix4f32) {
|
||||
return mul(matrix4_from_euler_angle_x(angle_x), matrix4_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zx_f32 :: proc(angle_z, angle_x: f32) -> (m: Matrix4f32) {
|
||||
return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_x(angle_x))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yz_f32 :: proc(angle_y, angle_z: f32) -> (m: Matrix4f32) {
|
||||
return mul(matrix4_from_euler_angle_y(angle_y), matrix4_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zy_f32 :: proc(angle_z, angle_y: f32) -> (m: Matrix4f32) {
|
||||
return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_y(angle_y))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(-t1)
|
||||
c2 := math.cos(-t2)
|
||||
@@ -874,6 +950,7 @@ matrix4_from_euler_angles_xyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yxz_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix4f32) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -901,6 +978,7 @@ matrix4_from_euler_angles_yxz_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix4f
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -928,6 +1006,7 @@ matrix4_from_euler_angles_xzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -955,6 +1034,7 @@ matrix4_from_euler_angles_xyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -982,6 +1062,7 @@ matrix4_from_euler_angles_yxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1009,6 +1090,7 @@ matrix4_from_euler_angles_yzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1036,6 +1118,7 @@ matrix4_from_euler_angles_zyz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zxz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1064,6 +1147,7 @@ matrix4_from_euler_angles_zxz_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1091,6 +1175,7 @@ matrix4_from_euler_angles_xzy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1118,6 +1203,7 @@ matrix4_from_euler_angles_yzx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1145,6 +1231,7 @@ matrix4_from_euler_angles_zyx_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1173,6 +1260,7 @@ matrix4_from_euler_angles_zxy_f32 :: proc(t1, t2, t3: f32) -> (m: Matrix4f32) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_yaw_pitch_roll_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix4f32) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -1200,6 +1288,7 @@ matrix4_from_yaw_pitch_roll_f32 :: proc(yaw, pitch, roll: f32) -> (m: Matrix4f32
|
||||
return m
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
|
||||
@@ -1213,6 +1302,7 @@ euler_angles_xyz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[0, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
|
||||
@@ -1226,6 +1316,7 @@ euler_angles_yxz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[2, 0], m[1, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -1239,6 +1330,7 @@ euler_angles_xzx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 0], -m[2, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -1252,6 +1344,7 @@ euler_angles_xyx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[0, 1], m[2, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -1265,6 +1358,7 @@ euler_angles_yxy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[2, 1], -m[0, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -1277,6 +1371,7 @@ euler_angles_yzy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
t3 = T3
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 2], m[0, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -1290,6 +1385,7 @@ euler_angles_zyz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[0, 2], -m[1, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -1303,6 +1399,7 @@ euler_angles_zxz_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[2, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
|
||||
@@ -1316,6 +1413,7 @@ euler_angles_xzy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(-m[2, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
|
||||
@@ -1329,6 +1427,7 @@ euler_angles_yzx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(m[1, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
|
||||
@@ -1342,6 +1441,7 @@ euler_angles_zyx_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_matrix4_f32 :: proc(m: Matrix4f32) -> (t1, t2, t3: f32) {
|
||||
T1 := math.atan2(-m[0, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
|
||||
|
||||
@@ -2,6 +2,7 @@ package linalg
|
||||
|
||||
import "core:math"
|
||||
|
||||
@(require_results)
|
||||
euler_angles_from_matrix3_f64 :: proc(m: Matrix3f64, order: Euler_Angle_Order) -> (t1, t2, t3: f64) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix3(m)
|
||||
@@ -19,6 +20,7 @@ euler_angles_from_matrix3_f64 :: proc(m: Matrix3f64, order: Euler_Angle_Order) -
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_from_matrix4_f64 :: proc(m: Matrix4f64, order: Euler_Angle_Order) -> (t1, t2, t3: f64) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_matrix4(m)
|
||||
@@ -36,6 +38,7 @@ euler_angles_from_matrix4_f64 :: proc(m: Matrix4f64, order: Euler_Angle_Order) -
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_from_quaternion_f64 :: proc(m: Quaternionf64, order: Euler_Angle_Order) -> (t1, t2, t3: f64) {
|
||||
switch order {
|
||||
case .XYZ: t1, t2, t3 = euler_angles_xyz_from_quaternion(m)
|
||||
@@ -54,6 +57,7 @@ euler_angles_from_quaternion_f64 :: proc(m: Quaternionf64, order: Euler_Angle_Or
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_f64 :: proc(t1, t2, t3: f64, order: Euler_Angle_Order) -> (m: Matrix3f64) {
|
||||
switch order {
|
||||
case .XYZ: return matrix3_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
||||
@@ -71,6 +75,7 @@ matrix3_from_euler_angles_f64 :: proc(t1, t2, t3: f64, order: Euler_Angle_Order)
|
||||
}
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_f64 :: proc(t1, t2, t3: f64, order: Euler_Angle_Order) -> (m: Matrix4f64) {
|
||||
switch order {
|
||||
case .XYZ: return matrix4_from_euler_angles_xyz(t1, t2, t3) // m1, m2, m3 = X(t1), Y(t2), Z(t3);
|
||||
@@ -89,6 +94,7 @@ matrix4_from_euler_angles_f64 :: proc(t1, t2, t3: f64, order: Euler_Angle_Order)
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_euler_angles_f64 :: proc(t1, t2, t3: f64, order: Euler_Angle_Order) -> Quaternionf64 {
|
||||
X :: quaternion_from_euler_angle_x
|
||||
Y :: quaternion_from_euler_angle_y
|
||||
@@ -117,16 +123,20 @@ quaternion_from_euler_angles_f64 :: proc(t1, t2, t3: f64, order: Euler_Angle_Ord
|
||||
|
||||
// Quaternionf64s
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_x_f64 :: proc(angle_x: f64) -> (q: Quaternionf64) {
|
||||
return quaternion_angle_axis_f64(angle_x, {1, 0, 0})
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_y_f64 :: proc(angle_y: f64) -> (q: Quaternionf64) {
|
||||
return quaternion_angle_axis_f64(angle_y, {0, 1, 0})
|
||||
}
|
||||
@(require_results)
|
||||
quaternion_from_euler_angle_z_f64 :: proc(angle_z: f64) -> (q: Quaternionf64) {
|
||||
return quaternion_angle_axis_f64(angle_z, {0, 0, 1})
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
quaternion_from_pitch_yaw_roll_f64 :: proc(pitch, yaw, roll: f64) -> Quaternionf64 {
|
||||
a, b, c := pitch, yaw, roll
|
||||
|
||||
@@ -142,10 +152,12 @@ quaternion_from_pitch_yaw_roll_f64 :: proc(pitch, yaw, roll: f64) -> Quaternionf
|
||||
return q
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
roll_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 {
|
||||
return math.atan2(2 * q.x*q.y + q.w*q.z, q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
pitch_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 {
|
||||
y := 2 * (q.y*q.z + q.w*q.w)
|
||||
x := q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z
|
||||
@@ -157,11 +169,13 @@ pitch_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 {
|
||||
return math.atan2(y, x)
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
yaw_from_quaternion_f64 :: proc(q: Quaternionf64) -> f64 {
|
||||
return math.asin(clamp(-2 * (q.x*q.z - q.w*q.y), -1, 1))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
pitch_yaw_roll_from_quaternion_f64 :: proc(q: Quaternionf64) -> (pitch, yaw, roll: f64) {
|
||||
pitch = pitch_from_quaternion(q)
|
||||
yaw = yaw_from_quaternion(q)
|
||||
@@ -169,39 +183,51 @@ pitch_yaw_roll_from_quaternion_f64 :: proc(q: Quaternionf64) -> (pitch, yaw, rol
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_xyz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_yxz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_xzx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_xyx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_yxy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_yzy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_zyz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_zxz_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_xzy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_yzx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_zyx_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f64) {
|
||||
return euler_angles_zxy_from_matrix4(matrix4_from_quaternion(q))
|
||||
}
|
||||
@@ -210,6 +236,7 @@ euler_angles_zxy_from_quaternion_f64 :: proc(q: Quaternionf64) -> (t1, t2, t3: f
|
||||
// Matrix3
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_x_f64 :: proc(angle_x: f64) -> (m: Matrix3f64) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
m[0, 0] = 1
|
||||
@@ -219,6 +246,7 @@ matrix3_from_euler_angle_x_f64 :: proc(angle_x: f64) -> (m: Matrix3f64) {
|
||||
m[2, 2] = +cos_x
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_y_f64 :: proc(angle_y: f64) -> (m: Matrix3f64) {
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
m[0, 0] = +cos_y
|
||||
@@ -228,6 +256,7 @@ matrix3_from_euler_angle_y_f64 :: proc(angle_y: f64) -> (m: Matrix3f64) {
|
||||
m[2, 2] = +cos_y
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angle_z_f64 :: proc(angle_z: f64) -> (m: Matrix3f64) {
|
||||
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
|
||||
m[0, 0] = +cos_z
|
||||
@@ -239,6 +268,7 @@ matrix3_from_euler_angle_z_f64 :: proc(angle_z: f64) -> (m: Matrix3f64) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_x_f64 :: proc(angle_x: f64, angular_velocity_x: f64) -> (m: Matrix3f64) {
|
||||
cos_x := math.cos(angle_x) * angular_velocity_x
|
||||
sin_x := math.sin(angle_x) * angular_velocity_x
|
||||
@@ -249,6 +279,7 @@ matrix3_from_derived_euler_angle_x_f64 :: proc(angle_x: f64, angular_velocity_x:
|
||||
m[2, 2] = +cos_x
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_y_f64 :: proc(angle_y: f64, angular_velocity_y: f64) -> (m: Matrix3f64) {
|
||||
cos_y := math.cos(angle_y) * angular_velocity_y
|
||||
sin_y := math.sin(angle_y) * angular_velocity_y
|
||||
@@ -259,6 +290,7 @@ matrix3_from_derived_euler_angle_y_f64 :: proc(angle_y: f64, angular_velocity_y:
|
||||
m[2, 2] = +cos_y
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_derived_euler_angle_z_f64 :: proc(angle_z: f64, angular_velocity_z: f64) -> (m: Matrix3f64) {
|
||||
cos_z := math.cos(angle_z) * angular_velocity_z
|
||||
sin_z := math.sin(angle_z) * angular_velocity_z
|
||||
@@ -271,6 +303,7 @@ matrix3_from_derived_euler_angle_z_f64 :: proc(angle_z: f64, angular_velocity_z:
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xy_f64 :: proc(angle_x, angle_y: f64) -> (m: Matrix3f64) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -286,6 +319,7 @@ matrix3_from_euler_angles_xy_f64 :: proc(angle_x, angle_y: f64) -> (m: Matrix3f6
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yx_f64 :: proc(angle_y, angle_x: f64) -> (m: Matrix3f64) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -300,20 +334,25 @@ matrix3_from_euler_angles_yx_f64 :: proc(angle_y, angle_x: f64) -> (m: Matrix3f6
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xz_f64 :: proc(angle_x, angle_z: f64) -> (m: Matrix3f64) {
|
||||
return mul(matrix3_from_euler_angle_x(angle_x), matrix3_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zx_f64 :: proc(angle_z, angle_x: f64) -> (m: Matrix3f64) {
|
||||
return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_x(angle_x))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yz_f64 :: proc(angle_y, angle_z: f64) -> (m: Matrix3f64) {
|
||||
return mul(matrix3_from_euler_angle_y(angle_y), matrix3_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zy_f64 :: proc(angle_z, angle_y: f64) -> (m: Matrix3f64) {
|
||||
return mul(matrix3_from_euler_angle_z(angle_z), matrix3_from_euler_angle_y(angle_y))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(-t1)
|
||||
c2 := math.cos(-t2)
|
||||
@@ -334,6 +373,7 @@ matrix3_from_euler_angles_xyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yxz_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix3f64) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -354,6 +394,7 @@ matrix3_from_euler_angles_yxz_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix3f
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -374,6 +415,7 @@ matrix3_from_euler_angles_xzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -394,6 +436,7 @@ matrix3_from_euler_angles_xyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -414,6 +457,7 @@ matrix3_from_euler_angles_yxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -434,6 +478,7 @@ matrix3_from_euler_angles_yzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -454,6 +499,7 @@ matrix3_from_euler_angles_zyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zxz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -475,6 +521,7 @@ matrix3_from_euler_angles_zxz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_xzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -495,6 +542,7 @@ matrix3_from_euler_angles_xzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_yzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -515,6 +563,7 @@ matrix3_from_euler_angles_yzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -535,6 +584,7 @@ matrix3_from_euler_angles_zyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_euler_angles_zxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -556,6 +606,7 @@ matrix3_from_euler_angles_zxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix3f64) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix3_from_yaw_pitch_roll_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix3f64) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -576,6 +627,7 @@ matrix3_from_yaw_pitch_roll_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix3f64
|
||||
return m
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
|
||||
@@ -589,6 +641,7 @@ euler_angles_xyz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[0, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
|
||||
@@ -602,6 +655,7 @@ euler_angles_yxz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[2, 0], m[1, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -615,6 +669,7 @@ euler_angles_xzx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 0], -m[2, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -628,6 +683,7 @@ euler_angles_xyx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[0, 1], m[2, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -641,6 +697,7 @@ euler_angles_yxy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[2, 1], -m[0, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -653,6 +710,7 @@ euler_angles_yzy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
t3 = T3
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 2], m[0, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -666,6 +724,7 @@ euler_angles_zyz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[0, 2], -m[1, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -679,6 +738,7 @@ euler_angles_zxz_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[2, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
|
||||
@@ -692,6 +752,7 @@ euler_angles_xzy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(-m[2, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
|
||||
@@ -705,6 +766,7 @@ euler_angles_yzx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
|
||||
@@ -718,6 +780,7 @@ euler_angles_zyx_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(-m[0, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
|
||||
@@ -735,6 +798,7 @@ euler_angles_zxy_from_matrix3_f64 :: proc(m: Matrix3f64) -> (t1, t2, t3: f64) {
|
||||
// Matrix4
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_x_f64 :: proc(angle_x: f64) -> (m: Matrix4f64) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
m[0, 0] = 1
|
||||
@@ -745,6 +809,7 @@ matrix4_from_euler_angle_x_f64 :: proc(angle_x: f64) -> (m: Matrix4f64) {
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_y_f64 :: proc(angle_y: f64) -> (m: Matrix4f64) {
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
m[0, 0] = +cos_y
|
||||
@@ -755,6 +820,7 @@ matrix4_from_euler_angle_y_f64 :: proc(angle_y: f64) -> (m: Matrix4f64) {
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angle_z_f64 :: proc(angle_z: f64) -> (m: Matrix4f64) {
|
||||
cos_z, sin_z := math.cos(angle_z), math.sin(angle_z)
|
||||
m[0, 0] = +cos_z
|
||||
@@ -767,6 +833,7 @@ matrix4_from_euler_angle_z_f64 :: proc(angle_z: f64) -> (m: Matrix4f64) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_x_f64 :: proc(angle_x: f64, angular_velocity_x: f64) -> (m: Matrix4f64) {
|
||||
cos_x := math.cos(angle_x) * angular_velocity_x
|
||||
sin_x := math.sin(angle_x) * angular_velocity_x
|
||||
@@ -778,6 +845,7 @@ matrix4_from_derived_euler_angle_x_f64 :: proc(angle_x: f64, angular_velocity_x:
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_y_f64 :: proc(angle_y: f64, angular_velocity_y: f64) -> (m: Matrix4f64) {
|
||||
cos_y := math.cos(angle_y) * angular_velocity_y
|
||||
sin_y := math.sin(angle_y) * angular_velocity_y
|
||||
@@ -789,6 +857,7 @@ matrix4_from_derived_euler_angle_y_f64 :: proc(angle_y: f64, angular_velocity_y:
|
||||
m[3, 3] = 1
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_derived_euler_angle_z_f64 :: proc(angle_z: f64, angular_velocity_z: f64) -> (m: Matrix4f64) {
|
||||
cos_z := math.cos(angle_z) * angular_velocity_z
|
||||
sin_z := math.sin(angle_z) * angular_velocity_z
|
||||
@@ -802,6 +871,7 @@ matrix4_from_derived_euler_angle_z_f64 :: proc(angle_z: f64, angular_velocity_z:
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xy_f64 :: proc(angle_x, angle_y: f64) -> (m: Matrix4f64) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -818,6 +888,7 @@ matrix4_from_euler_angles_xy_f64 :: proc(angle_x, angle_y: f64) -> (m: Matrix4f6
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yx_f64 :: proc(angle_y, angle_x: f64) -> (m: Matrix4f64) {
|
||||
cos_x, sin_x := math.cos(angle_x), math.sin(angle_x)
|
||||
cos_y, sin_y := math.cos(angle_y), math.sin(angle_y)
|
||||
@@ -833,20 +904,25 @@ matrix4_from_euler_angles_yx_f64 :: proc(angle_y, angle_x: f64) -> (m: Matrix4f6
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xz_f64 :: proc(angle_x, angle_z: f64) -> (m: Matrix4f64) {
|
||||
return mul(matrix4_from_euler_angle_x(angle_x), matrix4_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zx_f64 :: proc(angle_z, angle_x: f64) -> (m: Matrix4f64) {
|
||||
return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_x(angle_x))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yz_f64 :: proc(angle_y, angle_z: f64) -> (m: Matrix4f64) {
|
||||
return mul(matrix4_from_euler_angle_y(angle_y), matrix4_from_euler_angle_z(angle_z))
|
||||
}
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zy_f64 :: proc(angle_z, angle_y: f64) -> (m: Matrix4f64) {
|
||||
return mul(matrix4_from_euler_angle_z(angle_z), matrix4_from_euler_angle_y(angle_y))
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(-t1)
|
||||
c2 := math.cos(-t2)
|
||||
@@ -874,6 +950,7 @@ matrix4_from_euler_angles_xyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yxz_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix4f64) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -901,6 +978,7 @@ matrix4_from_euler_angles_yxz_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix4f
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -928,6 +1006,7 @@ matrix4_from_euler_angles_xzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -955,6 +1034,7 @@ matrix4_from_euler_angles_xyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -982,6 +1062,7 @@ matrix4_from_euler_angles_yxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1009,6 +1090,7 @@ matrix4_from_euler_angles_yzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1036,6 +1118,7 @@ matrix4_from_euler_angles_zyz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zxz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1064,6 +1147,7 @@ matrix4_from_euler_angles_zxz_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_xzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1091,6 +1175,7 @@ matrix4_from_euler_angles_xzy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_yzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1118,6 +1203,7 @@ matrix4_from_euler_angles_yzx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1145,6 +1231,7 @@ matrix4_from_euler_angles_zyx_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_euler_angles_zxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
c1 := math.cos(t1)
|
||||
s1 := math.sin(t1)
|
||||
@@ -1173,6 +1260,7 @@ matrix4_from_euler_angles_zxy_f64 :: proc(t1, t2, t3: f64) -> (m: Matrix4f64) {
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
matrix4_from_yaw_pitch_roll_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix4f64) {
|
||||
ch := math.cos(yaw)
|
||||
sh := math.sin(yaw)
|
||||
@@ -1200,6 +1288,7 @@ matrix4_from_yaw_pitch_roll_f64 :: proc(yaw, pitch, roll: f64) -> (m: Matrix4f64
|
||||
return m
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 1]*m[0, 1])
|
||||
@@ -1213,6 +1302,7 @@ euler_angles_xyz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[0, 2], m[2, 2])
|
||||
C2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 1]*m[1, 1])
|
||||
@@ -1226,6 +1316,7 @@ euler_angles_yxz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[2, 0], m[1, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -1239,6 +1330,7 @@ euler_angles_xzx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xyx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 0], -m[2, 0])
|
||||
S2 := math.sqrt(m[0, 1]*m[0, 1] + m[0, 2]*m[0, 2])
|
||||
@@ -1252,6 +1344,7 @@ euler_angles_xyx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yxy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[0, 1], m[2, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -1265,6 +1358,7 @@ euler_angles_yxy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[2, 1], -m[0, 1])
|
||||
S2 := math.sqrt(m[1, 0]*m[1, 0] + m[1, 2]*m[1, 2])
|
||||
@@ -1277,6 +1371,7 @@ euler_angles_yzy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
t3 = T3
|
||||
return
|
||||
}
|
||||
@(require_results)
|
||||
euler_angles_zyz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 2], m[0, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -1290,6 +1385,7 @@ euler_angles_zyz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[0, 2], -m[1, 2])
|
||||
S2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 1]*m[2, 1])
|
||||
@@ -1303,6 +1399,7 @@ euler_angles_zxz_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_xzy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[2, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[0, 0]*m[0, 0] + m[0, 2]*m[0, 2])
|
||||
@@ -1316,6 +1413,7 @@ euler_angles_xzy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_yzx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(-m[2, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[1, 1]*m[1, 1] + m[1, 2]*m[1, 2])
|
||||
@@ -1329,6 +1427,7 @@ euler_angles_yzx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zyx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(m[1, 0], m[0, 0])
|
||||
C2 := math.sqrt(m[2, 1]*m[2, 1] + m[2, 2]*m[2, 2])
|
||||
@@ -1342,6 +1441,7 @@ euler_angles_zyx_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
return
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
euler_angles_zxy_from_matrix4_f64 :: proc(m: Matrix4f64) -> (t1, t2, t3: f64) {
|
||||
T1 := math.atan2(-m[0, 1], m[1, 1])
|
||||
C2 := math.sqrt(m[2, 0]*m[2, 0] + m[2, 2]*m[2, 2])
|
||||
|
||||
@@ -37,109 +37,141 @@ Vector4_Components :: enum u8 {
|
||||
a = 3,
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
scalar_f32_swizzle1 :: proc(f: f32, c0: Scalar_Components) -> f32 {
|
||||
return f
|
||||
}
|
||||
@(require_results)
|
||||
scalar_f32_swizzle2 :: proc(f: f32, c0, c1: Scalar_Components) -> Vector2f32 {
|
||||
return {f, f}
|
||||
}
|
||||
@(require_results)
|
||||
scalar_f32_swizzle3 :: proc(f: f32, c0, c1, c2: Scalar_Components) -> Vector3f32 {
|
||||
return {f, f, f}
|
||||
}
|
||||
@(require_results)
|
||||
scalar_f32_swizzle4 :: proc(f: f32, c0, c1, c2, c3: Scalar_Components) -> Vector4f32 {
|
||||
return {f, f, f, f}
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector2f32_swizzle1 :: proc(v: Vector2f32, c0: Vector2_Components) -> f32 {
|
||||
return v[c0]
|
||||
}
|
||||
@(require_results)
|
||||
vector2f32_swizzle2 :: proc(v: Vector2f32, c0, c1: Vector2_Components) -> Vector2f32 {
|
||||
return {v[c0], v[c1]}
|
||||
}
|
||||
@(require_results)
|
||||
vector2f32_swizzle3 :: proc(v: Vector2f32, c0, c1, c2: Vector2_Components) -> Vector3f32 {
|
||||
return {v[c0], v[c1], v[c2]}
|
||||
}
|
||||
@(require_results)
|
||||
vector2f32_swizzle4 :: proc(v: Vector2f32, c0, c1, c2, c3: Vector2_Components) -> Vector4f32 {
|
||||
return {v[c0], v[c1], v[c2], v[c3]}
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
vector3f32_swizzle1 :: proc(v: Vector3f32, c0: Vector3_Components) -> f32 {
|
||||
return v[c0]
|
||||
}
|
||||
@(require_results)
|
||||
vector3f32_swizzle2 :: proc(v: Vector3f32, c0, c1: Vector3_Components) -> Vector2f32 {
|
||||
return {v[c0], v[c1]}
|
||||
}
|
||||
@(require_results)
|
||||
vector3f32_swizzle3 :: proc(v: Vector3f32, c0, c1, c2: Vector3_Components) -> Vector3f32 {
|
||||
return {v[c0], v[c1], v[c2]}
|
||||
}
|
||||
@(require_results)
|
||||
vector3f32_swizzle4 :: proc(v: Vector3f32, c0, c1, c2, c3: Vector3_Components) -> Vector4f32 {
|
||||
return {v[c0], v[c1], v[c2], v[c3]}
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector4f32_swizzle1 :: proc(v: Vector4f32, c0: Vector4_Components) -> f32 {
|
||||
return v[c0]
|
||||
}
|
||||
@(require_results)
|
||||
vector4f32_swizzle2 :: proc(v: Vector4f32, c0, c1: Vector4_Components) -> Vector2f32 {
|
||||
return {v[c0], v[c1]}
|
||||
}
|
||||
@(require_results)
|
||||
vector4f32_swizzle3 :: proc(v: Vector4f32, c0, c1, c2: Vector4_Components) -> Vector3f32 {
|
||||
return {v[c0], v[c1], v[c2]}
|
||||
}
|
||||
@(require_results)
|
||||
vector4f32_swizzle4 :: proc(v: Vector4f32, c0, c1, c2, c3: Vector4_Components) -> Vector4f32 {
|
||||
return {v[c0], v[c1], v[c2], v[c3]}
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
scalar_f64_swizzle1 :: proc(f: f64, c0: Scalar_Components) -> f64 {
|
||||
return f
|
||||
}
|
||||
@(require_results)
|
||||
scalar_f64_swizzle2 :: proc(f: f64, c0, c1: Scalar_Components) -> Vector2f64 {
|
||||
return {f, f}
|
||||
}
|
||||
@(require_results)
|
||||
scalar_f64_swizzle3 :: proc(f: f64, c0, c1, c2: Scalar_Components) -> Vector3f64 {
|
||||
return {f, f, f}
|
||||
}
|
||||
@(require_results)
|
||||
scalar_f64_swizzle4 :: proc(f: f64, c0, c1, c2, c3: Scalar_Components) -> Vector4f64 {
|
||||
return {f, f, f, f}
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector2f64_swizzle1 :: proc(v: Vector2f64, c0: Vector2_Components) -> f64 {
|
||||
return v[c0]
|
||||
}
|
||||
@(require_results)
|
||||
vector2f64_swizzle2 :: proc(v: Vector2f64, c0, c1: Vector2_Components) -> Vector2f64 {
|
||||
return {v[c0], v[c1]}
|
||||
}
|
||||
@(require_results)
|
||||
vector2f64_swizzle3 :: proc(v: Vector2f64, c0, c1, c2: Vector2_Components) -> Vector3f64 {
|
||||
return {v[c0], v[c1], v[c2]}
|
||||
}
|
||||
@(require_results)
|
||||
vector2f64_swizzle4 :: proc(v: Vector2f64, c0, c1, c2, c3: Vector2_Components) -> Vector4f64 {
|
||||
return {v[c0], v[c1], v[c2], v[c3]}
|
||||
}
|
||||
|
||||
|
||||
@(require_results)
|
||||
vector3f64_swizzle1 :: proc(v: Vector3f64, c0: Vector3_Components) -> f64 {
|
||||
return v[c0]
|
||||
}
|
||||
@(require_results)
|
||||
vector3f64_swizzle2 :: proc(v: Vector3f64, c0, c1: Vector3_Components) -> Vector2f64 {
|
||||
return {v[c0], v[c1]}
|
||||
}
|
||||
@(require_results)
|
||||
vector3f64_swizzle3 :: proc(v: Vector3f64, c0, c1, c2: Vector3_Components) -> Vector3f64 {
|
||||
return {v[c0], v[c1], v[c2]}
|
||||
}
|
||||
@(require_results)
|
||||
vector3f64_swizzle4 :: proc(v: Vector3f64, c0, c1, c2, c3: Vector3_Components) -> Vector4f64 {
|
||||
return {v[c0], v[c1], v[c2], v[c3]}
|
||||
}
|
||||
|
||||
@(require_results)
|
||||
vector4f64_swizzle1 :: proc(v: Vector4f64, c0: Vector4_Components) -> f64 {
|
||||
return v[c0]
|
||||
}
|
||||
@(require_results)
|
||||
vector4f64_swizzle2 :: proc(v: Vector4f64, c0, c1: Vector4_Components) -> Vector2f64 {
|
||||
return {v[c0], v[c1]}
|
||||
}
|
||||
@(require_results)
|
||||
vector4f64_swizzle3 :: proc(v: Vector4f64, c0, c1, c2: Vector4_Components) -> Vector3f64 {
|
||||
return {v[c0], v[c1], v[c2]}
|
||||
}
|
||||
@(require_results)
|
||||
vector4f64_swizzle4 :: proc(v: Vector4f64, c0, c1, c2, c3: Vector4_Components) -> Vector4f64 {
|
||||
return {v[c0], v[c1], v[c2], v[c3]}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user