mirror of
https://github.com/odin-lang/Odin.git
synced 2026-02-14 07:13:14 +00:00
big: Add Montgomery reduction.
This commit is contained in:
@@ -33,6 +33,80 @@ int_prime_is_divisible :: proc(a: ^Int, allocator := context.allocator) -> (res:
|
||||
return false, nil;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Shifts with subtractions when the result is greater than b.
|
||||
|
||||
The method is slightly modified to shift B unconditionally upto just under
|
||||
the leading bit of b. This saves alot of multiple precision shifting.
|
||||
*/
|
||||
/*
|
||||
internal_int_montgomery_calc_normalization :: proc(a, b: ^Int) -> (err: Error) {
|
||||
|
||||
int x, bits;
|
||||
mp_err err;
|
||||
|
||||
/* how many bits of last digit does b use */
|
||||
bits = mp_count_bits(b) % MP_DIGIT_BIT;
|
||||
|
||||
if (b->used > 1) {
|
||||
if ((err = mp_2expt(a, ((b->used - 1) * MP_DIGIT_BIT) + bits - 1)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
} else {
|
||||
mp_set(a, 1uL);
|
||||
bits = 1;
|
||||
}
|
||||
|
||||
/* now compute C = A * B mod b */
|
||||
for (x = bits - 1; x < (int)MP_DIGIT_BIT; x++) {
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
if (mp_cmp_mag(a, b) != MP_LT) {
|
||||
if ((err = s_mp_sub(a, b, a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return nil;
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
Sets up the Montgomery reduction stuff.
|
||||
*/
|
||||
internal_int_montgomery_setup :: proc(n: ^Int) -> (rho: DIGIT, err: Error) {
|
||||
/*
|
||||
Fast inversion mod 2**k
|
||||
Based on the fact that:
|
||||
|
||||
XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
|
||||
=> 2*X*A - X*X*A*A = 1
|
||||
=> 2*(1) - (1) = 1
|
||||
*/
|
||||
b := n.digit[0];
|
||||
if b & 1 == 0 { return 0, .Invalid_Argument; }
|
||||
|
||||
x := (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**8 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**16 */
|
||||
when _WORD_TYPE_BITS == 64 {
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**32 */
|
||||
x *= 2 - (b * x); /* here x*a==1 mod 2**64 */
|
||||
}
|
||||
|
||||
/*
|
||||
rho = -1/m mod b
|
||||
*/
|
||||
rho = DIGIT(((_WORD(1) << _WORD(_DIGIT_BITS)) - _WORD(x)) & _WORD(_MASK));
|
||||
return rho, nil;
|
||||
}
|
||||
|
||||
/*
|
||||
Returns the number of Rabin-Miller trials needed for a given bit size.
|
||||
*/
|
||||
number_of_rabin_miller_trials :: proc(bit_size: int) -> (number_of_trials: int) {
|
||||
switch {
|
||||
case bit_size <= 80:
|
||||
|
||||
@@ -1542,6 +1542,125 @@ _private_int_log :: proc(a: ^Int, base: DIGIT, allocator := context.allocator) -
|
||||
|
||||
|
||||
|
||||
/*
|
||||
Computes xR**-1 == x (mod N) via Montgomery Reduction.
|
||||
This is an optimized implementation of `internal_montgomery_reduce`
|
||||
which uses the comba method to quickly calculate the columns of the reduction.
|
||||
Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
_private_montgomery_reduce_comba :: proc(x, n: ^Int, rho: DIGIT) -> (err: Error) {
|
||||
W: [_WARRAY]_WORD = ---;
|
||||
|
||||
if x.used > _WARRAY { return .Invalid_Argument; }
|
||||
|
||||
/*
|
||||
Get old used count.
|
||||
*/
|
||||
old_used := x.used;
|
||||
|
||||
/*
|
||||
Grow `x` as required.
|
||||
*/
|
||||
internal_grow(x, n.used + 1) or_return;
|
||||
|
||||
/*
|
||||
First we have to get the digits of the input into an array of double precision words W[...]
|
||||
Copy the digits of `x` into W[0..`x.used` - 1]
|
||||
*/
|
||||
ix: int;
|
||||
for ix = 0; ix < x.used; ix += 1 {
|
||||
W[ix] = _WORD(x.digit[ix]);
|
||||
}
|
||||
|
||||
/*
|
||||
Zero the high words of W[a->used..m->used*2].
|
||||
*/
|
||||
zero_upper := (n.used * 2) + 1;
|
||||
if ix < zero_upper {
|
||||
for ix = x.used; ix < zero_upper; ix += 1 {
|
||||
W[ix] = {};
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Now we proceed to zero successive digits from the least significant upwards.
|
||||
*/
|
||||
for ix = 0; ix < n.used; ix += 1 {
|
||||
/*
|
||||
`mu = ai * m' mod b`
|
||||
|
||||
We avoid a double precision multiplication (which isn't required)
|
||||
by casting the value down to a DIGIT. Note this requires
|
||||
that W[ix-1] have the carry cleared (see after the inner loop)
|
||||
*/
|
||||
mu := ((W[ix] & _WORD(_MASK)) * _WORD(rho)) & _WORD(_MASK);
|
||||
|
||||
/*
|
||||
`a = a + mu * m * b**i`
|
||||
|
||||
This is computed in place and on the fly. The multiplication
|
||||
by b**i is handled by offseting which columns the results
|
||||
are added to.
|
||||
|
||||
Note the comba method normally doesn't handle carries in the
|
||||
inner loop In this case we fix the carry from the previous
|
||||
column since the Montgomery reduction requires digits of the
|
||||
result (so far) [see above] to work.
|
||||
|
||||
This is handled by fixing up one carry after the inner loop.
|
||||
The carry fixups are done in order so after these loops the
|
||||
first m->used words of W[] have the carries fixed.
|
||||
*/
|
||||
for iy := 0; iy < n.used; iy += 1 {
|
||||
W[ix + iy] += mu * _WORD(n.digit[iy]);
|
||||
}
|
||||
|
||||
/*
|
||||
Now fix carry for next digit, W[ix+1].
|
||||
*/
|
||||
W[ix + 1] += (W[ix] >> _DIGIT_BITS);
|
||||
}
|
||||
|
||||
/*
|
||||
Now we have to propagate the carries and shift the words downward
|
||||
[all those least significant digits we zeroed].
|
||||
*/
|
||||
|
||||
for ; ix < n.used * 2; ix += 1 {
|
||||
W[ix + 1] += (W[ix] >> _DIGIT_BITS);
|
||||
}
|
||||
|
||||
/* copy out, A = A/b**n
|
||||
*
|
||||
* The result is A/b**n but instead of converting from an
|
||||
* array of mp_word to mp_digit than calling mp_rshd
|
||||
* we just copy them in the right order
|
||||
*/
|
||||
|
||||
for ix = 0; ix < (n.used + 1); ix += 1 {
|
||||
x.digit[ix] = DIGIT(W[n.used + ix] & _WORD(_MASK));
|
||||
}
|
||||
|
||||
/*
|
||||
Set the max used.
|
||||
*/
|
||||
x.used = n.used + 1;
|
||||
|
||||
/*
|
||||
Zero old_used digits, if the input a was larger than m->used+1 we'll have to clear the digits.
|
||||
*/
|
||||
internal_zero_unused(x, old_used);
|
||||
internal_clamp(x);
|
||||
|
||||
/*
|
||||
if A >= m then A = A - m
|
||||
*/
|
||||
if internal_cmp_mag(x, n) != -1 {
|
||||
return internal_sub(x, x, n);
|
||||
}
|
||||
return nil;
|
||||
}
|
||||
|
||||
/*
|
||||
hac 14.61, pp608
|
||||
*/
|
||||
|
||||
Reference in New Issue
Block a user